summaryrefslogtreecommitdiff
path: root/test/ruby/test_math.rb
blob: 5cc12bcfeb83571bd217cd097d2b5cf713c42136 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# frozen_string_literal: false
require 'test/unit'

class TestMath < Test::Unit::TestCase
  def assert_infinity(a, *rest)
    rest = ["not infinity: #{a.inspect}"] if rest.empty?
    assert_predicate(a, :infinite?, *rest)
  end

  def assert_nan(a, *rest)
    rest = ["not nan: #{a.inspect}"] if rest.empty?
    assert_predicate(a, :nan?, *rest)
  end

  def assert_float(a, b)
    err = [Float::EPSILON * 4, [a.abs, b.abs].max * Float::EPSILON * 256].max
    assert_in_delta(a, b, err)
  end
  alias check assert_float

  def assert_float_and_int(exp_ary, act_ary)
    flo_exp, int_exp, flo_act, int_act = *exp_ary, *act_ary
    assert_float(flo_exp, flo_act)
    assert_equal(int_exp, int_act)
  end

  def test_atan2
    check(+0.0, Math.atan2(+0.0, +0.0))
    check(-0.0, Math.atan2(-0.0, +0.0))
    check(+Math::PI, Math.atan2(+0.0, -0.0))
    check(-Math::PI, Math.atan2(-0.0, -0.0))

    inf = Float::INFINITY
    expected = 3.0 * Math::PI / 4.0
    assert_nothing_raised { check(+expected, Math.atan2(+inf, -inf)) }
    assert_nothing_raised { check(-expected, Math.atan2(-inf, -inf)) }
    expected = Math::PI / 4.0
    assert_nothing_raised { check(+expected, Math.atan2(+inf, +inf)) }
    assert_nothing_raised { check(-expected, Math.atan2(-inf, +inf)) }

    check(0, Math.atan2(0, 1))
    check(Math::PI / 4, Math.atan2(1, 1))
    check(Math::PI / 2, Math.atan2(1, 0))
  end

  def test_cos
    check(1.0,  Math.cos(0 * Math::PI / 4))
    check(1.0 / Math.sqrt(2), Math.cos(1 * Math::PI / 4))
    check(0.0,  Math.cos(2 * Math::PI / 4))
    check(-1.0, Math.cos(4 * Math::PI / 4))
    check(0.0,  Math.cos(6 * Math::PI / 4))
    check(0.5403023058681398,  Math.cos(1))
  end

  def test_sin
    check(0.0,  Math.sin(0 * Math::PI / 4))
    check(1.0 / Math.sqrt(2), Math.sin(1 * Math::PI / 4))
    check(1.0,  Math.sin(2 * Math::PI / 4))
    check(0.0,  Math.sin(4 * Math::PI / 4))
    check(-1.0, Math.sin(6 * Math::PI / 4))
  end

  def test_tan
    check(0.0, Math.tan(0 * Math::PI / 4))
    check(1.0, Math.tan(1 * Math::PI / 4))
    assert_operator(Math.tan(2 * Math::PI / 4).abs, :>, 1024)
    check(0.0, Math.tan(4 * Math::PI / 4))
    assert_operator(Math.tan(6 * Math::PI / 4).abs, :>, 1024)
  end

  def test_acos
    check(0 * Math::PI / 4, Math.acos( 1.0))
    check(1 * Math::PI / 4, Math.acos( 1.0 / Math.sqrt(2)))
    check(2 * Math::PI / 4, Math.acos( 0.0))
    check(4 * Math::PI / 4, Math.acos(-1.0))
    assert_raise(Math::DomainError) { Math.acos(+1.0 + Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.acos(-1.0 - Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.acos(2.0) }
  end

  def test_asin
    check( 0 * Math::PI / 4, Math.asin( 0.0))
    check( 1 * Math::PI / 4, Math.asin( 1.0 / Math.sqrt(2)))
    check( 2 * Math::PI / 4, Math.asin( 1.0))
    check(-2 * Math::PI / 4, Math.asin(-1.0))
    assert_raise(Math::DomainError) { Math.asin(+1.0 + Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.asin(-1.0 - Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.asin(2.0) }
  end

  def test_atan
    check( 0 * Math::PI / 4, Math.atan( 0.0))
    check( 1 * Math::PI / 4, Math.atan( 1.0))
    check( 2 * Math::PI / 4, Math.atan(1.0 / 0.0))
    check(-1 * Math::PI / 4, Math.atan(-1.0))
  end

  def test_cosh
    check(1, Math.cosh(0))
    check((Math::E ** 1 + Math::E ** -1) / 2, Math.cosh(1))
    check((Math::E ** 2 + Math::E ** -2) / 2, Math.cosh(2))
  end

  def test_sinh
    check(0, Math.sinh(0))
    check((Math::E ** 1 - Math::E ** -1) / 2, Math.sinh(1))
    check((Math::E ** 2 - Math::E ** -2) / 2, Math.sinh(2))
  end

  def test_tanh
    check(Math.sinh(0) / Math.cosh(0), Math.tanh(0))
    check(Math.sinh(1) / Math.cosh(1), Math.tanh(1))
    check(Math.sinh(2) / Math.cosh(2), Math.tanh(2))
    check(+1.0, Math.tanh(+1000.0))
    check(-1.0, Math.tanh(-1000.0))
  end

  def test_acosh
    check(0, Math.acosh(1))
    check(1, Math.acosh((Math::E ** 1 + Math::E ** -1) / 2))
    check(2, Math.acosh((Math::E ** 2 + Math::E ** -2) / 2))
    assert_raise(Math::DomainError) { Math.acosh(1.0 - Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.acosh(0) }
  end

  def test_asinh
    check(0, Math.asinh(0))
    check(1, Math.asinh((Math::E ** 1 - Math::E ** -1) / 2))
    check(2, Math.asinh((Math::E ** 2 - Math::E ** -2) / 2))
  end

  def test_atanh
    check(0, Math.atanh(Math.sinh(0) / Math.cosh(0)))
    check(1, Math.atanh(Math.sinh(1) / Math.cosh(1)))
    check(2, Math.atanh(Math.sinh(2) / Math.cosh(2)))
    assert_nothing_raised { assert_infinity(Math.atanh(1)) }
    assert_nothing_raised { assert_infinity(-Math.atanh(-1)) }
    assert_raise(Math::DomainError) { Math.atanh(+1.0 + Float::EPSILON) }
    assert_raise(Math::DomainError) { Math.atanh(-1.0 - Float::EPSILON) }
  end

  def test_exp
    check(1, Math.exp(0))
    check(Math.sqrt(Math::E), Math.exp(0.5))
    check(Math::E, Math.exp(1))
    check(Math::E ** 2, Math.exp(2))
  end

  def test_log
    check(0, Math.log(1))
    check(1, Math.log(Math::E))
    check(0, Math.log(1, 10))
    check(1, Math.log(10, 10))
    check(2, Math.log(100, 10))
    check(Math.log(2.0 ** 64), Math.log(1 << 64))
    check(Math.log(2) * 1024.0, Math.log(2 ** 1024))
    assert_nothing_raised { assert_infinity(Math.log(1.0/0)) }
    assert_nothing_raised { assert_infinity(-Math.log(+0.0)) }
    assert_nothing_raised { assert_infinity(-Math.log(-0.0)) }
    assert_raise(Math::DomainError) { Math.log(-1.0) }
    assert_raise(TypeError) { Math.log(1,nil) }
    assert_raise(Math::DomainError, '[ruby-core:62309] [ruby-Bug #9797]') { Math.log(1.0, -1.0) }
    assert_nothing_raised { assert_nan(Math.log(0.0, 0.0)) }
  end

  def test_log2
    check(0, Math.log2(1))
    check(1, Math.log2(2))
    check(2, Math.log2(4))
    check(Math.log2(2.0 ** 64), Math.log2(1 << 64))
    check(1024.0, Math.log2(2 ** 1024))
    assert_nothing_raised { assert_infinity(Math.log2(1.0/0)) }
    assert_nothing_raised { assert_infinity(-Math.log2(+0.0)) }
    assert_nothing_raised { assert_infinity(-Math.log2(-0.0)) }
    assert_raise(Math::DomainError) { Math.log2(-1.0) }
  end

  def test_log10
    check(0, Math.log10(1))
    check(1, Math.log10(10))
    check(2, Math.log10(100))
    check(Math.log10(2.0 ** 64), Math.log10(1 << 64))
    check(Math.log10(2) * 1024, Math.log10(2 ** 1024))
    assert_nothing_raised { assert_infinity(Math.log10(1.0/0)) }
    assert_nothing_raised { assert_infinity(-Math.log10(+0.0)) }
    assert_nothing_raised { assert_infinity(-Math.log10(-0.0)) }
    assert_raise(Math::DomainError) { Math.log10(-1.0) }
  end

  def test_sqrt
    check(0, Math.sqrt(0))
    check(1, Math.sqrt(1))
    check(2, Math.sqrt(4))
    assert_nothing_raised { assert_infinity(Math.sqrt(1.0/0)) }
    assert_equal("0.0", Math.sqrt(-0.0).to_s) # insure it is +0.0, not -0.0
    assert_raise(Math::DomainError) { Math.sqrt(-1.0) }
  end

  def test_cbrt
    check(1, Math.cbrt(1))
    check(-2, Math.cbrt(-8))
    check(3, Math.cbrt(27))
    check(-0.1, Math.cbrt(-0.001))
    assert_nothing_raised { assert_infinity(Math.cbrt(1.0/0)) }
    assert_operator(Math.cbrt(1.0 - Float::EPSILON), :<=, 1.0)
  end

  def test_frexp
    assert_float_and_int([0.0,  0], Math.frexp(0.0))
    assert_float_and_int([0.5,  0], Math.frexp(0.5))
    assert_float_and_int([0.5,  1], Math.frexp(1.0))
    assert_float_and_int([0.5,  2], Math.frexp(2.0))
    assert_float_and_int([0.75, 2], Math.frexp(3.0))
  end

  def test_ldexp
    check(0.0, Math.ldexp(0.0, 0.0))
    check(0.5, Math.ldexp(0.5, 0.0))
    check(1.0, Math.ldexp(0.5, 1.0))
    check(2.0, Math.ldexp(0.5, 2.0))
    check(3.0, Math.ldexp(0.75, 2.0))
  end

  def test_hypot
    check(5, Math.hypot(3, 4))
  end

  def test_erf
    check(0, Math.erf(0))
    check(1, Math.erf(1.0 / 0.0))
  end

  def test_erfc
    check(1, Math.erfc(0))
    check(0, Math.erfc(1.0 / 0.0))
  end

  def test_gamma
    sqrt_pi = Math.sqrt(Math::PI)
    check(4 * sqrt_pi / 3, Math.gamma(-1.5))
    check(-2 * sqrt_pi, Math.gamma(-0.5))
    check(sqrt_pi, Math.gamma(0.5))
    check(1, Math.gamma(1))
    check(sqrt_pi / 2, Math.gamma(1.5))
    check(1, Math.gamma(2))
    check(3 * sqrt_pi / 4, Math.gamma(2.5))
    check(2, Math.gamma(3))
    check(15 * sqrt_pi / 8, Math.gamma(3.5))
    check(6, Math.gamma(4))
    check(1.1240007277776077e+21, Math.gamma(23))
    check(2.5852016738885062e+22, Math.gamma(24))

    # no SEGV [ruby-core:25257]
    31.upto(65) do |i|
      i = 1 << i
      assert_infinity(Math.gamma(i), "Math.gamma(#{i}) should be INF")
      assert_infinity(Math.gamma(i-1), "Math.gamma(#{i-1}) should be INF")
    end

    assert_raise(Math::DomainError) { Math.gamma(-Float::INFINITY) }
    x = Math.gamma(-0.0)
    mesg = "Math.gamma(-0.0) should be -INF"
    assert_infinity(x, mesg)
    assert_predicate(x, :negative?, mesg)
  end

  def test_lgamma
    sqrt_pi = Math.sqrt(Math::PI)
    assert_float_and_int([Math.log(4 * sqrt_pi / 3),  1], Math.lgamma(-1.5))
    assert_float_and_int([Math.log(2 * sqrt_pi),     -1], Math.lgamma(-0.5))
    assert_float_and_int([Math.log(sqrt_pi),          1], Math.lgamma(0.5))
    assert_float_and_int([0,                          1], Math.lgamma(1))
    assert_float_and_int([Math.log(sqrt_pi / 2),      1], Math.lgamma(1.5))
    assert_float_and_int([0,                          1], Math.lgamma(2))
    assert_float_and_int([Math.log(3 * sqrt_pi / 4),  1], Math.lgamma(2.5))
    assert_float_and_int([Math.log(2),                1], Math.lgamma(3))
    assert_float_and_int([Math.log(15 * sqrt_pi / 8), 1], Math.lgamma(3.5))
    assert_float_and_int([Math.log(6),                1], Math.lgamma(4))

    assert_raise(Math::DomainError) { Math.lgamma(-Float::INFINITY) }
    x, sign = Math.lgamma(-0.0)
    mesg = "Math.lgamma(-0.0) should be [INF, -1]"
    assert_infinity(x, mesg)
    assert_predicate(x, :positive?, mesg)
    assert_equal(-1, sign, mesg)
  end

  def test_fixnum_to_f
    check(12.0, Math.sqrt(144))
  end

  def test_override_integer_to_f
    Integer.class_eval do
      alias _to_f to_f
      def to_f
        (self + 1)._to_f
      end
    end

    check(Math.cos((0 + 1)._to_f), Math.cos(0))
    check(Math.exp((0 + 1)._to_f), Math.exp(0))
    check(Math.log((0 + 1)._to_f), Math.log(0))
  ensure
    Integer.class_eval { undef to_f; alias to_f _to_f; undef _to_f }
  end

  def test_bignum_to_f
    check((1 << 65).to_f, Math.sqrt(1 << 130))
  end

  def test_override_bignum_to_f
    Integer.class_eval do
      alias _to_f to_f
      def to_f
        (self << 1)._to_f
      end
    end

    check(Math.cos((1 << 64 << 1)._to_f),  Math.cos(1 << 64))
    check(Math.log((1 << 64 << 1)._to_f),  Math.log(1 << 64))
  ensure
    Integer.class_eval { undef to_f; alias to_f _to_f; undef _to_f }
  end

  def test_rational_to_f
    check((2 ** 31).fdiv(3 ** 20), Math.sqrt((2 ** 62)/(3 ** 40).to_r))
  end

  def test_override_rational_to_f
    Rational.class_eval do
      alias _to_f to_f
      def to_f
        (self + 1)._to_f
      end
    end

    check(Math.cos((0r + 1)._to_f), Math.cos(0r))
    check(Math.exp((0r + 1)._to_f), Math.exp(0r))
    check(Math.log((0r + 1)._to_f), Math.log(0r))
  ensure
    Rational.class_eval { undef to_f; alias to_f _to_f; undef _to_f }
  end
end