// This file is a fragment of the yjit.o compilation unit. See yjit.c. #include "internal.h" #include "vm_sync.h" #include "vm_callinfo.h" #include "builtin.h" #include "gc.h" #include "iseq.h" #include "internal/compile.h" #include "internal/class.h" #include "yjit.h" #include "yjit_iface.h" #include "yjit_codegen.h" #include "yjit_core.h" #include "darray.h" #ifdef HAVE_LIBCAPSTONE #include static VALUE cYjitDisasm; static VALUE cYjitDisasmInsn; #endif static VALUE mYjit; static VALUE cYjitBlock; #if YJIT_STATS static VALUE cYjitCodeComment; #endif #if YJIT_STATS extern const int rb_vm_max_insn_name_size; static int64_t exit_op_count[VM_INSTRUCTION_SIZE] = { 0 }; #endif // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; struct rb_yjit_options rb_yjit_opts; // Size of code pages to allocate #define CODE_PAGE_SIZE 16 * 1024 // How many code pages to allocate at once #define PAGES_PER_ALLOC 512 static const rb_data_type_t yjit_block_type = { "YJIT/Block", {0, 0, 0, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; // Get the PC for a given index in an iseq static VALUE * yjit_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx) { RUBY_ASSERT(iseq != NULL); RUBY_ASSERT(insn_idx < iseq->body->iseq_size); VALUE *encoded = iseq->body->iseq_encoded; VALUE *pc = &encoded[insn_idx]; return pc; } // For debugging. Print the disassembly of an iseq. RBIMPL_ATTR_MAYBE_UNUSED() static void yjit_print_iseq(const rb_iseq_t *iseq) { char *ptr; long len; VALUE disassembly = rb_iseq_disasm(iseq); RSTRING_GETMEM(disassembly, ptr, len); fprintf(stderr, "%.*s\n", (int)len, ptr); } static int yjit_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc) { const VALUE at_pc = *pc; if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) { return rb_vm_insn_addr2opcode((const void *)at_pc); } else { return (int)at_pc; } } // Verify that calling with cd on receiver goes to callee static void check_cfunc_dispatch(VALUE receiver, struct rb_callinfo *ci, void *callee, rb_callable_method_entry_t *compile_time_cme) { if (METHOD_ENTRY_INVALIDATED(compile_time_cme)) { rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme); } bool callee_correct = false; const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(receiver), vm_ci_mid(ci)); if (cme->def->type == VM_METHOD_TYPE_CFUNC) { const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc); if ((void *)cfunc->func == callee) { callee_correct = true; } } if (!callee_correct) { rb_bug("yjit: output code calls wrong method"); } } MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key); // GC root for interacting with the GC struct yjit_root_struct { int unused; // empty structs are not legal in C99 }; // Hash table of BOP blocks static st_table *blocks_assuming_bops; static bool assume_bop_not_redefined(jitstate_t *jit, int redefined_flag, enum ruby_basic_operators bop) { if (BASIC_OP_UNREDEFINED_P(bop, redefined_flag)) { RUBY_ASSERT(blocks_assuming_bops); jit_ensure_block_entry_exit(jit); st_insert(blocks_assuming_bops, (st_data_t)jit->block, 0); return true; } else { return false; } } // Map klass => id_table[mid, set of blocks] // While a block `b` is in the table, b->callee_cme == rb_callable_method_entry(klass, mid). // See assume_method_lookup_stable() static st_table *method_lookup_dependency; // For adding to method_lookup_dependency data with st_update struct lookup_dependency_insertion { block_t *block; ID mid; }; // Map cme => set of blocks // See assume_method_lookup_stable() static st_table *cme_validity_dependency; static int add_cme_validity_dependency_i(st_data_t *key, st_data_t *value, st_data_t new_block, int existing) { st_table *block_set; if (existing) { block_set = (st_table *)*value; } else { // Make the set and put it into cme_validity_dependency block_set = st_init_numtable(); *value = (st_data_t)block_set; } // Put block into set st_insert(block_set, new_block, 1); return ST_CONTINUE; } static int add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing) { struct lookup_dependency_insertion *info = (void *)data; // Find or make an id table struct rb_id_table *id2blocks; if (existing) { id2blocks = (void *)*value; } else { // Make an id table and put it into the st_table id2blocks = rb_id_table_create(1); *value = (st_data_t)id2blocks; } // Find or make a block set st_table *block_set; { VALUE blocks; if (rb_id_table_lookup(id2blocks, info->mid, &blocks)) { // Take existing set block_set = (st_table *)blocks; } else { // Make new block set and put it into the id table block_set = st_init_numtable(); rb_id_table_insert(id2blocks, info->mid, (VALUE)block_set); } } st_insert(block_set, (st_data_t)info->block, 1); return ST_CONTINUE; } // Remember that a block assumes that // `rb_callable_method_entry(receiver_klass, cme->called_id) == cme` and that // `cme` is valid. // When either of these assumptions becomes invalid, rb_yjit_method_lookup_change() or // rb_yjit_cme_invalidate() invalidates the block. // // @raise NoMemoryError static void assume_method_lookup_stable(VALUE receiver_klass, const rb_callable_method_entry_t *cme, jitstate_t *jit) { RUBY_ASSERT(cme_validity_dependency); RUBY_ASSERT(method_lookup_dependency); RUBY_ASSERT(rb_callable_method_entry(receiver_klass, cme->called_id) == cme); RUBY_ASSERT_ALWAYS(RB_TYPE_P(receiver_klass, T_CLASS) || RB_TYPE_P(receiver_klass, T_ICLASS)); RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(receiver_klass)); jit_ensure_block_entry_exit(jit); block_t *block = jit->block; cme_dependency_t cme_dep = { receiver_klass, (VALUE)cme }; rb_darray_append(&block->cme_dependencies, cme_dep); st_update(cme_validity_dependency, (st_data_t)cme, add_cme_validity_dependency_i, (st_data_t)block); struct lookup_dependency_insertion info = { block, cme->called_id }; st_update(method_lookup_dependency, (st_data_t)receiver_klass, add_lookup_dependency_i, (st_data_t)&info); } static st_table *blocks_assuming_single_ractor_mode; // Can raise NoMemoryError. RBIMPL_ATTR_NODISCARD() static bool assume_single_ractor_mode(jitstate_t *jit) { if (rb_multi_ractor_p()) return false; jit_ensure_block_entry_exit(jit); st_insert(blocks_assuming_single_ractor_mode, (st_data_t)jit->block, 1); return true; } static st_table *blocks_assuming_stable_global_constant_state; // Assume that the global constant state has not changed since call to this function. // Can raise NoMemoryError. static void assume_stable_global_constant_state(jitstate_t *jit) { jit_ensure_block_entry_exit(jit); st_insert(blocks_assuming_stable_global_constant_state, (st_data_t)jit->block, 1); } static int mark_and_pin_keys_i(st_data_t k, st_data_t v, st_data_t ignore) { rb_gc_mark((VALUE)k); return ST_CONTINUE; } // GC callback during mark phase static void yjit_root_mark(void *ptr) { if (method_lookup_dependency) { // TODO: This is a leak. Unused blocks linger in the table forever, preventing the // callee class they speculate on from being collected. // We could do a bespoke weak reference scheme on classes similar to // the interpreter's call cache. See finalizer for T_CLASS and cc_table_free(). st_foreach(method_lookup_dependency, mark_and_pin_keys_i, 0); } if (cme_validity_dependency) { // Why not let the GC move the cme keys in this table? // Because this is basically a compare_by_identity Hash. // If a key moves, we would need to reinsert it into the table so it is rehashed. // That is tricky to do, espcially as it could trigger allocation which could // trigger GC. Not sure if it is okay to trigger GC while the GC is updating // references. st_foreach(cme_validity_dependency, mark_and_pin_keys_i, 0); } } static void yjit_root_free(void *ptr) { // Do nothing. The root lives as long as the process. } static size_t yjit_root_memsize(const void *ptr) { // Count off-gc-heap allocation size of the dependency table return st_memsize(method_lookup_dependency); // TODO: more accurate accounting } // GC callback during compaction static void yjit_root_update_references(void *ptr) { } // Custom type for interacting with the GC // TODO: make this write barrier protected static const rb_data_type_t yjit_root_type = { "yjit_root", {yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; // st_table iterator for invalidating blocks that are keys to the table. static int block_set_invalidate_i(st_data_t key, st_data_t v, st_data_t ignore) { block_t *version = (block_t *)key; // Thankfully, st_table supports deleting while iterating. invalidate_block_version(version); return ST_CONTINUE; } // Callback for when rb_callable_method_entry(klass, mid) is going to change. // Invalidate blocks that assume stable method lookup of `mid` in `klass` when this happens. void rb_yjit_method_lookup_change(VALUE klass, ID mid) { if (!method_lookup_dependency) return; RB_VM_LOCK_ENTER(); st_data_t image; st_data_t key = (st_data_t)klass; if (st_lookup(method_lookup_dependency, key, &image)) { struct rb_id_table *id2blocks = (void *)image; VALUE blocks; // Invalidate all blocks in method_lookup_dependency[klass][mid] if (rb_id_table_lookup(id2blocks, mid, &blocks)) { rb_id_table_delete(id2blocks, mid); st_table *block_set = (st_table *)blocks; #if YJIT_STATS yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries; #endif st_foreach(block_set, block_set_invalidate_i, 0); st_free_table(block_set); } } RB_VM_LOCK_LEAVE(); } // Callback for when a cme becomes invalid. // Invalidate all blocks that depend on cme being valid. void rb_yjit_cme_invalidate(VALUE cme) { if (!cme_validity_dependency) return; RUBY_ASSERT(IMEMO_TYPE_P(cme, imemo_ment)); RB_VM_LOCK_ENTER(); // Delete the block set from the table st_data_t cme_as_st_data = (st_data_t)cme; st_data_t blocks; if (st_delete(cme_validity_dependency, &cme_as_st_data, &blocks)) { st_table *block_set = (st_table *)blocks; #if YJIT_STATS yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries; #endif // Invalidate each block st_foreach(block_set, block_set_invalidate_i, 0); st_free_table(block_set); } RB_VM_LOCK_LEAVE(); } // For dealing with refinements void rb_yjit_invalidate_all_method_lookup_assumptions(void) { // It looks like Module#using actually doesn't need to invalidate all the // method caches, so we do nothing here for now. } // Remove a block from the method lookup dependency table static void remove_method_lookup_dependency(block_t *block, VALUE receiver_klass, const rb_callable_method_entry_t *callee_cme) { RUBY_ASSERT(receiver_klass); RUBY_ASSERT(callee_cme); // callee_cme should be set when receiver_klass is set st_data_t image; st_data_t key = (st_data_t)receiver_klass; if (st_lookup(method_lookup_dependency, key, &image)) { struct rb_id_table *id2blocks = (void *)image; ID mid = callee_cme->called_id; // Find block set VALUE blocks; if (rb_id_table_lookup(id2blocks, mid, &blocks)) { st_table *block_set = (st_table *)blocks; // Remove block from block set st_data_t block_as_st_data = (st_data_t)block; (void)st_delete(block_set, &block_as_st_data, NULL); if (block_set->num_entries == 0) { // Block set now empty. Remove from id table. rb_id_table_delete(id2blocks, mid); st_free_table(block_set); } } } } // Remove a block from cme_validity_dependency static void remove_cme_validity_dependency(block_t *block, const rb_callable_method_entry_t *callee_cme) { RUBY_ASSERT(callee_cme); st_data_t blocks; if (st_lookup(cme_validity_dependency, (st_data_t)callee_cme, &blocks)) { st_table *block_set = (st_table *)blocks; st_data_t block_as_st_data = (st_data_t)block; (void)st_delete(block_set, &block_as_st_data, NULL); } } static void yjit_unlink_method_lookup_dependency(block_t *block) { cme_dependency_t *cme_dep; rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) { remove_method_lookup_dependency(block, cme_dep->receiver_klass, (const rb_callable_method_entry_t *)cme_dep->callee_cme); remove_cme_validity_dependency(block, (const rb_callable_method_entry_t *)cme_dep->callee_cme); } rb_darray_free(block->cme_dependencies); } static void yjit_block_assumptions_free(block_t *block) { st_data_t as_st_data = (st_data_t)block; if (blocks_assuming_stable_global_constant_state) { st_delete(blocks_assuming_stable_global_constant_state, &as_st_data, NULL); } if (blocks_assuming_single_ractor_mode) { st_delete(blocks_assuming_single_ractor_mode, &as_st_data, NULL); } if (blocks_assuming_bops) { st_delete(blocks_assuming_bops, &as_st_data, NULL); } } typedef VALUE (*yjit_func_t)(rb_execution_context_t *, rb_control_frame_t *); bool rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec) { #if (OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE) && JIT_ENABLED bool success = true; RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Compile a block version starting at the first instruction uint8_t *code_ptr = gen_entry_point(iseq, 0, ec); if (code_ptr) { iseq->body->jit_func = (yjit_func_t)code_ptr; } else { iseq->body->jit_func = 0; success = false; } RB_VM_LOCK_LEAVE(); return success; #else return false; #endif } struct yjit_block_itr { const rb_iseq_t *iseq; VALUE list; }; /* Get a list of the YJIT blocks associated with `rb_iseq` */ static VALUE yjit_blocks_for(VALUE mod, VALUE rb_iseq) { if (CLASS_OF(rb_iseq) != rb_cISeq) { return rb_ary_new(); } const rb_iseq_t *iseq = rb_iseqw_to_iseq(rb_iseq); VALUE all_versions = rb_ary_new(); rb_darray_for(iseq->body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t versions = rb_darray_get(iseq->body->yjit_blocks, version_array_idx); rb_darray_for(versions, block_idx) { block_t *block = rb_darray_get(versions, block_idx); // FIXME: The object craeted here can outlive the block itself VALUE rb_block = TypedData_Wrap_Struct(cYjitBlock, &yjit_block_type, block); rb_ary_push(all_versions, rb_block); } } return all_versions; } /* Get the address of the code associated with a YJIT::Block */ static VALUE block_address(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return LONG2NUM((intptr_t)block->start_addr); } /* Get the machine code for YJIT::Block as a binary string */ static VALUE block_code(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return (VALUE)rb_str_new( (const char*)block->start_addr, block->end_addr - block->start_addr ); } /* Get the start index in the Instruction Sequence that corresponds to this * YJIT::Block */ static VALUE iseq_start_index(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return INT2NUM(block->blockid.idx); } /* Get the end index in the Instruction Sequence that corresponds to this * YJIT::Block */ static VALUE iseq_end_index(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return INT2NUM(block->end_idx); } /* Called when a basic operation is redefined */ void rb_yjit_bop_redefined(VALUE klass, const rb_method_entry_t *me, enum ruby_basic_operators bop) { if (blocks_assuming_bops) { #if YJIT_STATS yjit_runtime_counters.invalidate_bop_redefined += blocks_assuming_bops->num_entries; #endif st_foreach(blocks_assuming_bops, block_set_invalidate_i, 0); } } /* Called when the constant state changes */ void rb_yjit_constant_state_changed(void) { if (blocks_assuming_stable_global_constant_state) { #if YJIT_STATS yjit_runtime_counters.constant_state_bumps++; yjit_runtime_counters.invalidate_constant_state_bump += blocks_assuming_stable_global_constant_state->num_entries; #endif st_foreach(blocks_assuming_stable_global_constant_state, block_set_invalidate_i, 0); } } // Callback from the opt_setinlinecache instruction in the interpreter. // Invalidate the block for the matching opt_getinlinecache so it could regenerate code // using the new value in the constant cache. void rb_yjit_constant_ic_update(const rb_iseq_t *const iseq, IC ic) { if (!rb_yjit_enabled_p()) return; // We can't generate code in these situations, so no need to invalidate. // See gen_opt_getinlinecache. if (ic->entry->ic_cref || rb_multi_ractor_p()) { return; } RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Stop other ractors since we are going to patch machine code. { const struct rb_iseq_constant_body *const body = iseq->body; VALUE *code = body->iseq_encoded; const unsigned get_insn_idx = ic->get_insn_idx; // This should come from a running iseq, so direct threading translation // should have been done RUBY_ASSERT(FL_TEST((VALUE)iseq, ISEQ_TRANSLATED)); RUBY_ASSERT(get_insn_idx < body->iseq_size); RUBY_ASSERT(rb_vm_insn_addr2insn((const void *)code[get_insn_idx]) == BIN(opt_getinlinecache)); // Find the matching opt_getinlinecache and invalidate all the blocks there RUBY_ASSERT(insn_op_type(BIN(opt_getinlinecache), 1) == TS_IC); if (ic == (IC)code[get_insn_idx + 1 + 1]) { rb_yjit_block_array_t getinlinecache_blocks = yjit_get_version_array(iseq, get_insn_idx); // Put a bound for loop below to be defensive const int32_t initial_version_count = rb_darray_size(getinlinecache_blocks); for (int32_t iteration=0; iteration 0) { block_t *block = rb_darray_get(getinlinecache_blocks, 0); invalidate_block_version(block); #if YJIT_STATS yjit_runtime_counters.invalidate_constant_ic_fill++; #endif } else { break; } } // All versions at get_insn_idx should now be gone RUBY_ASSERT(0 == rb_darray_size(yjit_get_version_array(iseq, get_insn_idx))); } else { RUBY_ASSERT(false && "ic->get_insn_diex not set properly"); } } RB_VM_LOCK_LEAVE(); } void rb_yjit_before_ractor_spawn(void) { if (blocks_assuming_single_ractor_mode) { #if YJIT_STATS yjit_runtime_counters.invalidate_ractor_spawn += blocks_assuming_single_ractor_mode->num_entries; #endif st_foreach(blocks_assuming_single_ractor_mode, block_set_invalidate_i, 0); } } #ifdef HAVE_LIBCAPSTONE static const rb_data_type_t yjit_disasm_type = { "YJIT/Disasm", {0, (void(*)(void *))cs_close, 0, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE yjit_disasm_init(VALUE klass) { csh * handle; VALUE disasm = TypedData_Make_Struct(klass, csh, &yjit_disasm_type, handle); if (cs_open(CS_ARCH_X86, CS_MODE_64, handle) != CS_ERR_OK) { rb_raise(rb_eRuntimeError, "failed to make Capstone handle"); } return disasm; } static VALUE yjit_disasm(VALUE self, VALUE code, VALUE from) { size_t count; csh * handle; cs_insn *insns; TypedData_Get_Struct(self, csh, &yjit_disasm_type, handle); count = cs_disasm(*handle, (uint8_t*)StringValuePtr(code), RSTRING_LEN(code), NUM2ULL(from), 0, &insns); VALUE insn_list = rb_ary_new_capa(count); for (size_t i = 0; i < count; i++) { VALUE vals = rb_ary_new_from_args(3, LONG2NUM(insns[i].address), rb_str_new2(insns[i].mnemonic), rb_str_new2(insns[i].op_str)); rb_ary_push(insn_list, rb_struct_alloc(cYjitDisasmInsn, vals)); } cs_free(insns, count); return insn_list; } #endif // Primitive called in yjit.rb. Export all machine code comments as a Ruby array. static VALUE comments_for(rb_execution_context_t *ec, VALUE self, VALUE start_address, VALUE end_address) { VALUE comment_array = rb_ary_new(); #if RUBY_DEBUG uint8_t *start = (void *)NUM2ULL(start_address); uint8_t *end = (void *)NUM2ULL(end_address); rb_darray_for(yjit_code_comments, i) { struct yjit_comment comment = rb_darray_get(yjit_code_comments, i); uint8_t *comment_pos = cb_get_ptr(cb, comment.offset); if (comment_pos >= end) { break; } if (comment_pos >= start) { VALUE vals = rb_ary_new_from_args( 2, LL2NUM((long long) comment_pos), rb_str_new_cstr(comment.comment) ); rb_ary_push(comment_array, rb_struct_alloc(cYjitCodeComment, vals)); } } #endif // if RUBY_DEBUG return comment_array; } static VALUE yjit_stats_enabled_p(rb_execution_context_t *ec, VALUE self) { return RBOOL(YJIT_STATS && rb_yjit_opts.gen_stats); } // Primitive called in yjit.rb. Export all YJIT statistics as a Ruby hash. static VALUE get_yjit_stats(rb_execution_context_t *ec, VALUE self) { // Return Qnil if YJIT isn't enabled if (cb == NULL) { return Qnil; } VALUE hash = rb_hash_new(); RB_VM_LOCK_ENTER(); { VALUE key = ID2SYM(rb_intern("inline_code_size")); VALUE value = LL2NUM((long long)cb->write_pos); rb_hash_aset(hash, key, value); key = ID2SYM(rb_intern("outlined_code_size")); value = LL2NUM((long long)ocb->write_pos); rb_hash_aset(hash, key, value); } #if YJIT_STATS if (rb_yjit_opts.gen_stats) { // Indicate that the complete set of stats is available rb_hash_aset(hash, ID2SYM(rb_intern("all_stats")), Qtrue); int64_t *counter_reader = (int64_t *)&yjit_runtime_counters; int64_t *counter_reader_end = &yjit_runtime_counters.last_member; // For each counter in yjit_counter_names, add that counter as // a key/value pair. // Iterate through comma separated counter name list char *name_reader = yjit_counter_names; char *counter_name_end = yjit_counter_names + sizeof(yjit_counter_names); while (name_reader < counter_name_end && counter_reader < counter_reader_end) { if (*name_reader == ',' || *name_reader == ' ') { name_reader++; continue; } // Compute length of counter name int name_len; char *name_end; { name_end = strchr(name_reader, ','); if (name_end == NULL) break; name_len = (int)(name_end - name_reader); } // Put counter into hash VALUE key = ID2SYM(rb_intern2(name_reader, name_len)); VALUE value = LL2NUM((long long)*counter_reader); rb_hash_aset(hash, key, value); counter_reader++; name_reader = name_end; } // For each entry in exit_op_count, add a stats entry with key "exit_INSTRUCTION_NAME" // and the value is the count of side exits for that instruction. char key_string[rb_vm_max_insn_name_size + 6]; // Leave room for "exit_" and a final NUL for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) { const char *i_name = insn_name(i); // Look up Ruby's NUL-terminated insn name string snprintf(key_string, rb_vm_max_insn_name_size + 6, "%s%s", "exit_", i_name); VALUE key = ID2SYM(rb_intern(key_string)); VALUE value = LL2NUM((long long)exit_op_count[i]); rb_hash_aset(hash, key, value); } } #endif RB_VM_LOCK_LEAVE(); return hash; } // Primitive called in yjit.rb. Zero out all the counters. static VALUE reset_stats_bang(rb_execution_context_t *ec, VALUE self) { #if YJIT_STATS memset(&exit_op_count, 0, sizeof(exit_op_count)); memset(&yjit_runtime_counters, 0, sizeof(yjit_runtime_counters)); #endif // if YJIT_STATS return Qnil; } // Primitive for yjit.rb. For testing running out of executable memory static VALUE simulate_oom_bang(rb_execution_context_t *ec, VALUE self) { if (RUBY_DEBUG && cb && ocb) { // Only simulate in debug builds for paranoia. cb_set_pos(cb, cb->mem_size-1); cb_set_pos(ocb, ocb->mem_size-1); } return Qnil; } #include "yjit.rbinc" #if YJIT_STATS void rb_yjit_collect_vm_usage_insn(int insn) { yjit_runtime_counters.vm_insns_count++; } void rb_yjit_collect_binding_alloc(void) { yjit_runtime_counters.binding_allocations++; } void rb_yjit_collect_binding_set(void) { yjit_runtime_counters.binding_set++; } static const VALUE * yjit_count_side_exit_op(const VALUE *exit_pc) { int insn = rb_vm_insn_addr2opcode((const void *)*exit_pc); exit_op_count[insn]++; return exit_pc; // This function must return exit_pc! } #endif void rb_yjit_iseq_mark(const struct rb_iseq_constant_body *body) { rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); rb_gc_mark_movable((VALUE)block->blockid.iseq); cme_dependency_t *cme_dep; rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) { rb_gc_mark_movable(cme_dep->receiver_klass); rb_gc_mark_movable(cme_dep->callee_cme); } // Mark outgoing branch entries rb_darray_for(block->outgoing, branch_idx) { branch_t *branch = rb_darray_get(block->outgoing, branch_idx); for (int i = 0; i < 2; ++i) { rb_gc_mark_movable((VALUE)branch->targets[i].iseq); } } // Walk over references to objects in generated code. uint32_t *offset_element; rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) { uint32_t offset_to_value = *offset_element; uint8_t *value_address = cb_get_ptr(cb, offset_to_value); VALUE object; memcpy(&object, value_address, SIZEOF_VALUE); rb_gc_mark_movable(object); } // Mark the machine code page this block lives on //rb_gc_mark_movable(block->code_page); } } } void rb_yjit_iseq_update_references(const struct rb_iseq_constant_body *body) { rb_vm_barrier(); rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); block->blockid.iseq = (const rb_iseq_t *)rb_gc_location((VALUE)block->blockid.iseq); cme_dependency_t *cme_dep; rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) { cme_dep->receiver_klass = rb_gc_location(cme_dep->receiver_klass); cme_dep->callee_cme = rb_gc_location(cme_dep->callee_cme); } // Update outgoing branch entries rb_darray_for(block->outgoing, branch_idx) { branch_t *branch = rb_darray_get(block->outgoing, branch_idx); for (int i = 0; i < 2; ++i) { branch->targets[i].iseq = (const void *)rb_gc_location((VALUE)branch->targets[i].iseq); } } // Walk over references to objects in generated code. uint32_t *offset_element; rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) { uint32_t offset_to_value = *offset_element; uint8_t *value_address = cb_get_ptr(cb, offset_to_value); VALUE object; memcpy(&object, value_address, SIZEOF_VALUE); VALUE possibly_moved = rb_gc_location(object); // Only write when the VALUE moves, to be CoW friendly. if (possibly_moved != object) { // Possibly unlock the page we need to update cb_mark_position_writeable(cb, offset_to_value); // Object could cross a page boundary, so unlock there as well cb_mark_position_writeable(cb, offset_to_value + SIZEOF_VALUE - 1); memcpy(value_address, &possibly_moved, SIZEOF_VALUE); } } // Update the machine code page this block lives on //block->code_page = rb_gc_location(block->code_page); } } /* If YJIT isn't initialized, then cb or ocb could be NULL. */ if (cb) { cb_mark_all_executable(cb); } if (ocb) { cb_mark_all_executable(ocb); } } // Free the yjit resources associated with an iseq void rb_yjit_iseq_free(const struct rb_iseq_constant_body *body) { rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); yjit_free_block(block); } rb_darray_free(version_array); } rb_darray_free(body->yjit_blocks); } // Struct representing a code page typedef struct code_page_struct { // Chunk of executable memory uint8_t* mem_block; // Size of the executable memory chunk uint32_t page_size; // Inline code block codeblock_t cb; // Outlined code block codeblock_t ocb; // Next node in the free list (private) struct code_page_struct* _next; } code_page_t; // Current code page we are writing machine code into static VALUE yjit_cur_code_page = Qfalse; // Head of the list of free code pages static code_page_t *code_page_freelist = NULL; // Free a code page, add it to the free list static void yjit_code_page_free(void *voidp) { code_page_t* code_page = (code_page_t*)voidp; code_page->_next = code_page_freelist; code_page_freelist = code_page; } // Custom type for interacting with the GC static const rb_data_type_t yjit_code_page_type = { "yjit_code_page", {NULL, yjit_code_page_free, NULL, NULL}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; // Allocate a code page and wrap it into a Ruby object owned by the GC static VALUE rb_yjit_code_page_alloc(void) { // If the free list is empty if (!code_page_freelist) { // Allocate many pages at once uint8_t* code_chunk = alloc_exec_mem(PAGES_PER_ALLOC * CODE_PAGE_SIZE); // Do this in reverse order so we allocate our pages in order for (int i = PAGES_PER_ALLOC - 1; i >= 0; --i) { code_page_t* code_page = malloc(sizeof(code_page_t)); code_page->mem_block = code_chunk + i * CODE_PAGE_SIZE; assert ((intptr_t)code_page->mem_block % CODE_PAGE_SIZE == 0); code_page->page_size = CODE_PAGE_SIZE; code_page->_next = code_page_freelist; code_page_freelist = code_page; } } code_page_t* code_page = code_page_freelist; code_page_freelist = code_page_freelist->_next; // Create a Ruby wrapper struct for the code page object VALUE wrapper = TypedData_Wrap_Struct(0, &yjit_code_page_type, code_page); // Write a pointer to the wrapper object on the page *((VALUE*)code_page->mem_block) = wrapper; // Initialize the code blocks uint8_t* page_start = code_page->mem_block + sizeof(VALUE); uint8_t* page_end = code_page->mem_block + CODE_PAGE_SIZE; uint32_t halfsize = (uint32_t)(page_end - page_start) / 2; cb_init(&code_page->cb, page_start, halfsize); cb_init(&code_page->cb, page_start + halfsize, halfsize); return wrapper; } // Unwrap the Ruby object representing a code page static code_page_t * rb_yjit_code_page_unwrap(VALUE cp_obj) { code_page_t * code_page; TypedData_Get_Struct(cp_obj, code_page_t, &yjit_code_page_type, code_page); return code_page; } // Get the code page wrapper object for a code pointer static VALUE rb_yjit_code_page_from_ptr(uint8_t* code_ptr) { VALUE* page_start = (VALUE*)((intptr_t)code_ptr & ~(CODE_PAGE_SIZE - 1)); VALUE wrapper = *page_start; return wrapper; } // Get the inline code block corresponding to a code pointer static void yjit_get_cb(codeblock_t* cb, uint8_t* code_ptr) { VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr); code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper); // A pointer to the page wrapper object is written at the start of the code page uint8_t* mem_block = code_page->mem_block + sizeof(VALUE); uint32_t mem_size = (code_page->page_size/2) - sizeof(VALUE); RUBY_ASSERT(mem_block); // Map the code block to this memory region cb_init(cb, mem_block, mem_size); } // Get the outlined code block corresponding to a code pointer static void yjit_get_ocb(codeblock_t* cb, uint8_t* code_ptr) { VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr); code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper); // A pointer to the page wrapper object is written at the start of the code page uint8_t* mem_block = code_page->mem_block + (code_page->page_size/2); uint32_t mem_size = code_page->page_size/2; RUBY_ASSERT(mem_block); // Map the code block to this memory region cb_init(cb, mem_block, mem_size); } // Get the current code page or allocate a new one static VALUE yjit_get_code_page(uint32_t cb_bytes_needed, uint32_t ocb_bytes_needed) { // If this is the first code page if (yjit_cur_code_page == Qfalse) { yjit_cur_code_page = rb_yjit_code_page_alloc(); } // Get the current code page code_page_t *code_page = rb_yjit_code_page_unwrap(yjit_cur_code_page); // Compute how many bytes are left in the code blocks uint32_t cb_bytes_left = code_page->cb.mem_size - code_page->cb.write_pos; uint32_t ocb_bytes_left = code_page->ocb.mem_size - code_page->ocb.write_pos; RUBY_ASSERT_ALWAYS(cb_bytes_needed <= code_page->cb.mem_size); RUBY_ASSERT_ALWAYS(ocb_bytes_needed <= code_page->ocb.mem_size); // If there's enough space left in the current code page if (cb_bytes_needed <= cb_bytes_left && ocb_bytes_needed <= ocb_bytes_left) { return yjit_cur_code_page; } // Allocate a new code page yjit_cur_code_page = rb_yjit_code_page_alloc(); code_page_t *new_code_page = rb_yjit_code_page_unwrap(yjit_cur_code_page); // Jump to the new code page jmp_ptr(&code_page->cb, cb_get_ptr(&new_code_page->cb, 0)); return yjit_cur_code_page; } bool rb_yjit_enabled_p(void) { return rb_yjit_opts.yjit_enabled; } unsigned rb_yjit_call_threshold(void) { return rb_yjit_opts.call_threshold; } # define PTR2NUM(x) (LONG2NUM((long)(x))) /** * call-seq: block.id -> unique_id * * Returns a unique integer ID for the block. For example: * * blocks = blocks_for(iseq) * blocks.group_by(&:id) */ static VALUE block_id(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return PTR2NUM(block); } /** * call-seq: block.outgoing_ids -> list * * Returns a list of outgoing ids for the current block. This list can be used * in conjunction with Block#id to construct a graph of block objects. */ static VALUE outgoing_ids(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); VALUE ids = rb_ary_new(); rb_darray_for(block->outgoing, branch_idx) { branch_t *out_branch = rb_darray_get(block->outgoing, branch_idx); for (size_t succ_idx = 0; succ_idx < 2; succ_idx++) { block_t *succ = out_branch->blocks[succ_idx]; if (succ == NULL) continue; rb_ary_push(ids, PTR2NUM(succ)); } } return ids; } // Can raise RuntimeError void rb_yjit_init(struct rb_yjit_options *options) { if (!YJIT_SUPPORTED_P || !JIT_ENABLED) { return; } rb_yjit_opts = *options; rb_yjit_opts.yjit_enabled = true; rb_yjit_opts.gen_stats = rb_yjit_opts.gen_stats || getenv("RUBY_YJIT_STATS"); #if !YJIT_STATS if(rb_yjit_opts.gen_stats) { rb_warning("--yjit-stats requires that Ruby is compiled with CPPFLAGS='-DYJIT_STATS=1' or CPPFLAGS='-DRUBY_DEBUG=1'"); } #endif // Normalize command-line options to default values if (rb_yjit_opts.exec_mem_size < 1) { rb_yjit_opts.exec_mem_size = 256; } if (rb_yjit_opts.call_threshold < 1) { rb_yjit_opts.call_threshold = YJIT_DEFAULT_CALL_THRESHOLD; } if (rb_yjit_opts.max_versions < 1) { rb_yjit_opts.max_versions = 4; } // If type propagation is disabled, max 1 version per block if (rb_yjit_opts.no_type_prop) { rb_yjit_opts.max_versions = 1; } blocks_assuming_stable_global_constant_state = st_init_numtable(); blocks_assuming_single_ractor_mode = st_init_numtable(); blocks_assuming_bops = st_init_numtable(); yjit_init_codegen(); yjit_init_core(); // YJIT Ruby module mYjit = rb_define_module_under(rb_cRubyVM, "YJIT"); rb_define_module_function(mYjit, "blocks_for", yjit_blocks_for, 1); // YJIT::Block (block version, code block) cYjitBlock = rb_define_class_under(mYjit, "Block", rb_cObject); rb_define_method(cYjitBlock, "address", block_address, 0); rb_define_method(cYjitBlock, "id", block_id, 0); rb_define_method(cYjitBlock, "code", block_code, 0); rb_define_method(cYjitBlock, "iseq_start_index", iseq_start_index, 0); rb_define_method(cYjitBlock, "iseq_end_index", iseq_end_index, 0); rb_define_method(cYjitBlock, "outgoing_ids", outgoing_ids, 0); // YJIT disassembler interface #ifdef HAVE_LIBCAPSTONE cYjitDisasm = rb_define_class_under(mYjit, "Disasm", rb_cObject); rb_define_alloc_func(cYjitDisasm, yjit_disasm_init); rb_define_method(cYjitDisasm, "disasm", yjit_disasm, 2); cYjitDisasmInsn = rb_struct_define_under(cYjitDisasm, "Insn", "address", "mnemonic", "op_str", NULL); #if RUBY_DEBUG cYjitCodeComment = rb_struct_define_under(cYjitDisasm, "Comment", "address", "comment", NULL); #endif #endif // Make dependency tables method_lookup_dependency = st_init_numtable(); cme_validity_dependency = st_init_numtable(); // Initialize the GC hooks struct yjit_root_struct *root; VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root); rb_gc_register_mark_object(yjit_root); (void)yjit_get_cb; (void)yjit_get_ocb; (void)yjit_get_code_page; }