summaryrefslogtreecommitdiff
path: root/ext/openssl/ossl_pkey.c
blob: 6416c4b105d26ea754ee142f4985499fb5e8bb6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * 'OpenSSL for Ruby' project
 * Copyright (C) 2001-2002  Michal Rokos <m.rokos@sh.cvut.cz>
 * All rights reserved.
 */
/*
 * This program is licensed under the same licence as Ruby.
 * (See the file 'LICENCE'.)
 */
#include "ossl.h"

/*
 * Classes
 */
VALUE mPKey;
VALUE cPKey;
VALUE ePKeyError;
static ID id_private_q;

static void
ossl_evp_pkey_free(void *ptr)
{
    EVP_PKEY_free(ptr);
}

/*
 * Public
 */
const rb_data_type_t ossl_evp_pkey_type = {
    "OpenSSL/EVP_PKEY",
    {
	0, ossl_evp_pkey_free,
    },
    0, 0, RUBY_TYPED_FREE_IMMEDIATELY,
};

static VALUE
pkey_new0(EVP_PKEY *pkey)
{
    VALUE klass, obj;
    int type;

    if (!pkey || (type = EVP_PKEY_base_id(pkey)) == EVP_PKEY_NONE)
	ossl_raise(rb_eRuntimeError, "pkey is empty");

    switch (type) {
#if !defined(OPENSSL_NO_RSA)
      case EVP_PKEY_RSA: klass = cRSA; break;
#endif
#if !defined(OPENSSL_NO_DSA)
      case EVP_PKEY_DSA: klass = cDSA; break;
#endif
#if !defined(OPENSSL_NO_DH)
      case EVP_PKEY_DH:  klass = cDH; break;
#endif
#if !defined(OPENSSL_NO_EC)
      case EVP_PKEY_EC:  klass = cEC; break;
#endif
      default:           klass = cPKey; break;
    }
    obj = NewPKey(klass);
    SetPKey(obj, pkey);
    return obj;
}

VALUE
ossl_pkey_new(EVP_PKEY *pkey)
{
    VALUE obj;
    int status;

    obj = rb_protect((VALUE (*)(VALUE))pkey_new0, (VALUE)pkey, &status);
    if (status) {
	EVP_PKEY_free(pkey);
	rb_jump_tag(status);
    }

    return obj;
}

EVP_PKEY *
ossl_pkey_read_generic(BIO *bio, VALUE pass)
{
    void *ppass = (void *)pass;
    EVP_PKEY *pkey;

    if ((pkey = d2i_PrivateKey_bio(bio, NULL)))
	goto out;
    OSSL_BIO_reset(bio);
    if ((pkey = d2i_PKCS8PrivateKey_bio(bio, NULL, ossl_pem_passwd_cb, ppass)))
	goto out;
    OSSL_BIO_reset(bio);
    if ((pkey = d2i_PUBKEY_bio(bio, NULL)))
	goto out;
    OSSL_BIO_reset(bio);
    /* PEM_read_bio_PrivateKey() also parses PKCS #8 formats */
    if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, ppass)))
	goto out;
    OSSL_BIO_reset(bio);
    if ((pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL)))
	goto out;
    OSSL_BIO_reset(bio);
    if ((pkey = PEM_read_bio_Parameters(bio, NULL)))
	goto out;

  out:
    return pkey;
}

/*
 *  call-seq:
 *     OpenSSL::PKey.read(string [, pwd ]) -> PKey
 *     OpenSSL::PKey.read(io [, pwd ]) -> PKey
 *
 * Reads a DER or PEM encoded string from _string_ or _io_ and returns an
 * instance of the appropriate PKey class.
 *
 * === Parameters
 * * _string_ is a DER- or PEM-encoded string containing an arbitrary private
 *   or public key.
 * * _io_ is an instance of IO containing a DER- or PEM-encoded
 *   arbitrary private or public key.
 * * _pwd_ is an optional password in case _string_ or _io_ is an encrypted
 *   PEM resource.
 */
static VALUE
ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    BIO *bio;
    VALUE data, pass;

    rb_scan_args(argc, argv, "11", &data, &pass);
    bio = ossl_obj2bio(&data);
    pkey = ossl_pkey_read_generic(bio, ossl_pem_passwd_value(pass));
    BIO_free(bio);
    if (!pkey)
	ossl_raise(ePKeyError, "Could not parse PKey");
    return ossl_pkey_new(pkey);
}

static VALUE
pkey_ctx_apply_options_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ctx_v))
{
    VALUE key = rb_ary_entry(i, 0), value = rb_ary_entry(i, 1);
    EVP_PKEY_CTX *ctx = (EVP_PKEY_CTX *)ctx_v;

    if (SYMBOL_P(key))
        key = rb_sym2str(key);
    value = rb_String(value);

    if (EVP_PKEY_CTX_ctrl_str(ctx, StringValueCStr(key), StringValueCStr(value)) <= 0)
        ossl_raise(ePKeyError, "EVP_PKEY_CTX_ctrl_str(ctx, %+"PRIsVALUE", %+"PRIsVALUE")",
                   key, value);
    return Qnil;
}

static VALUE
pkey_ctx_apply_options0(VALUE args_v)
{
    VALUE *args = (VALUE *)args_v;

    rb_block_call(args[1], rb_intern("each"), 0, NULL,
                  pkey_ctx_apply_options_i, args[0]);
    return Qnil;
}

static void
pkey_ctx_apply_options(EVP_PKEY_CTX *ctx, VALUE options, int *state)
{
    VALUE args[2];
    args[0] = (VALUE)ctx;
    args[1] = options;

    rb_protect(pkey_ctx_apply_options0, (VALUE)args, state);
}

struct pkey_blocking_generate_arg {
    EVP_PKEY_CTX *ctx;
    EVP_PKEY *pkey;
    int state;
    int yield: 1;
    int genparam: 1;
    int interrupted: 1;
};

static VALUE
pkey_gen_cb_yield(VALUE ctx_v)
{
    EVP_PKEY_CTX *ctx = (void *)ctx_v;
    int i, info_num;
    VALUE *argv;

    info_num = EVP_PKEY_CTX_get_keygen_info(ctx, -1);
    argv = ALLOCA_N(VALUE, info_num);
    for (i = 0; i < info_num; i++)
        argv[i] = INT2NUM(EVP_PKEY_CTX_get_keygen_info(ctx, i));

    return rb_yield_values2(info_num, argv);
}

static VALUE
call_check_ints0(VALUE arg)
{
    rb_thread_check_ints();
    return Qnil;
}

static void *
call_check_ints(void *arg)
{
    int state;
    rb_protect(call_check_ints0, Qnil, &state);
    return (void *)(VALUE)state;
}

static int
pkey_gen_cb(EVP_PKEY_CTX *ctx)
{
    struct pkey_blocking_generate_arg *arg = EVP_PKEY_CTX_get_app_data(ctx);
    int state;

    if (arg->yield) {
        rb_protect(pkey_gen_cb_yield, (VALUE)ctx, &state);
        if (state) {
            arg->state = state;
            return 0;
        }
    }
    if (arg->interrupted) {
        arg->interrupted = 0;
        state = (int)(VALUE)rb_thread_call_with_gvl(call_check_ints, NULL);
        if (state) {
            arg->state = state;
            return 0;
        }
    }
    return 1;
}

static void
pkey_blocking_gen_stop(void *ptr)
{
    struct pkey_blocking_generate_arg *arg = ptr;
    arg->interrupted = 1;
}

static void *
pkey_blocking_gen(void *ptr)
{
    struct pkey_blocking_generate_arg *arg = ptr;

    if (arg->genparam && EVP_PKEY_paramgen(arg->ctx, &arg->pkey) <= 0)
        return NULL;
    if (!arg->genparam && EVP_PKEY_keygen(arg->ctx, &arg->pkey) <= 0)
        return NULL;
    return arg->pkey;
}

static VALUE
pkey_generate(int argc, VALUE *argv, VALUE self, int genparam)
{
    EVP_PKEY_CTX *ctx;
    VALUE alg, options;
    struct pkey_blocking_generate_arg gen_arg = { 0 };
    int state;

    rb_scan_args(argc, argv, "11", &alg, &options);
    if (rb_obj_is_kind_of(alg, cPKey)) {
        EVP_PKEY *base_pkey;

        GetPKey(alg, base_pkey);
        ctx = EVP_PKEY_CTX_new(base_pkey, NULL/* engine */);
        if (!ctx)
            ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
    }
    else {
        const EVP_PKEY_ASN1_METHOD *ameth;
        ENGINE *tmpeng;
        int pkey_id;

        StringValue(alg);
        ameth = EVP_PKEY_asn1_find_str(&tmpeng, RSTRING_PTR(alg),
                                       RSTRING_LENINT(alg));
        if (!ameth)
            ossl_raise(ePKeyError, "algorithm %"PRIsVALUE" not found", alg);
        EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth);
#if !defined(OPENSSL_NO_ENGINE)
        if (tmpeng)
            ENGINE_finish(tmpeng);
#endif

        ctx = EVP_PKEY_CTX_new_id(pkey_id, NULL/* engine */);
        if (!ctx)
            ossl_raise(ePKeyError, "EVP_PKEY_CTX_new_id");
    }

    if (genparam && EVP_PKEY_paramgen_init(ctx) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_paramgen_init");
    }
    if (!genparam && EVP_PKEY_keygen_init(ctx) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_keygen_init");
    }

    if (!NIL_P(options)) {
        pkey_ctx_apply_options(ctx, options, &state);
        if (state) {
            EVP_PKEY_CTX_free(ctx);
            rb_jump_tag(state);
        }
    }

    gen_arg.genparam = genparam;
    gen_arg.ctx = ctx;
    gen_arg.yield = rb_block_given_p();
    EVP_PKEY_CTX_set_app_data(ctx, &gen_arg);
    EVP_PKEY_CTX_set_cb(ctx, pkey_gen_cb);
    if (gen_arg.yield)
        pkey_blocking_gen(&gen_arg);
    else
        rb_thread_call_without_gvl(pkey_blocking_gen, &gen_arg,
                                   pkey_blocking_gen_stop, &gen_arg);
    EVP_PKEY_CTX_free(ctx);
    if (!gen_arg.pkey) {
        if (gen_arg.state) {
            ossl_clear_error();
            rb_jump_tag(gen_arg.state);
        }
        else {
            ossl_raise(ePKeyError, genparam ? "EVP_PKEY_paramgen" : "EVP_PKEY_keygen");
        }
    }

    return ossl_pkey_new(gen_arg.pkey);
}

/*
 * call-seq:
 *    OpenSSL::PKey.generate_parameters(algo_name [, options]) -> pkey
 *
 * Generates new parameters for the algorithm. _algo_name_ is a String that
 * represents the algorithm. The optional argument _options_ is a Hash that
 * specifies the options specific to the algorithm. The order of the options
 * can be important.
 *
 * A block can be passed optionally. The meaning of the arguments passed to
 * the block varies depending on the implementation of the algorithm. The block
 * may be called once or multiple times, or may not even be called.
 *
 * For the supported options, see the documentation for the 'openssl genpkey'
 * utility command.
 *
 * == Example
 *   pkey = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
 *   p pkey.p.num_bits #=> 2048
 */
static VALUE
ossl_pkey_s_generate_parameters(int argc, VALUE *argv, VALUE self)
{
    return pkey_generate(argc, argv, self, 1);
}

/*
 * call-seq:
 *    OpenSSL::PKey.generate_key(algo_name [, options]) -> pkey
 *    OpenSSL::PKey.generate_key(pkey [, options]) -> pkey
 *
 * Generates a new key (pair).
 *
 * If a String is given as the first argument, it generates a new random key
 * for the algorithm specified by the name just as ::generate_parameters does.
 * If an OpenSSL::PKey::PKey is given instead, it generates a new random key
 * for the same algorithm as the key, using the parameters the key contains.
 *
 * See ::generate_parameters for the details of _options_ and the given block.
 *
 * == Example
 *   pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
 *   pkey_params.priv_key #=> nil
 *   pkey = OpenSSL::PKey.generate_key(pkey_params)
 *   pkey.priv_key #=> #<OpenSSL::BN 6277...
 */
static VALUE
ossl_pkey_s_generate_key(int argc, VALUE *argv, VALUE self)
{
    return pkey_generate(argc, argv, self, 0);
}

void
ossl_pkey_check_public_key(const EVP_PKEY *pkey)
{
    void *ptr;
    const BIGNUM *n, *e, *pubkey;

    if (EVP_PKEY_missing_parameters(pkey))
	ossl_raise(ePKeyError, "parameters missing");

    /* OpenSSL < 1.1.0 takes non-const pointer */
    ptr = EVP_PKEY_get0((EVP_PKEY *)pkey);
    switch (EVP_PKEY_base_id(pkey)) {
      case EVP_PKEY_RSA:
	RSA_get0_key(ptr, &n, &e, NULL);
	if (n && e)
	    return;
	break;
      case EVP_PKEY_DSA:
	DSA_get0_key(ptr, &pubkey, NULL);
	if (pubkey)
	    return;
	break;
      case EVP_PKEY_DH:
	DH_get0_key(ptr, &pubkey, NULL);
	if (pubkey)
	    return;
	break;
#if !defined(OPENSSL_NO_EC)
      case EVP_PKEY_EC:
	if (EC_KEY_get0_public_key(ptr))
	    return;
	break;
#endif
      default:
	/* unsupported type; assuming ok */
	return;
    }
    ossl_raise(ePKeyError, "public key missing");
}

EVP_PKEY *
GetPKeyPtr(VALUE obj)
{
    EVP_PKEY *pkey;

    GetPKey(obj, pkey);

    return pkey;
}

EVP_PKEY *
GetPrivPKeyPtr(VALUE obj)
{
    EVP_PKEY *pkey;

    GetPKey(obj, pkey);
    if (OSSL_PKEY_IS_PRIVATE(obj))
        return pkey;
    /*
     * The EVP API does not provide a way to check if the EVP_PKEY has private
     * components. Assuming it does...
     */
    if (!rb_respond_to(obj, id_private_q))
        return pkey;
    if (RTEST(rb_funcallv(obj, id_private_q, 0, NULL)))
        return pkey;

    rb_raise(rb_eArgError, "private key is needed");
}

EVP_PKEY *
DupPKeyPtr(VALUE obj)
{
    EVP_PKEY *pkey;

    GetPKey(obj, pkey);
    EVP_PKEY_up_ref(pkey);

    return pkey;
}

/*
 * Private
 */
static VALUE
ossl_pkey_alloc(VALUE klass)
{
    EVP_PKEY *pkey;
    VALUE obj;

    obj = NewPKey(klass);
    if (!(pkey = EVP_PKEY_new())) {
	ossl_raise(ePKeyError, NULL);
    }
    SetPKey(obj, pkey);

    return obj;
}

/*
 *  call-seq:
 *      PKeyClass.new -> self
 *
 * Because PKey is an abstract class, actually calling this method explicitly
 * will raise a NotImplementedError.
 */
static VALUE
ossl_pkey_initialize(VALUE self)
{
    if (rb_obj_is_instance_of(self, cPKey)) {
	ossl_raise(rb_eTypeError, "OpenSSL::PKey::PKey can't be instantiated directly");
    }
    return self;
}

/*
 * call-seq:
 *    pkey.oid -> string
 *
 * Returns the short name of the OID associated with _pkey_.
 */
static VALUE
ossl_pkey_oid(VALUE self)
{
    EVP_PKEY *pkey;
    int nid;

    GetPKey(self, pkey);
    nid = EVP_PKEY_id(pkey);
    return rb_str_new_cstr(OBJ_nid2sn(nid));
}

/*
 * call-seq:
 *    pkey.inspect -> string
 *
 * Returns a string describing the PKey object.
 */
static VALUE
ossl_pkey_inspect(VALUE self)
{
    EVP_PKEY *pkey;
    int nid;

    GetPKey(self, pkey);
    nid = EVP_PKEY_id(pkey);
    return rb_sprintf("#<%"PRIsVALUE":%p oid=%s>",
                      rb_class_name(CLASS_OF(self)), (void *)self,
                      OBJ_nid2sn(nid));
}

/*
 * call-seq:
 *    pkey.to_text -> string
 *
 * Dumps key parameters, public key, and private key components contained in
 * the key into a human-readable text.
 *
 * This is intended for debugging purpose.
 *
 * See also the man page EVP_PKEY_print_private(3).
 */
static VALUE
ossl_pkey_to_text(VALUE self)
{
    EVP_PKEY *pkey;
    BIO *bio;

    GetPKey(self, pkey);
    if (!(bio = BIO_new(BIO_s_mem())))
        ossl_raise(ePKeyError, "BIO_new");

    if (EVP_PKEY_print_private(bio, pkey, 0, NULL) == 1)
        goto out;
    OSSL_BIO_reset(bio);
    if (EVP_PKEY_print_public(bio, pkey, 0, NULL) == 1)
        goto out;
    OSSL_BIO_reset(bio);
    if (EVP_PKEY_print_params(bio, pkey, 0, NULL) == 1)
        goto out;

    BIO_free(bio);
    ossl_raise(ePKeyError, "EVP_PKEY_print_params");

  out:
    return ossl_membio2str(bio);
}

VALUE
ossl_pkey_export_traditional(int argc, VALUE *argv, VALUE self, int to_der)
{
    EVP_PKEY *pkey;
    VALUE cipher, pass;
    const EVP_CIPHER *enc = NULL;
    BIO *bio;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "02", &cipher, &pass);
    if (!NIL_P(cipher)) {
	enc = ossl_evp_get_cipherbyname(cipher);
	pass = ossl_pem_passwd_value(pass);
    }

    bio = BIO_new(BIO_s_mem());
    if (!bio)
	ossl_raise(ePKeyError, "BIO_new");
    if (to_der) {
	if (!i2d_PrivateKey_bio(bio, pkey)) {
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "i2d_PrivateKey_bio");
	}
    }
    else {
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
	if (!PEM_write_bio_PrivateKey_traditional(bio, pkey, enc, NULL, 0,
						  ossl_pem_passwd_cb,
						  (void *)pass)) {
#else
	char pem_str[80];
	const char *aname;

	EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &aname, pkey->ameth);
	snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", aname);
	if (!PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, pem_str, bio,
				pkey, enc, NULL, 0, ossl_pem_passwd_cb,
				(void *)pass)) {
#endif
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "PEM_write_bio_PrivateKey_traditional");
	}
    }
    return ossl_membio2str(bio);
}

static VALUE
do_pkcs8_export(int argc, VALUE *argv, VALUE self, int to_der)
{
    EVP_PKEY *pkey;
    VALUE cipher, pass;
    const EVP_CIPHER *enc = NULL;
    BIO *bio;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "02", &cipher, &pass);
    if (argc > 0) {
	/*
	 * TODO: EncryptedPrivateKeyInfo actually has more options.
	 * Should they be exposed?
	 */
	enc = ossl_evp_get_cipherbyname(cipher);
	pass = ossl_pem_passwd_value(pass);
    }

    bio = BIO_new(BIO_s_mem());
    if (!bio)
	ossl_raise(ePKeyError, "BIO_new");
    if (to_der) {
	if (!i2d_PKCS8PrivateKey_bio(bio, pkey, enc, NULL, 0,
				     ossl_pem_passwd_cb, (void *)pass)) {
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "i2d_PKCS8PrivateKey_bio");
	}
    }
    else {
	if (!PEM_write_bio_PKCS8PrivateKey(bio, pkey, enc, NULL, 0,
					   ossl_pem_passwd_cb, (void *)pass)) {
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "PEM_write_bio_PKCS8PrivateKey");
	}
    }
    return ossl_membio2str(bio);
}

/*
 * call-seq:
 *    pkey.private_to_der                   -> string
 *    pkey.private_to_der(cipher, password) -> string
 *
 * Serializes the private key to DER-encoded PKCS #8 format. If called without
 * arguments, unencrypted PKCS #8 PrivateKeyInfo format is used. If called with
 * a cipher name and a password, PKCS #8 EncryptedPrivateKeyInfo format with
 * PBES2 encryption scheme is used.
 */
static VALUE
ossl_pkey_private_to_der(int argc, VALUE *argv, VALUE self)
{
    return do_pkcs8_export(argc, argv, self, 1);
}

/*
 * call-seq:
 *    pkey.private_to_pem                   -> string
 *    pkey.private_to_pem(cipher, password) -> string
 *
 * Serializes the private key to PEM-encoded PKCS #8 format. See #private_to_der
 * for more details.
 */
static VALUE
ossl_pkey_private_to_pem(int argc, VALUE *argv, VALUE self)
{
    return do_pkcs8_export(argc, argv, self, 0);
}

VALUE
ossl_pkey_export_spki(VALUE self, int to_der)
{
    EVP_PKEY *pkey;
    BIO *bio;

    GetPKey(self, pkey);
    bio = BIO_new(BIO_s_mem());
    if (!bio)
	ossl_raise(ePKeyError, "BIO_new");
    if (to_der) {
	if (!i2d_PUBKEY_bio(bio, pkey)) {
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "i2d_PUBKEY_bio");
	}
    }
    else {
	if (!PEM_write_bio_PUBKEY(bio, pkey)) {
	    BIO_free(bio);
	    ossl_raise(ePKeyError, "PEM_write_bio_PUBKEY");
	}
    }
    return ossl_membio2str(bio);
}

/*
 * call-seq:
 *    pkey.public_to_der -> string
 *
 * Serializes the public key to DER-encoded X.509 SubjectPublicKeyInfo format.
 */
static VALUE
ossl_pkey_public_to_der(VALUE self)
{
    return ossl_pkey_export_spki(self, 1);
}

/*
 * call-seq:
 *    pkey.public_to_pem -> string
 *
 * Serializes the public key to PEM-encoded X.509 SubjectPublicKeyInfo format.
 */
static VALUE
ossl_pkey_public_to_pem(VALUE self)
{
    return ossl_pkey_export_spki(self, 0);
}

/*
 *  call-seq:
 *      pkey.compare?(another_pkey) -> true | false
 *
 * Used primarily to check if an OpenSSL::X509::Certificate#public_key compares to its private key.
 *
 * == Example
 *   x509 = OpenSSL::X509::Certificate.new(pem_encoded_certificate)
 *   rsa_key = OpenSSL::PKey::RSA.new(pem_encoded_private_key)
 *
 *   rsa_key.compare?(x509.public_key) => true | false
 */
static VALUE
ossl_pkey_compare(VALUE self, VALUE other)
{
    int ret;
    EVP_PKEY *selfPKey;
    EVP_PKEY *otherPKey;

    GetPKey(self, selfPKey);
    GetPKey(other, otherPKey);

    /* Explicitly check the key type given EVP_PKEY_ASN1_METHOD(3)
     * docs param_cmp could return any negative number.
     */
    if (EVP_PKEY_id(selfPKey) != EVP_PKEY_id(otherPKey))
        ossl_raise(rb_eTypeError, "cannot match different PKey types");

    ret = EVP_PKEY_cmp(selfPKey, otherPKey);

    if (ret == 0)
        return Qfalse;
    else if (ret == 1)
        return Qtrue;
    else
        ossl_raise(ePKeyError, "EVP_PKEY_cmp");
}

/*
 * call-seq:
 *    pkey.sign(digest, data [, options]) -> string
 *
 * Hashes and signs the +data+ using a message digest algorithm +digest+ and
 * a private key +pkey+.
 *
 * See #verify for the verification operation.
 *
 * See also the man page EVP_DigestSign(3).
 *
 * +digest+::
 *   A String that represents the message digest algorithm name, or +nil+
 *   if the PKey type requires no digest algorithm.
 *   For backwards compatibility, this can be an instance of OpenSSL::Digest.
 *   Its state will not affect the signature.
 * +data+::
 *   A String. The data to be hashed and signed.
 * +options+::
 *   A Hash that contains algorithm specific control operations to \OpenSSL.
 *   See OpenSSL's man page EVP_PKEY_CTX_ctrl_str(3) for details.
 *   +options+ parameter was added in version 3.0.
 *
 * Example:
 *   data = "Sign me!"
 *   pkey = OpenSSL::PKey.generate_key("RSA", rsa_keygen_bits: 2048)
 *   signopts = { rsa_padding_mode: "pss" }
 *   signature = pkey.sign("SHA256", data, signopts)
 *
 *   # Creates a copy of the RSA key pkey, but without the private components
 *   pub_key = pkey.public_key
 *   puts pub_key.verify("SHA256", signature, data, signopts) # => true
 */
static VALUE
ossl_pkey_sign(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    VALUE digest, data, options, sig;
    const EVP_MD *md = NULL;
    EVP_MD_CTX *ctx;
    EVP_PKEY_CTX *pctx;
    size_t siglen;
    int state;

    pkey = GetPrivPKeyPtr(self);
    rb_scan_args(argc, argv, "21", &digest, &data, &options);
    if (!NIL_P(digest))
        md = ossl_evp_get_digestbyname(digest);
    StringValue(data);

    ctx = EVP_MD_CTX_new();
    if (!ctx)
        ossl_raise(ePKeyError, "EVP_MD_CTX_new");
    if (EVP_DigestSignInit(ctx, &pctx, md, /* engine */NULL, pkey) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSignInit");
    }
    if (!NIL_P(options)) {
        pkey_ctx_apply_options(pctx, options, &state);
        if (state) {
            EVP_MD_CTX_free(ctx);
            rb_jump_tag(state);
        }
    }
#if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
    if (EVP_DigestSign(ctx, NULL, &siglen, (unsigned char *)RSTRING_PTR(data),
                       RSTRING_LEN(data)) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSign");
    }
    if (siglen > LONG_MAX) {
        EVP_MD_CTX_free(ctx);
        rb_raise(ePKeyError, "signature would be too large");
    }
    sig = ossl_str_new(NULL, (long)siglen, &state);
    if (state) {
        EVP_MD_CTX_free(ctx);
        rb_jump_tag(state);
    }
    if (EVP_DigestSign(ctx, (unsigned char *)RSTRING_PTR(sig), &siglen,
                       (unsigned char *)RSTRING_PTR(data),
                       RSTRING_LEN(data)) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSign");
    }
#else
    if (EVP_DigestSignUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSignUpdate");
    }
    if (EVP_DigestSignFinal(ctx, NULL, &siglen) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSignFinal");
    }
    if (siglen > LONG_MAX) {
        EVP_MD_CTX_free(ctx);
        rb_raise(ePKeyError, "signature would be too large");
    }
    sig = ossl_str_new(NULL, (long)siglen, &state);
    if (state) {
        EVP_MD_CTX_free(ctx);
        rb_jump_tag(state);
    }
    if (EVP_DigestSignFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
                            &siglen) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestSignFinal");
    }
#endif
    EVP_MD_CTX_free(ctx);
    rb_str_set_len(sig, siglen);
    return sig;
}

/*
 * call-seq:
 *    pkey.verify(digest, signature, data [, options]) -> true or false
 *
 * Verifies the +signature+ for the +data+ using a message digest algorithm
 * +digest+ and a public key +pkey+.
 *
 * Returns +true+ if the signature is successfully verified, +false+ otherwise.
 * The caller must check the return value.
 *
 * See #sign for the signing operation and an example.
 *
 * See also the man page EVP_DigestVerify(3).
 *
 * +digest+::
 *   See #sign.
 * +signature+::
 *   A String containing the signature to be verified.
 * +data+::
 *   See #sign.
 * +options+::
 *   See #sign. +options+ parameter was added in version 3.0.
 */
static VALUE
ossl_pkey_verify(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    VALUE digest, sig, data, options;
    const EVP_MD *md = NULL;
    EVP_MD_CTX *ctx;
    EVP_PKEY_CTX *pctx;
    int state, ret;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "31", &digest, &sig, &data, &options);
    ossl_pkey_check_public_key(pkey);
    if (!NIL_P(digest))
        md = ossl_evp_get_digestbyname(digest);
    StringValue(sig);
    StringValue(data);

    ctx = EVP_MD_CTX_new();
    if (!ctx)
        ossl_raise(ePKeyError, "EVP_MD_CTX_new");
    if (EVP_DigestVerifyInit(ctx, &pctx, md, /* engine */NULL, pkey) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestVerifyInit");
    }
    if (!NIL_P(options)) {
        pkey_ctx_apply_options(pctx, options, &state);
        if (state) {
            EVP_MD_CTX_free(ctx);
            rb_jump_tag(state);
        }
    }
#if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
    ret = EVP_DigestVerify(ctx, (unsigned char *)RSTRING_PTR(sig),
                           RSTRING_LEN(sig), (unsigned char *)RSTRING_PTR(data),
                           RSTRING_LEN(data));
    EVP_MD_CTX_free(ctx);
    if (ret < 0)
        ossl_raise(ePKeyError, "EVP_DigestVerify");
#else
    if (EVP_DigestVerifyUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
        EVP_MD_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_DigestVerifyUpdate");
    }
    ret = EVP_DigestVerifyFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
                                RSTRING_LEN(sig));
    EVP_MD_CTX_free(ctx);
    if (ret < 0)
        ossl_raise(ePKeyError, "EVP_DigestVerifyFinal");
#endif
    if (ret)
        return Qtrue;
    else {
        ossl_clear_error();
        return Qfalse;
    }
}

/*
 * call-seq:
 *    pkey.derive(peer_pkey) -> string
 *
 * Derives a shared secret from _pkey_ and _peer_pkey_. _pkey_ must contain
 * the private components, _peer_pkey_ must contain the public components.
 */
static VALUE
ossl_pkey_derive(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey, *peer_pkey;
    EVP_PKEY_CTX *ctx;
    VALUE peer_pkey_obj, str;
    size_t keylen;
    int state;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "1", &peer_pkey_obj);
    GetPKey(peer_pkey_obj, peer_pkey);

    ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
    if (!ctx)
        ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
    if (EVP_PKEY_derive_init(ctx) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_derive_init");
    }
    if (EVP_PKEY_derive_set_peer(ctx, peer_pkey) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_derive_set_peer");
    }
    if (EVP_PKEY_derive(ctx, NULL, &keylen) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_derive");
    }
    if (keylen > LONG_MAX)
        rb_raise(ePKeyError, "derived key would be too large");
    str = ossl_str_new(NULL, (long)keylen, &state);
    if (state) {
        EVP_PKEY_CTX_free(ctx);
        rb_jump_tag(state);
    }
    if (EVP_PKEY_derive(ctx, (unsigned char *)RSTRING_PTR(str), &keylen) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_derive");
    }
    EVP_PKEY_CTX_free(ctx);
    rb_str_set_len(str, keylen);
    return str;
}

/*
 * call-seq:
 *    pkey.encrypt(data [, options]) -> string
 *
 * Performs a public key encryption operation using +pkey+.
 *
 * See #decrypt for the reverse operation.
 *
 * Added in version 3.0. See also the man page EVP_PKEY_encrypt(3).
 *
 * +data+::
 *   A String to be encrypted.
 * +options+::
 *   A Hash that contains algorithm specific control operations to \OpenSSL.
 *   See OpenSSL's man page EVP_PKEY_CTX_ctrl_str(3) for details.
 *
 * Example:
 *   pkey = OpenSSL::PKey.generate_key("RSA", rsa_keygen_bits: 2048)
 *   data = "secret data"
 *   encrypted = pkey.encrypt(data, rsa_padding_mode: "oaep")
 *   decrypted = pkey.decrypt(data, rsa_padding_mode: "oaep")
 *   p decrypted #=> "secret data"
 */
static VALUE
ossl_pkey_encrypt(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *ctx;
    VALUE data, options, str;
    size_t outlen;
    int state;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "11", &data, &options);
    StringValue(data);

    ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
    if (!ctx)
        ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
    if (EVP_PKEY_encrypt_init(ctx) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_encrypt_init");
    }
    if (!NIL_P(options)) {
        pkey_ctx_apply_options(ctx, options, &state);
        if (state) {
            EVP_PKEY_CTX_free(ctx);
            rb_jump_tag(state);
        }
    }
    if (EVP_PKEY_encrypt(ctx, NULL, &outlen,
                         (unsigned char *)RSTRING_PTR(data),
                         RSTRING_LEN(data)) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_encrypt");
    }
    if (outlen > LONG_MAX) {
        EVP_PKEY_CTX_free(ctx);
        rb_raise(ePKeyError, "encrypted data would be too large");
    }
    str = ossl_str_new(NULL, (long)outlen, &state);
    if (state) {
        EVP_PKEY_CTX_free(ctx);
        rb_jump_tag(state);
    }
    if (EVP_PKEY_encrypt(ctx, (unsigned char *)RSTRING_PTR(str), &outlen,
                         (unsigned char *)RSTRING_PTR(data),
                         RSTRING_LEN(data)) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_encrypt");
    }
    EVP_PKEY_CTX_free(ctx);
    rb_str_set_len(str, outlen);
    return str;
}

/*
 * call-seq:
 *    pkey.decrypt(data [, options]) -> string
 *
 * Performs a public key decryption operation using +pkey+.
 *
 * See #encrypt for a description of the parameters and an example.
 *
 * Added in version 3.0. See also the man page EVP_PKEY_decrypt(3).
 */
static VALUE
ossl_pkey_decrypt(int argc, VALUE *argv, VALUE self)
{
    EVP_PKEY *pkey;
    EVP_PKEY_CTX *ctx;
    VALUE data, options, str;
    size_t outlen;
    int state;

    GetPKey(self, pkey);
    rb_scan_args(argc, argv, "11", &data, &options);
    StringValue(data);

    ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
    if (!ctx)
        ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
    if (EVP_PKEY_decrypt_init(ctx) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_decrypt_init");
    }
    if (!NIL_P(options)) {
        pkey_ctx_apply_options(ctx, options, &state);
        if (state) {
            EVP_PKEY_CTX_free(ctx);
            rb_jump_tag(state);
        }
    }
    if (EVP_PKEY_decrypt(ctx, NULL, &outlen,
                         (unsigned char *)RSTRING_PTR(data),
                         RSTRING_LEN(data)) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_decrypt");
    }
    if (outlen > LONG_MAX) {
        EVP_PKEY_CTX_free(ctx);
        rb_raise(ePKeyError, "decrypted data would be too large");
    }
    str = ossl_str_new(NULL, (long)outlen, &state);
    if (state) {
        EVP_PKEY_CTX_free(ctx);
        rb_jump_tag(state);
    }
    if (EVP_PKEY_decrypt(ctx, (unsigned char *)RSTRING_PTR(str), &outlen,
                         (unsigned char *)RSTRING_PTR(data),
                         RSTRING_LEN(data)) <= 0) {
        EVP_PKEY_CTX_free(ctx);
        ossl_raise(ePKeyError, "EVP_PKEY_decrypt");
    }
    EVP_PKEY_CTX_free(ctx);
    rb_str_set_len(str, outlen);
    return str;
}

/*
 * INIT
 */
void
Init_ossl_pkey(void)
{
#undef rb_intern
#if 0
    mOSSL = rb_define_module("OpenSSL");
    eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
#endif

    /* Document-module: OpenSSL::PKey
     *
     * == Asymmetric Public Key Algorithms
     *
     * Asymmetric public key algorithms solve the problem of establishing and
     * sharing secret keys to en-/decrypt messages. The key in such an
     * algorithm consists of two parts: a public key that may be distributed
     * to others and a private key that needs to remain secret.
     *
     * Messages encrypted with a public key can only be decrypted by
     * recipients that are in possession of the associated private key.
     * Since public key algorithms are considerably slower than symmetric
     * key algorithms (cf. OpenSSL::Cipher) they are often used to establish
     * a symmetric key shared between two parties that are in possession of
     * each other's public key.
     *
     * Asymmetric algorithms offer a lot of nice features that are used in a
     * lot of different areas. A very common application is the creation and
     * validation of digital signatures. To sign a document, the signatory
     * generally uses a message digest algorithm (cf. OpenSSL::Digest) to
     * compute a digest of the document that is then encrypted (i.e. signed)
     * using the private key. Anyone in possession of the public key may then
     * verify the signature by computing the message digest of the original
     * document on their own, decrypting the signature using the signatory's
     * public key and comparing the result to the message digest they
     * previously computed. The signature is valid if and only if the
     * decrypted signature is equal to this message digest.
     *
     * The PKey module offers support for three popular public/private key
     * algorithms:
     * * RSA (OpenSSL::PKey::RSA)
     * * DSA (OpenSSL::PKey::DSA)
     * * Elliptic Curve Cryptography (OpenSSL::PKey::EC)
     * Each of these implementations is in fact a sub-class of the abstract
     * PKey class which offers the interface for supporting digital signatures
     * in the form of PKey#sign and PKey#verify.
     *
     * == Diffie-Hellman Key Exchange
     *
     * Finally PKey also features OpenSSL::PKey::DH, an implementation of
     * the Diffie-Hellman key exchange protocol based on discrete logarithms
     * in finite fields, the same basis that DSA is built on.
     * The Diffie-Hellman protocol can be used to exchange (symmetric) keys
     * over insecure channels without needing any prior joint knowledge
     * between the participating parties. As the security of DH demands
     * relatively long "public keys" (i.e. the part that is overtly
     * transmitted between participants) DH tends to be quite slow. If
     * security or speed is your primary concern, OpenSSL::PKey::EC offers
     * another implementation of the Diffie-Hellman protocol.
     *
     */
    mPKey = rb_define_module_under(mOSSL, "PKey");

    /* Document-class: OpenSSL::PKey::PKeyError
     *
     *Raised when errors occur during PKey#sign or PKey#verify.
     */
    ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);

    /* Document-class: OpenSSL::PKey::PKey
     *
     * An abstract class that bundles signature creation (PKey#sign) and
     * validation (PKey#verify) that is common to all implementations except
     * OpenSSL::PKey::DH
     * * OpenSSL::PKey::RSA
     * * OpenSSL::PKey::DSA
     * * OpenSSL::PKey::EC
     */
    cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);

    rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1);
    rb_define_module_function(mPKey, "generate_parameters", ossl_pkey_s_generate_parameters, -1);
    rb_define_module_function(mPKey, "generate_key", ossl_pkey_s_generate_key, -1);

    rb_define_alloc_func(cPKey, ossl_pkey_alloc);
    rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0);
    rb_define_method(cPKey, "oid", ossl_pkey_oid, 0);
    rb_define_method(cPKey, "inspect", ossl_pkey_inspect, 0);
    rb_define_method(cPKey, "to_text", ossl_pkey_to_text, 0);
    rb_define_method(cPKey, "private_to_der", ossl_pkey_private_to_der, -1);
    rb_define_method(cPKey, "private_to_pem", ossl_pkey_private_to_pem, -1);
    rb_define_method(cPKey, "public_to_der", ossl_pkey_public_to_der, 0);
    rb_define_method(cPKey, "public_to_pem", ossl_pkey_public_to_pem, 0);
    rb_define_method(cPKey, "compare?", ossl_pkey_compare, 1);

    rb_define_method(cPKey, "sign", ossl_pkey_sign, -1);
    rb_define_method(cPKey, "verify", ossl_pkey_verify, -1);
    rb_define_method(cPKey, "derive", ossl_pkey_derive, -1);
    rb_define_method(cPKey, "encrypt", ossl_pkey_encrypt, -1);
    rb_define_method(cPKey, "decrypt", ossl_pkey_decrypt, -1);

    id_private_q = rb_intern("private?");

    /*
     * INIT rsa, dsa, dh, ec
     */
    Init_ossl_rsa();
    Init_ossl_dsa();
    Init_ossl_dh();
    Init_ossl_ec();
}