summaryrefslogtreecommitdiff
path: root/ext/openssl/ossl_pkey_rsa.c
blob: 7a7e66dbdabf262211af87c8533e2b5564e9fb38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
 * 'OpenSSL for Ruby' project
 * Copyright (C) 2001-2002  Michal Rokos <m.rokos@sh.cvut.cz>
 * All rights reserved.
 */
/*
 * This program is licensed under the same licence as Ruby.
 * (See the file 'LICENCE'.)
 */
#include "ossl.h"

#if !defined(OPENSSL_NO_RSA)

#define GetPKeyRSA(obj, pkey) do { \
    GetPKey((obj), (pkey)); \
    if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA) { /* PARANOIA? */ \
	ossl_raise(rb_eRuntimeError, "THIS IS NOT A RSA!") ; \
    } \
} while (0)
#define GetRSA(obj, rsa) do { \
    EVP_PKEY *_pkey; \
    GetPKeyRSA((obj), _pkey); \
    (rsa) = EVP_PKEY_get0_RSA(_pkey); \
} while (0)

static inline int
RSA_HAS_PRIVATE(RSA *rsa)
{
    const BIGNUM *e, *d;

    RSA_get0_key(rsa, NULL, &e, &d);
    return e && d;
}

static inline int
RSA_PRIVATE(VALUE obj, RSA *rsa)
{
    return RSA_HAS_PRIVATE(rsa) || OSSL_PKEY_IS_PRIVATE(obj);
}

/*
 * Classes
 */
VALUE cRSA;
VALUE eRSAError;

/*
 * Private
 */
/*
 * call-seq:
 *   RSA.new -> rsa
 *   RSA.new(encoded_key [, passphrase]) -> rsa
 *   RSA.new(encoded_key) { passphrase } -> rsa
 *   RSA.new(size [, exponent]) -> rsa
 *
 * Generates or loads an \RSA keypair.
 *
 * If called without arguments, creates a new instance with no key components
 * set. They can be set individually by #set_key, #set_factors, and
 * #set_crt_params.
 *
 * If called with a String, tries to parse as DER or PEM encoding of an \RSA key.
 * Note that, if _passphrase_ is not specified but the key is encrypted with a
 * passphrase, \OpenSSL will prompt for it.
 * See also OpenSSL::PKey.read which can parse keys of any kinds.
 *
 * If called with a number, generates a new key pair. This form works as an
 * alias of RSA.generate.
 *
 * Examples:
 *   OpenSSL::PKey::RSA.new 2048
 *   OpenSSL::PKey::RSA.new File.read 'rsa.pem'
 *   OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
 */
static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey, *tmp;
    RSA *rsa = NULL;
    BIO *in;
    VALUE arg, pass;

    GetPKey(self, pkey);
    /* The RSA.new(size, generator) form is handled by lib/openssl/pkey.rb */
    rb_scan_args(argc, argv, "02", &arg, &pass);
    if (argc == 0) {
	rsa = RSA_new();
        if (!rsa)
            ossl_raise(eRSAError, "RSA_new");
    }
    else {
	pass = ossl_pem_passwd_value(pass);
	arg = ossl_to_der_if_possible(arg);
	in = ossl_obj2bio(&arg);

        tmp = ossl_pkey_read_generic(in, pass);
        if (tmp) {
            if (EVP_PKEY_base_id(tmp) != EVP_PKEY_RSA)
                rb_raise(eRSAError, "incorrect pkey type: %s",
                         OBJ_nid2sn(EVP_PKEY_base_id(tmp)));
            rsa = EVP_PKEY_get1_RSA(tmp);
            EVP_PKEY_free(tmp);
        }
	if (!rsa) {
	    OSSL_BIO_reset(in);
	    rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
	}
	if (!rsa) {
	    OSSL_BIO_reset(in);
	    rsa = d2i_RSAPublicKey_bio(in, NULL);
	}
	BIO_free(in);
	if (!rsa) {
            ossl_clear_error();
	    ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
	}
    }
    if (!EVP_PKEY_assign_RSA(pkey, rsa)) {
	RSA_free(rsa);
	ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
    }

    return self;
}

static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
    EVP_PKEY *pkey;
    RSA *rsa, *rsa_new;

    GetPKey(self, pkey);
    if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE)
	ossl_raise(eRSAError, "RSA already initialized");
    GetRSA(other, rsa);

    rsa_new = ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey, (d2i_of_void *)d2i_RSAPrivateKey, (char *)rsa);
    if (!rsa_new)
	ossl_raise(eRSAError, "ASN1_dup");

    EVP_PKEY_assign_RSA(pkey, rsa_new);

    return self;
}

/*
 * call-seq:
 *   rsa.public? => true
 *
 * The return value is always +true+ since every private key is also a public
 * key.
 */
static VALUE
ossl_rsa_is_public(VALUE self)
{
    RSA *rsa;

    GetRSA(self, rsa);
    /*
     * This method should check for n and e.  BUG.
     */
    (void)rsa;
    return Qtrue;
}

/*
 * call-seq:
 *   rsa.private? => true | false
 *
 * Does this keypair contain a private key?
 */
static VALUE
ossl_rsa_is_private(VALUE self)
{
    RSA *rsa;

    GetRSA(self, rsa);

    return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}

static int
can_export_rsaprivatekey(VALUE self)
{
    RSA *rsa;
    const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;

    GetRSA(self, rsa);

    RSA_get0_key(rsa, &n, &e, &d);
    RSA_get0_factors(rsa, &p, &q);
    RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);

    return n && e && d && p && q && dmp1 && dmq1 && iqmp;
}

/*
 * call-seq:
 *   rsa.export([cipher, pass_phrase]) => PEM-format String
 *   rsa.to_pem([cipher, pass_phrase]) => PEM-format String
 *   rsa.to_s([cipher, pass_phrase]) => PEM-format String
 *
 * Outputs this keypair in PEM encoding.  If _cipher_ and _pass_phrase_ are
 * given they will be used to encrypt the key.  _cipher_ must be an
 * OpenSSL::Cipher instance.
 */
static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
    if (can_export_rsaprivatekey(self))
        return ossl_pkey_export_traditional(argc, argv, self, 0);
    else
        return ossl_pkey_export_spki(self, 0);
}

/*
 * call-seq:
 *   rsa.to_der => DER-format String
 *
 * Outputs this keypair in DER encoding.
 */
static VALUE
ossl_rsa_to_der(VALUE self)
{
    if (can_export_rsaprivatekey(self))
        return ossl_pkey_export_traditional(0, NULL, self, 1);
    else
        return ossl_pkey_export_spki(self, 1);
}

/*
 * call-seq:
 *   rsa.public_encrypt(string)          => String
 *   rsa.public_encrypt(string, padding) => String
 *
 * Encrypt _string_ with the public key.  _padding_ defaults to PKCS1_PADDING.
 * The encrypted string output can be decrypted using #private_decrypt.
 */
static VALUE
ossl_rsa_public_encrypt(int argc, VALUE *argv, VALUE self)
{
    RSA *rsa;
    const BIGNUM *rsa_n;
    int buf_len, pad;
    VALUE str, buffer, padding;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &rsa_n, NULL, NULL);
    if (!rsa_n)
	ossl_raise(eRSAError, "incomplete RSA");
    rb_scan_args(argc, argv, "11", &buffer, &padding);
    pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
    StringValue(buffer);
    str = rb_str_new(0, RSA_size(rsa));
    buf_len = RSA_public_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
				 (unsigned char *)RSTRING_PTR(str), rsa, pad);
    if (buf_len < 0) ossl_raise(eRSAError, NULL);
    rb_str_set_len(str, buf_len);

    return str;
}

/*
 * call-seq:
 *   rsa.public_decrypt(string)          => String
 *   rsa.public_decrypt(string, padding) => String
 *
 * Decrypt _string_, which has been encrypted with the private key, with the
 * public key.  _padding_ defaults to PKCS1_PADDING.
 */
static VALUE
ossl_rsa_public_decrypt(int argc, VALUE *argv, VALUE self)
{
    RSA *rsa;
    const BIGNUM *rsa_n;
    int buf_len, pad;
    VALUE str, buffer, padding;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &rsa_n, NULL, NULL);
    if (!rsa_n)
	ossl_raise(eRSAError, "incomplete RSA");
    rb_scan_args(argc, argv, "11", &buffer, &padding);
    pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
    StringValue(buffer);
    str = rb_str_new(0, RSA_size(rsa));
    buf_len = RSA_public_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
				 (unsigned char *)RSTRING_PTR(str), rsa, pad);
    if (buf_len < 0) ossl_raise(eRSAError, NULL);
    rb_str_set_len(str, buf_len);

    return str;
}

/*
 * call-seq:
 *   rsa.private_encrypt(string)          => String
 *   rsa.private_encrypt(string, padding) => String
 *
 * Encrypt _string_ with the private key.  _padding_ defaults to PKCS1_PADDING.
 * The encrypted string output can be decrypted using #public_decrypt.
 */
static VALUE
ossl_rsa_private_encrypt(int argc, VALUE *argv, VALUE self)
{
    RSA *rsa;
    const BIGNUM *rsa_n;
    int buf_len, pad;
    VALUE str, buffer, padding;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &rsa_n, NULL, NULL);
    if (!rsa_n)
	ossl_raise(eRSAError, "incomplete RSA");
    if (!RSA_PRIVATE(self, rsa))
	ossl_raise(eRSAError, "private key needed.");
    rb_scan_args(argc, argv, "11", &buffer, &padding);
    pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
    StringValue(buffer);
    str = rb_str_new(0, RSA_size(rsa));
    buf_len = RSA_private_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
				  (unsigned char *)RSTRING_PTR(str), rsa, pad);
    if (buf_len < 0) ossl_raise(eRSAError, NULL);
    rb_str_set_len(str, buf_len);

    return str;
}

/*
 * call-seq:
 *   rsa.private_decrypt(string)          => String
 *   rsa.private_decrypt(string, padding) => String
 *
 * Decrypt _string_, which has been encrypted with the public key, with the
 * private key.  _padding_ defaults to PKCS1_PADDING.
 */
static VALUE
ossl_rsa_private_decrypt(int argc, VALUE *argv, VALUE self)
{
    RSA *rsa;
    const BIGNUM *rsa_n;
    int buf_len, pad;
    VALUE str, buffer, padding;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &rsa_n, NULL, NULL);
    if (!rsa_n)
	ossl_raise(eRSAError, "incomplete RSA");
    if (!RSA_PRIVATE(self, rsa))
	ossl_raise(eRSAError, "private key needed.");
    rb_scan_args(argc, argv, "11", &buffer, &padding);
    pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
    StringValue(buffer);
    str = rb_str_new(0, RSA_size(rsa));
    buf_len = RSA_private_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
				  (unsigned char *)RSTRING_PTR(str), rsa, pad);
    if (buf_len < 0) ossl_raise(eRSAError, NULL);
    rb_str_set_len(str, buf_len);

    return str;
}

/*
 * call-seq:
 *    rsa.sign_pss(digest, data, salt_length:, mgf1_hash:) -> String
 *
 * Signs _data_ using the Probabilistic Signature Scheme (RSA-PSS) and returns
 * the calculated signature.
 *
 * RSAError will be raised if an error occurs.
 *
 * See #verify_pss for the verification operation.
 *
 * === Parameters
 * _digest_::
 *   A String containing the message digest algorithm name.
 * _data_::
 *   A String. The data to be signed.
 * _salt_length_::
 *   The length in octets of the salt. Two special values are reserved:
 *   +:digest+ means the digest length, and +:max+ means the maximum possible
 *   length for the combination of the private key and the selected message
 *   digest algorithm.
 * _mgf1_hash_::
 *   The hash algorithm used in MGF1 (the currently supported mask generation
 *   function (MGF)).
 *
 * === Example
 *   data = "Sign me!"
 *   pkey = OpenSSL::PKey::RSA.new(2048)
 *   signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256")
 *   pub_key = pkey.public_key
 *   puts pub_key.verify_pss("SHA256", signature, data,
 *                           salt_length: :auto, mgf1_hash: "SHA256") # => true
 */
static VALUE
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
{
    VALUE digest, data, options, kwargs[2], signature;
    static ID kwargs_ids[2];
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *pkey_ctx;
    const EVP_MD *md, *mgf1md;
    EVP_MD_CTX *md_ctx;
    size_t buf_len;
    int salt_len;

    if (!kwargs_ids[0]) {
	kwargs_ids[0] = rb_intern_const("salt_length");
	kwargs_ids[1] = rb_intern_const("mgf1_hash");
    }
    rb_scan_args(argc, argv, "2:", &digest, &data, &options);
    rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
    if (kwargs[0] == ID2SYM(rb_intern("max")))
	salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
    else if (kwargs[0] == ID2SYM(rb_intern("digest")))
	salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
    else
	salt_len = NUM2INT(kwargs[0]);
    mgf1md = ossl_evp_get_digestbyname(kwargs[1]);

    pkey = GetPrivPKeyPtr(self);
    buf_len = EVP_PKEY_size(pkey);
    md = ossl_evp_get_digestbyname(digest);
    StringValue(data);
    signature = rb_str_new(NULL, (long)buf_len);

    md_ctx = EVP_MD_CTX_new();
    if (!md_ctx)
	goto err;

    if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
	goto err;

    if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
	goto err;

    if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
	goto err;

    rb_str_set_len(signature, (long)buf_len);

    EVP_MD_CTX_free(md_ctx);
    return signature;

  err:
    EVP_MD_CTX_free(md_ctx);
    ossl_raise(eRSAError, NULL);
}

/*
 * call-seq:
 *    rsa.verify_pss(digest, signature, data, salt_length:, mgf1_hash:) -> true | false
 *
 * Verifies _data_ using the Probabilistic Signature Scheme (RSA-PSS).
 *
 * The return value is +true+ if the signature is valid, +false+ otherwise.
 * RSAError will be raised if an error occurs.
 *
 * See #sign_pss for the signing operation and an example code.
 *
 * === Parameters
 * _digest_::
 *   A String containing the message digest algorithm name.
 * _data_::
 *   A String. The data to be signed.
 * _salt_length_::
 *   The length in octets of the salt. Two special values are reserved:
 *   +:digest+ means the digest length, and +:auto+ means automatically
 *   determining the length based on the signature.
 * _mgf1_hash_::
 *   The hash algorithm used in MGF1.
 */
static VALUE
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
{
    VALUE digest, signature, data, options, kwargs[2];
    static ID kwargs_ids[2];
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *pkey_ctx;
    const EVP_MD *md, *mgf1md;
    EVP_MD_CTX *md_ctx;
    int result, salt_len;

    if (!kwargs_ids[0]) {
	kwargs_ids[0] = rb_intern_const("salt_length");
	kwargs_ids[1] = rb_intern_const("mgf1_hash");
    }
    rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
    rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
    if (kwargs[0] == ID2SYM(rb_intern("auto")))
	salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
    else if (kwargs[0] == ID2SYM(rb_intern("digest")))
	salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
    else
	salt_len = NUM2INT(kwargs[0]);
    mgf1md = ossl_evp_get_digestbyname(kwargs[1]);

    GetPKey(self, pkey);
    md = ossl_evp_get_digestbyname(digest);
    StringValue(signature);
    StringValue(data);

    md_ctx = EVP_MD_CTX_new();
    if (!md_ctx)
	goto err;

    if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
	goto err;

    if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
	goto err;

    if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
	goto err;

    result = EVP_DigestVerifyFinal(md_ctx,
				   (unsigned char *)RSTRING_PTR(signature),
				   RSTRING_LEN(signature));

    switch (result) {
      case 0:
	ossl_clear_error();
	EVP_MD_CTX_free(md_ctx);
	return Qfalse;
      case 1:
	EVP_MD_CTX_free(md_ctx);
	return Qtrue;
      default:
	goto err;
    }

  err:
    EVP_MD_CTX_free(md_ctx);
    ossl_raise(eRSAError, NULL);
}

/*
 * call-seq:
 *   rsa.params => hash
 *
 * THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
 *
 * Stores all parameters of key to the hash.  The hash has keys 'n', 'e', 'd',
 * 'p', 'q', 'dmp1', 'dmq1', 'iqmp'.
 *
 * Don't use :-)) (It's up to you)
 */
static VALUE
ossl_rsa_get_params(VALUE self)
{
    RSA *rsa;
    VALUE hash;
    const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;

    GetRSA(self, rsa);
    RSA_get0_key(rsa, &n, &e, &d);
    RSA_get0_factors(rsa, &p, &q);
    RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);

    hash = rb_hash_new();
    rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
    rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
    rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
    rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
    rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
    rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
    rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
    rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));

    return hash;
}

/*
 * call-seq:
 *    rsa.public_key -> RSA
 *
 * Makes new RSA instance containing the public key from the private key.
 */
static VALUE
ossl_rsa_to_public_key(VALUE self)
{
    EVP_PKEY *pkey, *pkey_new;
    RSA *rsa;
    VALUE obj;

    GetPKeyRSA(self, pkey);
    obj = rb_obj_alloc(rb_obj_class(self));
    GetPKey(obj, pkey_new);

    rsa = RSAPublicKey_dup(EVP_PKEY_get0_RSA(pkey));
    if (!rsa)
        ossl_raise(eRSAError, "RSAPublicKey_dup");
    if (!EVP_PKEY_assign_RSA(pkey_new, rsa)) {
        RSA_free(rsa);
        ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
    }
    return obj;
}

/*
 * TODO: Test me

static VALUE
ossl_rsa_blinding_on(VALUE self)
{
    RSA *rsa;

    GetRSA(self, rsa);

    if (RSA_blinding_on(rsa, ossl_bn_ctx) != 1) {
	ossl_raise(eRSAError, NULL);
    }
    return self;
}

static VALUE
ossl_rsa_blinding_off(VALUE self)
{
    RSA *rsa;

    GetRSA(self, rsa);
    RSA_blinding_off(rsa);

    return self;
}
 */

/*
 * Document-method: OpenSSL::PKey::RSA#set_key
 * call-seq:
 *   rsa.set_key(n, e, d) -> self
 *
 * Sets _n_, _e_, _d_ for the RSA instance.
 */
OSSL_PKEY_BN_DEF3(rsa, RSA, key, n, e, d)
/*
 * Document-method: OpenSSL::PKey::RSA#set_factors
 * call-seq:
 *   rsa.set_factors(p, q) -> self
 *
 * Sets _p_, _q_ for the RSA instance.
 */
OSSL_PKEY_BN_DEF2(rsa, RSA, factors, p, q)
/*
 * Document-method: OpenSSL::PKey::RSA#set_crt_params
 * call-seq:
 *   rsa.set_crt_params(dmp1, dmq1, iqmp) -> self
 *
 * Sets _dmp1_, _dmq1_, _iqmp_ for the RSA instance. They are calculated by
 * <tt>d mod (p - 1)</tt>, <tt>d mod (q - 1)</tt> and <tt>q^(-1) mod p</tt>
 * respectively.
 */
OSSL_PKEY_BN_DEF3(rsa, RSA, crt_params, dmp1, dmq1, iqmp)

/*
 * INIT
 */
#define DefRSAConst(x) rb_define_const(cRSA, #x, INT2NUM(RSA_##x))

void
Init_ossl_rsa(void)
{
#if 0
    mPKey = rb_define_module_under(mOSSL, "PKey");
    cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
    ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
#endif

    /* Document-class: OpenSSL::PKey::RSAError
     *
     * Generic exception that is raised if an operation on an RSA PKey
     * fails unexpectedly or in case an instantiation of an instance of RSA
     * fails due to non-conformant input data.
     */
    eRSAError = rb_define_class_under(mPKey, "RSAError", ePKeyError);

    /* Document-class: OpenSSL::PKey::RSA
     *
     * RSA is an asymmetric public key algorithm that has been formalized in
     * RFC 3447. It is in widespread use in public key infrastructures (PKI)
     * where certificates (cf. OpenSSL::X509::Certificate) often are issued
     * on the basis of a public/private RSA key pair. RSA is used in a wide
     * field of applications such as secure (symmetric) key exchange, e.g.
     * when establishing a secure TLS/SSL connection. It is also used in
     * various digital signature schemes.
     */
    cRSA = rb_define_class_under(mPKey, "RSA", cPKey);

    rb_define_method(cRSA, "initialize", ossl_rsa_initialize, -1);
    rb_define_method(cRSA, "initialize_copy", ossl_rsa_initialize_copy, 1);

    rb_define_method(cRSA, "public?", ossl_rsa_is_public, 0);
    rb_define_method(cRSA, "private?", ossl_rsa_is_private, 0);
    rb_define_method(cRSA, "export", ossl_rsa_export, -1);
    rb_define_alias(cRSA, "to_pem", "export");
    rb_define_alias(cRSA, "to_s", "export");
    rb_define_method(cRSA, "to_der", ossl_rsa_to_der, 0);
    rb_define_method(cRSA, "public_key", ossl_rsa_to_public_key, 0);
    rb_define_method(cRSA, "public_encrypt", ossl_rsa_public_encrypt, -1);
    rb_define_method(cRSA, "public_decrypt", ossl_rsa_public_decrypt, -1);
    rb_define_method(cRSA, "private_encrypt", ossl_rsa_private_encrypt, -1);
    rb_define_method(cRSA, "private_decrypt", ossl_rsa_private_decrypt, -1);
    rb_define_method(cRSA, "sign_pss", ossl_rsa_sign_pss, -1);
    rb_define_method(cRSA, "verify_pss", ossl_rsa_verify_pss, -1);

    DEF_OSSL_PKEY_BN(cRSA, rsa, n);
    DEF_OSSL_PKEY_BN(cRSA, rsa, e);
    DEF_OSSL_PKEY_BN(cRSA, rsa, d);
    DEF_OSSL_PKEY_BN(cRSA, rsa, p);
    DEF_OSSL_PKEY_BN(cRSA, rsa, q);
    DEF_OSSL_PKEY_BN(cRSA, rsa, dmp1);
    DEF_OSSL_PKEY_BN(cRSA, rsa, dmq1);
    DEF_OSSL_PKEY_BN(cRSA, rsa, iqmp);
    rb_define_method(cRSA, "set_key", ossl_rsa_set_key, 3);
    rb_define_method(cRSA, "set_factors", ossl_rsa_set_factors, 2);
    rb_define_method(cRSA, "set_crt_params", ossl_rsa_set_crt_params, 3);

    rb_define_method(cRSA, "params", ossl_rsa_get_params, 0);

    DefRSAConst(PKCS1_PADDING);
    DefRSAConst(SSLV23_PADDING);
    DefRSAConst(NO_PADDING);
    DefRSAConst(PKCS1_OAEP_PADDING);

/*
 * TODO: Test it
    rb_define_method(cRSA, "blinding_on!", ossl_rsa_blinding_on, 0);
    rb_define_method(cRSA, "blinding_off!", ossl_rsa_blinding_off, 0);
 */
}

#else /* defined NO_RSA */
void
Init_ossl_rsa(void)
{
}
#endif /* NO_RSA */