summaryrefslogtreecommitdiff
path: root/yjit_asm.c
blob: 4cc3a538fa3d7c6763f2663d1d9820ef64cc81f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
// This file is a fragment of the yjit.o compilation unit. See yjit.c.
//
// Note that the definition for some of these functions don't specify
// static inline, but their declaration in yjit_asm.h do. The resulting
// linkage is the same as if they both specify. The relevant sections in
// N1256 is 6.2.2p4, 6.2.2p5, and 6.7.4p5.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include <assert.h>
#include <errno.h>

// For mmapp(), sysconf()
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif

#include "yjit_asm.h"

// Compute the number of bits needed to encode a signed value
uint32_t sig_imm_size(int64_t imm)
{
    // Compute the smallest size this immediate fits in
    if (imm >= INT8_MIN && imm <= INT8_MAX)
        return 8;
    if (imm >= INT16_MIN && imm <= INT16_MAX)
        return 16;
    if (imm >= INT32_MIN && imm <= INT32_MAX)
        return 32;

    return 64;
}

// Compute the number of bits needed to encode an unsigned value
uint32_t unsig_imm_size(uint64_t imm)
{
    // Compute the smallest size this immediate fits in
    if (imm <= UINT8_MAX)
        return 8;
    else if (imm <= UINT16_MAX)
        return 16;
    else if (imm <= UINT32_MAX)
        return 32;

    return 64;
}

x86opnd_t mem_opnd(uint32_t num_bits, x86opnd_t base_reg, int32_t disp)
{
    bool is_iprel = base_reg.as.reg.reg_type == REG_IP;

    x86opnd_t opnd = {
        OPND_MEM,
        num_bits,
        .as.mem = { base_reg.as.reg.reg_no, 0, 0, false, is_iprel, disp }
    };

    return opnd;
}

x86opnd_t mem_opnd_sib(uint32_t num_bits, x86opnd_t base_reg, x86opnd_t index_reg, int32_t scale, int32_t disp)
{
    uint8_t scale_exp;
    switch (scale) {
      case 8:
        scale_exp = 3;
        break;
      case 4:
        scale_exp = 2;
        break;
      case 2:
        scale_exp = 1;
        break;
      case 1:
        scale_exp = 0;
        break;
      default:
        rb_bug("yjit: scale not one of 1,2,4,8");
        break;
    }

    bool is_iprel = base_reg.as.reg.reg_type == REG_IP;

    x86opnd_t opnd = {
        OPND_MEM,
        num_bits,
        .as.mem = {
            .base_reg_no = base_reg.as.reg.reg_no,
            .idx_reg_no = index_reg.as.reg.reg_no,
            .has_idx = 1,
            .scale_exp = scale_exp,
            .is_iprel = is_iprel,
            .disp = disp
        }
    };

    return opnd;
}

static x86opnd_t resize_opnd(x86opnd_t opnd, uint32_t num_bits)
{
    assert (num_bits % 8 == 0);
    x86opnd_t sub = opnd;
    sub.num_bits = num_bits;
    return sub;
}

x86opnd_t imm_opnd(int64_t imm)
{
    x86opnd_t opnd = {
        OPND_IMM,
        sig_imm_size(imm),
        .as.imm = imm
    };

    return opnd;
}

x86opnd_t const_ptr_opnd(const void *ptr)
{
    x86opnd_t opnd = {
        OPND_IMM,
        64,
        .as.unsig_imm = (uint64_t)ptr
    };

    return opnd;
}

// Align the current write position to a multiple of bytes
static uint8_t *align_ptr(uint8_t *ptr, uint32_t multiple)
{
    // Compute the pointer modulo the given alignment boundary
    uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;

    // If the pointer is already aligned, stop
    if (rem == 0)
        return ptr;

    // Pad the pointer by the necessary amount to align it
    uint32_t pad = multiple - rem;

    return ptr + pad;
}

// Allocate a block of executable memory
static uint8_t *alloc_exec_mem(uint32_t mem_size)
{
    uint8_t *mem_block;

    // On Linux
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
        // Align the requested address to page size
        uint32_t page_size = (uint32_t)sysconf(_SC_PAGESIZE);
        uint8_t *req_addr = align_ptr((uint8_t*)&alloc_exec_mem, page_size);

        do {
            // Try to map a chunk of memory as executable
            mem_block = (uint8_t*)mmap(
                (void*)req_addr,
                mem_size,
                PROT_READ | PROT_EXEC,
                MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
                -1,
                0
            );

            // If we succeeded, stop
            if (mem_block != MAP_FAILED) {
                break;
            }

            // +4MB
            req_addr += 4 * 1024 * 1024;
        } while (req_addr < (uint8_t*)&alloc_exec_mem + INT32_MAX);

    // On MacOS and other platforms
#else
        // Try to map a chunk of memory as executable
        mem_block = (uint8_t*)mmap(
            (void*)alloc_exec_mem,
            mem_size,
            PROT_READ | PROT_EXEC,
            MAP_PRIVATE | MAP_ANONYMOUS,
            -1,
            0
        );
#endif

    // Fallback
    if (mem_block == MAP_FAILED) {
        // Try again without the address hint (e.g., valgrind)
        mem_block = (uint8_t*)mmap(
            NULL,
            mem_size,
            PROT_READ | PROT_EXEC,
            MAP_PRIVATE | MAP_ANONYMOUS,
            -1,
            0
            );
    }

    // Check that the memory mapping was successful
    if (mem_block == MAP_FAILED) {
        perror("mmap call failed");
        exit(-1);
    }

    codeblock_t block;
    codeblock_t *cb = &block;

    cb_init(cb, mem_block, mem_size);

    // Fill the executable memory with PUSH DS (0x1E) so that
    // executing uninitialized memory will fault with #UD in
    // 64-bit mode.
    cb_mark_all_writeable(cb);
    memset(mem_block, 0x1E, mem_size);
    cb_mark_all_executable(cb);

    return mem_block;
}

// Initialize a code block object
void cb_init(codeblock_t *cb, uint8_t *mem_block, uint32_t mem_size)
{
    assert (mem_block);
    cb->mem_block_ = mem_block;
    cb->mem_size = mem_size;
    cb->write_pos = 0;
    cb->num_labels = 0;
    cb->num_refs = 0;
    cb->current_aligned_write_pos = ALIGNED_WRITE_POSITION_NONE;
}

// Set the current write position
void cb_set_pos(codeblock_t *cb, uint32_t pos)
{
    // Assert here since while assembler functions do bounds checking, there is
    // nothing stopping users from taking out an out-of-bounds pointer and
    // doing bad accesses with it.
    assert (pos < cb->mem_size);
    cb->write_pos = pos;
}

// Align the current write position to a multiple of bytes
void cb_align_pos(codeblock_t *cb, uint32_t multiple)
{
    // Compute the pointer modulo the given alignment boundary
    uint8_t *ptr = cb_get_write_ptr(cb);
    uint8_t *aligned_ptr = align_ptr(ptr, multiple);
    const uint32_t write_pos = cb->write_pos;

    // Pad the pointer by the necessary amount to align it
    ptrdiff_t pad = aligned_ptr - ptr;
    cb_set_pos(cb, write_pos + (int32_t)pad);
}

// Set the current write position from a pointer
void cb_set_write_ptr(codeblock_t *cb, uint8_t *code_ptr)
{
    intptr_t pos = code_ptr - cb->mem_block_;
    assert (pos < cb->mem_size);
    cb_set_pos(cb, (uint32_t)pos);
}

// Get a direct pointer into the executable memory block
uint8_t *cb_get_ptr(const codeblock_t *cb, uint32_t index)
{
    if (index < cb->mem_size) {
        return &cb->mem_block_[index];
    }
    else {
        return NULL;
    }
}

// Get a direct pointer to the current write position
uint8_t *cb_get_write_ptr(const codeblock_t *cb)
{
    return cb_get_ptr(cb, cb->write_pos);
}

// Write a byte at the current position
void cb_write_byte(codeblock_t *cb, uint8_t byte)
{
    assert (cb->mem_block_);
    if (cb->write_pos < cb->mem_size) {
        cb_mark_position_writeable(cb, cb->write_pos);
        cb->mem_block_[cb->write_pos] = byte;
        cb->write_pos++;
    }
    else {
        cb->dropped_bytes = true;
    }
}

// Write multiple bytes starting from the current position
void cb_write_bytes(codeblock_t *cb, uint32_t num_bytes, ...)
{
    va_list va;
    va_start(va, num_bytes);

    for (uint32_t i = 0; i < num_bytes; ++i)
    {
        uint8_t byte = va_arg(va, int);
        cb_write_byte(cb, byte);
    }

    va_end(va);
}

// Write a signed integer over a given number of bits at the current position
void cb_write_int(codeblock_t *cb, uint64_t val, uint32_t num_bits)
{
    assert (num_bits > 0);
    assert (num_bits % 8 == 0);

    // Switch on the number of bits
    switch (num_bits) {
      case 8:
        cb_write_byte(cb, (uint8_t)val);
        break;

      case 16:
        cb_write_bytes(
            cb,
            2,
            (uint8_t)((val >> 0) & 0xFF),
            (uint8_t)((val >> 8) & 0xFF)
        );
        break;

      case 32:
        cb_write_bytes(
            cb,
            4,
            (uint8_t)((val >>  0) & 0xFF),
            (uint8_t)((val >>  8) & 0xFF),
            (uint8_t)((val >> 16) & 0xFF),
            (uint8_t)((val >> 24) & 0xFF)
        );
        break;

      default:
        {
            // Compute the size in bytes
            uint32_t num_bytes = num_bits / 8;

            // Write out the bytes
            for (uint32_t i = 0; i < num_bytes; ++i)
            {
                uint8_t byte_val = (uint8_t)(val & 0xFF);
                cb_write_byte(cb, byte_val);
                val >>= 8;
            }
        }
    }
}

// Allocate a new label with a given name
uint32_t cb_new_label(codeblock_t *cb, const char *name)
{
    //if (hasASM)
    //    writeString(to!string(label) ~ ":");

    assert (cb->num_labels < MAX_LABELS);

    // Allocate the new label
    uint32_t label_idx = cb->num_labels++;

    // This label doesn't have an address yet
    cb->label_addrs[label_idx] = 0;
    cb->label_names[label_idx] = name;

    return label_idx;
}

// Write a label at the current address
void cb_write_label(codeblock_t *cb, uint32_t label_idx)
{
    assert (label_idx < MAX_LABELS);
    cb->label_addrs[label_idx] = cb->write_pos;
}

// Add a label reference at the current write position
void cb_label_ref(codeblock_t *cb, uint32_t label_idx)
{
    assert (label_idx < MAX_LABELS);
    assert (cb->num_refs < MAX_LABEL_REFS);

    // Keep track of the reference
    cb->label_refs[cb->num_refs] = (labelref_t){ cb->write_pos, label_idx };
    cb->num_refs++;
}

// Link internal label references
void cb_link_labels(codeblock_t *cb)
{
    uint32_t orig_pos = cb->write_pos;

    // For each label reference
    for (uint32_t i = 0; i < cb->num_refs; ++i)
    {
        uint32_t ref_pos = cb->label_refs[i].pos;
        uint32_t label_idx = cb->label_refs[i].label_idx;
        assert (ref_pos < cb->mem_size);
        assert (label_idx < MAX_LABELS);

        uint32_t label_addr = cb->label_addrs[label_idx];
        assert (label_addr < cb->mem_size);

        // Compute the offset from the reference's end to the label
        int64_t offset = (int64_t)label_addr - (int64_t)(ref_pos + 4);

        cb_set_pos(cb, ref_pos);
        cb_write_int(cb, offset, 32);
    }

    cb->write_pos = orig_pos;

    // Clear the label positions and references
    cb->num_labels = 0;
    cb->num_refs = 0;
}

// Check if an operand needs a REX byte to be encoded
static bool rex_needed(x86opnd_t opnd)
{
    if (opnd.type == OPND_NONE || opnd.type == OPND_IMM)
    {
        return false;
    }

    if (opnd.type == OPND_REG)
    {
        return (
            opnd.as.reg.reg_no > 7 ||
            (opnd.num_bits == 8 && opnd.as.reg.reg_no >= 4 && opnd.as.reg.reg_no <= 7)
        );
    }

    if (opnd.type == OPND_MEM)
    {
        return (opnd.as.mem.base_reg_no > 7) || (opnd.as.mem.has_idx && opnd.as.mem.idx_reg_no > 7);
    }

    rb_bug("unreachable");
}

// Check if an SIB byte is needed to encode this operand
static bool sib_needed(x86opnd_t opnd)
{
    if (opnd.type != OPND_MEM)
        return false;

    return (
        opnd.as.mem.has_idx ||
        opnd.as.mem.base_reg_no == RSP.as.reg.reg_no ||
        opnd.as.mem.base_reg_no == R12.as.reg.reg_no
    );
}

// Compute the size of the displacement field needed for a memory operand
static uint32_t disp_size(x86opnd_t opnd)
{
    assert (opnd.type == OPND_MEM);

    // If using RIP as the base, use disp32
    if (opnd.as.mem.is_iprel)
    {
        return 32;
    }

    // Compute the required displacement size
    if (opnd.as.mem.disp != 0)
    {
        uint32_t num_bits = sig_imm_size(opnd.as.mem.disp);
        assert (num_bits <= 32 && "displacement does not fit in 32 bits");

        // x86 can only encode 8-bit and 32-bit displacements
        if (num_bits == 16)
            num_bits = 32;;

        return num_bits;
    }

    // If EBP or RBP or R13 is used as the base, displacement must be encoded
    if (opnd.as.mem.base_reg_no == RBP.as.reg.reg_no ||
        opnd.as.mem.base_reg_no == R13.as.reg.reg_no)
    {
        return 8;
    }

    return 0;
}

// Write the REX byte
static void cb_write_rex(
    codeblock_t *cb,
    bool w_flag,
    uint8_t reg_no,
    uint8_t idx_reg_no,
    uint8_t rm_reg_no
)
{
    // 0 1 0 0 w r x b
    // w - 64-bit operand size flag
    // r - MODRM.reg extension
    // x - SIB.index extension
    // b - MODRM.rm or SIB.base extension
    uint8_t w = w_flag? 1:0;
    uint8_t r = (reg_no & 8)? 1:0;
    uint8_t x = (idx_reg_no & 8)? 1:0;
    uint8_t b = (rm_reg_no & 8)? 1:0;

    // Encode and write the REX byte
    uint8_t rexByte = 0x40 + (w << 3) + (r << 2) + (x << 1) + (b);
    cb_write_byte(cb, rexByte);
}

// Write an opcode byte with an embedded register operand
static void cb_write_opcode(codeblock_t *cb, uint8_t opcode, x86opnd_t reg)
{
    // Write the reg field into the opcode byte
    uint8_t op_byte = opcode | (reg.as.reg.reg_no & 7);
    cb_write_byte(cb, op_byte);
}

// Encode an RM instruction
static void cb_write_rm(
    codeblock_t *cb,
    bool szPref,
    bool rexW,
    x86opnd_t r_opnd,
    x86opnd_t rm_opnd,
    uint8_t opExt,
    uint32_t op_len,
    ...)
{
    assert (op_len > 0 && op_len <= 3);
    assert (r_opnd.type == OPND_REG || r_opnd.type == OPND_NONE);

    // Flag to indicate the REX prefix is needed
    bool need_rex = rexW || rex_needed(r_opnd) || rex_needed(rm_opnd);

    // Flag to indicate SIB byte is needed
    bool need_sib = sib_needed(r_opnd) || sib_needed(rm_opnd);

    // Add the operand-size prefix, if needed
    if (szPref == true)
        cb_write_byte(cb, 0x66);

    // Add the REX prefix, if needed
    if (need_rex)
    {
        // 0 1 0 0 w r x b
        // w - 64-bit operand size flag
        // r - MODRM.reg extension
        // x - SIB.index extension
        // b - MODRM.rm or SIB.base extension

        uint8_t w = rexW? 1:0;

        uint8_t r;
        if (r_opnd.type != OPND_NONE)
            r = (r_opnd.as.reg.reg_no & 8)? 1:0;
        else
            r = 0;

        uint8_t x;
        if (need_sib && rm_opnd.as.mem.has_idx)
            x = (rm_opnd.as.mem.idx_reg_no & 8)? 1:0;
        else
            x = 0;

        uint8_t b;
        if (rm_opnd.type == OPND_REG)
            b = (rm_opnd.as.reg.reg_no & 8)? 1:0;
        else if (rm_opnd.type == OPND_MEM)
            b = (rm_opnd.as.mem.base_reg_no & 8)? 1:0;
        else
            b = 0;

        // Encode and write the REX byte
        uint8_t rex_byte = 0x40 + (w << 3) + (r << 2) + (x << 1) + (b);
        cb_write_byte(cb, rex_byte);
    }

    // Write the opcode bytes to the code block
    va_list va;
    va_start(va, op_len);
    for (uint32_t i = 0; i < op_len; ++i)
    {
        uint8_t byte = va_arg(va, int);
        cb_write_byte(cb, byte);
    }
    va_end(va);

    // MODRM.mod (2 bits)
    // MODRM.reg (3 bits)
    // MODRM.rm  (3 bits)

    assert (
        !(opExt != 0xFF && r_opnd.type != OPND_NONE) &&
        "opcode extension and register operand present"
    );

    // Encode the mod field
    uint8_t mod;
    if (rm_opnd.type == OPND_REG)
    {
        mod = 3;
    }
    else
    {
        uint32_t dsize = disp_size(rm_opnd);
        if (dsize == 0 || rm_opnd.as.mem.is_iprel)
            mod = 0;
        else if (dsize == 8)
            mod = 1;
        else if (dsize == 32)
            mod = 2;
        else
            rb_bug("unreachable");
    }

    // Encode the reg field
    uint8_t reg;
    if (opExt != 0xFF)
        reg = opExt;
    else if (r_opnd.type == OPND_REG)
        reg = r_opnd.as.reg.reg_no & 7;
    else
        reg = 0;

    // Encode the rm field
    uint8_t rm;
    if (rm_opnd.type == OPND_REG)
    {
        rm = rm_opnd.as.reg.reg_no & 7;
    }
    else
    {
        if (need_sib)
            rm = 4;
        else
            rm = rm_opnd.as.mem.base_reg_no & 7;
    }

    // Encode and write the ModR/M byte
    uint8_t rm_byte = (mod << 6) + (reg << 3) + (rm);
    cb_write_byte(cb, rm_byte);

    // Add the SIB byte, if needed
    if (need_sib)
    {
        // SIB.scale (2 bits)
        // SIB.index (3 bits)
        // SIB.base  (3 bits)

        assert (rm_opnd.type == OPND_MEM);

        // Encode the scale value
        uint8_t scale = rm_opnd.as.mem.scale_exp;

        // Encode the index value
        uint8_t index;
        if (!rm_opnd.as.mem.has_idx)
            index = 4;
        else
            index = rm_opnd.as.mem.idx_reg_no & 7;

        // Encode the base register
        uint8_t base = rm_opnd.as.mem.base_reg_no & 7;

        // Encode and write the SIB byte
        uint8_t sib_byte = (scale << 6) + (index << 3) + (base);
        cb_write_byte(cb, sib_byte);
    }

    // Add the displacement
    if (rm_opnd.type == OPND_MEM)
    {
        uint32_t dsize = disp_size(rm_opnd);
        if (dsize > 0)
            cb_write_int(cb, rm_opnd.as.mem.disp, dsize);
    }
}

// Encode a mul-like single-operand RM instruction
static void write_rm_unary(
    codeblock_t *cb,
    const char *mnem,
    uint8_t opMemReg8,
    uint8_t opMemRegPref,
    uint8_t opExt,
    x86opnd_t opnd)
{
    // Write a disassembly string
    //cb.writeASM(mnem, opnd);

    // Check the size of opnd0
    uint32_t opndSize;
    if (opnd.type == OPND_REG || opnd.type == OPND_MEM)
        opndSize = opnd.num_bits;
    else
        rb_bug("yjit: invalid operand");

    assert (opndSize == 8 || opndSize == 16 || opndSize == 32 || opndSize == 64);
    bool szPref = opndSize == 16;
    bool rexW = opndSize == 64;

    if (opndSize == 8)
        cb_write_rm(cb, false, false, NO_OPND, opnd, opExt, 1, opMemReg8);
    else
        cb_write_rm(cb, szPref, rexW, NO_OPND, opnd, opExt, 1, opMemRegPref);
}

// Encode an add-like RM instruction with multiple possible encodings
static void cb_write_rm_multi(
    codeblock_t *cb,
    const char *mnem,
    uint8_t opMemReg8,
    uint8_t opMemRegPref,
    uint8_t opRegMem8,
    uint8_t opRegMemPref,
    uint8_t opMemImm8,
    uint8_t opMemImmSml,
    uint8_t opMemImmLrg,
    uint8_t opExtImm,
    x86opnd_t opnd0,
    x86opnd_t opnd1)
{
    assert (opnd0.type == OPND_REG || opnd0.type == OPND_MEM);

    /*
    // Write disassembly string
    if (!opnd1.isNone)
        cb.writeASM(mnem, opnd0, opnd1);
    else
        cb.writeASM(mnem, opnd0);
    */

    // Check the size of opnd0
    uint32_t opndSize = opnd0.num_bits;

    // Check the size of opnd1
    if (opnd1.type == OPND_REG || opnd1.type == OPND_MEM)
    {
        assert (opnd1.num_bits == opndSize && "operand size mismatch");
    }
    else if (opnd1.type == OPND_IMM)
    {
        assert (opnd1.num_bits <= opndSize);
    }

    assert (opndSize == 8 || opndSize == 16 || opndSize == 32 || opndSize == 64);
    bool szPref = opndSize == 16;
    bool rexW = opndSize == 64;

    // R/M + Reg
    if ((opnd0.type == OPND_MEM && opnd1.type == OPND_REG) ||
        (opnd0.type == OPND_REG && opnd1.type == OPND_REG))
    {
        // R/M is opnd0
        if (opndSize == 8)
            cb_write_rm(cb, false, false, opnd1, opnd0, 0xFF, 1, opMemReg8);
        else
            cb_write_rm(cb, szPref, rexW, opnd1, opnd0, 0xFF, 1, opMemRegPref);
    }

    // Reg + R/M
    else if (opnd0.type == OPND_REG && opnd1.type == OPND_MEM)
    {
        // R/M is opnd1
        if (opndSize == 8)
            cb_write_rm(cb, false, false, opnd0, opnd1, 0xFF, 1, opRegMem8);
        else
            cb_write_rm(cb, szPref, rexW, opnd0, opnd1, 0xFF, 1, opRegMemPref);
    }

    // R/M + Imm
    else if (opnd1.type == OPND_IMM)
    {
        // 8-bit immediate
        if (opnd1.num_bits <= 8)
        {
            if (opndSize == 8)
                cb_write_rm(cb, false, false, NO_OPND, opnd0, opExtImm, 1, opMemImm8);
            else
                cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExtImm, 1, opMemImmSml);

            cb_write_int(cb, opnd1.as.imm, 8);
        }

        // 32-bit immediate
        else if (opnd1.num_bits <= 32)
        {
            assert (opnd1.num_bits <= opndSize && "immediate too large for dst");
            cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExtImm, 1, opMemImmLrg);
            cb_write_int(cb, opnd1.as.imm, (opndSize > 32)? 32:opndSize);
        }

        // Immediate too large
        else
        {
            assert (false && "immediate value too large");
        }
    }

    // Invalid operands
    else
    {
        assert (false && "invalid operand combination");
    }
}

// Encode a single-operand shift instruction
static void cb_write_shift(
    codeblock_t *cb,
    const char *mnem,
    uint8_t opMemOnePref,
    uint8_t opMemClPref,
    uint8_t opMemImmPref,
    uint8_t opExt,
    x86opnd_t opnd0,
    x86opnd_t opnd1)
{
    // Write a disassembly string
    //cb.writeASM(mnem, opnd0, opnd1);

    // Check the size of opnd0
    uint32_t opndSize;
    if (opnd0.type == OPND_REG || opnd0.type == OPND_MEM)
        opndSize = opnd0.num_bits;
    else
        rb_bug("yjit: shift: invalid first operand");

    assert (opndSize == 16 || opndSize == 32 || opndSize == 64);
    bool szPref = opndSize == 16;
    bool rexW = opndSize == 64;

    if (opnd1.type == OPND_IMM)
    {
        if (opnd1.as.imm == 1)
        {
            cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExt, 1, opMemOnePref);
        }
        else
        {
            assert (opnd1.num_bits <= 8);
            cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExt, 1, opMemImmPref);
            cb_write_byte(cb, (uint8_t)opnd1.as.imm);
        }
    }
    /*
    else if (opnd1.isReg && opnd1.reg == CL)
    {
        cb.writeRMInstr!('l', opExt, opMemClPref)(szPref, rexW, opnd0, X86Opnd.NONE);
    }
    */
    else
    {
        assert (false);
    }
}

// Encode a relative jump to a label (direct or conditional)
// Note: this always encodes a 32-bit offset
static void cb_write_jcc(codeblock_t *cb, const char *mnem, uint8_t op0, uint8_t op1, uint32_t label_idx)
{
    //cb.writeASM(mnem, label);

    // Write the opcode
    if (op0 != 0xFF)
        cb_write_byte(cb, op0);
    cb_write_byte(cb, op1);

    // Add a reference to the label
    cb_label_ref(cb, label_idx);

    // Relative 32-bit offset to be patched
    cb_write_int(cb, 0, 32);
}

// Encode a relative jump to a pointer at a 32-bit offset (direct or conditional)
static void cb_write_jcc_ptr(codeblock_t *cb, const char *mnem, uint8_t op0, uint8_t op1, uint8_t *dst_ptr)
{
    //cb.writeASM(mnem, label);

    // Write the opcode
    if (op0 != 0xFF)
        cb_write_byte(cb, op0);
    cb_write_byte(cb, op1);

    // Pointer to the end of this jump instruction
    uint8_t *end_ptr = cb_get_ptr(cb, cb->write_pos + 4);

    // Compute the jump offset
    int64_t rel64 = (int64_t)(dst_ptr - end_ptr);
    if (rel64 >= INT32_MIN && rel64 <= INT32_MAX) {
        // Write the relative 32-bit jump offset
        cb_write_int(cb, (int32_t)rel64, 32);
    }
    else {
        // Offset doesn't fit in 4 bytes. Report error.
        cb->dropped_bytes = true;
    }
}

// Encode a conditional move instruction
static void cb_write_cmov(codeblock_t *cb, const char *mnem, uint8_t opcode1, x86opnd_t dst, x86opnd_t src)
{
    //cb.writeASM(mnem, dst, src);

    assert (dst.type == OPND_REG);
    assert (src.type == OPND_REG || src.type == OPND_MEM);
    assert (dst.num_bits >= 16 && "invalid dst reg size in cmov");

    bool szPref = dst.num_bits == 16;
    bool rexW = dst.num_bits == 64;

    cb_write_rm(cb, szPref, rexW, dst, src, 0xFF, 2, 0x0F, opcode1);
}

// add - Integer addition
void add(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "add",
        0x00, // opMemReg8
        0x01, // opMemRegPref
        0x02, // opRegMem8
        0x03, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x00, // opExtImm
        opnd0,
        opnd1
    );
}

/// and - Bitwise AND
void and(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "and",
        0x20, // opMemReg8
        0x21, // opMemRegPref
        0x22, // opRegMem8
        0x23, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x04, // opExtImm
        opnd0,
        opnd1
    );
}

// call - Call to a pointer with a 32-bit displacement offset
static void call_rel32(codeblock_t *cb, int32_t rel32)
{
    //cb.writeASM("call", rel32);

    // Write the opcode
    cb_write_byte(cb, 0xE8);

    // Write the relative 32-bit jump offset
    cb_write_int(cb, (int32_t)rel32, 32);
}

// call - Call a pointer, encode with a 32-bit offset if possible
void call_ptr(codeblock_t *cb, x86opnd_t scratch_reg, uint8_t *dst_ptr)
{
    assert (scratch_reg.type == OPND_REG);

    // Pointer to the end of this call instruction
    uint8_t *end_ptr = cb_get_ptr(cb, cb->write_pos + 5);

    // Compute the jump offset
    int64_t rel64 = (int64_t)(dst_ptr - end_ptr);

    // If the offset fits in 32-bit
    if (rel64 >= INT32_MIN && rel64 <= INT32_MAX) {
        call_rel32(cb, (int32_t)rel64);
        return;
    }

    // Move the pointer into the scratch register and call
    mov(cb, scratch_reg, const_ptr_opnd(dst_ptr));
    call(cb, scratch_reg);
}

/// call - Call to label with 32-bit offset
void call_label(codeblock_t *cb, uint32_t label_idx)
{
    //cb.writeASM("call", label);

    // Write the opcode
    cb_write_byte(cb, 0xE8);

    // Add a reference to the label
    cb_label_ref(cb, label_idx);

    // Relative 32-bit offset to be patched
    cb_write_int(cb, 0, 32);
}

/// call - Indirect call with an R/M operand
void call(codeblock_t *cb, x86opnd_t opnd)
{
    //cb.writeASM("call", opnd);
    cb_write_rm(cb, false, false, NO_OPND, opnd, 2, 1, 0xFF);
}

/// cmovcc - Conditional move
void cmova(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmova", 0x47, dst, src); }
void cmovae(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovae", 0x43, dst, src); }
void cmovb(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovb", 0x42, dst, src); }
void cmovbe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovbe", 0x46, dst, src); }
void cmovc(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovc", 0x42, dst, src); }
void cmove(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmove", 0x44, dst, src); }
void cmovg(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovg", 0x4F, dst, src); }
void cmovge(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovge", 0x4D, dst, src); }
void cmovl(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovl", 0x4C, dst, src); }
void cmovle(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovle", 0x4E, dst, src); }
void cmovna(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovna", 0x46, dst, src); }
void cmovnae(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnae", 0x42, dst, src); }
void cmovnb(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnb", 0x43, dst, src); }
void cmovnbe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnbe", 0x47, dst, src); }
void cmovnc(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnc", 0x43, dst, src); }
void cmovne(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovne", 0x45, dst, src); }
void cmovng(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovng", 0x4E, dst, src); }
void cmovnge(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnge", 0x4C, dst, src); }
void cmovnl(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnl" , 0x4D, dst, src); }
void cmovnle(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnle", 0x4F, dst, src); }
void cmovno(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovno", 0x41, dst, src); }
void cmovnp(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnp", 0x4B, dst, src); }
void cmovns(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovns", 0x49, dst, src); }
void cmovnz(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnz", 0x45, dst, src); }
void cmovo(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovo", 0x40, dst, src); }
void cmovp(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovp", 0x4A, dst, src); }
void cmovpe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovpe", 0x4A, dst, src); }
void cmovpo(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovpo", 0x4B, dst, src); }
void cmovs(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovs", 0x48, dst, src); }
void cmovz(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovz", 0x44, dst, src); }

/// cmp - Compare and set flags
void cmp(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "cmp",
        0x38, // opMemReg8
        0x39, // opMemRegPref
        0x3A, // opRegMem8
        0x3B, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x07, // opExtImm
        opnd0,
        opnd1
    );
}

/// cdq - Convert doubleword to quadword
void cdq(codeblock_t *cb)
{
    //cb.writeASM("cdq");
    cb_write_byte(cb, 0x99);
}

/// cqo - Convert quadword to octaword
void cqo(codeblock_t *cb)
{
    //cb.writeASM("cqo");
    cb_write_bytes(cb, 2, 0x48, 0x99);
}

/// Interrupt 3 - trap to debugger
void int3(codeblock_t *cb)
{
    //cb.writeASM("INT 3");
    cb_write_byte(cb, 0xCC);
}

/*
// div - Unsigned integer division
alias div = writeRMUnary!(
    "div",
    0xF6, // opMemReg8
    0xF7, // opMemRegPref
    0x06  // opExt
);
*/

/*
/// divsd - Divide scalar double
alias divsd = writeXMM64!(
    "divsd",
    0xF2, // prefix
    0x0F, // opRegMem0
    0x5E  // opRegMem1
);
*/

/*
// idiv - Signed integer division
alias idiv = writeRMUnary!(
    "idiv",
    0xF6, // opMemReg8
    0xF7, // opMemRegPref
    0x07  // opExt
);
*/

/*
/// imul - Signed integer multiplication with two operands
void imul(CodeBlock cb, X86Opnd opnd0, X86Opnd opnd1)
{
    cb.writeASM("imul", opnd0, opnd1);

    assert (opnd0.isReg, "invalid first operand");
    auto opndSize = opnd0.reg.size;

    // Check the size of opnd1
    if (opnd1.isReg)
        assert (opnd1.reg.size is opndSize, "operand size mismatch");
    else if (opnd1.isMem)
        assert (opnd1.mem.size is opndSize, "operand size mismatch");

    assert (opndSize is 16 || opndSize is 32 || opndSize is 64);
    auto szPref = opndSize is 16;
    auto rexW = opndSize is 64;

    cb.writeRMInstr!('r', 0xFF, 0x0F, 0xAF)(szPref, rexW, opnd0, opnd1);
}
*/

/*
/// imul - Signed integer multiplication with three operands (one immediate)
void imul(CodeBlock cb, X86Opnd opnd0, X86Opnd opnd1, X86Opnd opnd2)
{
    cb.writeASM("imul", opnd0, opnd1, opnd2);

    assert (opnd0.isReg, "invalid first operand");
    auto opndSize = opnd0.reg.size;

    // Check the size of opnd1
    if (opnd1.isReg)
        assert (opnd1.reg.size is opndSize, "operand size mismatch");
    else if (opnd1.isMem)
        assert (opnd1.mem.size is opndSize, "operand size mismatch");

    assert (opndSize is 16 || opndSize is 32 || opndSize is 64);
    auto szPref = opndSize is 16;
    auto rexW = opndSize is 64;

    assert (opnd2.isImm, "invalid third operand");
    auto imm = opnd2.imm;

    // 8-bit immediate
    if (imm.immSize <= 8)
    {
        cb.writeRMInstr!('r', 0xFF, 0x6B)(szPref, rexW, opnd0, opnd1);
        cb.writeInt(imm.imm, 8);
    }

    // 32-bit immediate
    else if (imm.immSize <= 32)
    {
        assert (imm.immSize <= opndSize, "immediate too large for dst");
        cb.writeRMInstr!('r', 0xFF, 0x69)(szPref, rexW, opnd0, opnd1);
        cb.writeInt(imm.imm, min(opndSize, 32));
    }

    // Immediate too large
    else
    {
        assert (false, "immediate value too large");
    }
}
*/

/// jcc - relative jumps to a label
void ja_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "ja"  , 0x0F, 0x87, label_idx); }
void jae_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jae" , 0x0F, 0x83, label_idx); }
void jb_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jb"  , 0x0F, 0x82, label_idx); }
void jbe_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jbe" , 0x0F, 0x86, label_idx); }
void jc_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jc"  , 0x0F, 0x82, label_idx); }
void je_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "je"  , 0x0F, 0x84, label_idx); }
void jg_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jg"  , 0x0F, 0x8F, label_idx); }
void jge_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jge" , 0x0F, 0x8D, label_idx); }
void jl_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jl"  , 0x0F, 0x8C, label_idx); }
void jle_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jle" , 0x0F, 0x8E, label_idx); }
void jna_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jna" , 0x0F, 0x86, label_idx); }
void jnae_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnae", 0x0F, 0x82, label_idx); }
void jnb_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnb" , 0x0F, 0x83, label_idx); }
void jnbe_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnbe", 0x0F, 0x87, label_idx); }
void jnc_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnc" , 0x0F, 0x83, label_idx); }
void jne_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jne" , 0x0F, 0x85, label_idx); }
void jng_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jng" , 0x0F, 0x8E, label_idx); }
void jnge_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnge", 0x0F, 0x8C, label_idx); }
void jnl_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnl" , 0x0F, 0x8D, label_idx); }
void jnle_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnle", 0x0F, 0x8F, label_idx); }
void jno_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jno" , 0x0F, 0x81, label_idx); }
void jnp_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnp" , 0x0F, 0x8b, label_idx); }
void jns_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jns" , 0x0F, 0x89, label_idx); }
void jnz_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnz" , 0x0F, 0x85, label_idx); }
void jo_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jo"  , 0x0F, 0x80, label_idx); }
void jp_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jp"  , 0x0F, 0x8A, label_idx); }
void jpe_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jpe" , 0x0F, 0x8A, label_idx); }
void jpo_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jpo" , 0x0F, 0x8B, label_idx); }
void js_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "js"  , 0x0F, 0x88, label_idx); }
void jz_label  (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jz"  , 0x0F, 0x84, label_idx); }
void jmp_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jmp" , 0xFF, 0xE9, label_idx); }

/// jcc - relative jumps to a pointer (32-bit offset)
void ja_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "ja"  , 0x0F, 0x87, ptr); }
void jae_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jae" , 0x0F, 0x83, ptr); }
void jb_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jb"  , 0x0F, 0x82, ptr); }
void jbe_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jbe" , 0x0F, 0x86, ptr); }
void jc_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jc"  , 0x0F, 0x82, ptr); }
void je_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "je"  , 0x0F, 0x84, ptr); }
void jg_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jg"  , 0x0F, 0x8F, ptr); }
void jge_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jge" , 0x0F, 0x8D, ptr); }
void jl_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jl"  , 0x0F, 0x8C, ptr); }
void jle_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jle" , 0x0F, 0x8E, ptr); }
void jna_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jna" , 0x0F, 0x86, ptr); }
void jnae_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnae", 0x0F, 0x82, ptr); }
void jnb_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnb" , 0x0F, 0x83, ptr); }
void jnbe_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnbe", 0x0F, 0x87, ptr); }
void jnc_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnc" , 0x0F, 0x83, ptr); }
void jne_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jne" , 0x0F, 0x85, ptr); }
void jng_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jng" , 0x0F, 0x8E, ptr); }
void jnge_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnge", 0x0F, 0x8C, ptr); }
void jnl_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnl" , 0x0F, 0x8D, ptr); }
void jnle_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnle", 0x0F, 0x8F, ptr); }
void jno_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jno" , 0x0F, 0x81, ptr); }
void jnp_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnp" , 0x0F, 0x8b, ptr); }
void jns_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jns" , 0x0F, 0x89, ptr); }
void jnz_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnz" , 0x0F, 0x85, ptr); }
void jo_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jo"  , 0x0F, 0x80, ptr); }
void jp_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jp"  , 0x0F, 0x8A, ptr); }
void jpe_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jpe" , 0x0F, 0x8A, ptr); }
void jpo_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jpo" , 0x0F, 0x8B, ptr); }
void js_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "js"  , 0x0F, 0x88, ptr); }
void jz_ptr  (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jz"  , 0x0F, 0x84, ptr); }
void jmp_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jmp" , 0xFF, 0xE9, ptr); }

/// jmp - Indirect jump near to an R/M operand
void jmp_rm(codeblock_t *cb, x86opnd_t opnd)
{
    //cb.writeASM("jmp", opnd);
    cb_write_rm(cb, false, false, NO_OPND, opnd, 4, 1, 0xFF);
}

// jmp - Jump with relative 32-bit offset
void jmp32(codeblock_t *cb, int32_t offset)
{
    //cb.writeASM("jmp", ((offset > 0)? "+":"-") ~ to!string(offset));
    cb_write_byte(cb, 0xE9);
    cb_write_int(cb, offset, 32);
}

/// lea - Load Effective Address
void lea(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
    //cb.writeASM("lea", dst, src);
    assert (dst.num_bits == 64);
    cb_write_rm(cb, false, true, dst, src, 0xFF, 1, 0x8D);
}

// Does this number fit in 32 bits and stays the same if you zero extend it to 64 bit?
// If the sign bit is clear, sign extension and zero extension yield the same
// result.
static bool
zero_extendable_32bit(uint64_t number)
{
    return number <= UINT32_MAX && (number & (1ull << 31ull)) == 0;
}

/// mov - Data move operation
void mov(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
    // R/M + Imm
    if (src.type == OPND_IMM)
    {
        //cb.writeASM("mov", dst, src);

        // R + Imm
        if (dst.type == OPND_REG)
        {
            assert (
                src.num_bits <= dst.num_bits ||
                unsig_imm_size(src.as.imm) <= dst.num_bits
            );

            // In case the source immediate could be zero extended to be 64
            // bit, we can use the 32-bit operands version of the instruction.
            // For example, we can turn mov(rax, 0x34) into the equivalent
            // mov(eax, 0x34).
            if (dst.num_bits == 64 && zero_extendable_32bit(src.as.unsig_imm)) {
                if (rex_needed(dst))
                    cb_write_rex(cb, false, 0, 0, dst.as.reg.reg_no);
                cb_write_opcode(cb, 0xB8, dst);
                cb_write_int(cb, src.as.imm, 32);
            }
            else {
                if (dst.num_bits == 16)
                    cb_write_byte(cb, 0x66);

                if (rex_needed(dst) || dst.num_bits == 64)
                    cb_write_rex(cb, dst.num_bits == 64, 0, 0, dst.as.reg.reg_no);

                cb_write_opcode(cb, (dst.num_bits == 8)? 0xB0:0xB8, dst);

                cb_write_int(cb, src.as.imm, dst.num_bits);
            }
        }

        // M + Imm
        else if (dst.type == OPND_MEM)
        {
            assert (src.num_bits <= dst.num_bits);

            if (dst.num_bits == 8)
                cb_write_rm(cb, false, false, NO_OPND, dst, 0xFF, 1, 0xC6);
            else
                cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, NO_OPND, dst, 0, 1, 0xC7);

            const uint32_t output_num_bits = (dst.num_bits > 32u) ? 32u : dst.num_bits;
            // assert that we can write whole immediate without loss of information
            assert (sig_imm_size(src.as.imm) <= output_num_bits);
            cb_write_int(cb, src.as.imm, output_num_bits);
        }

        else
        {
            assert (false);
        }
    }
    else
    {
        cb_write_rm_multi(
            cb,
            "mov",
            0x88, // opMemReg8
            0x89, // opMemRegPref
            0x8A, // opRegMem8
            0x8B, // opRegMemPref
            0xC6, // opMemImm8
            0xFF, // opMemImmSml (not available)
            0xFF, // opMemImmLrg
            0xFF, // opExtImm
            dst,
            src
        );
    }
}

/// movsx - Move with sign extension (signed integers)
void movsx(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
    assert (dst.type == OPND_REG);
    assert (src.type == OPND_REG || src.type == OPND_MEM);
    assert (src.num_bits < dst.num_bits);

    //cb.writeASM("movsx", dst, src);

    if (src.num_bits == 8)
    {
        cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, dst, src, 0xFF, 2, 0x0F, 0xBE);
    }
    else if (src.num_bits == 16)
    {
        cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, dst, src, 0xFF, 2, 0x0F, 0xBF);
    }
    else if (src.num_bits == 32)
    {
        cb_write_rm(cb, false, true, dst, src, 0xFF, 1, 0x63);
    }
    else
    {
        assert (false);
    }
}

/*
/// movzx - Move with zero extension (unsigned values)
void movzx(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
    cb.writeASM("movzx", dst, src);

    uint32_t dstSize;
    if (dst.isReg)
        dstSize = dst.reg.size;
    else
        assert (false, "movzx dst must be a register");

    uint32_t srcSize;
    if (src.isReg)
        srcSize = src.reg.size;
    else if (src.isMem)
        srcSize = src.mem.size;
    else
        assert (false);

    assert (
        srcSize < dstSize,
        "movzx: srcSize >= dstSize"
    );

    if (srcSize is 8)
    {
        cb.writeRMInstr!('r', 0xFF, 0x0F, 0xB6)(dstSize is 16, dstSize is 64, dst, src);
    }
    else if (srcSize is 16)
    {
        cb.writeRMInstr!('r', 0xFF, 0x0F, 0xB7)(dstSize is 16, dstSize is 64, dst, src);
    }
    else
    {
        assert (false, "invalid src operand size for movxz");
    }
}
*/

// neg - Integer negation (multiplication by -1)
void neg(codeblock_t *cb, x86opnd_t opnd)
{
    write_rm_unary(
        cb,
        "neg",
        0xF6, // opMemReg8
        0xF7, // opMemRegPref
        0x03,  // opExt
        opnd
    );
}

// nop - Noop, one or multiple bytes long
void nop(codeblock_t *cb, uint32_t length)
{
    switch (length) {
      case 0:
        break;

      case 1:
        //cb.writeASM("nop1");
        cb_write_byte(cb, 0x90);
        break;

      case 2:
        //cb.writeASM("nop2");
        cb_write_bytes(cb, 2, 0x66,0x90);
        break;

      case 3:
        //cb.writeASM("nop3");
        cb_write_bytes(cb, 3, 0x0F,0x1F,0x00);
        break;

      case 4:
        //cb.writeASM("nop4");
        cb_write_bytes(cb, 4, 0x0F,0x1F,0x40,0x00);
        break;

      case 5:
        //cb.writeASM("nop5");
        cb_write_bytes(cb, 5, 0x0F,0x1F,0x44,0x00,0x00);
        break;

      case 6:
        //cb.writeASM("nop6");
        cb_write_bytes(cb, 6, 0x66,0x0F,0x1F,0x44,0x00,0x00);
        break;

      case 7:
        //cb.writeASM("nop7");
        cb_write_bytes(cb, 7, 0x0F,0x1F,0x80,0x00,0x00,0x00,0x00);
        break;

      case 8:
        //cb.writeASM("nop8");
        cb_write_bytes(cb, 8, 0x0F,0x1F,0x84,0x00,0x00,0x00,0x00,0x00);
        break;

      case 9:
        //cb.writeASM("nop9");
        cb_write_bytes(cb, 9, 0x66,0x0F,0x1F,0x84,0x00,0x00,0x00,0x00,0x00);
        break;

      default:
        {
            uint32_t written = 0;
            while (written + 9 <= length)
            {
                nop(cb, 9);
                written += 9;
            }
            nop(cb, length - written);
        }
        break;
    }
}

// not - Bitwise NOT
void not(codeblock_t *cb, x86opnd_t opnd)
{
    write_rm_unary(
        cb,
        "not",
        0xF6, // opMemReg8
        0xF7, // opMemRegPref
        0x02, // opExt
        opnd
    );
}

/// or - Bitwise OR
void or(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "or",
        0x08, // opMemReg8
        0x09, // opMemRegPref
        0x0A, // opRegMem8
        0x0B, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x01, // opExtImm
        opnd0,
        opnd1
    );
}

/// pop - Pop a register off the stack
void pop(codeblock_t *cb, x86opnd_t opnd)
{
    assert (opnd.num_bits == 64);

    //cb.writeASM("pop", opnd);

    if (opnd.type == OPND_REG) {
        if (rex_needed(opnd))
            cb_write_rex(cb, false, 0, 0, opnd.as.reg.reg_no);
        cb_write_opcode(cb, 0x58, opnd);
    }
    else if (opnd.type == OPND_MEM) {
        cb_write_rm(cb, false, false, NO_OPND, opnd, 0, 1, 0x8F);
    }
    else {
        assert(false && "unexpected operand type");
    }
}

/// popfq - Pop the flags register (64-bit)
void popfq(codeblock_t *cb)
{
    //cb.writeASM("popfq");

    // REX.W + 0x9D
    cb_write_bytes(cb, 2, 0x48, 0x9D);
}

/// push - Push an operand on the stack
void push(codeblock_t *cb, x86opnd_t opnd)
{
    assert (opnd.num_bits == 64);

    //cb.writeASM("push", opnd);

    if (opnd.type == OPND_REG) {
      if (rex_needed(opnd))
          cb_write_rex(cb, false, 0, 0, opnd.as.reg.reg_no);
      cb_write_opcode(cb, 0x50, opnd);
    }
    else if (opnd.type == OPND_MEM) {
      cb_write_rm(cb, false, false, NO_OPND, opnd, 6, 1, 0xFF);
    }
    else {
      assert(false && "unexpected operand type");
    }
}

/// pushfq - Push the flags register (64-bit)
void pushfq(codeblock_t *cb)
{
    //cb.writeASM("pushfq");
    cb_write_byte(cb, 0x9C);
}

/// ret - Return from call, popping only the return address
void ret(codeblock_t *cb)
{
    //cb.writeASM("ret");
    cb_write_byte(cb, 0xC3);
}

// sal - Shift arithmetic left
void sal(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_shift(
        cb,
        "sal",
        0xD1, // opMemOnePref,
        0xD3, // opMemClPref,
        0xC1, // opMemImmPref,
        0x04,
        opnd0,
        opnd1
    );
}

/// sar - Shift arithmetic right (signed)
void sar(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_shift(
        cb,
        "sar",
        0xD1, // opMemOnePref,
        0xD3, // opMemClPref,
        0xC1, // opMemImmPref,
        0x07,
        opnd0,
        opnd1
    );
}
// shl - Shift logical left
void shl(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_shift(
        cb,
        "shl",
        0xD1, // opMemOnePref,
        0xD3, // opMemClPref,
        0xC1, // opMemImmPref,
        0x04,
        opnd0,
        opnd1
    );
}

/// shr - Shift logical right (unsigned)
void shr(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_shift(
        cb,
        "shr",
        0xD1, // opMemOnePref,
        0xD3, // opMemClPref,
        0xC1, // opMemImmPref,
        0x05,
        opnd0,
        opnd1
    );
}

/// sub - Integer subtraction
void sub(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "sub",
        0x28, // opMemReg8
        0x29, // opMemRegPref
        0x2A, // opRegMem8
        0x2B, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x05, // opExtImm
        opnd0,
        opnd1
    );
}

/// test - Logical Compare
void test(codeblock_t *cb, x86opnd_t rm_opnd, x86opnd_t test_opnd)
{
    assert (rm_opnd.type == OPND_REG || rm_opnd.type == OPND_MEM);
    assert (test_opnd.type == OPND_REG || test_opnd.type == OPND_IMM);

    // If the second operand is an immediate
    if (test_opnd.type == OPND_IMM)
    {
        x86opnd_t imm_opnd = test_opnd;

        if (imm_opnd.as.imm >= 0)
        {
            assert (unsig_imm_size(imm_opnd.as.unsig_imm) <= 32);
            assert (unsig_imm_size(imm_opnd.as.unsig_imm) <= rm_opnd.num_bits);

            // Use the smallest operand size possible
            rm_opnd = resize_opnd(rm_opnd, unsig_imm_size(imm_opnd.as.unsig_imm));

            if (rm_opnd.num_bits == 8)
            {
                cb_write_rm(cb, false, false, NO_OPND, rm_opnd, 0x00, 1, 0xF6);
                cb_write_int(cb, imm_opnd.as.imm, rm_opnd.num_bits);
            }
            else
            {
                cb_write_rm(cb, rm_opnd.num_bits == 16, false, NO_OPND, rm_opnd, 0x00, 1, 0xF7);
                cb_write_int(cb, imm_opnd.as.imm, rm_opnd.num_bits);
            }
        }
        else
        {
            // This mode only applies to 64-bit R/M operands with 32-bit signed immediates
            assert (imm_opnd.as.imm < 0);
            assert (sig_imm_size(imm_opnd.as.imm) <= 32);
            assert (rm_opnd.num_bits == 64);
            cb_write_rm(cb, false, true, NO_OPND, rm_opnd, 0x00, 1, 0xF7);
            cb_write_int(cb, imm_opnd.as.imm, 32);
        }
    }
    else
    {
        assert (test_opnd.num_bits == rm_opnd.num_bits);

        if (rm_opnd.num_bits == 8)
        {
            cb_write_rm(cb, false, false, test_opnd, rm_opnd, 0xFF, 1, 0x84);
        }
        else
        {
            cb_write_rm(cb, rm_opnd.num_bits == 16, rm_opnd.num_bits == 64, test_opnd, rm_opnd, 0xFF, 1, 0x85);
        }
    }
}

/// Undefined opcode
void ud2(codeblock_t *cb)
{
    cb_write_bytes(cb, 2, 0x0F, 0x0B);
}

/// xchg - Exchange Register/Memory with Register
void xchg(codeblock_t *cb, x86opnd_t rm_opnd, x86opnd_t r_opnd)
{
    assert (rm_opnd.num_bits == 64);
    assert (r_opnd.num_bits == 64);
    assert (rm_opnd.type == OPND_REG);
    assert (r_opnd.type == OPND_REG);

    // If we're exchanging with RAX
    if (rm_opnd.type == OPND_REG && rm_opnd.as.reg.reg_no == RAX.as.reg.reg_no)
    {
        // Write the REX byte
        cb_write_rex(cb, rm_opnd.num_bits == 64, 0, 0, r_opnd.as.reg.reg_no);

        // Write the opcode and register number
        cb_write_byte(cb, 0x90 + (r_opnd.as.reg.reg_no & 7));
    }
    else
    {
        cb_write_rm(cb, rm_opnd.num_bits == 16, rm_opnd.num_bits == 64, r_opnd, rm_opnd, 0xFF, 1, 0x87);
    }
}

/// xor - Exclusive bitwise OR
void xor(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
    cb_write_rm_multi(
        cb,
        "xor",
        0x30, // opMemReg8
        0x31, // opMemRegPref
        0x32, // opRegMem8
        0x33, // opRegMemPref
        0x80, // opMemImm8
        0x83, // opMemImmSml
        0x81, // opMemImmLrg
        0x06, // opExtImm
        opnd0,
        opnd1
    );
}

// LOCK - lock prefix for atomic shared memory operations
void cb_write_lock_prefix(codeblock_t *cb)
{
    cb_write_byte(cb, 0xF0);
}

void cb_mark_all_writeable(codeblock_t * cb)
{
    if (mprotect(cb->mem_block_, cb->mem_size, PROT_READ | PROT_WRITE)) {
        fprintf(stderr, "Couldn't make JIT page (%p) writeable, errno: %s", (void *)cb->mem_block_, strerror(errno));
        abort();
    }
}

void cb_mark_position_writeable(codeblock_t * cb, uint32_t write_pos)
{
#ifdef _WIN32
    uint32_t pagesize = 0x1000; // 4KB
#else
    uint32_t pagesize = (uint32_t)sysconf(_SC_PAGESIZE);
#endif
    uint32_t aligned_position = (write_pos / pagesize) * pagesize;

    if (cb->current_aligned_write_pos != aligned_position) {
        cb->current_aligned_write_pos = aligned_position;
        void *const page_addr = cb_get_ptr(cb, aligned_position);
        if (mprotect(page_addr, pagesize, PROT_READ | PROT_WRITE)) {
            fprintf(stderr, "Couldn't make JIT page (%p) writeable, errno: %s", page_addr, strerror(errno));
            abort();
        }
    }
}

void cb_mark_all_executable(codeblock_t * cb)
{
    cb->current_aligned_write_pos = ALIGNED_WRITE_POSITION_NONE;
    if (mprotect(cb->mem_block_, cb->mem_size, PROT_READ | PROT_EXEC)) {
        fprintf(stderr, "Couldn't make JIT page (%p) executable, errno: %s", (void *)cb->mem_block_, strerror(errno));
        abort();
    }
}