summaryrefslogtreecommitdiff
path: root/yjit.c
blob: a30e3bad943a87e317e4475f8918d62fe785e023 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// This part of YJIT helps interfacing with the rest of CRuby and with the OS.
// Sometimes our FFI binding generation tool gives undesirable outputs when it
// sees C features that Rust doesn't support well. We mitigate that by binding
// functions which have simple parameter types. The boilerplate C functions for
// that purpose are in this file.
// Similarly, we wrap OS facilities we need in simple functions to help with
// FFI and to avoid the need to use external crates.io Rust libraries.

#include "internal.h"
#include "internal/sanitizers.h"
#include "internal/string.h"
#include "internal/hash.h"
#include "internal/variable.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "gc.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns.inc"
#include "insns_info.inc"
#include "vm_sync.h"
#include "yjit.h"
#include "vm_insnhelper.h"
#include "probes.h"
#include "probes_helper.h"
#include "iseq.h"
#include "ruby/debug.h"

// For mmapp(), sysconf()
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif

#include <errno.h>

// We need size_t to have a known size to simplify code generation and FFI.
// TODO(alan): check this in configure.ac to fail fast on 32 bit platforms.
STATIC_ASSERT(64b_size_t, SIZE_MAX == UINT64_MAX);
// I don't know any C implementation that has uint64_t and puts padding bits
// into size_t but the standard seems to allow it.
STATIC_ASSERT(size_t_no_padding_bits, sizeof(size_t) == sizeof(uint64_t));

// This build config impacts the pointer tagging scheme and we only want to
// support one scheme for simplicity.
STATIC_ASSERT(pointer_tagging_scheme, USE_FLONUM);

// NOTE: We can trust that uint8_t has no "padding bits" since the C spec
// guarantees it. Wording about padding bits is more explicit in C11 compared
// to C99. See C11 7.20.1.1p2. All this is to say we have _some_ standards backing to
// use a Rust `*mut u8` to represent a C `uint8_t *`.
//
// If we don't want to trust that we can interpreter the C standard correctly, we
// could outsource that work to the Rust standard library by sticking to fundamental
// types in C such as int, long, etc. and use `std::os::raw::c_long` and friends on
// the Rust side.
//
// What's up with the long prefix? Even though we build with `-fvisibility=hidden`
// we are sometimes a static library where the option doesn't prevent name collision.
// The "_yjit_" part is for trying to be informative. We might want different
// suffixes for symbols meant for Rust and symbols meant for broader CRuby.

bool
rb_yjit_mark_writable(void *mem_block, uint32_t mem_size)
{
    if (mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE)) {
        return false;
    }
    return true;
}

void
rb_yjit_mark_executable(void *mem_block, uint32_t mem_size)
{
    if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) {
        rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s\n",
            mem_block, (unsigned long)mem_size, strerror(errno));
    }
}

# define PTR2NUM(x)   (rb_int2inum((intptr_t)(void *)(x)))

// For a given raw_sample (frame), set the hash with the caller's
// name, file, and line number. Return the  hash with collected frame_info.
static void
rb_yjit_add_frame(VALUE hash, VALUE frame)
{
    VALUE frame_id = PTR2NUM(frame);

    if (RTEST(rb_hash_aref(hash, frame_id))) {
        return;
    } else {
        VALUE frame_info = rb_hash_new();
        // Full label for the frame
        VALUE name = rb_profile_frame_full_label(frame);
        // Absolute path of the frame from rb_iseq_realpath
        VALUE file = rb_profile_frame_absolute_path(frame);
        // Line number of the frame
        VALUE line = rb_profile_frame_first_lineno(frame);

        // If absolute path isn't available use the rb_iseq_path
        if (NIL_P(file)) {
            file = rb_profile_frame_path(frame);
        }

        rb_hash_aset(frame_info, ID2SYM(rb_intern("name")), name);
        rb_hash_aset(frame_info, ID2SYM(rb_intern("file")), file);

        if (line != INT2FIX(0)) {
            rb_hash_aset(frame_info, ID2SYM(rb_intern("line")), line);
        }

       rb_hash_aset(hash, frame_id, frame_info);
    }
}

// Parses the YjitExitLocations raw_samples and line_samples collected by
// rb_yjit_record_exit_stack and turns them into 3 hashes (raw, lines, and frames) to
// be used by RubyVM::YJIT.exit_locations. yjit_raw_samples represents the raw frames information
// (without name, file, and line), and yjit_line_samples represents the line information
// of the iseq caller.
VALUE
rb_yjit_exit_locations_dict(VALUE *yjit_raw_samples, int *yjit_line_samples, int samples_len)
{
    VALUE result = rb_hash_new();
    VALUE raw_samples = rb_ary_new_capa(samples_len);
    VALUE line_samples = rb_ary_new_capa(samples_len);
    VALUE frames = rb_hash_new();
    int idx = 0;

    // While the index is less than samples_len, parse yjit_raw_samples and
    // yjit_line_samples, then add casted values to raw_samples and line_samples array.
    while (idx < samples_len) {
        int num = (int)yjit_raw_samples[idx];
        int line_num = (int)yjit_line_samples[idx];
        idx++;

        rb_ary_push(raw_samples, SIZET2NUM(num));
        rb_ary_push(line_samples, INT2NUM(line_num));

        // Loop through the length of samples_len and add data to the
        // frames hash. Also push the current value onto the raw_samples
        // and line_samples array respectively.
        for (int o = 0; o < num; o++) {
            rb_yjit_add_frame(frames, yjit_raw_samples[idx]);
            rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
            rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
            idx++;
        }

        rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
        rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
        idx++;

        rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
        rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
        idx++;
    }

    // Set add the raw_samples, line_samples, and frames to the results
    // hash.
    rb_hash_aset(result, ID2SYM(rb_intern("raw")), raw_samples);
    rb_hash_aset(result, ID2SYM(rb_intern("lines")), line_samples);
    rb_hash_aset(result, ID2SYM(rb_intern("frames")), frames);

    return result;
}

uint32_t
rb_yjit_get_page_size(void)
{
#if defined(_SC_PAGESIZE)
    long page_size = sysconf(_SC_PAGESIZE);
    if (page_size <= 0) rb_bug("yjit: failed to get page size");

    // 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected.
    // Though our design sort of assume we have fine grained control over memory protection
    // which require small page sizes.
    if (page_size > 0x40000000l) rb_bug("yjit page size too large");

    return (uint32_t)page_size;
#else
#error "YJIT supports POSIX only for now"
#endif
}

#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
// Align the current write position to a multiple of bytes
static uint8_t *
align_ptr(uint8_t *ptr, uint32_t multiple)
{
    // Compute the pointer modulo the given alignment boundary
    uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;

    // If the pointer is already aligned, stop
    if (rem == 0)
        return ptr;

    // Pad the pointer by the necessary amount to align it
    uint32_t pad = multiple - rem;

    return ptr + pad;
}
#endif

// Address space reservation. Memory pages are mapped on an as needed basis.
// See the Rust mm module for details.
uint8_t *
rb_yjit_reserve_addr_space(uint32_t mem_size)
{
#ifndef _WIN32
    uint8_t *mem_block;

    // On Linux
    #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
        uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE);
        uint8_t *const cfunc_sample_addr = (void *)&rb_yjit_reserve_addr_space;
        uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX;
        // Align the requested address to page size
        uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size);

        // Probe for addresses close to this function using MAP_FIXED_NOREPLACE
        // to improve odds of being in range for 32-bit relative call instructions.
        do {
            mem_block = mmap(
                req_addr,
                mem_size,
                PROT_NONE,
                MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
                -1,
                0
            );

            // If we succeeded, stop
            if (mem_block != MAP_FAILED) {
                break;
            }

            // +4MB
            req_addr += 4 * 1024 * 1024;
        } while (req_addr < probe_region_end);

    // On MacOS and other platforms
    #else
        // Try to map a chunk of memory as executable
        mem_block = mmap(
            (void *)rb_yjit_reserve_addr_space,
            mem_size,
            PROT_NONE,
            MAP_PRIVATE | MAP_ANONYMOUS,
            -1,
            0
        );
    #endif

    // Fallback
    if (mem_block == MAP_FAILED) {
        // Try again without the address hint (e.g., valgrind)
        mem_block = mmap(
            NULL,
            mem_size,
            PROT_NONE,
            MAP_PRIVATE | MAP_ANONYMOUS,
            -1,
            0
        );
    }

    // Check that the memory mapping was successful
    if (mem_block == MAP_FAILED) {
        perror("ruby: yjit: mmap:");
        rb_bug("mmap failed");
    }

    return mem_block;
#else
    // Windows not supported for now
    return NULL;
#endif
}

// Is anyone listening for :c_call and :c_return event currently?
bool
rb_c_method_tracing_currently_enabled(rb_execution_context_t *ec)
{
    rb_event_flag_t tracing_events;
    if (rb_multi_ractor_p()) {
        tracing_events = ruby_vm_event_enabled_global_flags;
    }
    else {
        // At the time of writing, events are never removed from
        // ruby_vm_event_enabled_global_flags so always checking using it would
        // mean we don't compile even after tracing is disabled.
        tracing_events = rb_ec_ractor_hooks(ec)->events;
    }

    return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN);
}

// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event
// like the interpreter. When tracing for c_return is enabled, we patch the code after
// the C method return to call into this to fire the event.
void
rb_full_cfunc_return(rb_execution_context_t *ec, VALUE return_value)
{
    rb_control_frame_t *cfp = ec->cfp;
    RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp);
    const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);

    RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp));
    RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC);

    // CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this

    // Pop the C func's frame and fire the c_return TracePoint event
    // Note that this is the same order as vm_call_cfunc_with_frame().
    rb_vm_pop_frame(ec);
    EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value);
    // Note, this deviates from the interpreter in that users need to enable
    // a c_return TracePoint for this DTrace hook to work. A reasonable change
    // since the Ruby return event works this way as well.
    RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);

    // Push return value into the caller's stack. We know that it's a frame that
    // uses cfp->sp because we are patching a call done with gen_send_cfunc().
    ec->cfp->sp[0] = return_value;
    ec->cfp->sp++;
}

unsigned int
rb_iseq_encoded_size(const rb_iseq_t *iseq)
{
    return iseq->body->iseq_size;
}

// TODO(alan): consider using an opaque pointer for the payload rather than a void pointer
void *
rb_iseq_get_yjit_payload(const rb_iseq_t *iseq)
{
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
    if (iseq->body) {
        return iseq->body->yjit_payload;
    }
    else {
        // Body is NULL when constructing the iseq.
        return NULL;
    }
}

void
rb_iseq_set_yjit_payload(const rb_iseq_t *iseq, void *payload)
{
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
    RUBY_ASSERT_ALWAYS(iseq->body);
    RUBY_ASSERT_ALWAYS(NULL == iseq->body->yjit_payload);
    iseq->body->yjit_payload = payload;
}

void
rb_iseq_reset_jit_func(const rb_iseq_t *iseq)
{
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
    iseq->body->jit_func = NULL;
}

// Get the PC for a given index in an iseq
VALUE *
rb_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
{
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
    RUBY_ASSERT_ALWAYS(insn_idx < iseq->body->iseq_size);
    VALUE *encoded = iseq->body->iseq_encoded;
    VALUE *pc = &encoded[insn_idx];
    return pc;
}

// Get the opcode given a program counter. Can return trace opcode variants.
int
rb_iseq_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
    // YJIT should only use iseqs after AST to bytecode compilation
    RUBY_ASSERT_ALWAYS(FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED));

    const VALUE at_pc = *pc;
    return rb_vm_insn_addr2opcode((const void *)at_pc);
}

// used by jit_rb_str_bytesize in codegen.rs
VALUE
rb_str_bytesize(VALUE str)
{
    return LONG2NUM(RSTRING_LEN(str));
}

// This is defined only as a named struct inside rb_iseq_constant_body.
// By giving it a separate typedef, we make it nameable by rust-bindgen.
// Bindgen's temp/anon name isn't guaranteed stable.
typedef struct rb_iseq_param_keyword rb_seq_param_keyword_struct;

const char *
rb_insn_name(VALUE insn)
{
    return insn_name(insn);
}

// Query the instruction length in bytes for YARV opcode insn
int
rb_insn_len(VALUE insn)
{
    return insn_len(insn);
}

unsigned int
rb_vm_ci_argc(const struct rb_callinfo *ci)
{
    return vm_ci_argc(ci);
}

ID
rb_vm_ci_mid(const struct rb_callinfo *ci)
{
    return vm_ci_mid(ci);
}

unsigned int
rb_vm_ci_flag(const struct rb_callinfo *ci)
{
    return vm_ci_flag(ci);
}

const struct rb_callinfo_kwarg *
rb_vm_ci_kwarg(const struct rb_callinfo *ci)
{
    return vm_ci_kwarg(ci);
}

int
rb_get_cikw_keyword_len(const struct rb_callinfo_kwarg *cikw)
{
    return cikw->keyword_len;
}

VALUE
rb_get_cikw_keywords_idx(const struct rb_callinfo_kwarg *cikw, int idx)
{
    return cikw->keywords[idx];
}

rb_method_visibility_t
rb_METHOD_ENTRY_VISI(rb_callable_method_entry_t *me)
{
    return METHOD_ENTRY_VISI(me);
}

rb_method_type_t
rb_get_cme_def_type(rb_callable_method_entry_t *cme)
{
    return cme->def->type;
}

ID
rb_get_cme_def_body_attr_id(rb_callable_method_entry_t *cme)
{
    return cme->def->body.attr.id;
}

enum method_optimized_type
rb_get_cme_def_body_optimized_type(rb_callable_method_entry_t *cme)
{
    return cme->def->body.optimized.type;
}

unsigned int
rb_get_cme_def_body_optimized_index(rb_callable_method_entry_t *cme)
{
    return cme->def->body.optimized.index;
}

rb_method_cfunc_t *
rb_get_cme_def_body_cfunc(rb_callable_method_entry_t *cme)
{
    return UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
}

uintptr_t
rb_get_def_method_serial(rb_method_definition_t *def)
{
    return def->method_serial;
}

ID
rb_get_def_original_id(rb_method_definition_t *def)
{
    return def->original_id;
}

int
rb_get_mct_argc(rb_method_cfunc_t *mct)
{
    return mct->argc;
}

void *
rb_get_mct_func(rb_method_cfunc_t *mct)
{
    return (void*)mct->func; // this field is defined as type VALUE (*func)(ANYARGS)
}

const rb_iseq_t *
rb_get_def_iseq_ptr(rb_method_definition_t *def)
{
    return def_iseq_ptr(def);
}

rb_iseq_t *
rb_get_iseq_body_local_iseq(rb_iseq_t  *iseq)
{
    return iseq->body->local_iseq;
}

unsigned int
rb_get_iseq_body_local_table_size(rb_iseq_t *iseq)
{
    return iseq->body->local_table_size;
}

VALUE *
rb_get_iseq_body_iseq_encoded(rb_iseq_t *iseq)
{
    return iseq->body->iseq_encoded;
}

bool
rb_get_iseq_body_builtin_inline_p(rb_iseq_t *iseq)
{
    return iseq->body->builtin_inline_p;
}

unsigned
rb_get_iseq_body_stack_max(rb_iseq_t *iseq)
{
    return iseq->body->stack_max;
}

bool
rb_get_iseq_flags_has_opt(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_opt;
}

bool
rb_get_iseq_flags_has_kw(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_kw;
}

bool
rb_get_iseq_flags_has_post(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_post;
}

bool
rb_get_iseq_flags_has_kwrest(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_kwrest;
}

bool
rb_get_iseq_flags_has_rest(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_rest;
}

bool
rb_get_iseq_flags_has_block(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.has_block;
}

bool
rb_get_iseq_flags_has_accepts_no_kwarg(rb_iseq_t *iseq)
{
    return iseq->body->param.flags.accepts_no_kwarg;
}

const rb_seq_param_keyword_struct *
rb_get_iseq_body_param_keyword(rb_iseq_t *iseq)
{
    return iseq->body->param.keyword;
}

unsigned
rb_get_iseq_body_param_size(rb_iseq_t *iseq)
{
    return iseq->body->param.size;
}

int
rb_get_iseq_body_param_lead_num(rb_iseq_t *iseq)
{
    return iseq->body->param.lead_num;
}

int
rb_get_iseq_body_param_opt_num(rb_iseq_t *iseq)
{
    return iseq->body->param.opt_num;
}

const VALUE *
rb_get_iseq_body_param_opt_table(rb_iseq_t *iseq)
{
    return iseq->body->param.opt_table;
}

// If true, the iseq is leaf and it can be replaced by a single C call.
bool
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq)
{
    unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave));
    unsigned int leave_len = insn_len(BIN(leave));

    return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) &&
        rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) &&
        iseq->body->builtin_inline_p
    );
}

// Return an rb_builtin_function if the iseq contains only that leaf builtin function.
const struct rb_builtin_function *
rb_leaf_builtin_function(const rb_iseq_t *iseq)
{
    if (!rb_leaf_invokebuiltin_iseq_p(iseq))
        return NULL;
    return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
}

VALUE
rb_yjit_str_simple_append(VALUE str1, VALUE str2)
{
    return rb_str_cat(str1, RSTRING_PTR(str2), RSTRING_LEN(str2));
}

struct rb_control_frame_struct *
rb_get_ec_cfp(rb_execution_context_t *ec)
{
    return ec->cfp;
}

VALUE *
rb_get_cfp_pc(struct rb_control_frame_struct *cfp)
{
    return (VALUE*)cfp->pc;
}

VALUE *
rb_get_cfp_sp(struct rb_control_frame_struct *cfp)
{
    return cfp->sp;
}

void
rb_set_cfp_pc(struct rb_control_frame_struct *cfp, const VALUE *pc)
{
    cfp->pc = pc;
}

void
rb_set_cfp_sp(struct rb_control_frame_struct *cfp, VALUE *sp)
{
    cfp->sp = sp;
}

rb_iseq_t *
rb_cfp_get_iseq(struct rb_control_frame_struct *cfp)
{
    // TODO(alan) could assert frame type here to make sure that it's a ruby frame with an iseq.
    return (rb_iseq_t*)cfp->iseq;
}

VALUE
rb_get_cfp_self(struct rb_control_frame_struct *cfp)
{
    return cfp->self;
}

VALUE *
rb_get_cfp_ep(struct rb_control_frame_struct *cfp)
{
    return (VALUE*)cfp->ep;
}

VALUE
rb_yarv_class_of(VALUE obj)
{
    return rb_class_of(obj);
}

// YJIT needs this function to never allocate and never raise
VALUE
rb_yarv_str_eql_internal(VALUE str1, VALUE str2)
{
    // We wrap this since it's static inline
    return rb_str_eql_internal(str1, str2);
}

// YJIT needs this function to never allocate and never raise
VALUE
rb_yarv_ary_entry_internal(VALUE ary, long offset)
{
    return rb_ary_entry_internal(ary, offset);
}

// Print the Ruby source location of some ISEQ for debugging purposes
void
rb_yjit_dump_iseq_loc(const rb_iseq_t *iseq, uint32_t insn_idx)
{
    char *ptr;
    long len;
    VALUE path = rb_iseq_path(iseq);
    RSTRING_GETMEM(path, ptr, len);
    fprintf(stderr, "%s %.*s:%u\n", __func__, (int)len, ptr, rb_iseq_line_no(iseq, insn_idx));
}

// The FL_TEST() macro
VALUE
rb_FL_TEST(VALUE obj, VALUE flags)
{
    return RB_FL_TEST(obj, flags);
}

// The FL_TEST_RAW() macro, normally an internal implementation detail
VALUE
rb_FL_TEST_RAW(VALUE obj, VALUE flags)
{
    return FL_TEST_RAW(obj, flags);
}

// The RB_TYPE_P macro
bool
rb_RB_TYPE_P(VALUE obj, enum ruby_value_type t)
{
    return RB_TYPE_P(obj, t);
}

long
rb_RSTRUCT_LEN(VALUE st)
{
    return RSTRUCT_LEN(st);
}

// There are RSTRUCT_SETs in ruby/internal/core/rstruct.h and internal/struct.h
// with different types (int vs long) for k. Here we use the one from ruby/internal/core/rstruct.h,
// which takes an int.
void
rb_RSTRUCT_SET(VALUE st, int k, VALUE v)
{
    RSTRUCT_SET(st, k, v);
}

const struct rb_callinfo *
rb_get_call_data_ci(struct rb_call_data *cd)
{
    return cd->ci;
}

bool
rb_BASIC_OP_UNREDEFINED_P(enum ruby_basic_operators bop, uint32_t klass)
{
    return BASIC_OP_UNREDEFINED_P(bop, klass);
}

VALUE
rb_RCLASS_ORIGIN(VALUE c)
{
    return RCLASS_ORIGIN(c);
}

// Return the string encoding index
int
rb_ENCODING_GET(VALUE obj)
{
    return RB_ENCODING_GET(obj);
}

bool
rb_yjit_multi_ractor_p(void)
{
    return rb_multi_ractor_p();
}

// For debug builds
void
rb_assert_iseq_handle(VALUE handle)
{
    RUBY_ASSERT_ALWAYS(rb_objspace_markable_object_p(handle));
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_iseq));
}

int
rb_IMEMO_TYPE_P(VALUE imemo, enum imemo_type imemo_type)
{
    return IMEMO_TYPE_P(imemo, imemo_type);
}

void
rb_assert_cme_handle(VALUE handle)
{
    RUBY_ASSERT_ALWAYS(rb_objspace_markable_object_p(handle));
    RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_ment));
}

typedef void (*iseq_callback)(const rb_iseq_t *);

// Heap-walking callback for rb_yjit_for_each_iseq().
static int
for_each_iseq_i(void *vstart, void *vend, size_t stride, void *data)
{
    const iseq_callback callback = (iseq_callback)data;
    VALUE v = (VALUE)vstart;
    for (; v != (VALUE)vend; v += stride) {
        void *ptr = asan_poisoned_object_p(v);
        asan_unpoison_object(v, false);

        if (rb_obj_is_iseq(v)) {
            rb_iseq_t *iseq = (rb_iseq_t *)v;
            callback(iseq);
        }

        asan_poison_object_if(ptr, v);
    }
    return 0;
}

// Iterate through the whole GC heap and invoke a callback for each iseq.
// Used for global code invalidation.
void
rb_yjit_for_each_iseq(iseq_callback callback)
{
    rb_objspace_each_objects(for_each_iseq_i, (void *)callback);
}

// For running write barriers from Rust. Required when we add a new edge in the
// object graph from `old` to `young`.
void
rb_yjit_obj_written(VALUE old, VALUE young, const char *file, int line)
{
    rb_obj_written(old, Qundef, young, file, line);
}

// Acquire the VM lock and then signal all other Ruby threads (ractors) to
// contend for the VM lock, putting them to sleep. YJIT uses this to evict
// threads running inside generated code so among other things, it can
// safely change memory protection of regions housing generated code.
void
rb_yjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line)
{
    rb_vm_lock_enter(recursive_lock_level, file, line);
    rb_vm_barrier();
}

// Release the VM lock. The lock level must point to the same integer used to
// acquire the lock.
void
rb_yjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line)
{
    rb_vm_lock_leave(recursive_lock_level, file, line);
}

// Pointer to a YJIT entry point (machine code generated by YJIT)
typedef VALUE (*yjit_func_t)(rb_execution_context_t *, rb_control_frame_t *);

bool
rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec)
{
    bool success = true;
    RB_VM_LOCK_ENTER();
    rb_vm_barrier();

    // Compile a block version starting at the first instruction
    uint8_t *rb_yjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec); // defined in Rust
    uint8_t *code_ptr = rb_yjit_iseq_gen_entry_point(iseq, ec);

    if (code_ptr) {
        iseq->body->jit_func = (yjit_func_t)code_ptr;
    }
    else {
        iseq->body->jit_func = 0;
        success = false;
    }

    RB_VM_LOCK_LEAVE();
    return success;
}

// GC root for interacting with the GC
struct yjit_root_struct {
    bool unused; // empty structs are not legal in C99
};

static void
yjit_root_free(void *ptr)
{
    // Do nothing. The root lives as long as the process.
}

static size_t
yjit_root_memsize(const void *ptr)
{
    // Count off-gc-heap allocation size of the dependency table
    return 0; // TODO: more accurate accounting
}

// GC callback during compaction
static void
yjit_root_update_references(void *ptr)
{
    // Do nothing since we use rb_gc_mark(), which pins.
}

void rb_yjit_root_mark(void *ptr); // in Rust

// Custom type for interacting with the GC
// TODO: make this write barrier protected
static const rb_data_type_t yjit_root_type = {
    "yjit_root",
    {rb_yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references},
    0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};

// For dealing with refinements
void
rb_yjit_invalidate_all_method_lookup_assumptions(void)
{
    // It looks like Module#using actually doesn't need to invalidate all the
    // method caches, so we do nothing here for now.
}

// Primitives used by yjit.rb
VALUE rb_yjit_stats_enabled_p(rb_execution_context_t *ec, VALUE self);
VALUE rb_yjit_trace_exit_locations_enabled_p(rb_execution_context_t *ec, VALUE self);
VALUE rb_yjit_get_stats(rb_execution_context_t *ec, VALUE self);
VALUE rb_yjit_reset_stats_bang(rb_execution_context_t *ec, VALUE self);
VALUE rb_yjit_disasm_iseq(rb_execution_context_t *ec, VALUE self, VALUE iseq);
VALUE rb_yjit_insns_compiled(rb_execution_context_t *ec, VALUE self, VALUE iseq);
VALUE rb_yjit_simulate_oom_bang(rb_execution_context_t *ec, VALUE self);
VALUE rb_yjit_get_exit_locations(rb_execution_context_t *ec, VALUE self);

// Preprocessed yjit.rb generated during build
#include "yjit.rbinc"

// Can raise RuntimeError
void
rb_yjit_init(void)
{
    // Call the Rust initialization code
    void rb_yjit_init_rust(void);
    rb_yjit_init_rust();

    // Initialize the GC hooks. Do this second as some code depend on Rust initialization.
    struct yjit_root_struct *root;
    VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root);
    rb_gc_register_mark_object(yjit_root);
}