summaryrefslogtreecommitdiff
path: root/regex.c
blob: 27f1b5687826035fbbc8614f46aaf9da4c8ed438 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
/* Extended regular expression matching and search library.
   Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If not,
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
/* Multi-byte extension added May, 1993 by t^2 (Takahiro Tanimoto)
   Last change: May 21, 1993 by t^2  */
/* removed gapped buffer support, multiple syntax support by matz <matz@nts.co.jp> */
/* Perl5 extension added by matz <matz@caelum.co.jp> */
/* UTF-8 extension added Jan 16 1999 by Yoshida Masato  <yoshidam@tau.bekkoame.ne.jp> */

#include "config.h"
#ifdef RUBY_PLATFORM
# define RUBY
#endif

/* We write fatal error messages on standard error.  */
#include <stdio.h>

/* isalpha(3) etc. are used for the character classes.  */
#include <ctype.h>
#include <sys/types.h>

#ifndef PARAMS
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
#  define PARAMS(args) args
# else
#  define PARAMS(args) ()
# endif  /* GCC.  */
#endif  /* Not PARAMS.  */

#if defined(STDC_HEADERS)
# include <stddef.h>
#else
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
# include <sys/types.h>
#endif

#if defined(STDC_HEADERS)
# include <stddef.h>
#else
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
# include <sys/types.h>
#endif

#ifndef __STDC__
# define volatile
# ifdef __GNUC__
#  define const __const__
# else
#  define const
# endif
#endif

#ifdef HAVE_PROTOTYPES
# define _(args) args
#else
# define _(args) ()
#endif

void *xmalloc _((unsigned long));
void *xcalloc _((unsigned long,unsigned long));
void *xrealloc _((void*,unsigned long));
void free _((void*));

/* #define	NO_ALLOCA	/* try it out for now */
#ifndef NO_ALLOCA
/* Make alloca work the best possible way.  */
#ifdef __GNUC__
# ifndef atarist
#  ifndef alloca
#   define alloca __builtin_alloca
#  endif
# endif /* atarist */
#else
# if defined(HAVE_ALLOCA_H)
#  include <alloca.h>
# else
char *alloca();
# endif
#endif /* __GNUC__ */

#ifdef _AIX
#pragma alloca
#endif

#ifdef HAVE_STRING_H
# include <string.h>
#else
# include <strings.h>
#endif

#define RE_ALLOCATE alloca
#ifdef C_ALLOCA
#define FREE_VARIABLES() alloca(0)
#else
#define FREE_VARIABLES()
#endif

#define FREE_AND_RETURN_VOID(stackb)	return
#define FREE_AND_RETURN(stackb,val)	return(val)
#define DOUBLE_STACK(stackx,stackb,len,type) \
        (stackx = (type*)alloca(2 * len * sizeof(type)),		\
	/* Only copy what is in use.  */				\
        (type*)memcpy(stackx, stackb, len * sizeof (type)))
#else  /* NO_ALLOCA defined */

#define RE_ALLOCATE xmalloc

#define FREE_VAR(var) if (var) free(var); var = NULL
#define FREE_VARIABLES()						\
  do {									\
    FREE_VAR(regstart);							\
    FREE_VAR(regend);							\
    FREE_VAR(old_regstart)						\
    FREE_VAR(old_regend);						\
    FREE_VAR(best_regstart);						\
    FREE_VAR(best_regend);						\
    FREE_VAR(reg_info);							\
  } while (0)

#define FREE_AND_RETURN_VOID(stackb)   free(stackb);return
#define FREE_AND_RETURN(stackb,val)    free(stackb);return(val)
#define DOUBLE_STACK(stackx,stackb,len,type) \
        (type*)xrealloc(stackb, 2 * len * sizeof(type))
#endif /* NO_ALLOCA */

#define RE_TALLOC(n,t)  ((t*)RE_ALLOCATE((n)*sizeof(t)))
#define TMALLOC(n,t)    ((t*)xmalloc((n)*sizeof(t)))
#define TREALLOC(s,n,t) (s=((t*)xrealloc(s,(n)*sizeof(t))))

#define EXPAND_FAIL_STACK(stackx,stackb,len) \
    do {\
        /* Roughly double the size of the stack.  */			\
        stackx = DOUBLE_STACK(stackx,stackb,len,unsigned char*);	\
	/* Rearrange the pointers. */					\
	stackp = stackx + (stackp - stackb);				\
	stackb = stackx;						\
	stacke = stackb + 2 * len;					\
    } while (0)

/* Get the interface, including the syntax bits.  */
#include "regex.h"

/* Subroutines for re_compile_pattern.  */
static void store_jump _((char*, int, char*));
static void insert_jump _((int, char*, char*, char*));
static void store_jump_n _((char*, int, char*, unsigned));
static void insert_jump_n _((int, char*, char*, char*, unsigned));
static void insert_op _((int, char*, char*));
static void insert_op_2 _((int, char*, char*, int, int));
static int memcmp_translate _((unsigned char*, unsigned char*, int));
static int alt_match_null_string_p();
static int common_op_match_null_string_p();
static int group_match_null_string_p();

/* Define the syntax stuff, so we can do the \<, \>, etc.  */

/* This must be nonzero for the wordchar and notwordchar pattern
   commands in re_match.  */
#define Sword  1
#define Sword2 2

#define SYNTAX(c) re_syntax_table[c]

static char re_syntax_table[256];
static void init_syntax_once _((void));
static const unsigned char *translate = 0;
static void init_regs _((struct re_registers*, unsigned int));
static void bm_init_skip _((int *, unsigned char*, int, const char*));
static int current_mbctype = MBCTYPE_ASCII;

#undef P

#ifdef RUBY
#include "util.h"
#endif

static void
init_syntax_once()
{
   register int c;
   static int done = 0;

   if (done)
     return;

   memset(re_syntax_table, 0, sizeof re_syntax_table);

   for (c=0; c<0x7f; c++)
     if (isalnum(c)) 
       re_syntax_table[c] = Sword;
   re_syntax_table['_'] = Sword;

   for (c=0x80; c<=0xff; c++)
     if (isalnum(c)) 
       re_syntax_table[c] = Sword2;
   done = 1;
}

void
re_set_casetable(table)
     const char *table;
{
  translate = (const unsigned char*)table;
}

/* Jim Meyering writes:

   "... Some ctype macros are valid only for character codes that
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
   using /bin/cc or gcc but without giving an ansi option).  So, all
   ctype uses should be through macros like ISPRINT...  If
   STDC_HEADERS is defined, then autoconf has verified that the ctype
   macros don't need to be guarded with references to isascii. ...
   Defining isascii to 1 should let any compiler worth its salt
   eliminate the && through constant folding."
   Solaris defines some of these symbols so we must undefine them first.  */

#undef ISASCII
#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
# define ISASCII(c) 1
#else
# define ISASCII(c) isascii(c)
#endif

#ifdef isblank
# define ISBLANK(c) (ISASCII (c) && isblank (c))
#else
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
#endif
#ifdef isgraph
# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
#else
# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
#endif

#undef ISPRINT
#define ISPRINT(c) (ISASCII (c) && isprint (c))
#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
#define ISALNUM(c) (ISASCII (c) && isalnum (c))
#define ISALPHA(c) (ISASCII (c) && isalpha (c))
#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
#define ISLOWER(c) (ISASCII (c) && islower (c))
#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
#define ISSPACE(c) (ISASCII (c) && isspace (c))
#define ISUPPER(c) (ISASCII (c) && isupper (c))
#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))

#ifndef NULL
# define NULL (void *)0
#endif

/* We remove any previous definition of `SIGN_EXTEND_CHAR',
   since ours (we hope) works properly with all combinations of
   machines, compilers, `char' and `unsigned char' argument types.
   (Per Bothner suggested the basic approach.)  */
#undef SIGN_EXTEND_CHAR
#if __STDC__
# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#else  /* not __STDC__ */
/* As in Harbison and Steele.  */
# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
#endif

/* These are the command codes that appear in compiled regular
   expressions, one per byte.  Some command codes are followed by
   argument bytes.  A command code can specify any interpretation
   whatsoever for its arguments.  Zero-bytes may appear in the compiled
   regular expression.

   The value of `exactn' is needed in search.c (search_buffer) in emacs.
   So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
   `exactn' we use here must also be 1.  */

enum regexpcode
  {
    unused=0,
    exactn=1, /* Followed by one byte giving n, then by n literal bytes.  */
    begline,  /* Fail unless at beginning of line.  */
    endline,  /* Fail unless at end of line.  */
    begbuf,   /* Succeeds if at beginning of buffer (if emacs) or at beginning
                 of string to be matched (if not).  */
    endbuf,   /* Analogously, for end of buffer/string.  */
    endbuf2,  /* End of buffer/string, or newline just before it.  */
    jump,     /* Followed by two bytes giving relative address to jump to.  */
    jump_past_alt,/* Same as jump, but marks the end of an alternative.  */
    on_failure_jump,	 /* Followed by two bytes giving relative address of 
			    place to resume at in case of failure.  */
    finalize_jump,	 /* Throw away latest failure point and then jump to 
			    address.  */
    maybe_finalize_jump, /* Like jump but finalize if safe to do so.
			    This is used to jump back to the beginning
			    of a repeat.  If the command that follows
			    this jump is clearly incompatible with the
			    one at the beginning of the repeat, such that
			    we can be sure that there is no use backtracking
			    out of repetitions already completed,
			    then we finalize.  */
    dummy_failure_jump,  /* Jump, and push a dummy failure point. This 
			    failure point will be thrown away if an attempt 
                            is made to use it for a failure. A + construct 
                            makes this before the first repeat.  Also
                            use it as an intermediary kind of jump when
                            compiling an or construct.  */
    push_dummy_failure, /* Push a dummy failure point and continue.  Used at the end of
			   alternatives.  */
    succeed_n,	 /* Used like on_failure_jump except has to succeed n times;
		    then gets turned into an on_failure_jump. The relative
                    address following it is useless until then.  The
                    address is followed by two bytes containing n.  */
    jump_n,	 /* Similar to jump, but jump n times only; also the relative
		    address following is in turn followed by yet two more bytes
                    containing n.  */
    try_next,    /* Jump to next pattern for the first time,
		    leaving this pattern on the failure stack. */
    finalize_push,	/* Finalize stack and push the beginning of the pattern
			   on the stack to retry (used for non-greedy match) */
    finalize_push_n,	/* Similar to finalize_push, buf finalize n time only */
    set_number_at,	/* Set the following relative location to the
			   subsequent number.  */
    anychar,	 /* Matches any (more or less) one character excluding newlines.  */
    charset,     /* Matches any one char belonging to specified set.
		    First following byte is number of bitmap bytes.
		    Then come bytes for a bitmap saying which chars are in.
		    Bits in each byte are ordered low-bit-first.
		    A character is in the set if its bit is 1.
		    A character too large to have a bit in the map
		    is automatically not in the set.  */
    charset_not, /* Same parameters as charset, but match any character
                    that is not one of those specified.  */
    start_memory, /* Start remembering the text that is matched, for
		    storing in a memory register.  Followed by one
                    byte containing the register number.  Register numbers
                    must be in the range 0 through RE_NREGS.  */
    stop_memory, /* Stop remembering the text that is matched
		    and store it in a memory register.  Followed by
                    one byte containing the register number. Register
                    numbers must be in the range 0 through RE_NREGS.  */
    stop_paren,    /* Place holder at the end of (?:..). */
    casefold_on,   /* Turn on casefold flag. */
    casefold_off,  /* Turn off casefold flag. */
    posix_on,      /* Turn on POSIXified match (match with newlines). */
    posix_off,     /* Turn off POSIXified match. */
    start_nowidth, /* Save string point to the stack. */
    stop_nowidth,  /* Restore string place at the point start_nowidth. */
    pop_and_fail,  /* Fail after popping nowidth entry from stack. */
    duplicate,   /* Match a duplicate of something remembered.
		    Followed by one byte containing the index of the memory 
                    register.  */
    wordchar,    /* Matches any word-constituent character.  */
    notwordchar, /* Matches any char that is not a word-constituent.  */
    wordbeg,	 /* Succeeds if at word beginning.  */
    wordend,	 /* Succeeds if at word end.  */
    wordbound,   /* Succeeds if at a word boundary.  */
    notwordbound,/* Succeeds if not at a word boundary.  */
  };


/* Number of failure points to allocate space for initially,
   when matching.  If this number is exceeded, more space is allocated,
   so it is not a hard limit.  */

#ifndef NFAILURES
#define NFAILURES 80
#endif

/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
#define STORE_NUMBER(destination, number)				\
  do { (destination)[0] = (number) & 0377;				\
    (destination)[1] = (number) >> 8; } while (0)

/* Same as STORE_NUMBER, except increment the destination pointer to
   the byte after where the number is stored.  Watch out that values for
   DESTINATION such as p + 1 won't work, whereas p will.  */
#define STORE_NUMBER_AND_INCR(destination, number)			\
  do { STORE_NUMBER(destination, number);				\
    (destination) += 2; } while (0)


/* Put into DESTINATION a number stored in two contingous bytes starting
   at SOURCE.  */
#define EXTRACT_NUMBER(destination, source)				\
  do { (destination) = *(source) & 0377;				\
    (destination) += SIGN_EXTEND_CHAR (*(char*)((source) + 1)) << 8; } while (0)

/* Same as EXTRACT_NUMBER, except increment the pointer for source to
   point to second byte of SOURCE.  Note that SOURCE has to be a value
   such as p, not, e.g., p + 1. */
#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
  do { EXTRACT_NUMBER(destination, source);				\
    (source) += 2; } while (0)


/* Specify the precise syntax of regexps for compilation.  This provides
   for compatibility for various utilities which historically have
   different, incompatible syntaxes.

   The argument SYNTAX is a bit-mask comprised of the various bits
   defined in regex.h.  */

long
re_set_syntax(syntax)
  long syntax;
{
    /* obsolete */
}


/* Macros for re_compile_pattern, which is found below these definitions.  */

#define TRANSLATE_P() ((options&RE_OPTION_IGNORECASE) && translate)
#define MAY_TRANSLATE() ((bufp->options&(RE_OPTION_IGNORECASE|RE_MAY_IGNORECASE)) && translate)
/* Fetch the next character in the uncompiled pattern---translating it 
   if necessary.  Also cast from a signed character in the constant
   string passed to us by the user to an unsigned char that we can use
   as an array index (in, e.g., `translate').  */
#define PATFETCH(c)							\
  do {if (p == pend) goto end_of_pattern;				\
    c = (unsigned char) *p++; 						\
    if (TRANSLATE_P()) c = (unsigned char)translate[c];	\
  } while (0)

/* Fetch the next character in the uncompiled pattern, with no
   translation.  */
#define PATFETCH_RAW(c)							\
  do {if (p == pend) goto end_of_pattern;				\
    c = (unsigned char)*p++; 						\
  } while (0)

/* Go backwards one character in the pattern.  */
#define PATUNFETCH p--

#define MBC2WC(c, p)\
  do {\
    if (current_mbctype == MBCTYPE_UTF8) {\
      int n = mbclen(c) - 1;\
      int c1;\
      c &= (1<<(BYTEWIDTH-2-n)) - 1;\
      while (n--) {\
	c = c << 6 | *p++ & ((1<<6)-1);\
      }\
    }\
    else {\
      c <<= 8;\
      c |= (unsigned char)*(p)++;\
    }\
  } while (0)

#define PATFETCH_MBC(c) \
  do {\
    if (p + mbclen(c) - 1 >= pend) goto end_of_pattern;\
    MBC2WC(c, p);\
  } while(0)

#define WC2MBC1ST(c) \
 ((current_mbctype != MBCTYPE_UTF8)?(((c)>>8)&0xff):utf8_firstbyte(c))

static unsigned int
utf8_firstbyte(c)
     unsigned int c;
{
  if (c < 0x80) return c;
  if (c < 0x7ff) return ((c>>6)&0xff)|0xc0;
  if (c < 0xffff) return ((c>>12)&0xff)|0xe0;
  if (c < 0x1fffff) return ((c>>18)&0xff)|0xf0;
  if (c < 0x3ffffff) return ((c>>24)&0xff)|0xf8;
  if (c < 0x7fffffff) return ((c>>30)&0xff)|0xfc;
}

static void
print_mbc(c)
     unsigned int c;
{
  if (current_mbctype == MBCTYPE_UTF8) {
    if (c < 0x80)
      printf("%c", c);
    else if (c < 0x7ff)
      printf("%c%c", utf8_firstbyte(c), c&0x3f);
    else if (c < 0xffff)
      printf("%c%c%c", utf8_firstbyte(c), (c>>6)&0x3f, c&0x3f);
    else if (c < 0x1fffff) 
      printf("%c%c%c%c", utf8_firstbyte(c), (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
    else if (c < 0x3ffffff)
      printf("%c%c%c%c%c", utf8_firstbyte(c), (c>>18)&0x3f, (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
    else if (c < 0x7fffffff)
      printf("%c%c%c%c%c", utf8_firstbyte(c), (c>>24)&0x3f, (c>>18)&0x3f, (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
  }
  else {
    printf("%c%c", c>>BYTEWIDTH, c&0xff);
  }
}

/* If the buffer isn't allocated when it comes in, use this.  */
#define INIT_BUF_SIZE  28

/* Make sure we have at least N more bytes of space in buffer.  */
#define GET_BUFFER_SPACE(n)						\
  do {								        \
    while (b - bufp->buffer + (n) >= bufp->allocated)			\
      EXTEND_BUFFER;							\
  } while (0)

/* Make sure we have one more byte of buffer space and then add CH to it.  */
#define BUFPUSH(ch)							\
  do {									\
    GET_BUFFER_SPACE(1);						\
    *b++ = (char)(ch);							\
  } while (0)

/* Extend the buffer by twice its current size via reallociation and
   reset the pointers that pointed into the old allocation to point to
   the correct places in the new allocation.  If extending the buffer
   results in it being larger than 1 << 16, then flag memory exhausted.  */
#define EXTEND_BUFFER							\
  do { char *old_buffer = bufp->buffer;					\
    if (bufp->allocated == (1L<<16)) goto too_big;			\
    bufp->allocated *= 2;						\
    if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16);		\
    bufp->buffer = (char*)xrealloc (bufp->buffer, bufp->allocated);	\
    if (bufp->buffer == 0)						\
      goto memory_exhausted;						\
    b = (b - old_buffer) + bufp->buffer;				\
    if (fixup_alt_jump)							\
      fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;	\
    if (laststart)							\
      laststart = (laststart - old_buffer) + bufp->buffer;		\
    begalt = (begalt - old_buffer) + bufp->buffer;			\
    if (pending_exact)							\
      pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
  } while (0)


/* Set the bit for character C in a character set list.  */
#define SET_LIST_BIT(c)							\
  (b[(unsigned char)(c) / BYTEWIDTH]					\
   |= 1 << ((unsigned char)(c) % BYTEWIDTH))

/* Get the next unsigned number in the uncompiled pattern.  */
#define GET_UNSIGNED_NUMBER(num) 					\
  do { if (p != pend) { 						\
        PATFETCH(c); 							\
	while (ISDIGIT(c)) { 						\
	  if (num < 0) 							\
	     num = 0; 							\
	  num = num * 10 + c - '0'; 					\
	  if (p == pend) 						\
	     break; 							\
	  PATFETCH(c); 							\
	} 								\
     } 									\
  } while (0)

#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))

#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */

#define IS_CHAR_CLASS(string)						\
   (STREQ(string, "alpha") || STREQ(string, "upper")			\
    || STREQ(string, "lower") || STREQ(string, "digit")			\
    || STREQ(string, "alnum") || STREQ(string, "xdigit")		\
    || STREQ(string, "space") || STREQ(string, "print")			\
    || STREQ(string, "punct") || STREQ(string, "graph")			\
    || STREQ(string, "cntrl") || STREQ(string, "blank"))

#define STORE_MBC(p, c)							\
  do {									\
    (p)[0] = (unsigned char)(((c) >>24) & 0xff);			\
    (p)[1] = (unsigned char)(((c) >>16) & 0xff);			\
    (p)[2] = (unsigned char)(((c) >> 8) & 0xff);			\
    (p)[3] = (unsigned char)(((c) >> 0) & 0xff);			\
  } while (0)

#define STORE_MBC_AND_INCR(p, c) 					\
  do {									\
    *(p)++ = (unsigned char)(((c) >>24) & 0xff);			\
    *(p)++ = (unsigned char)(((c) >>16) & 0xff);			\
    *(p)++ = (unsigned char)(((c) >> 8) & 0xff);			\
    *(p)++ = (unsigned char)(((c) >> 0) & 0xff);			\
  } while (0)

#define EXTRACT_MBC(p) 							\
  ((unsigned short)((unsigned char)(p)[0] << 24 |			\
		    (unsigned char)(p)[1] << 16 |			\
                    (unsigned char)(p)[2] <<  8 |			\
		    (unsigned char)(p)[3]))

#define EXTRACT_MBC_AND_INCR(p) 					\
  ((unsigned short)((p) += 4, 						\
		    (unsigned char)(p)[-4] << 24 |			\
		    (unsigned char)(p)[-3] << 16 |			\
                    (unsigned char)(p)[-2] <<  8 |			\
		    (unsigned char)(p)[-1]))

#define EXTRACT_UNSIGNED(p) \
  ((unsigned char)(p)[0] | (unsigned char)(p)[1] << 8)
#define EXTRACT_UNSIGNED_AND_INCR(p) \
  ((p) += 2, (unsigned char)(p)[-2] | (unsigned char)(p)[-1] << 8)

/* Handle (mb)?charset(_not)?.

   Structure of mbcharset(_not)? in compiled pattern.

     struct {
       unsinged char id;		mbcharset(_not)?
       unsigned char sbc_size;
       unsigned char sbc_map[sbc_size];	same as charset(_not)? up to here.
       unsigned short mbc_size;		number of intervals.
       struct {
	 unsigned int beg;		beginning of interval.
	 unsigned int end;		end of interval.
       } intervals[mbc_size];
     }; */

static void
set_list_bits(c1, c2, b)
    unsigned int c1, c2;
    unsigned char *b;
{
  unsigned char sbc_size = b[-1];
  unsigned short mbc_size = EXTRACT_UNSIGNED(&b[sbc_size]);
  unsigned short beg, end, upb;

  if (c1 > c2)
    return;
  b = &b[sbc_size + 2];

  for (beg = 0, upb = mbc_size; beg < upb; ) {
    unsigned short mid = (unsigned short)(beg + upb) >> 1;

    if ((int)c1 - 1 > (int)EXTRACT_MBC(&b[mid*8+4]))
      beg = mid + 1;
    else
      upb = mid;
  }

  for (end = beg, upb = mbc_size; end < upb; ) {
    unsigned short mid = (unsigned short)(end + upb) >> 1;

    if ((int)c2 >= (int)EXTRACT_MBC(&b[mid*8]) - 1)
      end = mid + 1;
    else
      upb = mid;
  }

  if (beg != end) {
    if (c1 > EXTRACT_MBC(&b[beg*8]))
      c1 = EXTRACT_MBC(&b[beg*8]);
    if (c2 < EXTRACT_MBC(&b[(end - 1)*8+4]))
      c2 = EXTRACT_MBC(&b[(end - 1)*8+4]);
  }
  if (end < mbc_size && end != beg + 1)
    /* NOTE: memcpy() would not work here.  */
    memmove(&b[(beg + 1)*8], &b[end*8], (mbc_size - end)*8);
  STORE_MBC(&b[beg*8 + 0], c1);
  STORE_MBC(&b[beg*8 + 4], c2);
  mbc_size += beg - end + 1;
  STORE_NUMBER(&b[-2], mbc_size);
}

static int
is_in_list(c, b)
    unsigned int c;
    const unsigned char *b;
{
  unsigned short size;
  unsigned short i, j;
  int result = 0;

  size = *b++;
  if ((int)c / BYTEWIDTH < (int)size && b[c / BYTEWIDTH] & 1 << c % BYTEWIDTH) {
    return 2;
  }
  b += size + 2;
  size = EXTRACT_UNSIGNED(&b[-2]);
  if (size == 0) return 0;

  for (i = 0, j = size; i < j; ) {
    unsigned short k = (unsigned short)(i + j) >> 1;

    if (c > EXTRACT_MBC(&b[k*8+4]))
      i = k + 1;
    else
      j = k;
  }
  if (i < size && EXTRACT_MBC(&b[i*8]) <= c
      && ((unsigned char)c != '\n' && (unsigned char)c != '\0'))
    return 1;
  return result;
}

static void
print_partial_compiled_pattern(start, end)
    unsigned char *start;
    unsigned char *end;
{
  int mcnt, mcnt2;
  unsigned char *p = start;
  unsigned char *pend = end;

  if (start == NULL) {
    printf("(null)\n");
    return;
  }

  /* Loop over pattern commands.  */
  while (p < pend) {
    switch ((enum regexpcode)*p++) {
    case unused:
      printf("/unused");
      break;

    case exactn:
      mcnt = *p++;
      printf("/exactn/%d", mcnt);
      do {
	putchar('/');
	printf("%c", *p++);
      }
      while (--mcnt);
      break;

    case start_memory:
      mcnt = *p++;
      printf("/start_memory/%d/%d", mcnt, *p++);
      break;

    case stop_memory:
      mcnt = *p++;
      printf("/stop_memory/%d/%d", mcnt, *p++);
      break;

    case stop_paren:
      printf("/stop_paren");
      break;

    case casefold_on:
      printf("/casefold_on");
      break;

    case casefold_off:
      printf("/casefold_off");
      break;

    case posix_on:
      printf("/posix_on");
      break;

    case posix_off:
      printf("/posix_off");
      break;

    case start_nowidth:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/start_nowidth//%d", mcnt);
      break;

    case stop_nowidth:
      printf("/stop_nowidth//");
      p += 2;
      break;

    case pop_and_fail:
      printf("/pop_and_fail");
      break;

    case duplicate:
      printf("/duplicate/%d", *p++);
      break;

    case anychar:
      printf("/anychar");
      break;

    case charset:
    case charset_not:
      {
	register int c;

	printf("/charset%s",
	       (enum regexpcode)*(p - 1) == charset_not ? "_not" : "");

	mcnt = *p++;
	printf("/%d", mcnt);
	for (c = 0; c < mcnt; c++) {
	  unsigned bit;
	  unsigned char map_byte = p[c];

	  putchar ('/');

	  for (bit = 0; bit < BYTEWIDTH; bit++)
	    if (map_byte & (1 << bit))
	      printf("%c", c * BYTEWIDTH + bit);
	}
	p += mcnt;
	mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
	printf("/");
	while (mcnt--) {
	  print_mbc(EXTRACT_MBC_AND_INCR(p));
	  printf("-");
	  print_mbc(EXTRACT_MBC_AND_INCR(p));
	}
	break;
      }

    case begline:
      printf("/begline");
      break;

    case endline:
      printf("/endline");
      break;

    case on_failure_jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/on_failure_jump//%d", mcnt);
      break;

    case dummy_failure_jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/dummy_failure_jump//%d", mcnt);
      break;

    case push_dummy_failure:
      printf("/push_dummy_failure");
      break;

    case finalize_jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/finalize_jump//%d", mcnt);
      break;

    case maybe_finalize_jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/maybe_finalize_jump//%d", mcnt);
      break;

    case jump_past_alt:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/jump_past_alt//%d", mcnt);
      break;

    case jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/jump//%d", mcnt);
      break;

    case succeed_n: 
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      EXTRACT_NUMBER_AND_INCR (mcnt2, p);
      printf("/succeed_n//%d//%d", mcnt, mcnt2);
      break;

    case jump_n: 
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      EXTRACT_NUMBER_AND_INCR (mcnt2, p);
      printf("/jump_n//%d//%d", mcnt, mcnt2);
      break;

    case set_number_at: 
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      EXTRACT_NUMBER_AND_INCR (mcnt2, p);
      printf("/set_number_at//%d//%d", mcnt, mcnt2);
      break;

    case try_next:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/try_next//%d", mcnt);
      break;

    case finalize_push:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      printf("/finalize_push//%d", mcnt);
      break;

    case finalize_push_n:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      EXTRACT_NUMBER_AND_INCR (mcnt2, p);
      printf("/finalize_push_n//%d//%d", mcnt, mcnt2);
      break;

    case wordbound:
      printf("/wordbound");
      break;

    case notwordbound:
      printf("/notwordbound");
      break;

    case wordbeg:
      printf("/wordbeg");
      break;

    case wordend:
      printf("/wordend");

    case wordchar:
      printf("/wordchar");
      break;
	  
    case notwordchar:
      printf("/notwordchar");
      break;

    case begbuf:
      printf("/begbuf");
      break;

    case endbuf:
      printf("/endbuf");
      break;

    case endbuf2:
      printf("/endbuf2");
      break;

    default:
      printf("?%d", *(p-1));
    }
  }
  printf("/\n");
}


static void
print_compiled_pattern(bufp)
     struct re_pattern_buffer *bufp;
{
  unsigned char *buffer = (unsigned char*)bufp->buffer;

  print_partial_compiled_pattern (buffer, buffer + bufp->used);
}

static char*
calculate_must_string(start, end)
     char *start;
     char *end;
{
  int mcnt;
  int max = 0;
  char *p = start;
  char *pend = end;
  char *must = 0;

  if (start == NULL) return 0;

  /* Loop over pattern commands.  */
  while (p < pend) {
    switch ((enum regexpcode)*p++) {
    case unused:
      break;

    case exactn:
      mcnt = *p;
      if (mcnt > max) {
	must = p;
	max = mcnt;
      }
      p += mcnt+1;
      break;

    case start_memory:
    case stop_memory:
      p += 2;
      break;

    case duplicate:
      p++;
      break;

    case casefold_on:
    case casefold_off:
    case posix_on:
    case posix_off:
      return 0;		/* should not check must_string */

    case pop_and_fail:
    case anychar:
    case begline:
    case endline:
    case wordbound:
    case notwordbound:
    case wordbeg:
    case wordend:
    case wordchar:
    case notwordchar:
    case begbuf:
    case endbuf:
    case endbuf2:
    case push_dummy_failure:
    case stop_paren:
      break;

    case charset:
    case charset_not:
      mcnt = *p++;
      p += mcnt;
      mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
      while (mcnt--) {
	p += 4;
      }
      break;

    case on_failure_jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      if (mcnt > 0) p += mcnt;
      if ((enum regexpcode)p[-3] == jump) {
	p -= 3;
	EXTRACT_NUMBER_AND_INCR (mcnt, p);
	if (mcnt > 0) p += mcnt;
      }
      break;

    case dummy_failure_jump:
    case succeed_n: 
    case try_next:
    case jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p);
      if (mcnt > 0) p += mcnt;
      break;

    case start_nowidth:
    case stop_nowidth:
    case finalize_jump:
    case maybe_finalize_jump:
    case finalize_push:
      p += 2;
      break;

    case jump_n: 
    case set_number_at: 
    case finalize_push_n:
      p += 4;
      break;

    default:
      break;
    }
  }
  return must;
}


/* re_compile_pattern takes a regular-expression string
   and converts it into a buffer full of byte commands for matching.

   PATTERN   is the address of the pattern string
   SIZE      is the length of it.
   BUFP	    is a  struct re_pattern_buffer *  which points to the info
	     on where to store the byte commands.
	     This structure contains a  char *  which points to the
	     actual space, which should have been obtained with malloc.
	     re_compile_pattern may use realloc to grow the buffer space.

   The number of bytes of commands can be found out by looking in
   the `struct re_pattern_buffer' that bufp pointed to, after
   re_compile_pattern returns. */

char *
re_compile_pattern(pattern, size, bufp)
     const char *pattern;
     int size;
     struct re_pattern_buffer *bufp;
{
  register char *b = bufp->buffer;
  register const char *p = pattern;
  const char *nextp;
  const char *pend = pattern + size;
  register unsigned c, c1;
  const char *p0;
  int numlen;

  /* Address of the count-byte of the most recently inserted `exactn'
     command.  This makes it possible to tell whether a new exact-match
     character can be added to that command or requires a new `exactn'
     command.  */

  char *pending_exact = 0;

  /* Address of the place where a forward-jump should go to the end of
     the containing expression.  Each alternative of an `or', except the
     last, ends with a forward-jump of this sort.  */

  char *fixup_alt_jump = 0;

  /* Address of start of the most recently finished expression.
     This tells postfix * where to find the start of its operand.  */

  char *laststart = 0;

  /* In processing a repeat, 1 means zero matches is allowed.  */

  char zero_times_ok;

  /* In processing a repeat, 1 means many matches is allowed.  */

  char many_times_ok;

  /* In processing a repeat, 1 means non-greedy matches.  */

  char greedy;

  /* Address of beginning of regexp, or inside of last (.  */

  char *begalt = b;

  /* Place in the uncompiled pattern (i.e., the {) to
     which to go back if the interval is invalid.  */
  const char *beg_interval;

  /* In processing an interval, at least this many matches must be made.  */
  int lower_bound;

  /* In processing an interval, at most this many matches can be made.  */
  int upper_bound;

  /* Stack of information saved by ( and restored by ).
     Five stack elements are pushed by each (:
     First, the value of b.
     Second, the value of fixup_alt_jump.
     Third, the value of begalt.
     Fourth, the value of regnum.
     Fifth, the type of the paren. */

  int *stackb = RE_TALLOC(40, int);
  int *stackp = stackb;
  int *stacke = stackb + 40;
  int *stackt;

  /* Counts ('s as they are encountered.  Remembered for the matching ),
     where it becomes the register number to put in the stop_memory
     command.  */

  int regnum = 1;

  int range = 0;
  int had_mbchar = 0;
  int had_char_class = 0;

  int options = bufp->options;

  bufp->fastmap_accurate = 0;
  bufp->must = 0;
  bufp->must_skip = 0;
  bufp->stclass = 0;

  /* Initialize the syntax table.  */
  init_syntax_once();

  if (bufp->allocated == 0) {
    bufp->allocated = INIT_BUF_SIZE;
    if (bufp->buffer)
      /* EXTEND_BUFFER loses when bufp->allocated is 0.  */
      bufp->buffer = (char*)xrealloc (bufp->buffer, INIT_BUF_SIZE);
    else
      /* Caller did not allocate a buffer.  Do it for them.  */
      bufp->buffer = (char*)xmalloc(INIT_BUF_SIZE);
    if (!bufp->buffer) goto memory_exhausted;
    begalt = b = bufp->buffer;
  }

  while (p != pend) {
    PATFETCH(c);

    switch (c) {
    case '$':
      {
	p0 = p;
	/* When testing what follows the $,
	   look past the \-constructs that don't consume anything.  */

	while (p0 != pend)
	  {
	    if (*p0 == '\\' && p0 + 1 != pend
		&& (p0[1] == 'b' || p0[1] == 'B'))
	      p0 += 2;
	    else
	      break;
	  }
	BUFPUSH(endline);
	break;
      }
    case '^':
      BUFPUSH(begline);
      break;

    case '+':
    case '?':
    case '*':
      /* If there is no previous pattern, char not special. */
      if (!laststart) {
	goto invalid_pattern;
      }
      /* If there is a sequence of repetition chars,
	 collapse it down to just one.  */
      zero_times_ok = c != '+';
      many_times_ok = c != '?';
      greedy = 1;
      if (p != pend) {
	PATFETCH(c);
	switch (c) {
	case '?':
	  greedy = 0;
	  break;
	case '*':
	case '+':
	  goto nested_meta;
	default:
	  PATUNFETCH;
	  break;
	}
      }

    repeat:
      /* Star, etc. applied to an empty pattern is equivalent
	 to an empty pattern.  */
      if (!laststart)  
	break;

      /* Now we know whether or not zero matches is allowed
	 and also whether or not two or more matches is allowed.  */
      if (many_times_ok) {
	/* If more than one repetition is allowed, put in at the
	   end a backward relative jump from b to before the next
	   jump we're going to put in below (which jumps from
	   laststart to after this jump).  */
	GET_BUFFER_SPACE(3);
	store_jump(b,greedy?maybe_finalize_jump:finalize_push,laststart-3);
	b += 3;  	/* Because store_jump put stuff here.  */
      }

      /* On failure, jump from laststart to next pattern, which will be the
	 end of the buffer after this jump is inserted.  */
      GET_BUFFER_SPACE(3);
      insert_jump(on_failure_jump, laststart, b + 3, b);
      b += 3;

      if (zero_times_ok) {
	if (greedy == 0) {
	  GET_BUFFER_SPACE(3);
	  insert_jump(try_next, laststart, b + 3, b);
	  b += 3;
	}
      }
      else {
	/* At least one repetition is required, so insert a
	   `dummy_failure_jump' before the initial
	   `on_failure_jump' instruction of the loop. This
	   effects a skip over that instruction the first time
	   we hit that loop.  */
	GET_BUFFER_SPACE(3);
	insert_jump(dummy_failure_jump, laststart, laststart + 6, b);
	b += 3;
      }
      break;

    case '.':
      laststart = b;
      BUFPUSH(anychar);
      break;

    case '[':
      if (p == pend)
	goto invalid_pattern;
      while ((b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH)
	     > bufp->allocated)
	EXTEND_BUFFER;

      laststart = b;
      if (*p == '^')
	{
	  BUFPUSH(charset_not); 
	  p++;
	}
      else
	BUFPUSH(charset);
      p0 = p;

      BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
      /* Clear the whole map */
      memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);

      had_mbchar = 0;
      had_char_class = 0;

      /* charset_not matches newline according to a syntax bit.  */
      if ((enum regexpcode)b[-2] == charset_not) {
	if (bufp->options & RE_OPTION_POSIX)
	  SET_LIST_BIT ('\n');
	else
	  SET_LIST_BIT ('\0');
      }

      /* Read in characters and ranges, setting map bits.  */
      for (;;)
	{
	  int size;
	  unsigned last = (unsigned)-1;

	  if ((size = EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH]))
	      || current_mbctype) {
	    /* Ensure the space is enough to hold another interval
	       of multi-byte chars in charset(_not)?.  */
	    size = (1 << BYTEWIDTH) / BYTEWIDTH + 2 + size*8 + 8;
	    while (b + size + 1 > bufp->buffer + bufp->allocated)
	      EXTEND_BUFFER;
	  }
	range_retry:
	  PATFETCH(c);

	  if (c == ']') {
	    if (p == p0 + 1) {
	      if (p == pend)
		goto invalid_pattern;
	    }
	    else 
	      /* Stop if this isn't merely a ] inside a bracket
		 expression, but rather the end of a bracket
		 expression.  */
	      break;
	  }
	  /* Look ahead to see if it's a range when the last thing
	     was a character class.  */
	  if (had_char_class && c == '-' && *p != ']')
	    goto invalid_pattern;
	  if (ismbchar(c)) {
	    PATFETCH_MBC(c);
	    had_mbchar++;
	  }

	  /* \ escapes characters when inside [...].  */
	  if (c == '\\') {
	    PATFETCH(c);
	    switch (c) {
	    case 'w':
	      for (c = 0; c < (1 << BYTEWIDTH); c++) {
		if (SYNTAX(c) == Sword ||
		    (!current_mbctype && SYNTAX(c) == Sword2))
		  SET_LIST_BIT(c);
	      }
	      if (current_mbctype) {
		set_list_bits(0x80, 0xffffffff, b);
	      }
	      last = -1;
	      continue;

	    case 'W':
	      for (c = 0; c < (1 << BYTEWIDTH); c++) {
		if (SYNTAX(c) != Sword &&
		    (current_mbctype || SYNTAX(c) != Sword2))
		  SET_LIST_BIT(c);
	      }
	      last = -1;
	      continue;

	    case 's':
	      for (c = 0; c < 256; c++)
		if (ISSPACE(c))
		  SET_LIST_BIT(c);
	      last = -1;
	      continue;

	    case 'S':
	      for (c = 0; c < 256; c++)
		if (!ISSPACE(c))
		  SET_LIST_BIT(c);
	      if (current_mbctype) {
		set_list_bits(0x80, 0xffffffff, b);
	      }
	      last = -1;
	      continue;

	    case 'd':
	      for (c = '0'; c <= '9'; c++)
		SET_LIST_BIT(c);
	      last = -1;
	      continue;

	    case 'D':
	      for (c = 0; c < 256; c++)
		if (!ISDIGIT(c))
		  SET_LIST_BIT(c);
	      if (current_mbctype) {
		set_list_bits(0x80, 0xffffffff, b);
	      }
	      last = -1;
	      continue;

	    case 'x':
	      c = scan_hex(p, 2, &numlen);
	      p += numlen;
	      break;

	    case '0': case '1': case '2': case '3': case '4':
	    case '5': case '6': case '7': case '8': case '9':
	      PATUNFETCH;
	      c = scan_oct(p, 3, &numlen);
	      p += numlen;
	      break;

	    default:
	      if (ismbchar(c)) {
		PATFETCH_MBC(c);
		had_mbchar++;
	      }
	      break;
	    }
	  }

	  /* Get a range.  */
	  if (range) {
	    if (last > c)
	      goto invalid_pattern;

	    range = 0;
	    if (had_mbchar == 0) {
	      for (;last<=c;last++)
		SET_LIST_BIT(last);
	    }
	    else if (had_mbchar == 2) {
	      set_list_bits(last, c, b);
	    }
	    else {
	      /* restriction: range between sbc and mbc */
	      goto invalid_pattern;
	    }
	  }
	  else if (p[0] == '-' && p[1] != ']') {
	    last = c;
	    PATFETCH(c1);
	    range = 1;
	    goto range_retry;
	  }
	  else if (c == '[' && *p == ':') {
	    /* Leave room for the null.  */
	    char str[CHAR_CLASS_MAX_LENGTH + 1];

	    PATFETCH_RAW (c);
	    c1 = 0;

	    /* If pattern is `[[:'.  */
	    if (p == pend) 
	      goto invalid_pattern;

	    for (;;) {
	      PATFETCH (c);
	      if (c == ':' || c == ']' || p == pend
		  || c1 == CHAR_CLASS_MAX_LENGTH)
		break;
	      str[c1++] = c;
	    }
	    str[c1] = '\0';

	    /* If isn't a word bracketed by `[:' and:`]':
	       undo the ending character, the letters, and leave 
	       the leading `:' and `[' (but set bits for them).  */
	    if (c == ':' && *p == ']') {
	      int ch;
	      char is_alnum = STREQ(str, "alnum");
	      char is_alpha = STREQ(str, "alpha");
	      char is_blank = STREQ(str, "blank");
	      char is_cntrl = STREQ(str, "cntrl");
	      char is_digit = STREQ(str, "digit");
	      char is_graph = STREQ(str, "graph");
	      char is_lower = STREQ(str, "lower");
	      char is_print = STREQ(str, "print");
	      char is_punct = STREQ(str, "punct");
	      char is_space = STREQ(str, "space");
	      char is_upper = STREQ(str, "upper");
	      char is_xdigit = STREQ(str, "xdigit");

	      if (!IS_CHAR_CLASS (str))
		goto invalid_pattern;

	      /* Throw away the ] at the end of the character class.  */
	      PATFETCH (c);

	      if (p == pend) 
		goto invalid_pattern;

	      for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
		if (   (is_alnum  && ISALNUM(ch))
		       || (is_alpha  && ISALPHA(ch))
		       || (is_blank  && ISBLANK(ch))
		       || (is_cntrl  && ISCNTRL(ch))
		       || (is_digit  && ISDIGIT(ch))
		       || (is_graph  && ISGRAPH(ch))
		       || (is_lower  && ISLOWER(ch))
		       || (is_print  && ISPRINT(ch))
		       || (is_punct  && ISPUNCT(ch))
		       || (is_space  && ISSPACE(ch))
		       || (is_upper  && ISUPPER(ch))
		       || (is_xdigit && ISXDIGIT(ch)))
		  SET_LIST_BIT (ch);
	      }
	      had_char_class = 1;
	    }
	    else {
	      c1++;
	      while (c1--)    
		PATUNFETCH;
	      SET_LIST_BIT(translate?translate['[']:'[');
	      SET_LIST_BIT(translate?translate[':']:':');
	      had_char_class = 0;
	      last = ':';
	    }
	  }
	  else if (had_mbchar == 0)
	    SET_LIST_BIT(c);
	  else
	    set_list_bits(c, c, b);
	  had_mbchar = 0;
	}

      /* Discard any character set/class bitmap bytes that are all
	 0 at the end of the map. Decrement the map-length byte too.  */
      while ((int)b[-1] > 0 && b[b[-1] - 1] == 0) 
	b[-1]--; 
      if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
	memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
		2 + EXTRACT_UNSIGNED (&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
      b += b[-1] + 2 + EXTRACT_UNSIGNED (&b[b[-1]])*8;
      break;

    case '(':
      PATFETCH(c);
      if (c == '?') {
	int negative = 0;
	PATFETCH_RAW(c);
	switch (c) {
	case 'x': case 'p': case 'i': case '-':
	  for (;;) {
	    switch (c) {
	    case '-':
	      negative = 1;
	      break;

	    case ':':
	    case ')':
	      break;

	    case 'x':
	      if (negative)
		options &= ~RE_OPTION_EXTENDED;
	      else
		options |= RE_OPTION_EXTENDED;
	      break;
	    case 'p':
	      if (negative) {
		if (options&RE_OPTION_POSIX) {
		  options &= ~RE_OPTION_POSIX;
		  BUFPUSH(posix_off);
		}
	      }
	      else if (!(options&RE_OPTION_POSIX)) {
		options |= RE_OPTION_POSIX;
		BUFPUSH(posix_on);
	      }
	      break;
	    case 'i':
	      if (negative) {
		if (options&RE_OPTION_IGNORECASE) {
		  options &= ~RE_OPTION_IGNORECASE;
		  BUFPUSH(casefold_off);
		}
	      }
	      else if (!(options&RE_OPTION_IGNORECASE)) {
		options |= RE_OPTION_IGNORECASE;
		BUFPUSH(casefold_on);
	      }
	      break;

	    default:
	      FREE_AND_RETURN(stackb, "undefined (?...) inline option");
	    }
	    if (c == ')') {
	      c = '#';	/* read whole in-line options */
	      break;
	    }
	    if (c == ':') break;
	    PATFETCH_RAW(c);
	  }
	  break;

	case '#':
	  for (;;) {
	    PATFETCH(c);
	    if (c == ')') break;
	  }
	  c = '#';
	  break;

	case ':':
	case '=':
	case '!':
	  break;

	default:
	  FREE_AND_RETURN(stackb, "undefined (?...) sequence");
	}
      }
      else {
	PATUNFETCH;
	c = '(';
      }
      if (c == '#') break;
      if (stackp+8 >= stacke) {
	int *stackx;
	unsigned int len = stacke - stackb;

	stackx = DOUBLE_STACK(stackx,stackb,len,int);
	/* Rearrange the pointers. */
	stackp = stackx + (stackp - stackb);
	stackb = stackx;
	stacke = stackb + 2 * len;
      }

      /* Laststart should point to the start_memory that we are about
	 to push (unless the pattern has RE_NREGS or more ('s).  */
      /* obsolete: now RE_NREGS is just a default register size. */
      *stackp++ = b - bufp->buffer;    
      *stackp++ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
      *stackp++ = begalt - bufp->buffer;
      switch (c) {
      case '(':
	BUFPUSH(start_memory);
	BUFPUSH(regnum);
	*stackp++ = regnum++;
	*stackp++ = b - bufp->buffer;
	BUFPUSH(0);
	/* too many ()'s to fit in a byte. (max 254) */
	if (regnum >= RE_REG_MAX) goto too_big;
	break;

      case '=':
      case '!':
	BUFPUSH(start_nowidth);
	*stackp++ = b - bufp->buffer;
	BUFPUSH(0);	/* temporary value */
	BUFPUSH(0);
	if (c == '=') break;

	BUFPUSH(on_failure_jump);
	*stackp++ = b - bufp->buffer;
	BUFPUSH(0);	/* temporary value */
	BUFPUSH(0);
	break;

      case ':':
	pending_exact = 0;
      default:
	break;
      }
      *stackp++ = c;
      *stackp++ = options;
      fixup_alt_jump = 0;
      laststart = 0;
      begalt = b;
      break;

    case ')':
      if (stackp == stackb) 
	FREE_AND_RETURN(stackb, "unmatched )");
      if ((options ^ stackp[-1]) & RE_OPTION_IGNORECASE) {
	BUFPUSH((options&RE_OPTION_IGNORECASE)?casefold_off:casefold_on);
      }
      if ((options ^ stackp[-1]) & RE_OPTION_POSIX) {
	BUFPUSH((options&RE_OPTION_POSIX)?posix_off:posix_on);
      }
      pending_exact = 0;
      if (fixup_alt_jump)
	{ /* Push a dummy failure point at the end of the
	     alternative for a possible future
	     `finalize_jump' to pop.  See comments at
	     `push_dummy_failure' in `re_match'.  */
	  BUFPUSH(push_dummy_failure);

	  /* We allocated space for this jump when we assigned
	     to `fixup_alt_jump', in the `handle_alt' case below.  */
	  store_jump(fixup_alt_jump, jump, b);
	}
      options = *--stackp;
      switch (c = *--stackp) {
      case '(':
	{
	  char *loc = bufp->buffer + *--stackp;
	  *loc = regnum - stackp[-1];
	  BUFPUSH(stop_memory);
	  BUFPUSH(stackp[-1]);
	  BUFPUSH(regnum - stackp[-1]);
	  stackp--;
	}
	break;

      case '!':
	BUFPUSH(pop_and_fail);
	/* back patch */
	STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
	stackp--;
	/* fall through */
      case '=':
	BUFPUSH(stop_nowidth);
	/* tell stack-pos place to start_nowidth */
	STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
	BUFPUSH(0);	/* space to hold stack pos */
	BUFPUSH(0);
	stackp--;
	break;

      case ':':
	BUFPUSH(stop_paren);
	break;

      default:
	break;
      }
      begalt = *--stackp + bufp->buffer;
      stackp--;
      fixup_alt_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
      laststart = *--stackp + bufp->buffer;
      if (c == '!' || c == '=') laststart = b;
      break;

    case '|':
      /* Insert before the previous alternative a jump which
	 jumps to this alternative if the former fails.  */
      GET_BUFFER_SPACE(3);
      insert_jump(on_failure_jump, begalt, b + 6, b);
      pending_exact = 0;
      b += 3;
      /* The alternative before this one has a jump after it
	 which gets executed if it gets matched.  Adjust that
	 jump so it will jump to this alternative's analogous
	 jump (put in below, which in turn will jump to the next
	 (if any) alternative's such jump, etc.).  The last such
	 jump jumps to the correct final destination.  A picture:
	 _____ _____ 
	 |   | |   |   
	 |   v |   v 
	 a | b   | c   

	 If we are at `b', then fixup_alt_jump right now points to a
	 three-byte space after `a'.  We'll put in the jump, set
	 fixup_alt_jump to right after `b', and leave behind three
	 bytes which we'll fill in when we get to after `c'.  */

      if (fixup_alt_jump)
	store_jump(fixup_alt_jump, jump_past_alt, b);

      /* Mark and leave space for a jump after this alternative,
	 to be filled in later either by next alternative or
	 when know we're at the end of a series of alternatives.  */
      fixup_alt_jump = b;
      GET_BUFFER_SPACE(3);
      b += 3;

      laststart = 0;
      begalt = b;
      break;

    case '{':
      /* If there is no previous pattern, this isn't an interval.  */
      if (!laststart || p == pend)
	{
	  goto normal_char;
	}

      beg_interval = p - 1;

      lower_bound = -1;			/* So can see if are set.  */
      upper_bound = -1;
      GET_UNSIGNED_NUMBER(lower_bound);
      if (c == ',') {
	GET_UNSIGNED_NUMBER(upper_bound);
      }
      else
	/* Interval such as `{1}' => match exactly once. */
	upper_bound = lower_bound;

      if (lower_bound < 0 || c != '}')
	goto unfetch_interval;

      if (lower_bound >= RE_DUP_MAX || upper_bound >= RE_DUP_MAX)
	FREE_AND_RETURN(stackb, "too big quantifier in {,}");
      if (upper_bound < 0) upper_bound = RE_DUP_MAX;
      if (lower_bound > upper_bound)
	FREE_AND_RETURN(stackb, "can't do {n,m} with n > m");

      beg_interval = 0;
      pending_exact = 0;

      greedy = 1;
      if (p != pend) {
	PATFETCH(c);
	if (c == '?') greedy = 0;
	else PATUNFETCH;
      }

      if (lower_bound == 0) {
	zero_times_ok = 1;
	if (upper_bound == RE_DUP_MAX) {
	  many_times_ok = 1;
	  goto repeat;
	}
	if (upper_bound == 1) {
	  many_times_ok = 0;
	  goto repeat;
	}
      }
      if (lower_bound == 1) {
	if (upper_bound == 1) {
	  /* No need to repeat */
	  break;
	}
	if (upper_bound == RE_DUP_MAX) {
	  many_times_ok = 1;
	  zero_times_ok = 0;
	  goto repeat;
	}
      }

      /* If upper_bound is zero, don't want to succeed at all; 
	 jump from laststart to b + 3, which will be the end of
	 the buffer after this jump is inserted.  */

      if (upper_bound == 0) {
	GET_BUFFER_SPACE(3);
	insert_jump(jump, laststart, b + 3, b);
	b += 3;
	break;
      }

      /* Otherwise, we have a nontrivial interval.  When
	 we're all done, the pattern will look like:
	 set_number_at <jump count> <upper bound>
	 set_number_at <succeed_n count> <lower bound>
	 succeed_n <after jump addr> <succed_n count>
	 <body of loop>
	 jump_n <succeed_n addr> <jump count>
	 (The upper bound and `jump_n' are omitted if
	 `upper_bound' is 1, though.)  */
      { /* If the upper bound is > 1, we need to insert
	   more at the end of the loop.  */
	unsigned nbytes = upper_bound == 1 ? 10 : 20;

	GET_BUFFER_SPACE(nbytes);
	/* Initialize lower bound of the `succeed_n', even
	   though it will be set during matching by its
	   attendant `set_number_at' (inserted next),
	   because `re_compile_fastmap' needs to know.
	   Jump to the `jump_n' we might insert below.  */
	insert_jump_n(succeed_n, laststart, b + (nbytes/2), 
		      b, lower_bound);
	b += 5; 	/* Just increment for the succeed_n here.  */

	/* Code to initialize the lower bound.  Insert 
	   before the `succeed_n'.  The `5' is the last two
	   bytes of this `set_number_at', plus 3 bytes of
	   the following `succeed_n'.  */
	insert_op_2(set_number_at, laststart, b, 5, lower_bound);
	b += 5;

	if (upper_bound > 1)
	  { /* More than one repetition is allowed, so
	       append a backward jump to the `succeed_n'
	       that starts this interval.

	       When we've reached this during matching,
	       we'll have matched the interval once, so
	       jump back only `upper_bound - 1' times.  */
	    GET_BUFFER_SPACE(5);
	    store_jump_n(b, greedy?jump_n:finalize_push_n, laststart + 5,
			 upper_bound - 1);
	    b += 5;

	    /* The location we want to set is the second
	       parameter of the `jump_n'; that is `b-2' as
	       an absolute address.  `laststart' will be
	       the `set_number_at' we're about to insert;
	       `laststart+3' the number to set, the source
	       for the relative address.  But we are
	       inserting into the middle of the pattern --
	       so everything is getting moved up by 5.
	       Conclusion: (b - 2) - (laststart + 3) + 5,
	       i.e., b - laststart.

	       We insert this at the beginning of the loop
	       so that if we fail during matching, we'll
	       reinitialize the bounds.  */
	    insert_op_2(set_number_at, laststart, b, b - laststart,
			upper_bound - 1);
	    b += 5;
	  }
      }
      break;

    unfetch_interval:
      /* If an invalid interval, match the characters as literals.  */
      p = beg_interval;
      beg_interval = 0;

      /* normal_char and normal_backslash need `c'.  */
      PATFETCH (c);	
      goto normal_char;

    case '\\':
      if (p == pend) goto invalid_pattern;
      /* Do not translate the character after the \, so that we can
	 distinguish, e.g., \B from \b, even if we normally would
	 translate, e.g., B to b.  */
      PATFETCH_RAW(c);
      switch (c)
	{
	case 's':
	case 'S':
	case 'd':
	case 'D':
	  while (b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH
		 > bufp->allocated)
	    EXTEND_BUFFER;

	  laststart = b;
	  if (c == 's' || c == 'd') {
	    BUFPUSH(charset);
	  }
	  else {
	    BUFPUSH(charset_not);
	  }

	  BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
	  memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
	  if (c == 's' || c == 'S') {
	    SET_LIST_BIT(' ');
	    SET_LIST_BIT('\t');
	    SET_LIST_BIT('\n');
	    SET_LIST_BIT('\r');
	    SET_LIST_BIT('\f');
	  }
	  else {
	    char cc;

	    for (cc = '0'; cc <= '9'; cc++) {
	      SET_LIST_BIT(cc);
	    }
	  }

	  while ((int)b[-1] > 0 && b[b[-1] - 1] == 0) 
	    b[-1]--; 
	  if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
	    memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
		    2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
	  b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[b[-1]])*8;
	  break;

	case 'w':
	  laststart = b;
	  BUFPUSH(wordchar);
	  break;

	case 'W':
	  laststart = b;
	  BUFPUSH(notwordchar);
	  break;

	case '<':
	  BUFPUSH(wordbeg);
	  break;

	case '>':
	  BUFPUSH(wordend);
	  break;

	case 'b':
	  BUFPUSH(wordbound);
	  break;

	case 'B':
	  BUFPUSH(notwordbound);
	  break;

	case 'A':
	  BUFPUSH(begbuf);
	  break;

	case 'Z':
	  BUFPUSH(endbuf2);
	  break;

	case 'z':
	  BUFPUSH(endbuf);
	  break;

	  /* hex */
	case 'x':
	  had_mbchar = 0;
	  c = scan_hex(p, 2, &numlen);
	  p += numlen;
	  goto numeric_char;

	  /* octal */
	case '0':
	  had_mbchar = 0;
	  c = scan_oct(p, 3, &numlen);
	  p += numlen;
	  goto numeric_char;

	  /* back-ref or octal */
	case '1': case '2': case '3':
	case '4': case '5': case '6':
	case '7': case '8': case '9':
	  {
	    const char *p_save;

	    PATUNFETCH;
	    p_save = p;

	    had_mbchar = 0;
	    c1 = 0;
	    GET_UNSIGNED_NUMBER(c1);
	    if (!ISDIGIT(c)) PATUNFETCH;

	    if (c1 >= regnum) {
	      /* need to get octal */
	      p = p_save;
	      c = scan_oct(p_save, 3, &numlen) & 0xff;
	      p = p_save + numlen;
	      c1 = 0;
	      goto numeric_char;
	    }
	  }

	  /* Can't back reference to a subexpression if inside of it.  */
	  for (stackt = stackp - 2;  stackt > stackb;  stackt -= 5)
	    if (*stackt == c1)
	      goto normal_char;
	  laststart = b;
	  BUFPUSH(duplicate);
	  BUFPUSH(c1);
	  break;

	default:
	  goto normal_char;
	}
      break;

    case '#':
      if (options & RE_OPTION_EXTENDED)
	{
	  while (p != pend) {
	    PATFETCH(c);
	    if (c == '\n') break;
	  }
	  break;
	}
      goto normal_char;

    case ' ':
    case '\t':
    case '\f':
    case '\r':
    case '\n':
      if (options & RE_OPTION_EXTENDED)
	break;

    default:
    normal_char:		/* Expects the character in `c'.  */
      had_mbchar = 0;
      if (ismbchar(c)) {
	had_mbchar = 1;
	c1 = p - pattern;
      }
    numeric_char:
      nextp = p + mbclen(c) - 1;
      if (!pending_exact || pending_exact + *pending_exact + 1 != b
	  || *pending_exact >= (c1 ? 0176 : 0177)
	  || *nextp == '+' || *nextp == '?'
	  || *nextp == '*' || *nextp == '^'
	  || *nextp == '{') {
	laststart = b;
	BUFPUSH(exactn);
	pending_exact = b;
	BUFPUSH(0);
      }
      if (!had_mbchar && c > 0x7f) {
	BUFPUSH(0xff);
	(*pending_exact)++;
      }
      BUFPUSH(c);
      (*pending_exact)++;
      if (had_mbchar) {
	int len = mbclen(c) - 1;
	while (len--) {
	  PATFETCH_RAW(c);
	  BUFPUSH(c);
	  (*pending_exact)++;
	}
      }
    }
  }

  if (fixup_alt_jump)
    store_jump(fixup_alt_jump, jump, b);

  if (stackp != stackb)
    FREE_AND_RETURN(stackb, "unmatched (");

  /* set optimize flags */
  laststart = bufp->buffer;
  if (laststart != b) {
    if (*laststart == start_memory) laststart += 3;
    if (*laststart == dummy_failure_jump) laststart += 3;
    else if (*laststart == try_next) laststart += 3;
    if (*laststart == on_failure_jump) {
      int mcnt;

      laststart++;
      EXTRACT_NUMBER_AND_INCR(mcnt, laststart);
      if (mcnt == 4 && *laststart == anychar) {
	switch ((enum regexpcode)laststart[4]) {
	case jump_n:
	case finalize_jump:
	case maybe_finalize_jump:
	case jump:
	case jump_past_alt:
	case dummy_failure_jump:
	  bufp->options |= RE_OPTIMIZE_ANCHOR;
	  break;
	}
      }
      else if (*laststart == charset || *laststart == charset_not) {
	p0 = laststart;
	mcnt = *++p0 ;
	p0 += mcnt+1;
	mcnt = EXTRACT_UNSIGNED_AND_INCR(p0);
	p0 += 8*mcnt;
	if (*p0 == maybe_finalize_jump) {
	  bufp->stclass = laststart;
	}
      }
    }
  }

  bufp->used = b - bufp->buffer;
  bufp->re_nsub = regnum;
  laststart = bufp->buffer;
  if (laststart != b) {
    if (*laststart == start_memory) laststart += 3;
    if (*laststart == exactn) {
      bufp->options |= RE_OPTIMIZE_EXACTN;
      bufp->must = laststart+1;
    }
  }
  else {
    bufp->must = calculate_must_string(bufp->buffer, b);
  }
  if (current_mbctype == MBCTYPE_SJIS) bufp->options |= RE_OPTIMIZE_NO_BM;
  else if (bufp->must) {
    int i;
    int len = (unsigned char)bufp->must[0];

    for (i=1; i<len; i++) {
      if ((unsigned char)bufp->must[i] == 0xff ||
	  (current_mbctype && ismbchar(bufp->must[i]))) {
	bufp->options |= RE_OPTIMIZE_NO_BM;
	break;
      }
    }
    if (!(bufp->options & RE_OPTIMIZE_NO_BM)) {
      bufp->must_skip = (int *) xmalloc((1 << BYTEWIDTH)*sizeof(int));
      bm_init_skip(bufp->must_skip, bufp->must+1,
		   (unsigned char)bufp->must[0],
		   MAY_TRANSLATE()?translate:0);
    }
  }

  FREE_AND_RETURN(stackb, 0);

 invalid_pattern:
  FREE_AND_RETURN(stackb, "invalid regular expression");

 end_of_pattern:
  FREE_AND_RETURN(stackb, "premature end of regular expression");

 too_big:
  FREE_AND_RETURN(stackb, "regular expression too big");

 memory_exhausted:
  FREE_AND_RETURN(stackb, "memory exhausted");

 nested_meta:
  FREE_AND_RETURN(stackb, "nested *?+ in regexp");
}

void
re_free_pattern(bufp)
     struct re_pattern_buffer *bufp;
{
  free(bufp->buffer);
  free(bufp->fastmap);
  if (bufp->must_skip) free(bufp->must_skip);
  free(bufp);
}

/* Store a jump of the form <OPCODE> <relative address>.
   Store in the location FROM a jump operation to jump to relative
   address FROM - TO.  OPCODE is the opcode to store.  */

static void
store_jump(from, opcode, to)
     char *from, *to;
     int opcode;
{
  from[0] = (char)opcode;
  STORE_NUMBER(from + 1, to - (from + 3));
}


/* Open up space before char FROM, and insert there a jump to TO.
   CURRENT_END gives the end of the storage not in use, so we know 
   how much data to copy up. OP is the opcode of the jump to insert.

   If you call this function, you must zero out pending_exact.  */

static void
insert_jump(op, from, to, current_end)
     int op;
     char *from, *to, *current_end;
{
  register char *pfrom = current_end;		/* Copy from here...  */
  register char *pto = current_end + 3;		/* ...to here.  */

  while (pfrom != from)			       
    *--pto = *--pfrom;
  store_jump(from, op, to);
}


/* Store a jump of the form <opcode> <relative address> <n> .

   Store in the location FROM a jump operation to jump to relative
   address FROM - TO.  OPCODE is the opcode to store, N is a number the
   jump uses, say, to decide how many times to jump.

   If you call this function, you must zero out pending_exact.  */

static void
store_jump_n(from, opcode, to, n)
     char *from, *to;
     int opcode;
     unsigned n;
{
  from[0] = (char)opcode;
  STORE_NUMBER(from + 1, to - (from + 3));
  STORE_NUMBER(from + 3, n);
}


/* Similar to insert_jump, but handles a jump which needs an extra
   number to handle minimum and maximum cases.  Open up space at
   location FROM, and insert there a jump to TO.  CURRENT_END gives the
   end of the storage in use, so we know how much data to copy up. OP is
   the opcode of the jump to insert.

   If you call this function, you must zero out pending_exact.  */

static void
insert_jump_n(op, from, to, current_end, n)
     int op;
     char *from, *to, *current_end;
     unsigned n;
{
  register char *pfrom = current_end;		/* Copy from here...  */
  register char *pto = current_end + 5;		/* ...to here.  */

  while (pfrom != from)			       
    *--pto = *--pfrom;
  store_jump_n(from, op, to, n);
}


/* Open up space at location THERE, and insert operation OP.
   CURRENT_END gives the end of the storage in use, so
   we know how much data to copy up.

   If you call this function, you must zero out pending_exact.  */

static void
insert_op(op, there, current_end)
     int op;
     char *there, *current_end;
{
  register char *pfrom = current_end;		/* Copy from here...  */
  register char *pto = current_end + 1;		/* ...to here.  */

  while (pfrom != there)			       
    *--pto = *--pfrom;

  there[0] = (char)op;
}


/* Open up space at location THERE, and insert operation OP followed by
   NUM_1 and NUM_2.  CURRENT_END gives the end of the storage in use, so
   we know how much data to copy up.

   If you call this function, you must zero out pending_exact.  */

static void
insert_op_2(op, there, current_end, num_1, num_2)
     int op;
     char *there, *current_end;
     int num_1, num_2;
{
  register char *pfrom = current_end;		/* Copy from here...  */
  register char *pto = current_end + 5;		/* ...to here.  */

  while (pfrom != there)			       
    *--pto = *--pfrom;

  there[0] = (char)op;
  STORE_NUMBER(there + 1, num_1);
  STORE_NUMBER(there + 3, num_2);
}


#define trans_eq(c1, c2, translate) (translate?(translate[c1]==translate[c2]):((c1)==(c2)))
static int
slow_match(little, lend, big, bend, translate)
     unsigned char *little, *lend;
     unsigned char *big, *bend;
     unsigned char *translate;
{
  int c;

  while (little < lend && big < bend) {
    c = *little++;
    if (c == 0xff)
      c = *little++;
    if (!trans_eq(*big++, c, translate)) break;
  }
  if (little == lend) return 1;
  return 0;
}

static int
slow_search(little, llen, big, blen, translate)
     unsigned char *little;
     int llen;
     unsigned char *big;
     int blen;
     char *translate;
{
  unsigned char *bsave = big;
  unsigned char *bend = big + blen;
  register int c;
  int fescape = 0;

  c = *little;
  if (c == 0xff) {
    c = little[1];
    fescape = 1;
  }
  else if (translate && !ismbchar(c)) {
    c = translate[c];
  }

  while (big < bend) {
    /* look for first character */
    if (fescape) {
      while (big < bend) {
	if (*big == c) break;
	big++;
      }
    }
    else if (translate && !ismbchar(c)) {
      while (big < bend) {
	if (ismbchar(*big)) big+=mbclen(*big)-1;
	else if (translate[*big] == c) break;
	big++;
      }
    }
    else {
      while (big < bend) {
	if (*big == c) break;
	if (ismbchar(*big)) big+=mbclen(*big)-1;
	big++;
      }
    }

    if (slow_match(little, little+llen, big, bend, translate))
      return big - bsave;

    if (ismbchar(*big)) big+=mbclen(*big);
    big++;
  }
  return -1;
}

static void
bm_init_skip(skip, pat, m, translate)
     int *skip;
     unsigned char *pat;
     int m;
     const char *translate;
{
  int j, c;

  for (c=0; c<256; c++) {
    skip[c] = m;
  }
  if (translate) {
    for (j=0; j<m-1; j++) {
      skip[translate[pat[j]]] = m-1-j;
    }
  }
  else {
    for (j=0; j<m-1; j++) {
      skip[pat[j]] = m-1-j;
    }
  }
}

static int
bm_search(little, llen, big, blen, skip, translate)
     unsigned char *little;
     int llen;
     unsigned char *big;
     int blen;
     int *skip;
     unsigned char *translate;
{
  int i, j, k;

  i = llen-1;
  if (translate) {
    while (i < blen) {
      k = i;
      j = llen-1;
      while (j >= 0 && translate[big[k]] == translate[little[j]]) {
	k--;
	j--;
      }
      if (j < 0) return k+1;

      i += skip[translate[big[i]]];
    }
    return -1;
  }
  while (i < blen) {
    k = i;
    j = llen-1;
    while (j >= 0 && big[k] == little[j]) {
      k--;
      j--;
    }
    if (j < 0) return k+1;

    i += skip[big[i]];
  }
  return -1;
}

/* Given a pattern, compute a fastmap from it.  The fastmap records
   which of the (1 << BYTEWIDTH) possible characters can start a string
   that matches the pattern.  This fastmap is used by re_search to skip
   quickly over totally implausible text.

   The caller must supply the address of a (1 << BYTEWIDTH)-byte data 
   area as bufp->fastmap.
   The other components of bufp describe the pattern to be used.  */
void
re_compile_fastmap(bufp)
     struct re_pattern_buffer *bufp;
{
  unsigned char *pattern = (unsigned char*)bufp->buffer;
  int size = bufp->used;
  register char *fastmap = bufp->fastmap;
  register unsigned char *p = pattern;
  register unsigned char *pend = pattern + size;
  register int j, k;
  unsigned is_a_succeed_n;

  unsigned char **stackb = RE_TALLOC(NFAILURES, unsigned char*);
  unsigned char **stackp = stackb;
  unsigned char **stacke = stackb + NFAILURES;
  int options = bufp->options;

  memset(fastmap, 0, (1 << BYTEWIDTH));
  bufp->fastmap_accurate = 1;
  bufp->can_be_null = 0;

  while (p) {
    is_a_succeed_n = 0;
    if (p == pend)
      {
	bufp->can_be_null = 1;
	break;
      }
#ifdef SWITCH_ENUM_BUG
    switch ((int)((enum regexpcode)*p++))
#else
      switch ((enum regexpcode)*p++)
#endif
	{
	case exactn:
	  if (p[1] == 0xff) {
	    if (TRANSLATE_P())
	      fastmap[translate[p[2]]] = 2;
	    else
	      fastmap[p[2]] = 2;
	  }
	  else if (TRANSLATE_P())
	    fastmap[translate[p[1]]] = 1;
	  else
	    fastmap[p[1]] = 1;
	  break;

	case begline:
	case begbuf:
	case endbuf:
	case endbuf2:
	case wordbound:
	case notwordbound:
	case wordbeg:
	case wordend:
	case pop_and_fail:
	case push_dummy_failure:
	case stop_paren:
	  continue;

	case casefold_on:
	  bufp->options |= RE_MAY_IGNORECASE;
	case casefold_off:
	  options ^= RE_OPTION_IGNORECASE;
	  continue;

	case posix_on:
	case posix_off:
	  options ^= RE_OPTION_POSIX;
	  continue;

	case endline:
	  if (TRANSLATE_P())
	    fastmap[translate['\n']] = 1;
	  else
	    fastmap['\n'] = 1;

	  if (bufp->can_be_null == 0)
	    bufp->can_be_null = 2;
	  break;

	case jump_n:
	case finalize_jump:
	case maybe_finalize_jump:
	case jump:
	case jump_past_alt:
	case dummy_failure_jump:
	  EXTRACT_NUMBER_AND_INCR(j, p);
	  p += j;	
	  if (j > 0)
	    continue;
	  /* Jump backward reached implies we just went through
	     the body of a loop and matched nothing.
	     Opcode jumped to should be an on_failure_jump.
	     Just treat it like an ordinary jump.
	     For a * loop, it has pushed its failure point already;
	     If so, discard that as redundant.  */

	  if ((enum regexpcode)*p != on_failure_jump
	      && (enum regexpcode)*p != try_next
	      && (enum regexpcode)*p != succeed_n
	      && (enum regexpcode)*p != finalize_push
	      && (enum regexpcode)*p != finalize_push_n)
	    continue;
	  p++;
	  EXTRACT_NUMBER_AND_INCR(j, p);
	  p += j;	
	  if (stackp != stackb && *stackp == p)
	    stackp--;		/* pop */
	  continue;

	case start_nowidth:
	case stop_nowidth:
	case finalize_push:
	  p += 2;
	  continue;

	case finalize_push_n:
	  p += 4;
	  continue;

	case try_next:
	case on_failure_jump:
	handle_on_failure_jump:
	EXTRACT_NUMBER_AND_INCR(j, p);
	if (p + j < pend) {
	  if (stackp == stacke) {
	    unsigned char **stackx;
	    unsigned int len = stacke - stackb;

	    EXPAND_FAIL_STACK(stackx, stackb, len);
	  }
	  *++stackp = p + j;	/* push */
	}
	else {
	  bufp->can_be_null = 1;
	}
	if (is_a_succeed_n)
	  EXTRACT_NUMBER_AND_INCR(k, p);	/* Skip the n.  */
	continue;

	case succeed_n:
	  is_a_succeed_n = 1;
	  /* Get to the number of times to succeed.  */
	  EXTRACT_NUMBER(k, p + 2);
	  /* Increment p past the n for when k != 0.  */
	  if (k == 0) {
	    p += 4;
	  }
	  else {
	    goto handle_on_failure_jump;
	  }
	  continue;

	case set_number_at:
	  p += 4;
	  continue;

	case start_memory:
	case stop_memory:
	  p += 2;
	  continue;

	case duplicate:
	  bufp->can_be_null = 1;
	  fastmap['\n'] = 1;
	case anychar:
	  {
	    char ex = (options & RE_OPTION_POSIX)?'\0':'\n';

	    for (j = 0; j < (1 << BYTEWIDTH); j++) {
	      if (j != ex) fastmap[j] = 1;
	    }
	    if (bufp->can_be_null) {
	      FREE_AND_RETURN_VOID(stackb);
	    }
	  }
	  /* Don't return; check the alternative paths
	     so we can set can_be_null if appropriate.  */
	  break;

	case wordchar:
	  for (j = 0; j < 0x80; j++) {
	    if (SYNTAX(j) == Sword)
	      fastmap[j] = 1;
	  }
	  switch (current_mbctype) {
	  case MBCTYPE_ASCII:
	    for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
	      if (SYNTAX(j) == Sword2)
		fastmap[j] = 1;
	    }
	    break;
	  case MBCTYPE_EUC:
	  case MBCTYPE_SJIS:
	  case MBCTYPE_UTF8:
	    for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
	      if (re_mbctab[j])
		fastmap[j] = 1;
	    }
	    break;
	  }
	  break;

	case notwordchar:
	  for (j = 0; j < 0x80; j++)
	    if (SYNTAX(j) != Sword)
	      fastmap[j] = 1;
	  switch (current_mbctype) {
	  case MBCTYPE_ASCII:
	    for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
	      if (SYNTAX(j) != Sword2)
		fastmap[j] = 1;
	    }
	    break;
	  case MBCTYPE_EUC:
	  case MBCTYPE_SJIS:
	  case MBCTYPE_UTF8:
	    for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
	      if (!re_mbctab[j])
		fastmap[j] = 1;
	    }
	    break;
	  }
	  break;

	case charset:
	  /* NOTE: Charset for single-byte chars never contain
	     multi-byte char.  See set_list_bits().  */
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
	      {
		if (TRANSLATE_P())
		  j = translate[j];
		fastmap[j] = (j>0x7f?(ismbchar(j)?0:2):1);
	      }
	  {
	    unsigned short size;
	    unsigned int c, beg, end;

	    p += p[-1] + 2;
	    size = EXTRACT_UNSIGNED(&p[-2]);
	    for (j = 0; j < (int)size; j++) {
	      c = EXTRACT_MBC(&p[j*8]);
	      beg = WC2MBC1ST(c);
	      c = EXTRACT_MBC(&p[j*8+4]);
	      end = WC2MBC1ST(c);
	      /* set bits for 1st bytes of multi-byte chars.  */
	      while (beg <= end) {
		/* NOTE: Charset for multi-byte chars might contain
		   single-byte chars.  We must reject them. */
		if (ismbchar(beg))
		  fastmap[beg] = 1;
		beg++;
	      }
	    }
	  }
	  break;

	case charset_not:
	  /* S: set of all single-byte chars.
	     M: set of all first bytes that can start multi-byte chars.
	     s: any set of single-byte chars.
	     m: any set of first bytes that can start multi-byte chars.

	     We assume S+M = U.
	     ___      _   _
	     s+m = (S*s+M*m).  */
	  /* Chars beyond end of map must be allowed */
	  /* NOTE: Charset_not for single-byte chars might contain
	     multi-byte chars.  See set_list_bits(). */
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
	    if (!ismbchar(j))
	      fastmap[j] = 1;

	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
	      {
		if (!ismbchar(j))
		  fastmap[j] = 1;
	      }
	  if (current_mbctype) {
	    for (j = 0x80; j < (1 << BYTEWIDTH); j++)
	      if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
		fastmap[j] = 2;
	  }
	  {
	    unsigned short size;
	    unsigned int c, beg, end;

	    p += p[-1] + 2;
	    size = EXTRACT_UNSIGNED(&p[-2]);
	    if (size == 0) {
	      for (j = 0x80; j < (1 << BYTEWIDTH); j++)
		if (ismbchar(j))
		  fastmap[j] = 1;
	      break;
	    }
	    for (j = 0,c = 0x80;j < (int)size; j++) {
	      int cc = EXTRACT_MBC(&p[j*8]);
	      beg = WC2MBC1ST(cc);
	      while (c < beg) {
		if (ismbchar(c))
		  fastmap[c] = 1;
		c++;
	      }

	      cc = EXTRACT_MBC(&p[j*8+4]);
	      c = WC2MBC1ST(cc) + 1;
	    }

	    for (j = c; j < (1 << BYTEWIDTH); j++)
	      if (ismbchar(j))
		fastmap[j] = 1;
	  }
	  break;

	case unused:	/* pacify gcc -Wall */
	  break;
	}

    /* Get here means we have successfully found the possible starting
       characters of one path of the pattern.  We need not follow this
       path any farther.  Instead, look at the next alternative
       remembered in the stack.  */
    if (stackp != stackb)
      p = *stackp--;		/* pop */
    else
      break;
  }
  FREE_AND_RETURN_VOID(stackb);
}


/* Using the compiled pattern in BUFP->buffer, first tries to match
   STRING, starting first at index STARTPOS, then at STARTPOS + 1, and
   so on.  RANGE is the number of places to try before giving up.  If
   RANGE is negative, it searches backwards, i.e., the starting
   positions tried are STARTPOS, STARTPOS - 1, etc.  STRING is of SIZE.
   In REGS, return the indices of STRING that matched the entire
   BUFP->buffer and its contained subexpressions.

   The value returned is the position in the strings at which the match
   was found, or -1 if no match was found, or -2 if error (such as
   failure stack overflow).  */

int
re_search(bufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, startpos, range;
     struct re_registers *regs;
{
  register char *fastmap = bufp->fastmap;
  int val, anchor = 0;

  /* Check for out-of-range starting position.  */
  if (startpos < 0  ||  startpos > size)
    return -1;

  /* Update the fastmap now if not correct already.  */
  if (fastmap && !bufp->fastmap_accurate) {
    re_compile_fastmap(bufp);
  }

  /* If the search isn't to be a backwards one, don't waste time in a
     search for a pattern that must be anchored.  */
  if (bufp->used>0) {
    switch ((enum regexpcode)bufp->buffer[0]) {
    case begbuf:
      if (range > 0) {
	if (startpos > 0)
	  return -1;
	else if (re_match(bufp, string, size, 0, regs) >= 0)
	  return 0;
	return -1;
      }
      break;

    case begline:
      anchor = 1;
      break;

    default:
      break;
    }
  }
  if (bufp->options & RE_OPTIMIZE_ANCHOR) {
    anchor = 1;
  }

  if (bufp->must) {
    int len = ((unsigned char*)bufp->must)[0];
    int pos, pbeg, pend;

    pbeg = startpos;
    pend = startpos + range;
    if (pbeg > pend) {		/* swap pbeg,pend */
      pos = pend; pend = pbeg; pbeg = pos;
    }
    if (pend > size) pend = size;
    if (bufp->options & RE_OPTIMIZE_NO_BM) {
      pos = slow_search(bufp->must+1, len,
			string+pbeg, pend-pbeg,
			MAY_TRANSLATE()?translate:0);
    }
    else {
      pos = bm_search(bufp->must+1, len,
		      string+pbeg, pend-pbeg,
		      bufp->must_skip,
		      MAY_TRANSLATE()?translate:0);
    }
    if (pos == -1) return -1;
    if (range > 0 && (bufp->options & RE_OPTIMIZE_EXACTN)) {
      startpos += pos;
      range -= pos;
    }
  }

  for (;;) {
    /* If a fastmap is supplied, skip quickly over characters that
       cannot possibly be the start of a match.  Note, however, that
       if the pattern can possibly match the null string, we must
       test it at each starting point so that we take the first null
       string we get.  */

    if (fastmap && startpos < size
	&& bufp->can_be_null != 1 && !(anchor && startpos == 0))
      {
	if (range > 0)	/* Searching forwards.  */
	  {
	    register unsigned char *p, c;
	    int irange = range;

	    p = (unsigned char*)string+startpos;

	    while (range > 0) {
	      c = *p++;
	      if (ismbchar(c)) {
		int len = mbclen(c) - 1;
		if (fastmap[c])
		  break;
		p += len;
		range -= len + 1;
		c = *p;
		if (fastmap[c] == 2)
		  break;
	      }
	      else {
		if (fastmap[MAY_TRANSLATE() ? translate[c] : c])
		  break;
		range--;
	      }
	    }
	    startpos += irange - range;
	  }
	else			/* Searching backwards.  */
	  {
	    register unsigned char c;

	    c = string[startpos];
	    c &= 0xff;
	    if (MAY_TRANSLATE() ? !fastmap[translate[c]] : !fastmap[c])
	      goto advance;
	  }
      }

    if (startpos > size) return -1;
    if (anchor && size > 0 && startpos == size) return -1;
    val = re_match(bufp, string, size, startpos, regs);
    if (val >= 0)
      return startpos;
    if (val == -2)
      return -2;

#ifndef NO_ALLOCA
#ifdef C_ALLOCA
    alloca(0);
#endif /* C_ALLOCA */
#endif /* NO_ALLOCA */

    if (range > 0) {
      if (anchor && startpos < size && startpos > 0 && string[startpos-1] != '\n') {
	while (range > 0 && string[startpos] != '\n') {
	  range--;
	  startpos++;
	}
      }
      else if (fastmap && (bufp->stclass)) {
	register unsigned char *p;
	unsigned int c;
	int irange = range;

	p = (unsigned char*)string+startpos;
	while (range > 0) {
	  c = *p++;
	  if (ismbchar(c) && fastmap[c] != 2) {
	    MBC2WC(c, p);
	  }
	  else if (MAY_TRANSLATE())
	    c = translate[c];
	  if (*bufp->stclass == charset) {
	    if (!is_in_list(c, bufp->stclass+1)) break;
	  }
	  else {
	    if (is_in_list(c, bufp->stclass+1)) break;
	  }
	  range--;
	  if (c > 256) range--;
	}
	startpos += irange - range;
      }
    }

  advance:
    if (!range) 
      break;
    else if (range > 0) {
      const char *d = string + startpos;

      if (ismbchar(*d)) {
	int len = mbclen(*d) - 1;
	range-=len, startpos+=len;
	if (!range)
	  break;
      }
      range--, startpos++;
    }
    else {
      range++, startpos--;
      {
	const char *s, *d, *p;

	s = string; d = string + startpos;
	for (p = d; p-- > s && ismbchar(*p); )
	  /* --p >= s would not work on 80[12]?86. 
	     (when the offset of s equals 0 other than huge model.)  */
	  ;
	if (!((d - p) & 1)) {
	  if (!range)
	    break;
	  range++, startpos--;
	}
      }
    }
  }
  return -1;
}




/* The following are used for re_match, defined below:  */

/* Routine used by re_match.  */

/* Structure and accessing macros used in re_match:  */

typedef union
{
  unsigned char *word;
  struct {
    /* This field is one if this group can match the empty string,
       zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
#define MATCH_NULL_UNSET_VALUE 3
    unsigned match_null_string_p : 2;
    unsigned is_active : 1;
    unsigned matched_something : 1;
    unsigned ever_matched_something : 1;
  } bits;
} register_info_type;

#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
#define IS_ACTIVE(R)  ((R).bits.is_active)
#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)


/* Macros used by re_match:  */

/* I.e., regstart, regend, and reg_info.  */
#define NUM_REG_ITEMS  3

/* Individual items aside from the registers.  */
#define NUM_NONREG_ITEMS 3

/* We push at most this many things on the stack whenever we
   fail.  The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
   arguments to the PUSH_FAILURE_POINT macro.  */
#define MAX_NUM_FAILURE_ITEMS   (num_regs * NUM_REG_ITEMS + NUM_NONREG_ITEMS)

/* We push this many things on the stack whenever we fail.  */
#define NUM_FAILURE_ITEMS  (last_used_reg * NUM_REG_ITEMS + NUM_REG_ITEMS)


/* This pushes most of the information about the current state we will want
   if we ever fail back to it.  */

#define PUSH_FAILURE_POINT(pattern_place, string_place)			\
  do {									\
    long last_used_reg, this_reg;					\
									\
    /* Find out how many registers are active or have been matched.	\
       (Aside from register zero, which is only set at the end.) */	\
    for (last_used_reg = num_regs - 1; last_used_reg > 0; last_used_reg--)\
      if (!REG_UNSET(regstart[last_used_reg]))				\
        break;								\
									\
    if (stacke - stackp <= NUM_FAILURE_ITEMS) {				\
	unsigned char **stackx;						\
	unsigned int len = stacke - stackb;				\
	/* if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS)		\
	   {								\
	   FREE_VARIABLES();						\
	   FREE_AND_RETURN(stackb,(-2));				\
	   }*/								\
									\
        /* Roughly double the size of the stack.  */			\
        EXPAND_FAIL_STACK(stackx, stackb, len);				\
      }									\
									\
    /* Now push the info for each of those registers.  */		\
    for (this_reg = 1; this_reg <= last_used_reg; this_reg++) {		\
      *stackp++ = regstart[this_reg];					\
      *stackp++ = regend[this_reg];					\
      *stackp++ = reg_info[this_reg].word;				\
    }									\
									\
    /* Push how many registers we saved.  */				\
    *stackp++ = (unsigned char*)last_used_reg;				\
									\
    *stackp++ = pattern_place;                                          \
    *stackp++ = string_place;                                           \
    *stackp++ = (unsigned char*)0; /* non-greedy flag */		\
  } while(0)


     /* This pops what PUSH_FAILURE_POINT pushes.  */

#define POP_FAILURE_POINT()						\
  do {									\
    int temp;								\
    stackp -= NUM_NONREG_ITEMS;	/* Remove failure points (and flag). */	\
    temp = (int)*--stackp;	/* How many regs pushed.  */	        \
    temp *= NUM_REG_ITEMS;	/* How much to take off the stack.  */	\
    stackp -= temp; 		/* Remove the register info.  */	\
  } while(0)

     /* Registers are set to a sentinel when they haven't yet matched.  */
#define REG_UNSET_VALUE ((unsigned char*)-1)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)

#define PREFETCH if (d == dend) goto fail

     /* Call this when have matched something; it sets `matched' flags for the
   registers corresponding to the subexpressions of which we currently
   are inside.  */
#define SET_REGS_MATCHED 						\
  do { unsigned this_reg;						\
    for (this_reg = 0; this_reg < num_regs; this_reg++) { 		\
        if (IS_ACTIVE(reg_info[this_reg]))				\
          MATCHED_SOMETHING(reg_info[this_reg])				\
            = EVER_MATCHED_SOMETHING (reg_info[this_reg])		\
            = 1;							\
        else								\
          MATCHED_SOMETHING(reg_info[this_reg]) = 0;			\
      } 								\
  } while(0)

#define AT_STRINGS_BEG(d)  ((d) == string)
#define AT_STRINGS_END(d)  ((d) == dend)

#define IS_A_LETTER(d) (SYNTAX(*(d)) == Sword ||			\
			(current_mbctype ?				\
			 re_mbctab[*(d)] :				\
			 SYNTAX(*(d)) == Sword2))

#define PREV_IS_A_LETTER(d) ((current_mbctype == MBCTYPE_SJIS)?		\
			     IS_A_LETTER((d)-(!AT_STRINGS_BEG((d)-1)&&	\
					      ismbchar((d)[-2])?2:1)):	\
			     ((d)[-1] >= 0x80 || IS_A_LETTER((d)-1)))

static void
init_regs(regs, num_regs)
     struct re_registers *regs;
     unsigned int num_regs;
{
  int i;

  regs->num_regs = num_regs;
  if (num_regs < RE_NREGS)
    num_regs = RE_NREGS;

  if (regs->allocated == 0) {
    regs->beg = TMALLOC(num_regs, int);
    regs->end = TMALLOC(num_regs, int);
    regs->allocated = num_regs;
  }
  else if (regs->allocated < num_regs) {
    TREALLOC(regs->beg, num_regs, int);
    TREALLOC(regs->end, num_regs, int);
  }
  for (i=0; i<num_regs; i++) {
    regs->beg[i] = regs->end[i] = -1;
  }
}

/* Match the pattern described by BUFP against STRING, which is of
   SIZE.  Start the match at index POS in STRING.  In REGS, return the
   indices of STRING that matched the entire BUFP->buffer and its
   contained subexpressions.

   If bufp->fastmap is nonzero, then it had better be up to date.

   The reason that the data to match are specified as two components
   which are to be regarded as concatenated is so this function can be
   used directly on the contents of an Emacs buffer.

   -1 is returned if there is no match.  -2 is returned if there is an
   error (such as match stack overflow).  Otherwise the value is the
   length of the substring which was matched.  */

int
re_match(bufp, string_arg, size, pos, regs)
     struct re_pattern_buffer *bufp;
     const char *string_arg;
     int size, pos;
     struct re_registers *regs;
{
  register unsigned char *p = (unsigned char*)bufp->buffer;
  unsigned char *p1;

  /* Pointer to beyond end of buffer.  */
  register unsigned char *pend = p + bufp->used;

  unsigned num_regs = bufp->re_nsub;

  unsigned char *string = (unsigned char*)string_arg;

  register unsigned char *d, *dend;
  register int mcnt;			/* Multipurpose.  */
  int options = bufp->options;

  /* Failure point stack.  Each place that can handle a failure further
     down the line pushes a failure point on this stack.  It consists of
     restart, regend, and reg_info for all registers corresponding to the
     subexpressions we're currently inside, plus the number of such
     registers, and, finally, two char *'s.  The first char * is where to
     resume scanning the pattern; the second one is where to resume
     scanning the strings.  If the latter is zero, the failure point is a
     ``dummy''; if a failure happens and the failure point is a dummy, it
     gets discarded and the next next one is tried.  */

  unsigned char **stackb;
  unsigned char **stackp;
  unsigned char **stacke;


  /* Information on the contents of registers. These are pointers into
     the input strings; they record just what was matched (on this
     attempt) by a subexpression part of the pattern, that is, the
     regnum-th regstart pointer points to where in the pattern we began
     matching and the regnum-th regend points to right after where we
     stopped matching the regnum-th subexpression.  (The zeroth register
     keeps track of what the whole pattern matches.)  */

  unsigned char **regstart = RE_TALLOC(num_regs, unsigned char*);
  unsigned char **regend = RE_TALLOC(num_regs, unsigned char*);

  /* If a group that's operated upon by a repetition operator fails to
     match anything, then the register for its start will need to be
     restored because it will have been set to wherever in the string we
     are when we last see its open-group operator.  Similarly for a
     register's end.  */
  unsigned char **old_regstart = RE_TALLOC(num_regs, unsigned char*);
  unsigned char **old_regend = RE_TALLOC(num_regs, unsigned char*);

  /* The is_active field of reg_info helps us keep track of which (possibly
     nested) subexpressions we are currently in. The matched_something
     field of reg_info[reg_num] helps us tell whether or not we have
     matched any of the pattern so far this time through the reg_num-th
     subexpression.  These two fields get reset each time through any
     loop their register is in.  */

  register_info_type *reg_info = RE_TALLOC(num_regs, register_info_type);

  /* The following record the register info as found in the above
     variables when we find a match better than any we've seen before. 
     This happens as we backtrack through the failure points, which in
     turn happens only if we have not yet matched the entire string.  */

  unsigned best_regs_set = 0;
  unsigned char **best_regstart = RE_TALLOC(num_regs, unsigned char*);
  unsigned char **best_regend = RE_TALLOC(num_regs, unsigned char*);

  if (regs) {
    init_regs(regs, num_regs);
  }

  /* Initialize the stack. */
  stackb = RE_TALLOC(MAX_NUM_FAILURE_ITEMS * NFAILURES, unsigned char*);
  stackp = stackb;
  stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];

#ifdef DEBUG_REGEX
  fprintf(stderr, "Entering re_match(%s%s)\n", string1_arg, string2_arg);
#endif

  /* Initialize subexpression text positions to -1 to mark ones that no
     ( or ( and ) or ) has been seen for. Also set all registers to
     inactive and mark them as not having matched anything or ever
     failed. */
  for (mcnt = 0; mcnt < num_regs; mcnt++) {
    regstart[mcnt] = regend[mcnt]
      = old_regstart[mcnt] = old_regend[mcnt]
      = best_regstart[mcnt] = best_regend[mcnt] = REG_UNSET_VALUE;
#ifdef __CHECKER__
    reg_info[mcnt].word = 0;
#endif
    REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
    IS_ACTIVE (reg_info[mcnt]) = 0;
    MATCHED_SOMETHING (reg_info[mcnt]) = 0;
    EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
  }

  /* Set up pointers to ends of strings.
     Don't allow the second string to be empty unless both are empty.  */


  /* `p' scans through the pattern as `d' scans through the data. `dend'
     is the end of the input string that `d' points within. `d' is
     advanced into the following input string whenever necessary, but
     this happens before fetching; therefore, at the beginning of the
     loop, `d' can be pointing at the end of a string, but it cannot
     equal string2.  */

  d = string + pos, dend = string + size;


  /* This loops over pattern commands.  It exits by returning from the
     function if match is complete, or it drops through if match fails
     at this starting point in the input data.  */

  for (;;) {
#ifdef DEBUG_REGEX
    fprintf(stderr,
	    "regex loop(%d):  matching 0x%02d\n",
	    p - (unsigned char*)bufp->buffer,
	    *p);
#endif
    /* End of pattern means we might have succeeded.  */
    if (p == pend)
      {
	/* If not end of string, try backtracking.  Otherwise done.  */
	if (d != dend)
	  {
	    while (stackp != stackb && (int)stackp[-1] == 1) {
	      if (best_regs_set) /* non-greedy, no need to backtrack */
		goto restore_best_regs;
	      POP_FAILURE_POINT();
	    }
	    if (stackp != stackb) {
	      /* More failure points to try.  */

	      /* If exceeds best match so far, save it.  */
	      if (! best_regs_set || (d > best_regend[0])) {
		best_regs_set = 1;
		best_regend[0] = d;	/* Never use regstart[0].  */

		for (mcnt = 1; mcnt < num_regs; mcnt++) {
		  best_regstart[mcnt] = regstart[mcnt];
		  best_regend[mcnt] = regend[mcnt];
		}
	      }
	      goto fail;	       
	    }
	    /* If no failure points, don't restore garbage.  */
	    else if (best_regs_set) {
	    restore_best_regs:
	      /* Restore best match.  */
	      d = best_regend[0];

	      for (mcnt = 0; mcnt < num_regs; mcnt++)
		{
		  regstart[mcnt] = best_regstart[mcnt];
		  regend[mcnt] = best_regend[mcnt];
		}
	    }
	  }

	/* If caller wants register contents data back, convert it 
	   to indices.  */
	if (regs)
	  {
	    regs->beg[0] = pos;
	    regs->end[0] = d - string;
	    for (mcnt = 1; mcnt < num_regs; mcnt++)
	      {
		if (REG_UNSET(regend[mcnt]))
		  {
		    regs->beg[mcnt] = -1;
		    regs->end[mcnt] = -1;
		    continue;
		  }
		regs->beg[mcnt] = regstart[mcnt] - string;
		regs->end[mcnt] = regend[mcnt] - string;
	      }
	  }
	FREE_VARIABLES();
	FREE_AND_RETURN(stackb, (d - pos - string));
      }

    /* Otherwise match next pattern command.  */
#ifdef SWITCH_ENUM_BUG
    switch ((int)((enum regexpcode)*p++))
#else
    switch ((enum regexpcode)*p++)
#endif
	{

	  /* ( [or `(', as appropriate] is represented by start_memory,
	     ) by stop_memory.  Both of those commands are followed by
	     a register number in the next byte.  The text matched
	     within the ( and ) is recorded under that number.  */
	case start_memory:
	  /* Find out if this group can match the empty string.  */
	  p1 = p;		/* To send to group_match_null_string_p.  */
	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
	    REG_MATCH_NULL_STRING_P (reg_info[*p]) 
	      = group_match_null_string_p (&p1, pend, reg_info);

	  /* Save the position in the string where we were the last time
	     we were at this open-group operator in case the group is
	     operated upon by a repetition operator, e.g., with `(a*)*b'
	     against `ab'; then we want to ignore where we are now in
	     the string in case this attempt to match fails.  */
	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
	    ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
	    : regstart[*p];
	  regstart[*p] = d;
	  IS_ACTIVE(reg_info[*p]) = 1;
	  MATCHED_SOMETHING(reg_info[*p]) = 0;
	  p += 2;
	  continue;

	case stop_memory:
	  /* We need to save the string position the last time we were at
	     this close-group operator in case the group is operated
	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
	     against `aba'; then we want to ignore where we are now in
	     the string in case this attempt to match fails.  */
	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
	    ? REG_UNSET (regend[*p]) ? d : regend[*p]
	    : regend[*p];

	  regend[*p] = d;
	  IS_ACTIVE(reg_info[*p]) = 0;

	  /* If just failed to match something this time around with a sub-
	     expression that's in a loop, try to force exit from the loop.  */
	  if ((p + 1) != pend &&
	      (! MATCHED_SOMETHING(reg_info[*p])
	       || (enum regexpcode)p[-3] == start_memory))
	    {
	      p1 = p + 2;
	      mcnt = 0;
	      switch (*p1++)
		{
		case jump_n:
		case finalize_push_n:
		case finalize_jump:
		case maybe_finalize_jump:
		case jump:
		case dummy_failure_jump:
		  EXTRACT_NUMBER_AND_INCR(mcnt, p1);
		  break;
		}
	      p1 += mcnt;

	      /* If the next operation is a jump backwards in the pattern
		 to an on_failure_jump, exit from the loop by forcing a
		 failure after pushing on the stack the on_failure_jump's 
		 jump in the pattern, and d.  */
	      if (mcnt < 0 && (enum regexpcode)*p1 == on_failure_jump
		  && (enum regexpcode)p1[3] == start_memory && p1[4] == *p)
		{
		  /* If this group ever matched anything, then restore
		     what its registers were before trying this last
		     failed match, e.g., with `(a*)*b' against `ab' for
		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
		     against `aba' for regend[3].

		     Also restore the registers for inner groups for,
		     e.g., `((a*)(b*))*' against `aba' (register 3 would
		     otherwise get trashed).  */

		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
		    {
		      unsigned r; 

		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;

		      /* Restore this and inner groups' (if any) registers.  */
		      for (r = *p; r < *p + *(p + 1); r++)
			{
			  regstart[r] = old_regstart[r];

			  /* xx why this test?  */
			  if ((int)old_regend[r] >= (int)regstart[r])
			    regend[r] = old_regend[r];
			}     
		    }
		  p1++;
		  EXTRACT_NUMBER_AND_INCR(mcnt, p1);
		  PUSH_FAILURE_POINT(p1 + mcnt, d);
		  goto fail;
		}
	    }
	  p += 2;
	  continue;

	case stop_paren:
	  break;

	  /* \<digit> has been turned into a `duplicate' command which is
	     followed by the numeric value of <digit> as the register number.  */
	case duplicate:
	  {
	    int regno = *p++;   /* Get which register to match against */
	    register unsigned char *d2, *dend2;

	    if (IS_ACTIVE(reg_info[regno])) break;

	    /* Where in input to try to start matching.  */
	    d2 = regstart[regno];
	    if (REG_UNSET(d2)) break;

	    /* Where to stop matching; if both the place to start and
	       the place to stop matching are in the same string, then
	       set to the place to stop, otherwise, for now have to use
	       the end of the first string.  */

	    dend2 = regend[regno];
	    if (REG_UNSET(dend2)) break;
	    for (;;)
	      {
		/* At end of register contents => success */
		if (d2 == dend2) break;

		/* If necessary, advance to next segment in data.  */
		PREFETCH;

		/* How many characters left in this segment to match.  */
		mcnt = dend - d;

		/* Want how many consecutive characters we can match in
		   one shot, so, if necessary, adjust the count.  */
		if (mcnt > dend2 - d2)
		  mcnt = dend2 - d2;

		/* Compare that many; failure if mismatch, else move
		   past them.  */
		if ((options & RE_OPTION_IGNORECASE) 
		    ? memcmp_translate(d, d2, mcnt) 
		    : memcmp((char*)d, (char*)d2, mcnt))
		  goto fail;
		d += mcnt, d2 += mcnt;
	      }
	  }
	  break;

	case start_nowidth:
	  PUSH_FAILURE_POINT(0, d);
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  STORE_NUMBER(p+mcnt, stackp - stackb);
	  continue;

	case stop_nowidth:
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  stackp = stackb + mcnt;
	  d = stackp[-2];
	  POP_FAILURE_POINT();
	  continue;

	case pop_and_fail:
	  EXTRACT_NUMBER(mcnt, p+1);
	  stackp = stackb + mcnt;
	  POP_FAILURE_POINT();
	  goto fail;

	case anychar:
	  PREFETCH;
	  if (ismbchar(*d)) {
	    if (d + mbclen(*d) > dend)
	      goto fail;
	    SET_REGS_MATCHED;
	    d += mbclen(*d);
	    break;
	  }
	  if (((TRANSLATE_P()) ? translate[*d] : *d) ==
	      ((options&RE_OPTION_POSIX) ? '\0' : '\n'))
	    goto fail;
	  SET_REGS_MATCHED;
	  d++;
	  break;

	case charset:
	case charset_not:
	  {
	    int not;	    /* Nonzero for charset_not.  */
	    int part;	    /* 2 if matched part of mbc */
	    unsigned char *dsave = d + 1;
	    int cc, c;

	    PREFETCH;
	    cc = c = (unsigned char)*d++;
	    if (ismbchar(c)) {
	      if (d + mbclen(c) - 1 <= dend) {
		MBC2WC(c, d);
	      }
	    }
	    else if (TRANSLATE_P())
	      cc = c = (unsigned char)translate[c];

	    part = not = is_in_list(c, p);
	    if (*(p - 1) == (unsigned char)charset_not) {
	      not = !not;
	    }
	    if (!not) goto fail;

	    p += 1 + *p + 2 + EXTRACT_UNSIGNED(&p[1 + *p])*8;
	    SET_REGS_MATCHED;

	    if (part == 2) d = dsave;
	    break;
	  }

	case begline:
	  if (size == 0 || AT_STRINGS_BEG(d))
	    break;
	  if (d[-1] == '\n' && !AT_STRINGS_END(d))
	    break;
	  goto fail;

	case endline:
	  if (AT_STRINGS_END(d)) {
	    if (size == 0 || d[-1] != '\n')
	      break;
	  }
	  else if (*d == '\n')
	    break;
	  goto fail;

	  /* Match at the very beginning of the string. */
	case begbuf:
	  if (AT_STRINGS_BEG(d))
	    break;
	  goto fail;

	  /* Match at the very end of the data. */
	case endbuf:
	  if (AT_STRINGS_END(d))
	    break;
	  goto fail;

	  /* Match at the very end of the data. */
	case endbuf2:
	  if (AT_STRINGS_END(d))
	    break;
	  /* .. or newline just before the end of the data. */
	  if (*d == '\n' && AT_STRINGS_END(d+1))
	    break;
	  goto fail;

	  /* `or' constructs are handled by starting each alternative with
	     an on_failure_jump that points to the start of the next
	     alternative.  Each alternative except the last ends with a
	     jump to the joining point.  (Actually, each jump except for
	     the last one really jumps to the following jump, because
	     tensioning the jumps is a hassle.)  */

	  /* The start of a stupid repeat has an on_failure_jump that points
	     past the end of the repeat text. This makes a failure point so 
	     that on failure to match a repetition, matching restarts past
	     as many repetitions have been found with no way to fail and
	     look for another one.  */

	  /* A smart repeat is similar but loops back to the on_failure_jump
	     so that each repetition makes another failure point.  */

	case on_failure_jump:
	on_failure:
	EXTRACT_NUMBER_AND_INCR(mcnt, p);
	PUSH_FAILURE_POINT(p + mcnt, d);
	continue;

	/* The end of a smart repeat has a maybe_finalize_jump back.
	   Change it either to a finalize_jump or an ordinary jump.  */
	case maybe_finalize_jump:
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  {
	    register unsigned char *p2 = p;

	    /* Compare the beginning of the repeat with what in the
	       pattern follows its end. If we can establish that there
	       is nothing that they would both match, i.e., that we
	       would have to backtrack because of (as in, e.g., `a*a')
	       then we can change to pop_failure_jump, because we'll
	       never have to backtrack.

	       This is not true in the case of alternatives: in
	       `(a|ab)*' we do need to backtrack to the `ab' alternative
	       (e.g., if the string was `ab').  But instead of trying to
	       detect that here, the alternative has put on a dummy
	       failure point which is what we will end up popping.  */

	    /* Skip over open/close-group commands.  */
	    while (p2 + 2 < pend) {
	      if ((enum regexpcode)*p2 == stop_memory ||
		  (enum regexpcode)*p2 == start_memory)
		p2 += 3;	/* Skip over args, too.  */
	      else if ((enum regexpcode)*p2 == stop_paren)
		p2 += 1;
	      else
		break;
	    }

	    if (p2 == pend)
	      p[-3] = (unsigned char)finalize_jump;
	    else if (*p2 == (unsigned char)exactn
		     || *p2 == (unsigned char)endline)
	      {
		register int c = *p2 == (unsigned char)endline ? '\n' : p2[2];
		register unsigned char *p1 = p + mcnt;
		/* p1[0] ... p1[2] are an on_failure_jump.
		   Examine what follows that.  */
		if (p1[3] == (unsigned char)exactn && p1[5] != c)
		  p[-3] = (unsigned char)finalize_jump;
		else if (p1[3] == (unsigned char)charset
			 || p1[3] == (unsigned char)charset_not) {
		  int not;
		  if (ismbchar(c)) {
		    unsigned char *pp = p2+3;
		    MBC2WC(c, pp);
		  }
		  /* `is_in_list()' is TRUE if c would match */
		  /* That means it is not safe to finalize.  */
		  not = is_in_list(c, p1 + 4);
		  if (p1[3] == (unsigned char)charset_not)
		    not = !not;
		  if (!not)
		    p[-3] = (unsigned char)finalize_jump;
		}
	      }
	  }
	  p -= 2;		/* Point at relative address again.  */
	  if (p[-1] != (unsigned char)finalize_jump)
	    {
	      p[-1] = (unsigned char)jump;	
	      goto nofinalize;
	    }
	  /* Note fall through.  */

	  /* The end of a stupid repeat has a finalize_jump back to the
	     start, where another failure point will be made which will
	     point to after all the repetitions found so far.  */

	  /* Take off failure points put on by matching on_failure_jump 
	     because didn't fail.  Also remove the register information
	     put on by the on_failure_jump.  */
	case finalize_jump:
	  if (stackp[-2] == d) {
	    p = stackp[-3];
	    POP_FAILURE_POINT();
	    continue;
	  }
	  POP_FAILURE_POINT(); 
	  /* Note fall through.  */

	  /* Jump without taking off any failure points.  */
	case jump:
	nofinalize:
	EXTRACT_NUMBER_AND_INCR(mcnt, p);
	p += mcnt;
	continue;

	/* We need this opcode so we can detect where alternatives end
	   in `group_match_null_string_p' et al.  */
	case jump_past_alt:
	  goto nofinalize;

	case dummy_failure_jump:
	  /* Normally, the on_failure_jump pushes a failure point, which
	     then gets popped at finalize_jump.  We will end up at
	     finalize_jump, also, and with a pattern of, say, `a+', we
	     are skipping over the on_failure_jump, so we have to push
	     something meaningless for finalize_jump to pop.  */
	  PUSH_FAILURE_POINT(0, 0);
	  goto nofinalize;

	  /* At the end of an alternative, we need to push a dummy failure
	     point in case we are followed by a `finalize_jump', because
	     we don't want the failure point for the alternative to be
	     popped.  For example, matching `(a|ab)*' against `aab'
	     requires that we match the `ab' alternative.  */
	case push_dummy_failure:
	  /* See comments just above at `dummy_failure_jump' about the
	     two zeroes.  */
	  PUSH_FAILURE_POINT(0, 0);
	  break;

	  /* Have to succeed matching what follows at least n times.  Then
	     just handle like an on_failure_jump.  */
	case succeed_n: 
	  EXTRACT_NUMBER(mcnt, p + 2);
	  /* Originally, this is how many times we HAVE to succeed.  */
	  if (mcnt > 0)
	    {
	      mcnt--;
	      p += 2;
	      STORE_NUMBER_AND_INCR(p, mcnt);
	      PUSH_FAILURE_POINT(0, 0);
	    }
	  else if (mcnt == 0)
	    {
	      p[2] = unused;
	      p[3] = unused;
	      goto on_failure;
	    }
	  continue;

	case jump_n:
	  EXTRACT_NUMBER(mcnt, p + 2);
	  /* Originally, this is how many times we CAN jump.  */
	  if (mcnt)
	    {
	      mcnt--;
	      STORE_NUMBER(p + 2, mcnt);
	      goto nofinalize;	     /* Do the jump without taking off
					any failure points.  */
	    }
	  /* If don't have to jump any more, skip over the rest of command.  */
	  else      
	    p += 4;		     
	  continue;

	case set_number_at:
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  p1 = p + mcnt;
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  STORE_NUMBER(p1, mcnt);
	  continue;

	case try_next:
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  if (p + mcnt < pend) {
	    PUSH_FAILURE_POINT(p, d);
	    stackp[-1] = (unsigned char*)1;
	  }
	  p += mcnt;
	  continue;

	case finalize_push:
	  POP_FAILURE_POINT();
	  EXTRACT_NUMBER_AND_INCR(mcnt, p);
	  PUSH_FAILURE_POINT(p + mcnt, d);
	  stackp[-1] = (unsigned char*)1;
	  continue;

	case finalize_push_n:
	  EXTRACT_NUMBER(mcnt, p + 2); 
	  /* Originally, this is how many times we CAN jump.  */
	  if (mcnt) {
	    int pos, i;

	    mcnt--;
	    STORE_NUMBER(p + 2, mcnt);
	    EXTRACT_NUMBER(pos, p);
	    EXTRACT_NUMBER(i, p+pos+5);
	    if (i > 0) goto nofinalize;
	    POP_FAILURE_POINT();
	    EXTRACT_NUMBER_AND_INCR(mcnt, p);
	    PUSH_FAILURE_POINT(p + mcnt, d);
	    stackp[-1] = (unsigned char*)1;
	    p += 2;		/* skip n */
	  }
	  /* If don't have to push any more, skip over the rest of command.  */
	  else 
	    p += 4;   
	  continue;

	  /* Ignore these.  Used to ignore the n of succeed_n's which
	     currently have n == 0.  */
	case unused:
	  continue;

	case casefold_on:
	  options |= RE_OPTION_IGNORECASE;
	  continue;

	case casefold_off:
	  options &= ~RE_OPTION_IGNORECASE;
	  continue;

	case posix_on:
	  options |= RE_OPTION_POSIX;
	  continue;

	case posix_off:
	  options &= ~RE_OPTION_POSIX;
	  continue;

	case wordbound:
	  if (AT_STRINGS_BEG(d)) {
	    if (IS_A_LETTER(d)) break;
	    else goto fail;
	  }
	  if (AT_STRINGS_BEG(d)) {
	    if (PREV_IS_A_LETTER(d)) break;
	    else goto fail;
	  }
	  if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
	    break;
	  goto fail;

	case notwordbound:
	  if (AT_STRINGS_BEG(d)) {
	    if (IS_A_LETTER(d)) goto fail;
	    else break;
	  }
	  if (AT_STRINGS_END(d)) {
	    if (PREV_IS_A_LETTER(d)) goto fail;
	    else break;
	  }
	  if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
	    goto fail;
	  break;

	case wordbeg:
	  if (IS_A_LETTER(d) && (AT_STRINGS_BEG(d) || !PREV_IS_A_LETTER(d)))
	    break;
	  goto fail;

	case wordend:
	  if (!AT_STRINGS_BEG(d) && PREV_IS_A_LETTER(d)
	      && (!IS_A_LETTER(d) || AT_STRINGS_END(d)))
	    break;
	  goto fail;

	case wordchar:
	  PREFETCH;
	  if (!IS_A_LETTER(d))
	    goto fail;
	  if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
	    d += mbclen(*d) - 1;
	  d++;
	  SET_REGS_MATCHED;
	  break;

	case notwordchar:
	  PREFETCH;
	  if (IS_A_LETTER(d))
	    goto fail;
	  if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
	    d += mbclen(*d) - 1;
	  d++;
	  SET_REGS_MATCHED;
	  break;

	case exactn:
	  /* Match the next few pattern characters exactly.
	     mcnt is how many characters to match.  */
	  mcnt = *p++;
	  /* This is written out as an if-else so we don't waste time
	     testing `translate' inside the loop.  */
	  if (TRANSLATE_P())
	    {
	      do
		{
		  unsigned char c;

		  PREFETCH;
		  c = *d++;
		  if (*p == 0xff) {
		    p++;  
		    if (!--mcnt
			|| AT_STRINGS_END(d)
			|| (unsigned char)*d++ != (unsigned char)*p++)
		      goto fail;
		    continue;
		  }
		  if (ismbchar(c)) {
		    int n;

		    if (c != (unsigned char)*p++)
		      goto fail;
		    for (n = mbclen(c) - 1; n > 0; n--)
		      if (!--mcnt	/* redundant check if pattern was
					   compiled properly. */
			  || AT_STRINGS_END(d)
			  || (unsigned char)*d++ != (unsigned char)*p++)
			goto fail;
		    continue;
		  }
		  /* compiled code translation needed for ruby */
		  if ((unsigned char)translate[c]
		      != (unsigned char)translate[*p++])
		    goto fail;
		}
	      while (--mcnt);
	    }
	  else
	    {
	      do
		{
		  PREFETCH;
		  if (*p == 0xff) {p++; mcnt--;}
		  if (*d++ != *p++) goto fail;
		}
	      while (--mcnt);
	    }
	  SET_REGS_MATCHED;
	  break;
	}
#if 0
    while (stackp != stackb && (int)stackp[-1] == 1)
      POP_FAILURE_POINT();
#endif
    continue;  /* Successfully executed one pattern command; keep going.  */

    /* Jump here if any matching operation fails. */
  fail:
    if (stackp != stackb)
      /* A restart point is known.  Restart there and pop it. */
      {
	short last_used_reg, this_reg;

	/* If this failure point is from a dummy_failure_point, just
	   skip it.  */
	if (stackp[-3] == 0 || (best_regs_set && stackp[-1] == 1)) {
	  POP_FAILURE_POINT();
	  goto fail;
	}
	stackp--;		/* discard flag */
	d = *--stackp;
	p = *--stackp;
	/* Restore register info.  */
	last_used_reg = (long)*--stackp;

	/* Make the ones that weren't saved -1 or 0 again. */
	for (this_reg = num_regs - 1; this_reg > last_used_reg; this_reg--) {
	  regend[this_reg] = REG_UNSET_VALUE;
	  regstart[this_reg] = REG_UNSET_VALUE;
	  IS_ACTIVE(reg_info[this_reg]) = 0;
	  MATCHED_SOMETHING(reg_info[this_reg]) = 0;
	}

	/* And restore the rest from the stack.  */
	for ( ; this_reg > 0; this_reg--) {
	  reg_info[this_reg].word = *--stackp;
	  regend[this_reg] = *--stackp;
	  regstart[this_reg] = *--stackp;
	}
	if (p < pend) {
	  int is_a_jump_n = 0;
	  int failed_paren = 0;

	  p1 = p;
	  /* If failed to a backwards jump that's part of a repetition
	     loop, need to pop this failure point and use the next one.  */
	pop_loop:
	  switch ((enum regexpcode)*p1) {
	  case stop_paren:
	    failed_paren = 1;
	    p1++;
	    goto pop_loop;

	  case jump_n:
	  case finalize_push_n:
	    is_a_jump_n = 1;
	  case maybe_finalize_jump:
	  case finalize_jump:
	  case finalize_push:
	  case jump:
	    p1++;
	    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
	    p1 += mcnt;

	    if (p1 >= pend) break;
	    if (( is_a_jump_n && (enum regexpcode)*p1 == succeed_n) ||
		(!is_a_jump_n && (enum regexpcode)*p1 == on_failure_jump)) {
	      if (failed_paren) {
		p1++;
		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
		PUSH_FAILURE_POINT(p1 + mcnt, d);
	      }
	      goto fail;
	    }
	    break;
	  default:
	    /* do nothing */ ;
	  }
	}
      }
    else
      break;   /* Matching at this starting point really fails.  */
  }

  if (best_regs_set)
    goto restore_best_regs;

  FREE_AND_RETURN(stackb,(-1)); 	/* Failure to match.  */
}


/* We are passed P pointing to a register number after a start_memory.

   Return true if the pattern up to the corresponding stop_memory can
   match the empty string, and false otherwise.

   If we find the matching stop_memory, sets P to point to one past its number.
   Otherwise, sets P to an undefined byte less than or equal to END.

   We don't handle duplicates properly (yet).  */

static int
group_match_null_string_p (p, end, reg_info)
     unsigned char **p, *end;
     register_info_type *reg_info;
{
  int mcnt;
  /* Point to after the args to the start_memory.  */
  unsigned char *p1 = *p + 2;

  while (p1 < end) {
    /* Skip over opcodes that can match nothing, and return true or
       false, as appropriate, when we get to one that can't, or to the
       matching stop_memory.  */

    switch ((enum regexpcode)*p1) {
      /* Could be either a loop or a series of alternatives.  */
    case on_failure_jump:
      p1++;
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);

      /* If the next operation is not a jump backwards in the
	 pattern.  */

      if (mcnt >= 0)
	{
	  /* Go through the on_failure_jumps of the alternatives,
	     seeing if any of the alternatives cannot match nothing.
	     The last alternative starts with only a jump,
	     whereas the rest start with on_failure_jump and end
	     with a jump, e.g., here is the pattern for `a|b|c':

	     /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
	     /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
	     /exactn/1/c						

	     So, we have to first go through the first (n-1)
	     alternatives and then deal with the last one separately.  */


	  /* Deal with the first (n-1) alternatives, which start
	     with an on_failure_jump (see above) that jumps to right
	     past a jump_past_alt.  */

	  while ((enum regexpcode)p1[mcnt-3] == jump_past_alt) {
	    /* `mcnt' holds how many bytes long the alternative
	       is, including the ending `jump_past_alt' and
	       its number.  */

	    if (!alt_match_null_string_p (p1, p1 + mcnt - 3, 
					  reg_info))
	      return 0;

	    /* Move to right after this alternative, including the
	       jump_past_alt.  */
	    p1 += mcnt;	

	    /* Break if it's the beginning of an n-th alternative
	       that doesn't begin with an on_failure_jump.  */
	    if ((enum regexpcode)*p1 != on_failure_jump)
	      break;
		
	    /* Still have to check that it's not an n-th
	       alternative that starts with an on_failure_jump.  */
	    p1++;
	    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
	    if ((enum regexpcode)p1[mcnt-3] != jump_past_alt) {
	      /* Get to the beginning of the n-th alternative.  */
	      p1 -= 3;
	      break;
	    }
	  }

	  /* Deal with the last alternative: go back and get number
	     of the `jump_past_alt' just before it.  `mcnt' contains
	     the length of the alternative.  */
	  EXTRACT_NUMBER (mcnt, p1 - 2);
#if 0
	  if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
	    return 0;
#endif
	  p1 += mcnt;	/* Get past the n-th alternative.  */
	} /* if mcnt > 0 */
      break;


    case stop_memory:
      *p = p1 + 2;
      return 1;


    default: 
      if (!common_op_match_null_string_p (&p1, end, reg_info))
	return 0;
    }
  } /* while p1 < end */

  return 0;
} /* group_match_null_string_p */


/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
   It expects P to be the first byte of a single alternative and END one
   byte past the last. The alternative can contain groups.  */

static int
alt_match_null_string_p (p, end, reg_info)
     unsigned char *p, *end;
     register_info_type *reg_info;
{
  int mcnt;
  unsigned char *p1 = p;

  while (p1 < end) {
    /* Skip over opcodes that can match nothing, and break when we get 
       to one that can't.  */

    switch ((enum regexpcode)*p1) {
      /* It's a loop.  */
    case on_failure_jump:
      p1++;
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      p1 += mcnt;
      break;

    default: 
      if (!common_op_match_null_string_p (&p1, end, reg_info))
	return 0;
    }
  }  /* while p1 < end */

  return 1;
} /* alt_match_null_string_p */


/* Deals with the ops common to group_match_null_string_p and
   alt_match_null_string_p.  

   Sets P to one after the op and its arguments, if any.  */

static int
common_op_match_null_string_p (p, end, reg_info)
     unsigned char **p, *end;
     register_info_type *reg_info;
{
  int mcnt;
  int ret;
  int reg_no;
  unsigned char *p1 = *p;

  switch ((enum regexpcode)*p1++) {
  case unused:
  case begline:
  case endline:
  case begbuf:
  case endbuf:
  case endbuf2:
  case wordbeg:
  case wordend:
  case wordbound:
  case notwordbound:
#ifdef emacs
  case before_dot:
  case at_dot:
  case after_dot:
#endif
    break;

  case start_memory:
    reg_no = *p1;
    ret = group_match_null_string_p (&p1, end, reg_info);

    /* Have to set this here in case we're checking a group which
       contains a group and a back reference to it.  */

    if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
      REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;

    if (!ret)
      return 0;
    break;

    /* If this is an optimized succeed_n for zero times, make the jump.  */
  case jump:
    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
    if (mcnt >= 0)
      p1 += mcnt;
    else
      return 0;
    break;

  case succeed_n:
    /* Get to the number of times to succeed.  */
    p1 += 2;		
    EXTRACT_NUMBER_AND_INCR (mcnt, p1);

    if (mcnt == 0) {
      p1 -= 4;
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      p1 += mcnt;
    }
    else
      return 0;
    break;

  case duplicate: 
    if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
      return 0;
    break;

  case set_number_at:
    p1 += 4;

  default:
    /* All other opcodes mean we cannot match the empty string.  */
    return 0;
  }

  *p = p1;
  return 1;
} /* common_op_match_null_string_p */


static int
memcmp_translate(s1, s2, len)
     unsigned char *s1, *s2;
     register int len;
{
  register unsigned char *p1 = s1, *p2 = s2, c;
  while (len) {
    c = *p1++;
    if (ismbchar(c)) {
      int n;

      if (c != *p2++) return 1;
      for (n = mbclen(c) - 1; n > 0; n--)
	if (!--len || *p1++ != *p2++)
	  return 1;
    }
    else
      if (translate[c] != translate[*p2++])
	return 1;
    len--;
  }
  return 0;
}

void
re_copy_registers(regs1, regs2)
     struct re_registers *regs1, *regs2;
{
  int i;

  if (regs1 == regs2) return;
  if (regs1->allocated == 0) {
    regs1->beg = TMALLOC(regs2->num_regs, int);
    regs1->end = TMALLOC(regs2->num_regs, int);
    regs1->allocated = regs2->num_regs;
  }
  else if (regs1->allocated < regs2->num_regs) {
    TREALLOC(regs1->beg, regs2->num_regs, int);
    TREALLOC(regs1->end, regs2->num_regs, int);
    regs1->allocated = regs2->num_regs;
  }
  for (i=0; i<regs2->num_regs; i++) {
    regs1->beg[i] = regs2->beg[i];
    regs1->end[i] = regs2->end[i];
  }
  regs1->num_regs = regs2->num_regs;
}

void
re_free_registers(regs)
     struct re_registers *regs;
{
  if (regs->allocated == 0) return;
  if (regs->beg) free(regs->beg);
  if (regs->end) free(regs->end);
}

/* Functions for multi-byte support.
   Created for grep multi-byte extension Jul., 1993 by t^2 (Takahiro Tanimoto)
   Last change: Jul. 9, 1993 by t^2  */
static const unsigned char mbctab_ascii[] = {
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

static const unsigned char mbctab_euc[] = { /* 0xA1-0xFE */
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
};

static const unsigned char mbctab_sjis[] = { /* 0x80-0x9f,0xE0-0xFF */
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};

static const unsigned char mbctab_utf8[] = {
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 0, 0
};

const unsigned char *re_mbctab = mbctab_ascii;

void
re_mbcinit(mbctype)
     int mbctype;
{
  switch (mbctype) {
  case MBCTYPE_ASCII:
    re_mbctab = mbctab_ascii;
    current_mbctype = MBCTYPE_ASCII;
    break;
  case MBCTYPE_EUC:
    re_mbctab = mbctab_euc;
    current_mbctype = MBCTYPE_EUC;
    break;
  case MBCTYPE_SJIS:
    re_mbctab = mbctab_sjis;
    current_mbctype = MBCTYPE_SJIS;
    break;
  case MBCTYPE_UTF8:
    re_mbctab = mbctab_utf8;
    current_mbctype = MBCTYPE_UTF8;
    break;
  }
}