//! This module is for native code generation. #![allow(clippy::let_and_return)] use std::cell::{Cell, RefCell}; use std::rc::Rc; use std::ffi::{c_int, c_long, c_void}; use std::slice; use crate::asm::Label; use crate::backend::current::{Reg, ALLOC_REGS}; use crate::invariants::{track_bop_assumption, track_cme_assumption, track_no_ep_escape_assumption, track_no_trace_point_assumption, track_single_ractor_assumption, track_stable_constant_names_assumption}; use crate::gc::{append_gc_offsets, get_or_create_iseq_payload, get_or_create_iseq_payload_ptr, IseqPayload, IseqStatus}; use crate::state::ZJITState; use crate::stats::{exit_counter_for_compile_error, incr_counter, incr_counter_by, CompileError}; use crate::stats::{counter_ptr, with_time_stat, Counter, send_fallback_counter, Counter::{compile_time_ns, exit_compile_error}}; use crate::{asm::CodeBlock, cruby::*, options::debug, virtualmem::CodePtr}; use crate::backend::lir::{self, asm_comment, asm_ccall, Assembler, Opnd, Target, CFP, C_ARG_OPNDS, C_RET_OPND, EC, NATIVE_STACK_PTR, NATIVE_BASE_PTR, SCRATCH_OPND, SP}; use crate::hir::{iseq_to_hir, Block, BlockId, BranchEdge, Invariant, RangeType, SideExitReason, SideExitReason::*, MethodType, SpecialObjectType, SpecialBackrefSymbol, SELF_PARAM_IDX}; use crate::hir::{Const, FrameState, Function, Insn, InsnId}; use crate::hir_type::{types, Type}; use crate::options::get_option; use crate::cast::IntoUsize; /// Ephemeral code generation state struct JITState { /// Instruction sequence for the method being compiled iseq: IseqPtr, /// Low-level IR Operands indexed by High-level IR's Instruction ID opnds: Vec>, /// Labels for each basic block indexed by the BlockId labels: Vec>, /// ISEQ calls that need to be compiled later iseq_calls: Vec>>, /// The number of bytes allocated for basic block arguments spilled onto the C stack c_stack_slots: usize, } impl JITState { /// Create a new JITState instance fn new(iseq: IseqPtr, num_insns: usize, num_blocks: usize, c_stack_slots: usize) -> Self { JITState { iseq, opnds: vec![None; num_insns], labels: vec![None; num_blocks], iseq_calls: Vec::default(), c_stack_slots, } } /// Retrieve the output of a given instruction that has been compiled fn get_opnd(&self, insn_id: InsnId) -> lir::Opnd { self.opnds[insn_id.0].unwrap_or_else(|| panic!("Failed to get_opnd({insn_id})")) } /// Find or create a label for a given BlockId fn get_label(&mut self, asm: &mut Assembler, block_id: BlockId) -> Target { match &self.labels[block_id.0] { Some(label) => label.clone(), None => { let label = asm.new_label(&format!("{block_id}")); self.labels[block_id.0] = Some(label.clone()); label } } } } /// CRuby API to compile a given ISEQ. /// If jit_exception is true, compile JIT code for handling exceptions. /// See jit_compile_exception() for details. #[unsafe(no_mangle)] pub extern "C" fn rb_zjit_iseq_gen_entry_point(iseq: IseqPtr, jit_exception: bool) -> *const u8 { // Do not test the JIT code in HIR tests if cfg!(test) { return std::ptr::null(); } // Take a lock to avoid writing to ISEQ in parallel with Ractors. // with_vm_lock() does nothing if the program doesn't use Ractors. with_vm_lock(src_loc!(), || { let cb = ZJITState::get_code_block(); let mut code_ptr = with_time_stat(compile_time_ns, || gen_iseq_entry_point(cb, iseq, jit_exception)); if let Err(err) = &code_ptr { // Assert that the ISEQ compiles if RubyVM::ZJIT.assert_compiles is enabled. // We assert only `jit_exception: false` cases until we support exception handlers. if ZJITState::assert_compiles_enabled() && !jit_exception { let iseq_location = iseq_get_location(iseq, 0); panic!("Failed to compile: {iseq_location}"); } // For --zjit-stats, generate an entry that just increments exit_compilation_failure and exits if get_option!(stats) { code_ptr = gen_compile_error_counter(cb, err); } } // Always mark the code region executable if asm.compile() has been used. // We need to do this even if code_ptr is None because, whether gen_entry() // fails or not, gen_iseq() may have already used asm.compile(). cb.mark_all_executable(); code_ptr.map_or(std::ptr::null(), |ptr| ptr.raw_ptr(cb)) }) } /// Compile an entry point for a given ISEQ fn gen_iseq_entry_point(cb: &mut CodeBlock, iseq: IseqPtr, jit_exception: bool) -> Result { // We don't support exception handlers yet if jit_exception { return Err(CompileError::ExceptionHandler); } // Compile ISEQ into High-level IR let function = compile_iseq(iseq).inspect_err(|_| { incr_counter!(failed_iseq_count); })?; // Compile the High-level IR let start_ptr = gen_iseq(cb, iseq, Some(&function)).inspect_err(|err| { debug!("{err:?}: gen_iseq failed: {}", iseq_get_location(iseq, 0)); })?; // Compile an entry point to the JIT code gen_entry(cb, iseq, &function, start_ptr).inspect_err(|err| { debug!("{err:?}: gen_entry failed: {}", iseq_get_location(iseq, 0)); }) } /// Stub a branch for a JIT-to-JIT call fn gen_iseq_call(cb: &mut CodeBlock, caller_iseq: IseqPtr, iseq_call: &Rc>) -> Result<(), CompileError> { // Compile a function stub let stub_ptr = gen_function_stub(cb, iseq_call.clone()).inspect_err(|err| { debug!("{err:?}: gen_function_stub failed: {} -> {}", iseq_get_location(caller_iseq, 0), iseq_get_location(iseq_call.borrow().iseq, 0)); })?; // Update the JIT-to-JIT call to call the stub let stub_addr = stub_ptr.raw_ptr(cb); let iseq = iseq_call.borrow().iseq; iseq_call.borrow_mut().regenerate(cb, |asm| { asm_comment!(asm, "call function stub: {}", iseq_get_location(iseq, 0)); asm.ccall(stub_addr, vec![]); }); Ok(()) } /// Write an entry to the perf map in /tmp fn register_with_perf(iseq_name: String, start_ptr: usize, code_size: usize) { use std::io::Write; let perf_map = format!("/tmp/perf-{}.map", std::process::id()); let Ok(mut file) = std::fs::OpenOptions::new().create(true).append(true).open(&perf_map) else { debug!("Failed to open perf map file: {perf_map}"); return; }; let Ok(_) = writeln!(file, "{:#x} {:#x} zjit::{}", start_ptr, code_size, iseq_name) else { debug!("Failed to write {iseq_name} to perf map file: {perf_map}"); return; }; } /// Compile a JIT entry fn gen_entry(cb: &mut CodeBlock, iseq: IseqPtr, function: &Function, function_ptr: CodePtr) -> Result { // Set up registers for CFP, EC, SP, and basic block arguments let mut asm = Assembler::new(); gen_entry_prologue(&mut asm, iseq); gen_entry_params(&mut asm, iseq, function.block(BlockId(0))); // Jump to the first block using a call instruction asm.ccall(function_ptr.raw_ptr(cb), vec![]); // Restore registers for CFP, EC, and SP after use asm_comment!(asm, "return to the interpreter"); asm.frame_teardown(lir::JIT_PRESERVED_REGS); asm.cret(C_RET_OPND); if get_option!(dump_lir) { println!("LIR:\nJIT entry for {}:\n{:?}", iseq_name(iseq), asm); } let (code_ptr, gc_offsets) = asm.compile(cb)?; assert!(gc_offsets.is_empty()); if get_option!(perf) { let start_ptr = code_ptr.raw_ptr(cb) as usize; let end_ptr = cb.get_write_ptr().raw_ptr(cb) as usize; let code_size = end_ptr - start_ptr; let iseq_name = iseq_get_location(iseq, 0); register_with_perf(format!("entry for {iseq_name}"), start_ptr, code_size); } Ok(code_ptr) } /// Compile an ISEQ into machine code if not compiled yet fn gen_iseq(cb: &mut CodeBlock, iseq: IseqPtr, function: Option<&Function>) -> Result { // Return an existing pointer if it's already compiled let payload = get_or_create_iseq_payload(iseq); match &payload.status { IseqStatus::Compiled(start_ptr) => return Ok(*start_ptr), IseqStatus::CantCompile(err) => return Err(err.clone()), IseqStatus::NotCompiled => {}, } // Compile the ISEQ let code_ptr = gen_iseq_body(cb, iseq, function, payload); match &code_ptr { Ok(start_ptr) => { payload.status = IseqStatus::Compiled(*start_ptr); incr_counter!(compiled_iseq_count); } Err(err) => { payload.status = IseqStatus::CantCompile(err.clone()); incr_counter!(failed_iseq_count); } } code_ptr } /// Compile an ISEQ into machine code fn gen_iseq_body(cb: &mut CodeBlock, iseq: IseqPtr, function: Option<&Function>, payload: &mut IseqPayload) -> Result { // Convert ISEQ into optimized High-level IR if not given let function = match function { Some(function) => function, None => &compile_iseq(iseq)?, }; // Compile the High-level IR let (start_ptr, gc_offsets, iseq_calls) = gen_function(cb, iseq, function)?; // Stub callee ISEQs for JIT-to-JIT calls for iseq_call in iseq_calls.iter() { gen_iseq_call(cb, iseq, iseq_call)?; } // Prepare for GC payload.iseq_calls.extend(iseq_calls.clone()); append_gc_offsets(iseq, &gc_offsets); Ok(start_ptr) } /// Compile a function fn gen_function(cb: &mut CodeBlock, iseq: IseqPtr, function: &Function) -> Result<(CodePtr, Vec, Vec), CompileError> { let c_stack_slots = max_num_params(function).saturating_sub(ALLOC_REGS.len()); let mut jit = JITState::new(iseq, function.num_insns(), function.num_blocks(), c_stack_slots); let mut asm = Assembler::new(); // Compile each basic block let reverse_post_order = function.rpo(); for &block_id in reverse_post_order.iter() { let block = function.block(block_id); asm_comment!( asm, "{block_id}({}): {}", block.params().map(|param| format!("{param}")).collect::>().join(", "), iseq_get_location(iseq, block.insn_idx), ); // Write a label to jump to the basic block let label = jit.get_label(&mut asm, block_id); asm.write_label(label); // Set up the frame at the first block. :bb0-prologue: if block_id == BlockId(0) { asm.frame_setup(&[], jit.c_stack_slots); } // Compile all parameters for &insn_id in block.params() { match function.find(insn_id) { Insn::Param { idx } => { jit.opnds[insn_id.0] = Some(gen_param(&mut asm, idx)); }, insn => unreachable!("Non-param insn found in block.params: {insn:?}"), } } // Compile all instructions for &insn_id in block.insns() { let insn = function.find(insn_id); if let Err(last_snapshot) = gen_insn(cb, &mut jit, &mut asm, function, insn_id, &insn) { debug!("ZJIT: gen_function: Failed to compile insn: {insn_id} {insn}. Generating side-exit."); gen_side_exit(&mut jit, &mut asm, &SideExitReason::UnhandledHIRInsn(insn_id), &function.frame_state(last_snapshot)); // Don't bother generating code after a side-exit. We won't run it. // TODO(max): Generate ud2 or equivalent. break; }; // It's fine; we generated the instruction } // Make sure the last patch point has enough space to insert a jump asm.pad_patch_point(); } if get_option!(dump_lir) { println!("LIR:\nfn {}:\n{:?}", iseq_name(iseq), asm); } // Generate code if everything can be compiled let result = asm.compile(cb); if let Ok((start_ptr, _)) = result { if get_option!(perf) { let start_usize = start_ptr.raw_ptr(cb) as usize; let end_usize = cb.get_write_ptr().raw_ptr(cb) as usize; let code_size = end_usize - start_usize; let iseq_name = iseq_get_location(iseq, 0); register_with_perf(iseq_name, start_usize, code_size); } if ZJITState::should_log_compiled_iseqs() { let iseq_name = iseq_get_location(iseq, 0); ZJITState::log_compile(iseq_name); } } result.map(|(start_ptr, gc_offsets)| (start_ptr, gc_offsets, jit.iseq_calls)) } /// Compile an instruction fn gen_insn(cb: &mut CodeBlock, jit: &mut JITState, asm: &mut Assembler, function: &Function, insn_id: InsnId, insn: &Insn) -> Result<(), InsnId> { // Convert InsnId to lir::Opnd macro_rules! opnd { ($insn_id:ident) => { jit.get_opnd($insn_id.clone()) }; } macro_rules! opnds { ($insn_ids:ident) => { { $insn_ids.iter().map(|insn_id| jit.get_opnd(*insn_id)).collect::>() } }; } macro_rules! no_output { ($call:expr) => { { let () = $call; return Ok(()); } }; } if !matches!(*insn, Insn::Snapshot { .. }) { asm_comment!(asm, "Insn: {insn_id} {insn}"); } let out_opnd = match insn { Insn::Const { val: Const::Value(val) } => gen_const(*val), Insn::Const { .. } => panic!("Unexpected Const in gen_insn: {insn}"), Insn::NewArray { elements, state } => gen_new_array(asm, opnds!(elements), &function.frame_state(*state)), Insn::NewHash { elements, state } => gen_new_hash(jit, asm, elements, &function.frame_state(*state)), Insn::NewRange { low, high, flag, state } => gen_new_range(jit, asm, opnd!(low), opnd!(high), *flag, &function.frame_state(*state)), Insn::NewRangeFixnum { low, high, flag, state } => gen_new_range_fixnum(asm, opnd!(low), opnd!(high), *flag, &function.frame_state(*state)), Insn::ArrayDup { val, state } => gen_array_dup(asm, opnd!(val), &function.frame_state(*state)), Insn::ObjectAlloc { val, state } => gen_object_alloc(jit, asm, opnd!(val), &function.frame_state(*state)), &Insn::ObjectAllocClass { class, state } => gen_object_alloc_class(asm, class, &function.frame_state(state)), Insn::StringCopy { val, chilled, state } => gen_string_copy(asm, opnd!(val), *chilled, &function.frame_state(*state)), // concatstrings shouldn't have 0 strings // If it happens we abort the compilation for now Insn::StringConcat { strings, state, .. } if strings.is_empty() => return Err(*state), Insn::StringConcat { strings, state } => gen_string_concat(jit, asm, opnds!(strings), &function.frame_state(*state)), Insn::StringIntern { val, state } => gen_intern(asm, opnd!(val), &function.frame_state(*state)), Insn::ToRegexp { opt, values, state } => gen_toregexp(jit, asm, *opt, opnds!(values), &function.frame_state(*state)), Insn::Param { idx } => unreachable!("block.insns should not have Insn::Param({idx})"), Insn::Snapshot { .. } => return Ok(()), // we don't need to do anything for this instruction at the moment Insn::Jump(branch) => no_output!(gen_jump(jit, asm, branch)), Insn::IfTrue { val, target } => no_output!(gen_if_true(jit, asm, opnd!(val), target)), Insn::IfFalse { val, target } => no_output!(gen_if_false(jit, asm, opnd!(val), target)), &Insn::Send { cd, blockiseq, state, .. } => gen_send(jit, asm, cd, blockiseq, &function.frame_state(state)), &Insn::SendForward { cd, blockiseq, state, .. } => gen_send_forward(jit, asm, cd, blockiseq, &function.frame_state(state)), Insn::SendWithoutBlock { cd, state, def_type, .. } => gen_send_without_block(jit, asm, *cd, *def_type, &function.frame_state(*state)), // Give up SendWithoutBlockDirect for 6+ args since asm.ccall() doesn't support it. Insn::SendWithoutBlockDirect { cd, state, args, .. } if args.len() + 1 > C_ARG_OPNDS.len() => // +1 for self gen_send_without_block(jit, asm, *cd, None, &function.frame_state(*state)), Insn::SendWithoutBlockDirect { cme, iseq, recv, args, state, .. } => gen_send_without_block_direct(cb, jit, asm, *cme, *iseq, opnd!(recv), opnds!(args), &function.frame_state(*state)), &Insn::InvokeSuper { cd, blockiseq, state, .. } => gen_invokesuper(jit, asm, cd, blockiseq, &function.frame_state(state)), Insn::InvokeBlock { cd, state, .. } => gen_invokeblock(jit, asm, *cd, &function.frame_state(*state)), // Ensure we have enough room fit ec, self, and arguments // TODO remove this check when we have stack args (we can use Time.new to test it) Insn::InvokeBuiltin { bf, state, .. } if bf.argc + 2 > (C_ARG_OPNDS.len() as i32) => return Err(*state), Insn::InvokeBuiltin { bf, args, state, .. } => gen_invokebuiltin(jit, asm, &function.frame_state(*state), bf, opnds!(args)), Insn::Return { val } => no_output!(gen_return(asm, opnd!(val))), Insn::FixnumAdd { left, right, state } => gen_fixnum_add(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)), Insn::FixnumSub { left, right, state } => gen_fixnum_sub(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)), Insn::FixnumMult { left, right, state } => gen_fixnum_mult(jit, asm, opnd!(left), opnd!(right), &function.frame_state(*state)), Insn::FixnumEq { left, right } => gen_fixnum_eq(asm, opnd!(left), opnd!(right)), Insn::FixnumNeq { left, right } => gen_fixnum_neq(asm, opnd!(left), opnd!(right)), Insn::FixnumLt { left, right } => gen_fixnum_lt(asm, opnd!(left), opnd!(right)), Insn::FixnumLe { left, right } => gen_fixnum_le(asm, opnd!(left), opnd!(right)), Insn::FixnumGt { left, right } => gen_fixnum_gt(asm, opnd!(left), opnd!(right)), Insn::FixnumGe { left, right } => gen_fixnum_ge(asm, opnd!(left), opnd!(right)), Insn::FixnumAnd { left, right } => gen_fixnum_and(asm, opnd!(left), opnd!(right)), Insn::FixnumOr { left, right } => gen_fixnum_or(asm, opnd!(left), opnd!(right)), Insn::IsNil { val } => gen_isnil(asm, opnd!(val)), &Insn::IsMethodCfunc { val, cd, cfunc, state: _ } => gen_is_method_cfunc(jit, asm, opnd!(val), cd, cfunc), Insn::Test { val } => gen_test(asm, opnd!(val)), Insn::GuardType { val, guard_type, state } => gen_guard_type(jit, asm, opnd!(val), *guard_type, &function.frame_state(*state)), Insn::GuardTypeNot { val, guard_type, state } => gen_guard_type_not(jit, asm, opnd!(val), *guard_type, &function.frame_state(*state)), Insn::GuardBitEquals { val, expected, state } => gen_guard_bit_equals(jit, asm, opnd!(val), *expected, &function.frame_state(*state)), &Insn::GuardBlockParamProxy { level, state } => no_output!(gen_guard_block_param_proxy(jit, asm, level, &function.frame_state(state))), Insn::PatchPoint { invariant, state } => no_output!(gen_patch_point(jit, asm, invariant, &function.frame_state(*state))), Insn::CCall { cfun, args, name: _, return_type: _, elidable: _ } => gen_ccall(asm, *cfun, opnds!(args)), Insn::CCallVariadic { cfun, recv, args, name: _, cme, state } => { gen_ccall_variadic(jit, asm, *cfun, opnd!(recv), opnds!(args), *cme, &function.frame_state(*state)) } Insn::GetIvar { self_val, id, state: _ } => gen_getivar(asm, opnd!(self_val), *id), Insn::SetGlobal { id, val, state } => no_output!(gen_setglobal(jit, asm, *id, opnd!(val), &function.frame_state(*state))), Insn::GetGlobal { id, state } => gen_getglobal(jit, asm, *id, &function.frame_state(*state)), &Insn::GetLocal { ep_offset, level } => gen_getlocal_with_ep(asm, ep_offset, level), &Insn::SetLocal { val, ep_offset, level } => no_output!(gen_setlocal_with_ep(asm, opnd!(val), function.type_of(val), ep_offset, level)), Insn::GetConstantPath { ic, state } => gen_get_constant_path(jit, asm, *ic, &function.frame_state(*state)), Insn::SetIvar { self_val, id, val, state: _ } => no_output!(gen_setivar(asm, opnd!(self_val), *id, opnd!(val))), Insn::SideExit { state, reason } => no_output!(gen_side_exit(jit, asm, reason, &function.frame_state(*state))), Insn::PutSpecialObject { value_type } => gen_putspecialobject(asm, *value_type), Insn::AnyToString { val, str, state } => gen_anytostring(asm, opnd!(val), opnd!(str), &function.frame_state(*state)), Insn::Defined { op_type, obj, pushval, v, state } => gen_defined(jit, asm, *op_type, *obj, *pushval, opnd!(v), &function.frame_state(*state)), Insn::GetSpecialSymbol { symbol_type, state: _ } => gen_getspecial_symbol(asm, *symbol_type), Insn::GetSpecialNumber { nth, state } => gen_getspecial_number(asm, *nth, &function.frame_state(*state)), &Insn::IncrCounter(counter) => no_output!(gen_incr_counter(asm, counter)), Insn::ObjToString { val, cd, state, .. } => gen_objtostring(jit, asm, opnd!(val), *cd, &function.frame_state(*state)), &Insn::CheckInterrupts { state } => no_output!(gen_check_interrupts(jit, asm, &function.frame_state(state))), &Insn::HashDup { val, state } => { gen_hash_dup(asm, opnd!(val), &function.frame_state(state)) }, &Insn::ArrayPush { array, val, state } => { no_output!(gen_array_push(asm, opnd!(array), opnd!(val), &function.frame_state(state))) }, &Insn::ToNewArray { val, state } => { gen_to_new_array(jit, asm, opnd!(val), &function.frame_state(state)) }, &Insn::ToArray { val, state } => { gen_to_array(jit, asm, opnd!(val), &function.frame_state(state)) }, &Insn::DefinedIvar { self_val, id, pushval, .. } => { gen_defined_ivar(asm, opnd!(self_val), id, pushval) }, &Insn::ArrayExtend { left, right, state } => { no_output!(gen_array_extend(jit, asm, opnd!(left), opnd!(right), &function.frame_state(state))) }, &Insn::GuardShape { val, shape, state } => gen_guard_shape(jit, asm, opnd!(val), shape, &function.frame_state(state)), &Insn::LoadIvarEmbedded { self_val, id, index } => gen_load_ivar_embedded(asm, opnd!(self_val), id, index), &Insn::LoadIvarExtended { self_val, id, index } => gen_load_ivar_extended(asm, opnd!(self_val), id, index), &Insn::ArrayMax { state, .. } | &Insn::FixnumDiv { state, .. } | &Insn::FixnumMod { state, .. } | &Insn::Throw { state, .. } => return Err(state), }; assert!(insn.has_output(), "Cannot write LIR output of HIR instruction with no output: {insn}"); // If the instruction has an output, remember it in jit.opnds jit.opnds[insn_id.0] = Some(out_opnd); Ok(()) } /// Gets the EP of the ISeq of the containing method, or "local level". /// Equivalent of GET_LEP() macro. fn gen_get_lep(jit: &JITState, asm: &mut Assembler) -> Opnd { // Equivalent of get_lvar_level() in compile.c fn get_lvar_level(mut iseq: IseqPtr) -> u32 { let local_iseq = unsafe { rb_get_iseq_body_local_iseq(iseq) }; let mut level = 0; while iseq != local_iseq { iseq = unsafe { rb_get_iseq_body_parent_iseq(iseq) }; level += 1; } level } let level = get_lvar_level(jit.iseq); gen_get_ep(asm, level) } // Get EP at `level` from CFP fn gen_get_ep(asm: &mut Assembler, level: u32) -> Opnd { // Load environment pointer EP from CFP into a register let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP); let mut ep_opnd = asm.load(ep_opnd); for _ in 0..level { // Get the previous EP from the current EP // See GET_PREV_EP(ep) macro // VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03)) const UNTAGGING_MASK: Opnd = Opnd::Imm(!0x03); let offset = SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL; ep_opnd = asm.load(Opnd::mem(64, ep_opnd, offset)); ep_opnd = asm.and(ep_opnd, UNTAGGING_MASK); } ep_opnd } fn gen_objtostring(jit: &mut JITState, asm: &mut Assembler, val: Opnd, cd: *const rb_call_data, state: &FrameState) -> Opnd { gen_prepare_non_leaf_call(jit, asm, state); let iseq_opnd = Opnd::Value(jit.iseq.into()); // TODO: Specialize for immediate types // Call rb_vm_objtostring(iseq, recv, cd) let ret = asm_ccall!(asm, rb_vm_objtostring, iseq_opnd, val, (cd as usize).into()); // TODO: Call `to_s` on the receiver if rb_vm_objtostring returns Qundef // Need to replicate what CALL_SIMPLE_METHOD does asm_comment!(asm, "side-exit if rb_vm_objtostring returns Qundef"); asm.cmp(ret, Qundef.into()); asm.je(side_exit(jit, state, ObjToStringFallback)); ret } fn gen_defined(jit: &JITState, asm: &mut Assembler, op_type: usize, obj: VALUE, pushval: VALUE, tested_value: Opnd, state: &FrameState) -> Opnd { match op_type as defined_type { DEFINED_YIELD => { // `yield` goes to the block handler stowed in the "local" iseq which is // the current iseq or a parent. Only the "method" iseq type can be passed a // block handler. (e.g. `yield` in the top level script is a syntax error.) let local_iseq = unsafe { rb_get_iseq_body_local_iseq(jit.iseq) }; if unsafe { rb_get_iseq_body_type(local_iseq) } == ISEQ_TYPE_METHOD { let lep = gen_get_lep(jit, asm); let block_handler = asm.load(Opnd::mem(64, lep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL)); let pushval = asm.load(pushval.into()); asm.cmp(block_handler, VM_BLOCK_HANDLER_NONE.into()); asm.csel_e(Qnil.into(), pushval) } else { Qnil.into() } } _ => { // Save the PC and SP because the callee may allocate or call #respond_to? gen_prepare_non_leaf_call(jit, asm, state); // TODO: Inline the cases for each op_type // Call vm_defined(ec, reg_cfp, op_type, obj, v) let def_result = asm_ccall!(asm, rb_vm_defined, EC, CFP, op_type.into(), obj.into(), tested_value); asm.cmp(def_result.with_num_bits(8), 0.into()); asm.csel_ne(pushval.into(), Qnil.into()) } } } /// Get a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs. /// We generate this instruction with level=0 only when the local variable is on the heap, so we /// can't optimize the level=0 case using the SP register. fn gen_getlocal_with_ep(asm: &mut Assembler, local_ep_offset: u32, level: u32) -> lir::Opnd { let ep = gen_get_ep(asm, level); let offset = -(SIZEOF_VALUE_I32 * i32::try_from(local_ep_offset).unwrap_or_else(|_| panic!("Could not convert local_ep_offset {local_ep_offset} to i32"))); asm.load(Opnd::mem(64, ep, offset)) } /// Set a local variable from a higher scope or the heap. `local_ep_offset` is in number of VALUEs. /// We generate this instruction with level=0 only when the local variable is on the heap, so we /// can't optimize the level=0 case using the SP register. fn gen_setlocal_with_ep(asm: &mut Assembler, val: Opnd, val_type: Type, local_ep_offset: u32, level: u32) { let ep = gen_get_ep(asm, level); // When we've proved that we're writing an immediate, // we can skip the write barrier. if val_type.is_immediate() { let offset = -(SIZEOF_VALUE_I32 * i32::try_from(local_ep_offset).unwrap_or_else(|_| panic!("Could not convert local_ep_offset {local_ep_offset} to i32"))); asm.mov(Opnd::mem(64, ep, offset), val); } else { // We're potentially writing a reference to an IMEMO/env object, // so take care of the write barrier with a function. let local_index = c_int::try_from(local_ep_offset).ok().and_then(|idx| idx.checked_mul(-1)).unwrap_or_else(|| panic!("Could not turn {local_ep_offset} into a negative c_int")); asm_ccall!(asm, rb_vm_env_write, ep, local_index.into(), val); } } fn gen_guard_block_param_proxy(jit: &JITState, asm: &mut Assembler, level: u32, state: &FrameState) { // Bail out if the `&block` local variable has been modified let ep = gen_get_ep(asm, level); let flags = Opnd::mem(64, ep, SIZEOF_VALUE_I32 * (VM_ENV_DATA_INDEX_FLAGS as i32)); asm.test(flags, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM.into()); asm.jnz(side_exit(jit, state, SideExitReason::BlockParamProxyModified)); // This handles two cases which are nearly identical // Block handler is a tagged pointer. Look at the tag. // VM_BH_ISEQ_BLOCK_P(): block_handler & 0x03 == 0x01 // VM_BH_IFUNC_P(): block_handler & 0x03 == 0x03 // So to check for either of those cases we can use: val & 0x1 == 0x1 const _: () = assert!(RUBY_SYMBOL_FLAG & 1 == 0, "guard below rejects symbol block handlers"); // Bail ouf if the block handler is neither ISEQ nor ifunc let block_handler = asm.load(Opnd::mem(64, ep, SIZEOF_VALUE_I32 * VM_ENV_DATA_INDEX_SPECVAL)); asm.test(block_handler, 0x1.into()); asm.jz(side_exit(jit, state, SideExitReason::BlockParamProxyNotIseqOrIfunc)); } fn gen_get_constant_path(jit: &JITState, asm: &mut Assembler, ic: *const iseq_inline_constant_cache, state: &FrameState) -> Opnd { unsafe extern "C" { fn rb_vm_opt_getconstant_path(ec: EcPtr, cfp: CfpPtr, ic: *const iseq_inline_constant_cache) -> VALUE; } // Anything could be called on const_missing gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_vm_opt_getconstant_path, EC, CFP, Opnd::const_ptr(ic)) } fn gen_invokebuiltin(jit: &JITState, asm: &mut Assembler, state: &FrameState, bf: &rb_builtin_function, args: Vec) -> lir::Opnd { assert!(bf.argc + 2 <= C_ARG_OPNDS.len() as i32, "gen_invokebuiltin should not be called for builtin function {} with too many arguments: {}", unsafe { std::ffi::CStr::from_ptr(bf.name).to_str().unwrap() }, bf.argc); // Anything can happen inside builtin functions gen_prepare_non_leaf_call(jit, asm, state); let mut cargs = vec![EC]; cargs.extend(args); asm.ccall(bf.func_ptr as *const u8, cargs) } /// Record a patch point that should be invalidated on a given invariant fn gen_patch_point(jit: &mut JITState, asm: &mut Assembler, invariant: &Invariant, state: &FrameState) { let payload_ptr = get_or_create_iseq_payload_ptr(jit.iseq); let label = asm.new_label("patch_point").unwrap_label(); let invariant = *invariant; // Compile a side exit. Fill nop instructions if the last patch point is too close. asm.patch_point(build_side_exit(jit, state, PatchPoint(invariant), Some(label))); // Remember the current address as a patch point asm.pos_marker(move |code_ptr, cb| { let side_exit_ptr = cb.resolve_label(label); match invariant { Invariant::BOPRedefined { klass, bop } => { track_bop_assumption(klass, bop, code_ptr, side_exit_ptr, payload_ptr); } Invariant::MethodRedefined { klass: _, method: _, cme } => { track_cme_assumption(cme, code_ptr, side_exit_ptr, payload_ptr); } Invariant::StableConstantNames { idlist } => { track_stable_constant_names_assumption(idlist, code_ptr, side_exit_ptr, payload_ptr); } Invariant::NoTracePoint => { track_no_trace_point_assumption(code_ptr, side_exit_ptr, payload_ptr); } Invariant::NoEPEscape(iseq) => { track_no_ep_escape_assumption(iseq, code_ptr, side_exit_ptr, payload_ptr); } Invariant::SingleRactorMode => { track_single_ractor_assumption(code_ptr, side_exit_ptr, payload_ptr); } } }); } /// Lowering for [`Insn::CCall`]. This is a low-level raw call that doesn't know /// anything about the callee, so handling for e.g. GC safety is dealt with elsewhere. fn gen_ccall(asm: &mut Assembler, cfun: *const u8, args: Vec) -> lir::Opnd { asm.ccall(cfun, args) } /// Generate code for a variadic C function call /// func(int argc, VALUE *argv, VALUE recv) fn gen_ccall_variadic( jit: &mut JITState, asm: &mut Assembler, cfun: *const u8, recv: Opnd, args: Vec, cme: *const rb_callable_method_entry_t, state: &FrameState, ) -> lir::Opnd { gen_prepare_non_leaf_call(jit, asm, state); gen_push_frame(asm, args.len(), state, ControlFrame { recv, iseq: None, cme, frame_type: VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL, }); asm_comment!(asm, "switch to new SP register"); let sp_offset = (state.stack().len() - args.len() + VM_ENV_DATA_SIZE.as_usize()) * SIZEOF_VALUE; let new_sp = asm.add(SP, sp_offset.into()); asm.mov(SP, new_sp); asm_comment!(asm, "switch to new CFP"); let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into()); asm.mov(CFP, new_cfp); asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP); let argv_ptr = gen_push_opnds(jit, asm, &args); let result = asm.ccall(cfun, vec![args.len().into(), argv_ptr, recv]); gen_pop_opnds(asm, &args); asm_comment!(asm, "pop C frame"); let new_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into()); asm.mov(CFP, new_cfp); asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP); asm_comment!(asm, "restore SP register for the caller"); let new_sp = asm.sub(SP, sp_offset.into()); asm.mov(SP, new_sp); result } /// Emit an uncached instance variable lookup fn gen_getivar(asm: &mut Assembler, recv: Opnd, id: ID) -> Opnd { asm_ccall!(asm, rb_ivar_get, recv, id.0.into()) } /// Emit an uncached instance variable store fn gen_setivar(asm: &mut Assembler, recv: Opnd, id: ID, val: Opnd) { asm_ccall!(asm, rb_ivar_set, recv, id.0.into(), val); } /// Look up global variables fn gen_getglobal(jit: &mut JITState, asm: &mut Assembler, id: ID, state: &FrameState) -> Opnd { // `Warning` module's method `warn` can be called when reading certain global variables gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_gvar_get, id.0.into()) } /// Intern a string fn gen_intern(asm: &mut Assembler, val: Opnd, state: &FrameState) -> Opnd { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_str_intern, val) } /// Set global variables fn gen_setglobal(jit: &mut JITState, asm: &mut Assembler, id: ID, val: Opnd, state: &FrameState) { // When trace_var is used, setting a global variable can cause exceptions gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_gvar_set, id.0.into(), val); } /// Side-exit into the interpreter fn gen_side_exit(jit: &mut JITState, asm: &mut Assembler, reason: &SideExitReason, state: &FrameState) { asm.jmp(side_exit(jit, state, *reason)); } /// Emit a special object lookup fn gen_putspecialobject(asm: &mut Assembler, value_type: SpecialObjectType) -> Opnd { // Get the EP of the current CFP and load it into a register let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP); let ep_reg = asm.load(ep_opnd); asm_ccall!(asm, rb_vm_get_special_object, ep_reg, Opnd::UImm(u64::from(value_type))) } fn gen_getspecial_symbol(asm: &mut Assembler, symbol_type: SpecialBackrefSymbol) -> Opnd { // Fetch a "special" backref based on the symbol type let backref = asm_ccall!(asm, rb_backref_get,); match symbol_type { SpecialBackrefSymbol::LastMatch => { asm_ccall!(asm, rb_reg_last_match, backref) } SpecialBackrefSymbol::PreMatch => { asm_ccall!(asm, rb_reg_match_pre, backref) } SpecialBackrefSymbol::PostMatch => { asm_ccall!(asm, rb_reg_match_post, backref) } SpecialBackrefSymbol::LastGroup => { asm_ccall!(asm, rb_reg_match_last, backref) } } } fn gen_getspecial_number(asm: &mut Assembler, nth: u64, state: &FrameState) -> Opnd { // Fetch the N-th match from the last backref based on type shifted by 1 let backref = asm_ccall!(asm, rb_backref_get,); gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_reg_nth_match, Opnd::Imm((nth >> 1).try_into().unwrap()), backref) } fn gen_check_interrupts(jit: &mut JITState, asm: &mut Assembler, state: &FrameState) { // Check for interrupts // see RUBY_VM_CHECK_INTS(ec) macro asm_comment!(asm, "RUBY_VM_CHECK_INTS(ec)"); // Not checking interrupt_mask since it's zero outside finalize_deferred_heap_pages, // signal_exec, or rb_postponed_job_flush. let interrupt_flag = asm.load(Opnd::mem(32, EC, RUBY_OFFSET_EC_INTERRUPT_FLAG)); asm.test(interrupt_flag, interrupt_flag); asm.jnz(side_exit(jit, state, SideExitReason::Interrupt)); } fn gen_hash_dup(asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_hash_resurrect, val) } fn gen_array_push(asm: &mut Assembler, array: Opnd, val: Opnd, state: &FrameState) { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_ary_push, array, val); } fn gen_to_new_array(jit: &mut JITState, asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd { gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_vm_splat_array, Opnd::Value(Qtrue), val) } fn gen_to_array(jit: &mut JITState, asm: &mut Assembler, val: Opnd, state: &FrameState) -> lir::Opnd { gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_vm_splat_array, Opnd::Value(Qfalse), val) } fn gen_defined_ivar(asm: &mut Assembler, self_val: Opnd, id: ID, pushval: VALUE) -> lir::Opnd { asm_ccall!(asm, rb_zjit_defined_ivar, self_val, id.0.into(), Opnd::Value(pushval)) } fn gen_array_extend(jit: &mut JITState, asm: &mut Assembler, left: Opnd, right: Opnd, state: &FrameState) { gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_ary_concat, left, right); } fn gen_guard_shape(jit: &mut JITState, asm: &mut Assembler, val: Opnd, shape: ShapeId, state: &FrameState) -> Opnd { let shape_id_offset = unsafe { rb_shape_id_offset() }; let val = asm.load(val); let shape_opnd = Opnd::mem(SHAPE_ID_NUM_BITS as u8, val, shape_id_offset); asm.cmp(shape_opnd, Opnd::UImm(shape.0 as u64)); asm.jne(side_exit(jit, state, SideExitReason::GuardShape(shape))); val } fn gen_load_ivar_embedded(asm: &mut Assembler, self_val: Opnd, id: ID, index: u16) -> Opnd { // See ROBJECT_FIELDS() from include/ruby/internal/core/robject.h asm_comment!(asm, "Load embedded ivar id={} index={}", id.contents_lossy(), index); let offs = ROBJECT_OFFSET_AS_ARY as i32 + (SIZEOF_VALUE * index as usize) as i32; let self_val = asm.load(self_val); let ivar_opnd = Opnd::mem(64, self_val, offs); asm.load(ivar_opnd) } fn gen_load_ivar_extended(asm: &mut Assembler, self_val: Opnd, id: ID, index: u16) -> Opnd { asm_comment!(asm, "Load extended ivar id={} index={}", id.contents_lossy(), index); // Compile time value is *not* embedded. // Get a pointer to the extended table let self_val = asm.load(self_val); let tbl_opnd = asm.load(Opnd::mem(64, self_val, ROBJECT_OFFSET_AS_HEAP_FIELDS as i32)); // Read the ivar from the extended table let ivar_opnd = Opnd::mem(64, tbl_opnd, (SIZEOF_VALUE * index as usize) as i32); asm.load(ivar_opnd) } /// Compile an interpreter entry block to be inserted into an ISEQ fn gen_entry_prologue(asm: &mut Assembler, iseq: IseqPtr) { asm_comment!(asm, "ZJIT entry point: {}", iseq_get_location(iseq, 0)); // Save the registers we'll use for CFP, EP, SP asm.frame_setup(lir::JIT_PRESERVED_REGS, 0); // EC and CFP are passed as arguments asm.mov(EC, C_ARG_OPNDS[0]); asm.mov(CFP, C_ARG_OPNDS[1]); // Load the current SP from the CFP into REG_SP asm.mov(SP, Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP)); // Currently, we support only the case that no optional arguments are given. // Bail out if any optional argument is supplied. let opt_num = unsafe { get_iseq_body_param_opt_num(iseq) }; if opt_num > 0 { asm_comment!(asm, "guard no optional arguments"); let no_opts_pc = unsafe { rb_iseq_pc_at_idx(iseq, 0) }; asm.cmp(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_PC), Opnd::const_ptr(no_opts_pc)); let no_opts_label = asm.new_label("no_opts"); asm.je(no_opts_label.clone()); gen_incr_counter(asm, Counter::exit_optional_arguments); asm.frame_teardown(lir::JIT_PRESERVED_REGS); asm.cret(Qundef.into()); asm.write_label(no_opts_label); } } /// Assign method arguments to basic block arguments at JIT entry fn gen_entry_params(asm: &mut Assembler, iseq: IseqPtr, entry_block: &Block) { let num_params = entry_block.params().len() - 1; // -1 to exclude self if num_params > 0 { asm_comment!(asm, "set method params: {num_params}"); // Fill basic block parameters. // Doing it in reverse is load-bearing. High index params have memory slots that might // require using a register to fill. Filling them first avoids clobbering. for idx in (0..num_params).rev() { let param = param_opnd(idx + 1); // +1 for self let local = gen_entry_param(asm, iseq, idx); // Funky offset adjustment to write into the native stack frame of the // HIR function we'll be calling into. This only makes sense in context // of the schedule of instructions in gen_entry() for the JIT entry point. // // The entry point needs to load VALUEs into native stack slots _before_ the // frame containing the slots exists. So, we anticipate the stack frame size // of the Function and subtract offsets based on that. // // native SP at entry point ─────►┌────────────┐ Native SP grows downwards // │ │ ↓ on all arches we support. // SP-0x8 ├────────────┤ // │ │ // where native SP SP-0x10├────────────┤ // would be while │ │ // the HIR function ────────────► └────────────┘ // is running match param { Opnd::Mem(lir::Mem { base: _, disp, num_bits }) => { let param_slot = Opnd::mem(num_bits, NATIVE_STACK_PTR, disp - Assembler::frame_size()); asm.mov(param_slot, local); } // Prepare for parallel move for locals in registers reg @ Opnd::Reg(_) => { asm.load_into(reg, local); } _ => unreachable!("on entry, params are either in memory or in reg. Got {param:?}") } // Assign local variables to the basic block arguments } } asm.load_into(param_opnd(SELF_PARAM_IDX), Opnd::mem(VALUE_BITS, CFP, RUBY_OFFSET_CFP_SELF)); } /// Set branch params to basic block arguments fn gen_branch_params(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) { if branch.args.is_empty() { return; } asm_comment!(asm, "set branch params: {}", branch.args.len()); let mut moves: Vec<(Reg, Opnd)> = vec![]; for (idx, &arg) in branch.args.iter().enumerate() { match param_opnd(idx) { Opnd::Reg(reg) => { // If a parameter is a register, we need to parallel-move it moves.push((reg, jit.get_opnd(arg))); }, param => { // If a parameter is memory, we set it beforehand asm.mov(param, jit.get_opnd(arg)); } } } asm.parallel_mov(moves); } /// Get a method parameter on JIT entry. As of entry, whether EP is escaped or not solely /// depends on the ISEQ type. fn gen_entry_param(asm: &mut Assembler, iseq: IseqPtr, local_idx: usize) -> lir::Opnd { let ep_offset = local_idx_to_ep_offset(iseq, local_idx); // If the ISEQ does not escape EP, we can optimize the local variable access using the SP register. if !iseq_entry_escapes_ep(iseq) { // Create a reference to the local variable using the SP register. We assume EP == BP. // TODO: Implement the invalidation in rb_zjit_invalidate_no_ep_escape() let offs = -(SIZEOF_VALUE_I32 * (ep_offset + 1)); Opnd::mem(64, SP, offs) } else { // Get the EP of the current CFP let ep_opnd = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_EP); let ep_reg = asm.load(ep_opnd); // Create a reference to the local variable using cfp->ep let offs = -(SIZEOF_VALUE_I32 * ep_offset); Opnd::mem(64, ep_reg, offs) } } /// Compile a constant fn gen_const(val: VALUE) -> lir::Opnd { // Just propagate the constant value and generate nothing Opnd::Value(val) } /// Compile a basic block argument fn gen_param(asm: &mut Assembler, idx: usize) -> lir::Opnd { // Allocate a register or a stack slot match param_opnd(idx) { // If it's a register, insert LiveReg instruction to reserve the register // in the register pool for register allocation. param @ Opnd::Reg(_) => asm.live_reg_opnd(param), param => param, } } /// Compile a jump to a basic block fn gen_jump(jit: &mut JITState, asm: &mut Assembler, branch: &BranchEdge) { // Set basic block arguments gen_branch_params(jit, asm, branch); // Jump to the basic block let target = jit.get_label(asm, branch.target); asm.jmp(target); } /// Compile a conditional branch to a basic block fn gen_if_true(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) { // If val is zero, move on to the next instruction. let if_false = asm.new_label("if_false"); asm.test(val, val); asm.jz(if_false.clone()); // If val is not zero, set basic block arguments and jump to the branch target. // TODO: Consider generating the loads out-of-line let if_true = jit.get_label(asm, branch.target); gen_branch_params(jit, asm, branch); asm.jmp(if_true); asm.write_label(if_false); } /// Compile a conditional branch to a basic block fn gen_if_false(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, branch: &BranchEdge) { // If val is not zero, move on to the next instruction. let if_true = asm.new_label("if_true"); asm.test(val, val); asm.jnz(if_true.clone()); // If val is zero, set basic block arguments and jump to the branch target. // TODO: Consider generating the loads out-of-line let if_false = jit.get_label(asm, branch.target); gen_branch_params(jit, asm, branch); asm.jmp(if_false); asm.write_label(if_true); } /// Compile a dynamic dispatch with block fn gen_send( jit: &mut JITState, asm: &mut Assembler, cd: *const rb_call_data, blockiseq: IseqPtr, state: &FrameState, ) -> lir::Opnd { gen_incr_counter(asm, Counter::dynamic_send_count); gen_incr_counter(asm, Counter::dynamic_send_type_send); gen_prepare_non_leaf_call(jit, asm, state); asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd)); unsafe extern "C" { fn rb_vm_send(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE; } asm.ccall( rb_vm_send as *const u8, vec![EC, CFP, (cd as usize).into(), VALUE(blockiseq as usize).into()], ) } /// Compile a dynamic dispatch with `...` fn gen_send_forward( jit: &mut JITState, asm: &mut Assembler, cd: *const rb_call_data, blockiseq: IseqPtr, state: &FrameState, ) -> lir::Opnd { gen_incr_counter(asm, Counter::dynamic_send_count); gen_incr_counter(asm, Counter::dynamic_send_type_send_forward); gen_prepare_non_leaf_call(jit, asm, state); asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd)); unsafe extern "C" { fn rb_vm_sendforward(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE; } asm.ccall( rb_vm_sendforward as *const u8, vec![EC, CFP, (cd as usize).into(), VALUE(blockiseq as usize).into()], ) } /// Compile a dynamic dispatch without block fn gen_send_without_block( jit: &mut JITState, asm: &mut Assembler, cd: *const rb_call_data, def_type: Option, state: &FrameState, ) -> lir::Opnd { gen_incr_counter(asm, Counter::dynamic_send_count); gen_incr_counter(asm, Counter::dynamic_send_type_send_without_block); if let Some(def_type) = def_type { gen_incr_counter(asm, send_fallback_counter(def_type)); } gen_prepare_non_leaf_call(jit, asm, state); asm_comment!(asm, "call #{} with dynamic dispatch", ruby_call_method_name(cd)); unsafe extern "C" { fn rb_vm_opt_send_without_block(ec: EcPtr, cfp: CfpPtr, cd: VALUE) -> VALUE; } asm.ccall( rb_vm_opt_send_without_block as *const u8, vec![EC, CFP, (cd as usize).into()], ) } /// Compile a direct jump to an ISEQ call without block fn gen_send_without_block_direct( cb: &mut CodeBlock, jit: &mut JITState, asm: &mut Assembler, cme: *const rb_callable_method_entry_t, iseq: IseqPtr, recv: Opnd, args: Vec, state: &FrameState, ) -> lir::Opnd { let local_size = unsafe { get_iseq_body_local_table_size(iseq) }.as_usize(); // Stack overflow check: fails if CFP<=SP at any point in the callee. asm_comment!(asm, "stack overflow check"); let stack_growth = state.stack_size() + local_size + unsafe { get_iseq_body_stack_max(iseq) }.as_usize(); // vm_push_frame() checks it against a decremented cfp, and CHECK_VM_STACK_OVERFLOW0 // adds to the margin another control frame with `&bounds[1]`. const { assert!(RUBY_SIZEOF_CONTROL_FRAME % SIZEOF_VALUE == 0, "sizeof(rb_control_frame_t) is a multiple of sizeof(VALUE)"); } let cfp_growth = 2 * (RUBY_SIZEOF_CONTROL_FRAME / SIZEOF_VALUE); let peak_offset = SIZEOF_VALUE * (stack_growth + cfp_growth); let stack_limit = asm.add(SP, peak_offset.into()); asm.cmp(CFP, stack_limit); asm.jbe(side_exit(jit, state, StackOverflow)); // Save cfp->pc and cfp->sp for the caller frame gen_prepare_call_with_gc(asm, state, false); // Special SP math. Can't use gen_prepare_non_leaf_call gen_save_sp(asm, state.stack().len() - args.len() - 1); // -1 for receiver gen_spill_locals(jit, asm, state); gen_spill_stack(jit, asm, state); // Set up the new frame // TODO: Lazily materialize caller frames on side exits or when needed gen_push_frame(asm, args.len(), state, ControlFrame { recv, iseq: Some(iseq), cme, frame_type: VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL, }); asm_comment!(asm, "switch to new SP register"); let sp_offset = (state.stack().len() + local_size - args.len() + VM_ENV_DATA_SIZE.as_usize()) * SIZEOF_VALUE; let new_sp = asm.add(SP, sp_offset.into()); asm.mov(SP, new_sp); asm_comment!(asm, "switch to new CFP"); let new_cfp = asm.sub(CFP, RUBY_SIZEOF_CONTROL_FRAME.into()); asm.mov(CFP, new_cfp); asm.store(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP); // Set up arguments let mut c_args = vec![recv]; c_args.extend(args); // Make a method call. The target address will be rewritten once compiled. let iseq_call = IseqCall::new(iseq); let dummy_ptr = cb.get_write_ptr().raw_ptr(cb); jit.iseq_calls.push(iseq_call.clone()); let ret = asm.ccall_with_iseq_call(dummy_ptr, c_args, &iseq_call); // If a callee side-exits, i.e. returns Qundef, propagate the return value to the caller. // The caller will side-exit the callee into the interpreter. // TODO: Let side exit code pop all JIT frames to optimize away this cmp + je. asm_comment!(asm, "side-exit if callee side-exits"); asm.cmp(ret, Qundef.into()); // Restore the C stack pointer on exit asm.je(ZJITState::get_exit_trampoline().into()); asm_comment!(asm, "restore SP register for the caller"); let new_sp = asm.sub(SP, sp_offset.into()); asm.mov(SP, new_sp); ret } /// Compile for invokeblock fn gen_invokeblock( jit: &mut JITState, asm: &mut Assembler, cd: *const rb_call_data, state: &FrameState, ) -> lir::Opnd { gen_incr_counter(asm, Counter::dynamic_send_count); gen_incr_counter(asm, Counter::dynamic_send_type_invokeblock); gen_prepare_non_leaf_call(jit, asm, state); asm_comment!(asm, "call invokeblock"); unsafe extern "C" { fn rb_vm_invokeblock(ec: EcPtr, cfp: CfpPtr, cd: VALUE) -> VALUE; } asm.ccall( rb_vm_invokeblock as *const u8, vec![EC, CFP, (cd as usize).into()], ) } /// Compile a dynamic dispatch for `super` fn gen_invokesuper( jit: &mut JITState, asm: &mut Assembler, cd: *const rb_call_data, blockiseq: IseqPtr, state: &FrameState, ) -> lir::Opnd { gen_incr_counter(asm, Counter::dynamic_send_count); gen_incr_counter(asm, Counter::dynamic_send_type_invokesuper); gen_prepare_non_leaf_call(jit, asm, state); asm_comment!(asm, "call super with dynamic dispatch"); unsafe extern "C" { fn rb_vm_invokesuper(ec: EcPtr, cfp: CfpPtr, cd: VALUE, blockiseq: IseqPtr) -> VALUE; } asm.ccall( rb_vm_invokesuper as *const u8, vec![EC, CFP, (cd as usize).into(), VALUE(blockiseq as usize).into()], ) } /// Compile a string resurrection fn gen_string_copy(asm: &mut Assembler, recv: Opnd, chilled: bool, state: &FrameState) -> Opnd { // TODO: split rb_ec_str_resurrect into separate functions gen_prepare_leaf_call_with_gc(asm, state); let chilled = if chilled { Opnd::Imm(1) } else { Opnd::Imm(0) }; asm_ccall!(asm, rb_ec_str_resurrect, EC, recv, chilled) } /// Compile an array duplication instruction fn gen_array_dup( asm: &mut Assembler, val: lir::Opnd, state: &FrameState, ) -> lir::Opnd { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_ary_resurrect, val) } /// Compile a new array instruction fn gen_new_array( asm: &mut Assembler, elements: Vec, state: &FrameState, ) -> lir::Opnd { gen_prepare_leaf_call_with_gc(asm, state); let length: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long"); let new_array = asm_ccall!(asm, rb_ary_new_capa, length.into()); for val in elements { asm_ccall!(asm, rb_ary_push, new_array, val); } new_array } /// Compile a new hash instruction fn gen_new_hash( jit: &mut JITState, asm: &mut Assembler, elements: &[(InsnId, InsnId)], state: &FrameState, ) -> lir::Opnd { gen_prepare_non_leaf_call(jit, asm, state); let cap: c_long = elements.len().try_into().expect("Unable to fit length of elements into c_long"); let new_hash = asm_ccall!(asm, rb_hash_new_with_size, lir::Opnd::Imm(cap)); if !elements.is_empty() { let mut pairs = Vec::new(); for (key_id, val_id) in elements.iter() { let key = jit.get_opnd(*key_id); let val = jit.get_opnd(*val_id); pairs.push(key); pairs.push(val); } let argv = gen_push_opnds(jit, asm, &pairs); let argc = (elements.len() * 2) as ::std::os::raw::c_long; asm_ccall!(asm, rb_hash_bulk_insert, lir::Opnd::Imm(argc), argv, new_hash); gen_pop_opnds(asm, &pairs); } new_hash } /// Compile a new range instruction fn gen_new_range( jit: &JITState, asm: &mut Assembler, low: lir::Opnd, high: lir::Opnd, flag: RangeType, state: &FrameState, ) -> lir::Opnd { // Sometimes calls `low.<=>(high)` gen_prepare_non_leaf_call(jit, asm, state); // Call rb_range_new(low, high, flag) asm_ccall!(asm, rb_range_new, low, high, (flag as i64).into()) } fn gen_new_range_fixnum( asm: &mut Assembler, low: lir::Opnd, high: lir::Opnd, flag: RangeType, state: &FrameState, ) -> lir::Opnd { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_range_new, low, high, (flag as i64).into()) } fn gen_object_alloc(jit: &JITState, asm: &mut Assembler, val: lir::Opnd, state: &FrameState) -> lir::Opnd { // Allocating an object from an unknown class is non-leaf; see doc for `ObjectAlloc`. gen_prepare_non_leaf_call(jit, asm, state); asm_ccall!(asm, rb_obj_alloc, val) } fn gen_object_alloc_class(asm: &mut Assembler, class: VALUE, state: &FrameState) -> lir::Opnd { // Allocating an object for a known class with default allocator is leaf; see doc for // `ObjectAllocClass`. gen_prepare_leaf_call_with_gc(asm, state); assert!(unsafe { rb_zjit_class_has_default_allocator(class) }, "class must have default allocator"); // TODO(max): inline code to allocate an instance asm_ccall!(asm, rb_class_allocate_instance, class.into()) } /// Compile code that exits from JIT code with a return value fn gen_return(asm: &mut Assembler, val: lir::Opnd) { // Pop the current frame (ec->cfp++) // Note: the return PC is already in the previous CFP asm_comment!(asm, "pop stack frame"); let incr_cfp = asm.add(CFP, RUBY_SIZEOF_CONTROL_FRAME.into()); asm.mov(CFP, incr_cfp); asm.mov(Opnd::mem(64, EC, RUBY_OFFSET_EC_CFP), CFP); // Order here is important. Because we're about to tear down the frame, // we need to load the return value, which might be part of the frame. asm.load_into(C_RET_OPND, val); // Return from the function asm.frame_teardown(&[]); // matching the setup in :bb0-prologue: asm.cret(C_RET_OPND); } /// Compile Fixnum + Fixnum fn gen_fixnum_add(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd { // Add left + right and test for overflow let left_untag = asm.sub(left, Opnd::Imm(1)); let out_val = asm.add(left_untag, right); asm.jo(side_exit(jit, state, FixnumAddOverflow)); out_val } /// Compile Fixnum - Fixnum fn gen_fixnum_sub(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd { // Subtract left - right and test for overflow let val_untag = asm.sub(left, right); asm.jo(side_exit(jit, state, FixnumSubOverflow)); asm.add(val_untag, Opnd::Imm(1)) } /// Compile Fixnum * Fixnum fn gen_fixnum_mult(jit: &mut JITState, asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd, state: &FrameState) -> lir::Opnd { // Do some bitwise gymnastics to handle tag bits // x * y is translated to (x >> 1) * (y - 1) + 1 let left_untag = asm.rshift(left, Opnd::UImm(1)); let right_untag = asm.sub(right, Opnd::UImm(1)); let out_val = asm.mul(left_untag, right_untag); // Test for overflow asm.jo_mul(side_exit(jit, state, FixnumMultOverflow)); asm.add(out_val, Opnd::UImm(1)) } /// Compile Fixnum == Fixnum fn gen_fixnum_eq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_e(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum != Fixnum fn gen_fixnum_neq(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_ne(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum < Fixnum fn gen_fixnum_lt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_l(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum <= Fixnum fn gen_fixnum_le(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_le(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum > Fixnum fn gen_fixnum_gt(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_g(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum >= Fixnum fn gen_fixnum_ge(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.cmp(left, right); asm.csel_ge(Qtrue.into(), Qfalse.into()) } /// Compile Fixnum & Fixnum fn gen_fixnum_and(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.and(left, right) } /// Compile Fixnum | Fixnum fn gen_fixnum_or(asm: &mut Assembler, left: lir::Opnd, right: lir::Opnd) -> lir::Opnd { asm.or(left, right) } // Compile val == nil fn gen_isnil(asm: &mut Assembler, val: lir::Opnd) -> lir::Opnd { asm.cmp(val, Qnil.into()); // TODO: Implement and use setcc asm.csel_e(Opnd::Imm(1), Opnd::Imm(0)) } fn gen_is_method_cfunc(jit: &JITState, asm: &mut Assembler, val: lir::Opnd, cd: *const rb_call_data, cfunc: *const u8) -> lir::Opnd { unsafe extern "C" { fn rb_vm_method_cfunc_is(iseq: IseqPtr, cd: *const rb_call_data, recv: VALUE, cfunc: *const u8) -> VALUE; } asm_ccall!(asm, rb_vm_method_cfunc_is, VALUE(jit.iseq as usize).into(), (cd as usize).into(), val, (cfunc as usize).into()) } fn gen_anytostring(asm: &mut Assembler, val: lir::Opnd, str: lir::Opnd, state: &FrameState) -> lir::Opnd { gen_prepare_leaf_call_with_gc(asm, state); asm_ccall!(asm, rb_obj_as_string_result, str, val) } /// Evaluate if a value is truthy /// Produces a CBool type (0 or 1) /// In Ruby, only nil and false are falsy /// Everything else evaluates to true fn gen_test(asm: &mut Assembler, val: lir::Opnd) -> lir::Opnd { // Test if any bit (outside of the Qnil bit) is on // See RB_TEST(), include/ruby/internal/special_consts.h asm.test(val, Opnd::Imm(!Qnil.as_i64())); asm.csel_e(0.into(), 1.into()) } /// Compile a type check with a side exit fn gen_guard_type(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, guard_type: Type, state: &FrameState) -> lir::Opnd { if guard_type.is_subtype(types::Fixnum) { asm.test(val, Opnd::UImm(RUBY_FIXNUM_FLAG as u64)); asm.jz(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_subtype(types::Flonum) { // Flonum: (val & RUBY_FLONUM_MASK) == RUBY_FLONUM_FLAG let masked = asm.and(val, Opnd::UImm(RUBY_FLONUM_MASK as u64)); asm.cmp(masked, Opnd::UImm(RUBY_FLONUM_FLAG as u64)); asm.jne(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_subtype(types::StaticSymbol) { // Static symbols have (val & 0xff) == RUBY_SYMBOL_FLAG // Use 8-bit comparison like YJIT does. GuardType should not be used // for a known VALUE, which with_num_bits() does not support. asm.cmp(val.with_num_bits(8), Opnd::UImm(RUBY_SYMBOL_FLAG as u64)); asm.jne(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_subtype(types::NilClass) { asm.cmp(val, Qnil.into()); asm.jne(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_subtype(types::TrueClass) { asm.cmp(val, Qtrue.into()); asm.jne(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_subtype(types::FalseClass) { asm.cmp(val, Qfalse.into()); asm.jne(side_exit(jit, state, GuardType(guard_type))); } else if guard_type.is_immediate() { // All immediate types' guard should have been handled above panic!("unexpected immediate guard type: {guard_type}"); } else if let Some(expected_class) = guard_type.runtime_exact_ruby_class() { asm_comment!(asm, "guard exact class for non-immediate types"); // If val isn't in a register, load it to use it as the base of Opnd::mem later. // TODO: Max thinks codegen should not care about the shapes of the operands except to create them. (Shopify/ruby#685) let val = match val { Opnd::Reg(_) | Opnd::VReg { .. } => val, _ => asm.load(val), }; // Check if it's a special constant let side_exit = side_exit(jit, state, GuardType(guard_type)); asm.test(val, (RUBY_IMMEDIATE_MASK as u64).into()); asm.jnz(side_exit.clone()); // Check if it's false asm.cmp(val, Qfalse.into()); asm.je(side_exit.clone()); // Load the class from the object's klass field let klass = asm.load(Opnd::mem(64, val, RUBY_OFFSET_RBASIC_KLASS)); asm.cmp(klass, Opnd::Value(expected_class)); asm.jne(side_exit); } else if guard_type.is_subtype(types::String) { let side = side_exit(jit, state, GuardType(guard_type)); // Check special constant asm.test(val, Opnd::UImm(RUBY_IMMEDIATE_MASK as u64)); asm.jnz(side.clone()); // Check false asm.cmp(val, Qfalse.into()); asm.je(side.clone()); let val = match val { Opnd::Reg(_) | Opnd::VReg { .. } => val, _ => asm.load(val), }; let flags = asm.load(Opnd::mem(VALUE_BITS, val, RUBY_OFFSET_RBASIC_FLAGS)); let tag = asm.and(flags, Opnd::UImm(RUBY_T_MASK as u64)); asm.cmp(tag, Opnd::UImm(RUBY_T_STRING as u64)); asm.jne(side); } else if guard_type.bit_equal(types::HeapObject) { let side_exit = side_exit(jit, state, GuardType(guard_type)); asm.cmp(val, Opnd::Value(Qfalse)); asm.je(side_exit.clone()); asm.test(val, (RUBY_IMMEDIATE_MASK as u64).into()); asm.jnz(side_exit); } else { unimplemented!("unsupported type: {guard_type}"); } val } fn gen_guard_type_not(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, guard_type: Type, state: &FrameState) -> lir::Opnd { if guard_type.is_subtype(types::String) { // We only exit if val *is* a String. Otherwise we fall through. let cont = asm.new_label("guard_type_not_string_cont"); let side = side_exit(jit, state, GuardTypeNot(guard_type)); // Continue if special constant (not string) asm.test(val, Opnd::UImm(RUBY_IMMEDIATE_MASK as u64)); asm.jnz(cont.clone()); // Continue if false (not string) asm.cmp(val, Qfalse.into()); asm.je(cont.clone()); let val = match val { Opnd::Reg(_) | Opnd::VReg { .. } => val, _ => asm.load(val), }; let flags = asm.load(Opnd::mem(VALUE_BITS, val, RUBY_OFFSET_RBASIC_FLAGS)); let tag = asm.and(flags, Opnd::UImm(RUBY_T_MASK as u64)); asm.cmp(tag, Opnd::UImm(RUBY_T_STRING as u64)); asm.je(side); // Otherwise (non-string heap object), continue. asm.write_label(cont); } else { unimplemented!("unsupported type: {guard_type}"); } val } /// Compile an identity check with a side exit fn gen_guard_bit_equals(jit: &mut JITState, asm: &mut Assembler, val: lir::Opnd, expected: VALUE, state: &FrameState) -> lir::Opnd { asm.cmp(val, Opnd::Value(expected)); asm.jnz(side_exit(jit, state, GuardBitEquals(expected))); val } /// Generate code that increments a counter if --zjit-stats fn gen_incr_counter(asm: &mut Assembler, counter: Counter) { if get_option!(stats) { let ptr = counter_ptr(counter); let ptr_reg = asm.load(Opnd::const_ptr(ptr as *const u8)); let counter_opnd = Opnd::mem(64, ptr_reg, 0); // Increment and store the updated value asm.incr_counter(counter_opnd, Opnd::UImm(1)); } } /// Save the current PC on the CFP as a preparation for calling a C function /// that may allocate objects and trigger GC. Use gen_prepare_non_leaf_call() /// if it may raise exceptions or call arbitrary methods. /// /// Unlike YJIT, we don't need to save the stack slots to protect them from GC /// because the backend spills all live registers onto the C stack on CCall. fn gen_prepare_call_with_gc(asm: &mut Assembler, state: &FrameState, leaf: bool) { let opcode: usize = state.get_opcode().try_into().unwrap(); let next_pc: *const VALUE = unsafe { state.pc.offset(insn_len(opcode) as isize) }; gen_incr_counter(asm, Counter::vm_write_pc_count); asm_comment!(asm, "save PC to CFP"); asm.mov(Opnd::mem(64, CFP, RUBY_OFFSET_CFP_PC), Opnd::const_ptr(next_pc)); if leaf { asm.expect_leaf_ccall(state.stack_size()); } } fn gen_prepare_leaf_call_with_gc(asm: &mut Assembler, state: &FrameState) { gen_prepare_call_with_gc(asm, state, true); } /// Save the current SP on the CFP fn gen_save_sp(asm: &mut Assembler, stack_size: usize) { // Update cfp->sp which will be read by the interpreter. We also have the SP register in JIT // code, and ZJIT's codegen currently assumes the SP register doesn't move, e.g. gen_param(). // So we don't update the SP register here. We could update the SP register to avoid using // an extra register for asm.lea(), but you'll need to manage the SP offset like YJIT does. gen_incr_counter(asm, Counter::vm_write_sp_count); asm_comment!(asm, "save SP to CFP: {}", stack_size); let sp_addr = asm.lea(Opnd::mem(64, SP, stack_size as i32 * SIZEOF_VALUE_I32)); let cfp_sp = Opnd::mem(64, CFP, RUBY_OFFSET_CFP_SP); asm.mov(cfp_sp, sp_addr); } /// Spill locals onto the stack. fn gen_spill_locals(jit: &JITState, asm: &mut Assembler, state: &FrameState) { // TODO: Avoid spilling locals that have been spilled before and not changed. gen_incr_counter(asm, Counter::vm_write_locals_count); asm_comment!(asm, "spill locals"); for (idx, &insn_id) in state.locals().enumerate() { asm.mov(Opnd::mem(64, SP, (-local_idx_to_ep_offset(jit.iseq, idx) - 1) * SIZEOF_VALUE_I32), jit.get_opnd(insn_id)); } } /// Spill the virtual stack onto the stack. fn gen_spill_stack(jit: &JITState, asm: &mut Assembler, state: &FrameState) { // This function does not call gen_save_sp() at the moment because // gen_send_without_block_direct() spills stack slots above SP for arguments. gen_incr_counter(asm, Counter::vm_write_stack_count); asm_comment!(asm, "spill stack"); for (idx, &insn_id) in state.stack().enumerate() { asm.mov(Opnd::mem(64, SP, idx as i32 * SIZEOF_VALUE_I32), jit.get_opnd(insn_id)); } } /// Prepare for calling a C function that may call an arbitrary method. /// Use gen_prepare_leaf_call_with_gc() if the method is leaf but allocates objects. fn gen_prepare_non_leaf_call(jit: &JITState, asm: &mut Assembler, state: &FrameState) { // TODO: Lazily materialize caller frames when needed // Save PC for backtraces and allocation tracing gen_prepare_call_with_gc(asm, state, false); // Save SP and spill the virtual stack in case it raises an exception // and the interpreter uses the stack for handling the exception gen_save_sp(asm, state.stack().len()); gen_spill_stack(jit, asm, state); // Spill locals in case the method looks at caller Bindings gen_spill_locals(jit, asm, state); } /// Frame metadata written by gen_push_frame() struct ControlFrame { recv: Opnd, iseq: Option, cme: *const rb_callable_method_entry_t, frame_type: u32, } /// Compile an interpreter frame fn gen_push_frame(asm: &mut Assembler, argc: usize, state: &FrameState, frame: ControlFrame) { // Locals are written by the callee frame on side-exits or non-leaf calls // See vm_push_frame() for details asm_comment!(asm, "push cme, specval, frame type"); // ep[-2]: cref of cme let local_size = if let Some(iseq) = frame.iseq { (unsafe { get_iseq_body_local_table_size(iseq) }) as i32 } else { 0 }; let ep_offset = state.stack().len() as i32 + local_size - argc as i32 + VM_ENV_DATA_SIZE as i32 - 1; asm.store(Opnd::mem(64, SP, (ep_offset - 2) * SIZEOF_VALUE_I32), VALUE::from(frame.cme).into()); // ep[-1]: block_handler or prev EP // block_handler is not supported for now asm.store(Opnd::mem(64, SP, (ep_offset - 1) * SIZEOF_VALUE_I32), VM_BLOCK_HANDLER_NONE.into()); // ep[0]: ENV_FLAGS asm.store(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32), frame.frame_type.into()); // Write to the callee CFP fn cfp_opnd(offset: i32) -> Opnd { Opnd::mem(64, CFP, offset - (RUBY_SIZEOF_CONTROL_FRAME as i32)) } asm_comment!(asm, "push callee control frame"); if let Some(iseq) = frame.iseq { // cfp_opnd(RUBY_OFFSET_CFP_PC): written by the callee frame on side-exits or non-leaf calls // cfp_opnd(RUBY_OFFSET_CFP_SP): written by the callee frame on side-exits or non-leaf calls asm.mov(cfp_opnd(RUBY_OFFSET_CFP_ISEQ), VALUE::from(iseq).into()); } else { // C frames don't have a PC and ISEQ asm.mov(cfp_opnd(RUBY_OFFSET_CFP_PC), 0.into()); let new_sp = asm.lea(Opnd::mem(64, SP, (ep_offset + 1) * SIZEOF_VALUE_I32)); asm.mov(cfp_opnd(RUBY_OFFSET_CFP_SP), new_sp); asm.mov(cfp_opnd(RUBY_OFFSET_CFP_ISEQ), 0.into()); } asm.mov(cfp_opnd(RUBY_OFFSET_CFP_SELF), frame.recv); let ep = asm.lea(Opnd::mem(64, SP, ep_offset * SIZEOF_VALUE_I32)); asm.mov(cfp_opnd(RUBY_OFFSET_CFP_EP), ep); asm.mov(cfp_opnd(RUBY_OFFSET_CFP_BLOCK_CODE), 0.into()); } /// Return an operand we use for the basic block argument at a given index fn param_opnd(idx: usize) -> Opnd { // To simplify the implementation, allocate a fixed register or a stack slot for each basic block argument for now. // Note that this is implemented here as opposed to automatically inside LIR machineries. // TODO: Allow allocating arbitrary registers for basic block arguments if idx < ALLOC_REGS.len() { Opnd::Reg(ALLOC_REGS[idx]) } else { Opnd::mem(64, NATIVE_BASE_PTR, (idx - ALLOC_REGS.len() + 1) as i32 * -SIZEOF_VALUE_I32) } } /// Inverse of ep_offset_to_local_idx(). See ep_offset_to_local_idx() for details. pub fn local_idx_to_ep_offset(iseq: IseqPtr, local_idx: usize) -> i32 { let local_size = unsafe { get_iseq_body_local_table_size(iseq) }; local_size_and_idx_to_ep_offset(local_size as usize, local_idx) } /// Convert the number of locals and a local index to an offset from the EP pub fn local_size_and_idx_to_ep_offset(local_size: usize, local_idx: usize) -> i32 { local_size as i32 - local_idx as i32 - 1 + VM_ENV_DATA_SIZE as i32 } /// Convert the number of locals and a local index to an offset from the BP. /// We don't move the SP register after entry, so we often use SP as BP. pub fn local_size_and_idx_to_bp_offset(local_size: usize, local_idx: usize) -> i32 { local_size_and_idx_to_ep_offset(local_size, local_idx) + 1 } /// Convert ISEQ into High-level IR fn compile_iseq(iseq: IseqPtr) -> Result { // Convert ZJIT instructions back to bare instructions unsafe { crate::cruby::rb_zjit_profile_disable(iseq) }; // Reject ISEQs with very large temp stacks. // We cannot encode too large offsets to access locals in arm64. let stack_max = unsafe { rb_get_iseq_body_stack_max(iseq) }; if stack_max >= i8::MAX as u32 { debug!("ISEQ stack too large: {stack_max}"); return Err(CompileError::IseqStackTooLarge); } let mut function = match iseq_to_hir(iseq) { Ok(function) => function, Err(err) => { let name = crate::cruby::iseq_get_location(iseq, 0); debug!("ZJIT: iseq_to_hir: {err:?}: {name}"); return Err(CompileError::ParseError(err)); } }; if !get_option!(disable_hir_opt) { function.optimize(); } function.dump_hir(); #[cfg(debug_assertions)] if let Err(err) = function.validate() { debug!("ZJIT: compile_iseq: {err:?}"); use crate::hir::ParseError; return Err(CompileError::ParseError(ParseError::Validation(err))); } Ok(function) } /// Build a Target::SideExit for non-PatchPoint instructions fn side_exit(jit: &JITState, state: &FrameState, reason: SideExitReason) -> Target { build_side_exit(jit, state, reason, None) } /// Build a Target::SideExit out of a FrameState fn build_side_exit(jit: &JITState, state: &FrameState, reason: SideExitReason, label: Option