#ifndef YJIT_CORE_H #define YJIT_CORE_H 1 #include #include #include "yjit_asm.h" // Callee-saved regs #define REG_CFP R13 #define REG_EC R12 #define REG_SP RBX // Scratch registers used by YJIT #define REG0 RAX #define REG0_32 EAX #define REG0_8 AL #define REG1 RCX #define REG1_32 ECX // Maximum number of temp value types we keep track of #define MAX_TEMP_TYPES 8 // Maximum number of local variable types we keep track of #define MAX_LOCAL_TYPES 8 // Default versioning context (no type information) #define DEFAULT_CTX ( (ctx_t){ 0 } ) enum yjit_type_enum { ETYPE_UNKNOWN = 0, ETYPE_NIL, ETYPE_TRUE, ETYPE_FALSE, ETYPE_FIXNUM, ETYPE_FLONUM, ETYPE_ARRAY, ETYPE_HASH, ETYPE_SYMBOL, ETYPE_STRING }; // Represent the type of a value (local/stack/self) in YJIT typedef struct yjit_type_struct { // Value is definitely a heap object uint8_t is_heap : 1; // Value is definitely an immediate uint8_t is_imm : 1; // Specific value type, if known uint8_t type : 4; } val_type_t; STATIC_ASSERT(val_type_size, sizeof(val_type_t) == 1); // Unknown type, could be anything, all zeroes #define TYPE_UNKNOWN ( (val_type_t){ 0 } ) // Could be any heap object #define TYPE_HEAP ( (val_type_t){ .is_heap = 1 } ) // Could be any immediate #define TYPE_IMM ( (val_type_t){ .is_imm = 1 } ) #define TYPE_NIL ( (val_type_t){ .is_imm = 1, .type = ETYPE_NIL } ) #define TYPE_TRUE ( (val_type_t){ .is_imm = 1, .type = ETYPE_TRUE } ) #define TYPE_FALSE ( (val_type_t){ .is_imm = 1, .type = ETYPE_FALSE } ) #define TYPE_FIXNUM ( (val_type_t){ .is_imm = 1, .type = ETYPE_FIXNUM } ) #define TYPE_FLONUM ( (val_type_t){ .is_imm = 1, .type = ETYPE_FLONUM } ) #define TYPE_STATIC_SYMBOL ( (val_type_t){ .is_imm = 1, .type = ETYPE_SYMBOL } ) #define TYPE_ARRAY ( (val_type_t){ .is_heap = 1, .type = ETYPE_ARRAY } ) #define TYPE_HASH ( (val_type_t){ .is_heap = 1, .type = ETYPE_HASH } ) #define TYPE_STRING ( (val_type_t){ .is_heap = 1, .type = ETYPE_STRING } ) enum yjit_temp_loc { TEMP_STACK = 0, TEMP_SELF, TEMP_LOCAL, // Local with index //TEMP_CONST, // Small constant (0, 1, 2, Qnil, Qfalse, Qtrue) }; // Potential mapping of a value on the temporary stack to // self, a local variable or constant so that we can track its type typedef struct yjit_temp_mapping { // Where/how is the value stored? uint8_t kind: 2; // Index of the local variale, // or small non-negative constant in [0, 63] uint8_t idx : 6; } temp_mapping_t; STATIC_ASSERT(temp_mapping_size, sizeof(temp_mapping_t) == 1); // By default, temps are just temps on the stack. // Name conflict with an mmap flag. This is a struct instance, // so the compiler will check for wrong usage. #undef MAP_STACK #define MAP_STACK ( (temp_mapping_t) { 0 } ) // Temp value is actually self #define MAP_SELF ( (temp_mapping_t) { .kind = TEMP_SELF } ) // Represents both the type and mapping typedef struct { temp_mapping_t mapping; val_type_t type; } temp_type_mapping_t; STATIC_ASSERT(temp_type_mapping_size, sizeof(temp_type_mapping_t) == 2); // Operand to a bytecode instruction typedef struct yjit_insn_opnd { // Indicates if the value is self bool is_self; // Index on the temporary stack (for stack operands only) uint16_t idx; } insn_opnd_t; #define OPND_SELF ( (insn_opnd_t){ .is_self = true } ) #define OPND_STACK(stack_idx) ( (insn_opnd_t){ .is_self = false, .idx = stack_idx } ) /** Code generation context Contains information we can use to optimize code */ typedef struct yjit_context { // Number of values currently on the temporary stack uint16_t stack_size; // Offset of the JIT SP relative to the interpreter SP // This represents how far the JIT's SP is from the "real" SP int16_t sp_offset; // Depth of this block in the sidechain (eg: inline-cache chain) uint8_t chain_depth; // Local variable types we keepp track of val_type_t local_types[MAX_LOCAL_TYPES]; // Temporary variable types we keep track of val_type_t temp_types[MAX_TEMP_TYPES]; // Type we track for self val_type_t self_type; // Mapping of temp stack entries to types we track temp_mapping_t temp_mapping[MAX_TEMP_TYPES]; } ctx_t; STATIC_ASSERT(yjit_ctx_size, sizeof(ctx_t) <= 32); // Tuple of (iseq, idx) used to identify basic blocks typedef struct BlockId { // Instruction sequence const rb_iseq_t *iseq; // Index in the iseq where the block starts uint32_t idx; } blockid_t; // Null block id constant static const blockid_t BLOCKID_NULL = { 0, 0 }; /// Branch code shape enumeration typedef enum branch_shape { SHAPE_NEXT0, // Target 0 is next SHAPE_NEXT1, // Target 1 is next SHAPE_DEFAULT // Neither target is next } branch_shape_t; // Branch code generation function signature typedef void (*branchgen_fn)(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape); /** Store info about an outgoing branch in a code segment Note: care must be taken to minimize the size of branch_t objects */ typedef struct yjit_branch_entry { // Block this is attached to struct yjit_block_version *block; // Positions where the generated code starts and ends uint8_t *start_addr; uint8_t *end_addr; // Context right after the branch instruction // Unused for now. // ctx_t src_ctx; // Branch target blocks and their contexts blockid_t targets[2]; ctx_t target_ctxs[2]; struct yjit_block_version *blocks[2]; // Jump target addresses uint8_t *dst_addrs[2]; // Branch code generation function branchgen_fn gen_fn; // Shape of the branch branch_shape_t shape : 2; } branch_t; // In case this block is invalidated, these two pieces of info // help to remove all pointers to this block in the system. typedef struct { VALUE receiver_klass; VALUE callee_cme; } cme_dependency_t; typedef rb_darray(cme_dependency_t) cme_dependency_array_t; typedef rb_darray(branch_t*) branch_array_t; typedef rb_darray(uint32_t) int32_array_t; /** Basic block version Represents a portion of an iseq compiled with a given context Note: care must be taken to minimize the size of block_t objects */ typedef struct yjit_block_version { // Bytecode sequence (iseq, idx) this is a version of blockid_t blockid; // Context at the start of the block ctx_t ctx; // Positions where the generated code starts and ends uint8_t *start_addr; uint8_t *end_addr; // List of incoming branches (from predecessors) branch_array_t incoming; // List of outgoing branches (to successors) // Note: these are owned by this block version branch_array_t outgoing; // Offsets for GC managed objects in the mainline code block int32_array_t gc_object_offsets; // CME dependencies of this block, to help to remove all pointers to this // block in the system. cme_dependency_array_t cme_dependencies; // Code address of an exit for `ctx` and `blockid`. Used for block // invalidation. uint8_t *entry_exit; // Index one past the last instruction in the iseq uint32_t end_idx; } block_t; // Code generation state typedef struct JITState { // Inline and outlined code blocks we are // currently generating code into codeblock_t* cb; codeblock_t* ocb; // Block version being compiled block_t *block; // Instruction sequence this is associated with const rb_iseq_t *iseq; // Index of the current instruction being compiled uint32_t insn_idx; // Opcode for the instruction being compiled int opcode; // PC of the instruction being compiled VALUE *pc; // Side exit to the instruction being compiled. See :side-exit:. uint8_t *side_exit_for_pc; // Execution context when compilation started // This allows us to peek at run-time values rb_execution_context_t *ec; // Whether we need to record the code address at // the end of this bytecode instruction for global invalidation bool record_boundary_patch_point; } jitstate_t; #endif // #ifndef YJIT_CORE_H