/* * Copyright (c) 1993, Intergraph Corporation * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the perl README file. * * Various Unix compatibility functions and NT specific functions. * * Some of this code was derived from the MSDOS port(s) and the OS/2 port. * */ #include "ruby.h" #include "rubysig.h" #include #include #include /* #include */ #include #include #include #include #include #include #include #include "win32.h" #include "dir.h" #ifndef index #define index(x, y) strchr((x), (y)) #endif #ifndef bool #define bool int #endif #if USE_INTERRUPT_WINSOCK # if defined(_MSC_VER) && _MSC_VER <= 1000 /* VC++4.0 doesn't have this. */ extern DWORD WSAWaitForMultipleEvents(DWORD nevent, const HANDLE *events, BOOL waitall, DWORD timeout, BOOL alertable); # endif # define WaitForMultipleEvents WSAWaitForMultipleEvents # define CreateSignal() (HANDLE)WSACreateEvent() # define SetSignal(ev) WSASetEvent(ev) # define ResetSignal(ev) WSAResetEvent(ev) #else /* USE_INTERRUPT_WINSOCK */ # define WaitForMultipleEvents WaitForMultipleObjectsEx # define CreateSignal() CreateEvent(NULL, FALSE, FALSE, NULL); # define SetSignal(ev) SetEvent(ev) # define ResetSignal(ev) (void)0 #endif /* USE_INTERRUPT_WINSOCK */ #ifdef WIN32_DEBUG #define Debug(something) something #else #define Debug(something) /* nothing */ #endif #define TO_SOCKET(x) _get_osfhandle(x) bool NtSyncProcess = TRUE; #if 0 // declared in header file extern char **environ; #define environ _environ #endif static bool NtHasRedirection (char *); static int valid_filename(char *s); static void StartSockets (); static char *str_grow(struct RString *str, size_t new_size); static DWORD wait_events(HANDLE event, DWORD timeout); char *NTLoginName; DWORD Win32System = (DWORD)-1; static DWORD IdOS(void) { static OSVERSIONINFO osver; if (osver.dwPlatformId != Win32System) { memset(&osver, 0, sizeof(OSVERSIONINFO)); osver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&osver); Win32System = osver.dwPlatformId; } return (Win32System); } static int IsWin95(void) { return (IdOS() == VER_PLATFORM_WIN32_WINDOWS); } static int IsWinNT(void) { return (IdOS() == VER_PLATFORM_WIN32_NT); } /* main thread constants */ static struct { HANDLE handle; DWORD id; } main_thread; /* interrupt stuff */ static HANDLE interrupted_event; HANDLE GetCurrentThreadHandle(void) { static HANDLE current_process_handle = NULL; HANDLE h; if (!current_process_handle) current_process_handle = GetCurrentProcess(); if (!DuplicateHandle(current_process_handle, GetCurrentThread(), current_process_handle, &h, 0, FALSE, DUPLICATE_SAME_ACCESS)) return NULL; return h; } /* simulate flock by locking a range on the file */ #define LK_ERR(f,i) ((f) ? (i = 0) : (errno = GetLastError())) #define LK_LEN 0xffff0000 static VALUE flock_winnt(VALUE self, int argc, VALUE* argv) { OVERLAPPED o; int i = -1; const HANDLE fh = (HANDLE)self; const int oper = argc; memset(&o, 0, sizeof(o)); switch(oper) { case LOCK_SH: /* shared lock */ LK_ERR(LockFileEx(fh, 0, 0, LK_LEN, 0, &o), i); break; case LOCK_EX: /* exclusive lock */ LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK, 0, LK_LEN, 0, &o), i); break; case LOCK_SH|LOCK_NB: /* non-blocking shared lock */ LK_ERR(LockFileEx(fh, LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, 0, &o), i); break; case LOCK_EX|LOCK_NB: /* non-blocking exclusive lock */ LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK|LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, 0, &o), i); if (errno == EDOM) errno = EWOULDBLOCK; break; case LOCK_UN: /* unlock lock */ if (UnlockFileEx(fh, 0, LK_LEN, 0, &o)) { i = 0; if (errno == EDOM) errno = EWOULDBLOCK; } else { /* GetLastError() must returns `ERROR_NOT_LOCKED' */ errno = EWOULDBLOCK; } break; default: /* unknown */ errno = EINVAL; break; } return i; } static VALUE flock_win95(VALUE self, int argc, VALUE* argv) { int i = -1; const HANDLE fh = (HANDLE)self; const int oper = argc; switch(oper) { case LOCK_EX: while(i == -1) { LK_ERR(LockFile(fh, 0, 0, LK_LEN, 0), i); if (errno != EDOM && i == -1) break; } break; case LOCK_EX | LOCK_NB: LK_ERR(LockFile(fh, 0, 0, LK_LEN, 0), i); if (errno == EDOM) errno = EWOULDBLOCK; break; case LOCK_UN: LK_ERR(UnlockFile(fh, 0, 0, LK_LEN, 0), i); if (errno == EDOM) errno = EWOULDBLOCK; break; default: errno = EINVAL; break; } return i; } #undef LK_ERR #undef LK_LEN int flock(int fd, int oper) { static asynchronous_func_t locker = NULL; if (!locker) { if (IsWinNT()) locker = flock_winnt; else locker = flock_win95; } return win32_asynchronize(locker, (VALUE)_get_osfhandle(fd), oper, NULL, (DWORD)-1); } //#undef const //FILE *fdopen(int, const char *); // // Initialization stuff // void NtInitialize(int *argc, char ***argv) { WORD version; int ret; // // subvert cmd.exe\'s feeble attempt at command line parsing // *argc = NtMakeCmdVector((char *)GetCommandLine(), argv, TRUE); // // Now set up the correct time stuff // tzset(); // Initialize Winsock StartSockets(); } char *getlogin() { char buffer[200]; DWORD len = 200; extern char *NTLoginName; if (NTLoginName == NULL) { if (GetUserName(buffer, &len)) { NTLoginName = ALLOC_N(char, len+1); strncpy(NTLoginName, buffer, len); NTLoginName[len] = '\0'; } else { NTLoginName = ""; } } return NTLoginName; } #if 1 // popen stuff // // use these so I can remember which index is which // #define NtPipeRead 0 // index of pipe read descriptor #define NtPipeWrite 1 // index of pipe write descriptor #define NtPipeSize 1024 // size of pipe buffer #define MYPOPENSIZE 256 // size of book keeping structure struct { int inuse; int pid; FILE *pipe; } MyPopenRecord[MYPOPENSIZE]; int SafeFree(char **vec, int vecc) { // vec // | // V ^---------------------V // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // | | | .... | NULL | | ..... |\0 | | ..... |\0 |... // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // |- elements+1 -| ^ 1st element ^ 2nd element char *p; p = (char *)vec; free(p); return 0; } static char *szInternalCmds[] = { "append", "break", "call", "cd", "chdir", "cls", "copy", "date", "del", "dir", "echo", "erase", "label", "md", "mkdir", "path", "pause", "rd", "rem", "ren", "rename", "rmdir", "set", "start", "time", "type", "ver", "vol", NULL }; int isInternalCmd(char *cmd) { int i, fRet=0; char **vec; int vecc = NtMakeCmdVector(cmd, &vec, FALSE); for( i = 0; szInternalCmds[i] ; i++){ if(!strcmp(szInternalCmds[i], vec[0])){ fRet = 1; break; } } SafeFree (vec, vecc); return fRet; } SOCKET myget_osfhandle(int fh) { return _get_osfhandle(fh); } FILE * mypopen (char *cmd, char *mode) { FILE *fp; int saved, reading; int pipemode; int pipes[2]; int pid; int slot; static initialized = 0; // // if first time through, intialize our book keeping structure // if (!initialized++) { for (slot = 0; slot < MYPOPENSIZE; slot++) MyPopenRecord[slot].inuse = FALSE; } //printf("mypopen %s\n", cmd); // // find a free popen slot // for (slot = 0; slot < MYPOPENSIZE && MyPopenRecord[slot].inuse; slot++) ; if (slot > MYPOPENSIZE) { return NULL; } // // Figure out what we\'re doing... // reading = (*mode == 'r') ? TRUE : FALSE; pipemode = (*(mode+1) == 'b') ? O_BINARY : O_TEXT; // // Now get a pipe // #if 0 if (_pipe(pipes, NtPipeSize, pipemode) == -1) { return NULL; } if (reading) { // // we\'re reading from the pipe, so we must hook up the // write end of the pipe to the new processes stdout. // To do this we must save our file handle from stdout // by _dup\'ing it, then setting our stdout to be the pipe\'s // write descriptor. We must also make the write handle // inheritable so the new process can use it. if ((saved = _dup(fileno(stdout))) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } if (_dup2 (pipes[NtPipeWrite], fileno(stdout)) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } else { // // must be writing to the new process. Do the opposite of // the above, i.e. hook up the processes stdin to the read // end of the pipe. // if ((saved = _dup(fileno(stdin))) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } if (_dup2(pipes[NtPipeRead], fileno(stdin)) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } // // Start the new process. Must set _fileinfo to non-zero value // for file descriptors to be inherited. Reset after the process // is started. // if (NtHasRedirection(cmd)) { docmd: pid = spawnlpe(_P_NOWAIT, "cmd.exe", "/c", cmd, 0, environ); if (pid == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } else { char **vec; int vecc = NtMakeCmdVector(cmd, &vec, FALSE); //pid = spawnvpe (_P_NOWAIT, vec[0], vec, environ); pid = spawnvpe (_P_WAIT, vec[0], vec, environ); if (pid == -1) { goto docmd; } Safefree (vec, vecc); } if (reading) { // // We need to close our instance of the inherited pipe write // handle now that it's been inherited so that it will actually close // when the child process ends. // if (_close(pipes[NtPipeWrite]) == -1) { _close(pipes[NtPipeRead]); return NULL; } if (_dup2 (saved, fileno(stdout)) == -1) { _close(pipes[NtPipeRead]); return NULL; } _close(saved); // // Now get a stream pointer to return to the calling program. // if ((fp = (FILE *) fdopen(pipes[NtPipeRead], mode)) == NULL) { return NULL; } } else { // // need to close our read end of the pipe so that it will go // away when the write end is closed. // if (_close(pipes[NtPipeRead]) == -1) { _close(pipes[NtPipeWrite]); return NULL; } if (_dup2 (saved, fileno(stdin)) == -1) { _close(pipes[NtPipeWrite]); return NULL; } _close(saved); // // Now get a stream pointer to return to the calling program. // if ((fp = (FILE *) fdopen(pipes[NtPipeWrite], mode)) == NULL) { _close(pipes[NtPipeWrite]); return NULL; } } // // do the book keeping // MyPopenRecord[slot].inuse = TRUE; MyPopenRecord[slot].pipe = fp; MyPopenRecord[slot].pid = pid; return fp; #else { int p[2]; BOOL fRet; HANDLE hInFile, hOutFile; LPCSTR lpApplicationName = NULL; LPTSTR lpCommandLine; LPTSTR lpCmd2 = NULL; DWORD dwCreationFlags; STARTUPINFO aStartupInfo; PROCESS_INFORMATION aProcessInformation; SECURITY_ATTRIBUTES sa; int fd; sa.nLength = sizeof (SECURITY_ATTRIBUTES); sa.lpSecurityDescriptor = NULL; sa.bInheritHandle = TRUE; fRet = CreatePipe(&hInFile, &hOutFile, &sa, 2048L); if (!fRet) { errno = GetLastError(); rb_sys_fail("mypopen: CreatePipe"); } memset(&aStartupInfo, 0, sizeof (STARTUPINFO)); memset(&aProcessInformation, 0, sizeof (PROCESS_INFORMATION)); aStartupInfo.cb = sizeof (STARTUPINFO); aStartupInfo.dwFlags = STARTF_USESTDHANDLES; if (reading) { aStartupInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE); aStartupInfo.hStdOutput = hOutFile; } else { aStartupInfo.hStdInput = hInFile; aStartupInfo.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE); } aStartupInfo.hStdError = GetStdHandle(STD_ERROR_HANDLE); dwCreationFlags = (NORMAL_PRIORITY_CLASS); lpCommandLine = cmd; if (NtHasRedirection(cmd) || isInternalCmd(cmd)) { lpApplicationName = getenv("COMSPEC"); lpCmd2 = xmalloc(strlen(lpApplicationName) + 1 + strlen(cmd) + sizeof (" /c ")); sprintf(lpCmd2, "%s %s%s", lpApplicationName, " /c ", cmd); lpCommandLine = lpCmd2; } fRet = CreateProcess(lpApplicationName, lpCommandLine, &sa, &sa, sa.bInheritHandle, dwCreationFlags, NULL, NULL, &aStartupInfo, &aProcessInformation); errno = GetLastError(); if (lpCmd2) free(lpCmd2); if (!fRet) { CloseHandle(hInFile); CloseHandle(hOutFile); return NULL; } CloseHandle(aProcessInformation.hThread); if (reading) { fd = _open_osfhandle((long)hInFile, (_O_RDONLY | pipemode)); CloseHandle(hOutFile); } else { fd = _open_osfhandle((long)hOutFile, (_O_WRONLY | pipemode)); CloseHandle(hInFile); } if (fd == -1) { CloseHandle(reading ? hInFile : hOutFile); CloseHandle(aProcessInformation.hProcess); rb_sys_fail("mypopen: _open_osfhandle"); } if ((fp = (FILE *) fdopen(fd, mode)) == NULL) { _close(fd); CloseHandle(aProcessInformation.hProcess); rb_sys_fail("mypopen: fdopen"); } MyPopenRecord[slot].inuse = TRUE; MyPopenRecord[slot].pipe = fp; MyPopenRecord[slot].pid = (int)aProcessInformation.hProcess; return fp; } #endif } int mypclose(FILE *fp) { int i; DWORD exitcode; Sleep(100); for (i = 0; i < MYPOPENSIZE; i++) { if (MyPopenRecord[i].inuse && MyPopenRecord[i].pipe == fp) break; } if (i >= MYPOPENSIZE) { rb_fatal("Invalid file pointer passed to mypclose!\n"); } // // get the return status of the process // #if 0 if (_cwait(&exitcode, MyPopenRecord[i].pid, WAIT_CHILD) == -1) { if (errno == ECHILD) { fprintf(stderr, "mypclose: nosuch child as pid %x\n", MyPopenRecord[i].pid); } } #else for (;;) { if (GetExitCodeProcess((HANDLE)MyPopenRecord[i].pid, &exitcode)) { if (exitcode == STILL_ACTIVE) { //printf("Process is Active.\n"); Sleep(100); TerminateProcess((HANDLE)MyPopenRecord[i].pid, 0); // ugly... continue; } else if (exitcode == 0) { //printf("done.\n"); break; } else { //printf("never.\n"); break; } } } CloseHandle((HANDLE)MyPopenRecord[i].pid); #endif // // close the pipe // fflush(fp); fclose(fp); // // free this slot // MyPopenRecord[i].inuse = FALSE; MyPopenRecord[i].pipe = NULL; MyPopenRecord[i].pid = 0; return (int)((exitcode & 0xff) << 8); } #endif #if 1 typedef char* CHARP; /* * The following code is based on the do_exec and do_aexec functions * in file doio.c */ int do_spawn(cmd) char *cmd; { register char **a; register char *s; char **argv; int status = -1; char *shell, *cmd2; int mode = NtSyncProcess ? P_WAIT : P_NOWAIT; /* save an extra exec if possible */ if ((shell = getenv("RUBYSHELL")) != 0) { if (NtHasRedirection(cmd)) { int i; char *p; char *argv[4]; char *cmdline = ALLOC_N(char, (strlen(cmd) * 2 + 1)); p=cmdline; *p++ = '"'; for (s=cmd; *s;) { if (*s == '"') *p++ = '\\'; /* Escape d-quote */ *p++ = *s++; } *p++ = '"'; *p = '\0'; /* fprintf(stderr, "do_spawn: %s %s\n", shell, cmdline); */ argv[0] = shell; argv[1] = "-c"; argv[2] = cmdline; argv[4] = NULL; status = spawnvpe(mode, argv[0], argv, environ); /* return spawnle(mode, shell, shell, "-c", cmd, (char*)0, environ); */ free(cmdline); return (int)((status & 0xff) << 8); } } else if ((shell = getenv("COMSPEC")) != 0) { if (NtHasRedirection(cmd) /* || isInternalCmd(cmd) */) { status = spawnle(mode, shell, shell, "/c", cmd, (char*)0, environ); return (int)((status & 0xff) << 8); } } argv = ALLOC_N(CHARP, (strlen(cmd) / 2 + 2)); cmd2 = ALLOC_N(char, (strlen(cmd) + 1)); strcpy(cmd2, cmd); a = argv; for (s = cmd2; *s;) { while (*s && isspace(*s)) s++; if (*s) *(a++) = s; while (*s && !isspace(*s)) s++; if (*s) *s++ = '\0'; } *a = NULL; if (argv[0]) { if ((status = spawnvpe(mode, argv[0], argv, environ)) == -1) { free(argv); free(cmd2); return -1; } } free(cmd2); free(argv); return (int)((status & 0xff) << 8); } #endif typedef struct _NtCmdLineElement { struct _NtCmdLineElement *next, *prev; char *str; int len; int flags; } NtCmdLineElement; // // Possible values for flags // #define NTGLOB 0x1 // element contains a wildcard #define NTMALLOC 0x2 // string in element was malloc'ed #define NTSTRING 0x4 // element contains a quoted string NtCmdLineElement *NtCmdHead = NULL, *NtCmdTail = NULL; void NtFreeCmdLine(void) { NtCmdLineElement *ptr; while(NtCmdHead) { ptr = NtCmdHead; NtCmdHead = NtCmdHead->next; free(ptr); } NtCmdHead = NtCmdTail = NULL; } // // This function expands wild card characters that were spotted // during the parse phase. The idea here is to call FindFirstFile and // FindNextFile with the wildcard pattern specified, and splice in the // resulting list of new names. If the wildcard pattern doesn\'t match // any existing files, just leave it in the list. // #if 0 void NtCmdGlob (NtCmdLineElement *patt) { WIN32_FIND_DATA fd; HANDLE fh; char buffer[512]; NtCmdLineElement *tmphead, *tmptail, *tmpcurr; strncpy(buffer, patt->str, patt->len); buffer[patt->len] = '\0'; if ((fh = FindFirstFile (buffer, &fd)) == INVALID_HANDLE_VALUE) { return; } tmphead = tmptail = NULL; do { tmpcurr = ALLOC(NtCmdLineElement); if (tmpcurr == NULL) { fprintf(stderr, "Out of Memory in globbing!\n"); while (tmphead) { tmpcurr = tmphead; tmphead = tmphead->next; free(tmpcurr->str); free(tmpcurr); } return; } memset (tmpcurr, 0, sizeof(*tmpcurr)); tmpcurr->len = strlen(fd.cFileName); tmpcurr->str = ALLOC_N(char, tmpcurr->len+1); if (tmpcurr->str == NULL) { fprintf(stderr, "Out of Memory in globbing!\n"); while (tmphead) { tmpcurr = tmphead; tmphead = tmphead->next; free(tmpcurr->str); free(tmpcurr); } return; } strcpy(tmpcurr->str, fd.cFileName); tmpcurr->flags |= NTMALLOC; if (tmptail) { tmptail->next = tmpcurr; tmpcurr->prev = tmptail; tmptail = tmpcurr; } else { tmptail = tmphead = tmpcurr; } } while(FindNextFile(fh, &fd)); // // ok, now we\'ve got a list of files that matched the wildcard // specification. Put it in place of the pattern structure. // tmphead->prev = patt->prev; tmptail->next = patt->next; if (tmphead->prev) tmphead->prev->next = tmphead; if (tmptail->next) tmptail->next->prev = tmptail; // // Now get rid of the pattern structure // if (patt->flags & NTMALLOC) free(patt->str); // free(patt); //TODO: memory leak occures here. we have to fix it. } #else typedef struct { NtCmdLineElement *head; NtCmdLineElement *tail; } ListInfo; static void insert(char *path, ListInfo *listinfo) { NtCmdLineElement *tmpcurr; tmpcurr = ALLOC(NtCmdLineElement); MEMZERO(tmpcurr, NtCmdLineElement, 1); tmpcurr->len = strlen(path); tmpcurr->str = ALLOC_N(char, tmpcurr->len + 1); tmpcurr->flags |= NTMALLOC; strcpy(tmpcurr->str, path); if (listinfo->tail) { listinfo->tail->next = tmpcurr; tmpcurr->prev = listinfo->tail; listinfo->tail = tmpcurr; } else { listinfo->tail = listinfo->head = tmpcurr; } } #ifdef HAVE_SYS_PARAM_H # include #else # define MAXPATHLEN 512 #endif void NtCmdGlob (NtCmdLineElement *patt) { ListInfo listinfo; char buffer[MAXPATHLEN], *buf = buffer; char *p; listinfo.head = listinfo.tail = 0; if (patt->len >= MAXPATHLEN) buf = ruby_xmalloc(patt->len + 1); strncpy (buf, patt->str, patt->len); buf[patt->len] = '\0'; for (p = buf; *p; p = CharNext(p)) if (*p == '\\') *p = '/'; rb_iglob(buf, insert, (VALUE)&listinfo); if (buf != buffer) free(buf); if (listinfo.head && listinfo.tail) { listinfo.head->prev = patt->prev; listinfo.tail->next = patt->next; if (listinfo.head->prev) listinfo.head->prev->next = listinfo.head; if (listinfo.tail->next) listinfo.tail->next->prev = listinfo.tail; } if (patt->flags & NTMALLOC) free(patt->str); // free(patt); //TODO: memory leak occures here. we have to fix it. } #endif // // Check a command string to determine if it has I/O redirection // characters that require it to be executed by a command interpreter // static bool NtHasRedirection (char *cmd) { int inquote = 0; char quote = '\0'; char *ptr ; // // Scan the string, looking for redirection (< or >) or pipe // characters (|) that are not in a quoted string // for (ptr = cmd; *ptr; ptr++) { switch (*ptr) { case '\'': case '\"': if (inquote) { if (quote == *ptr) { inquote = 0; quote = '\0'; } } else { quote = *ptr; inquote++; } break; case '>': case '<': if (!inquote) return TRUE; } } return FALSE; } int NtMakeCmdVector (char *cmdline, char ***vec, int InputCmd) { int cmdlen = strlen(cmdline); int done, instring, globbing, quoted, len; int newline, need_free = 0, i; int elements, strsz; int slashes = 0; char *ptr, *base, *buffer; char **vptr; char quote; NtCmdLineElement *curr; // // just return if we don\'t have a command line // if (cmdlen == 0) { *vec = NULL; return 0; } cmdline = strdup(cmdline); // // strip trailing white space // ptr = cmdline+(cmdlen - 1); while(ptr >= cmdline && isspace(*ptr)) --ptr; *++ptr = '\0'; // // Ok, parse the command line, building a list of CmdLineElements. // When we\'ve finished, and it\'s an input command (meaning that it\'s // the processes argv), we\'ll do globing and then build the argument // vector. // The outer loop does one interation for each element seen. // The inner loop does one interation for each character in the element. // for (done = 0, ptr = cmdline; *ptr;) { // // zap any leading whitespace // while(isspace(*ptr)) ptr++; base = ptr; for (done = newline = globbing = instring = quoted = 0; *ptr && !done; ptr++) { // // Switch on the current character. We only care about the // white-space characters, the wild-card characters, and the // quote characters. // switch (*ptr) { case '\\': if (ptr[1] == '"') ptr++; break; case ' ': case '\t': #if 0 case '/': // have to do this for NT/DOS option strings // // check to see if we\'re parsing an option switch // if (*ptr == '/' && base == ptr) continue; #endif // // if we\'re not in a string, then we\'re finished with this // element // if (!instring) done++; break; case '*': case '?': // // record the fact that this element has a wildcard character // N.B. Don\'t glob if inside a single quoted string // if (!(instring && quote == '\'')) globbing++; break; case '\n': // // If this string contains a newline, mark it as such so // we can replace it with the two character sequence "\n" // (cmd.exe doesn\'t like raw newlines in strings...sigh). // newline++; break; case '\'': case '\"': // // if we\'re already in a string, see if this is the // terminating close-quote. If it is, we\'re finished with // the string, but not neccessarily with the element. // If we\'re not already in a string, start one. // if (instring) { if (quote == *ptr) { instring = 0; quote = '\0'; } } else { instring++; quote = *ptr; quoted++; } break; } } // // need to back up ptr by one due to last increment of for loop // (if we got out by seeing white space) // if (*ptr) ptr--; // // when we get here, we\'ve got a pair of pointers to the element, // base and ptr. Base points to the start of the element while ptr // points to the character following the element. // curr = ALLOC(NtCmdLineElement); memset (curr, 0, sizeof(*curr)); len = ptr - base; // // if it\'s an input vector element and it\'s enclosed by quotes, // we can remove them. // if (InputCmd && (base[0] == '\"' && base[len-1] == '\"')) { char *p; base++; len -= 2; base[len] = 0; for (p = base; p < base + len; p++) { if ((p[0] == '\\' || p[0] == '\"') && p[1] == '"') { strcpy(p, p + 1); len--; } } } else if (InputCmd && (base[0] == '\'' && base[len-1] == '\'')) { base++; len -= 2; } curr->str = base; curr->len = len; curr->flags |= (globbing ? NTGLOB : 0); // // Now put it in the list of elements // if (NtCmdTail) { NtCmdTail->next = curr; curr->prev = NtCmdTail; NtCmdTail = curr; } else { NtCmdHead = NtCmdTail = curr; } } if (InputCmd) { // // When we get here we\'ve finished parsing the command line. Now // we need to run the list, expanding any globbing patterns. // for(curr = NtCmdHead; curr; curr = curr->next) { if (curr->flags & NTGLOB) { NtCmdGlob(curr); } } } // // Almost done! // Count up the elements, then allocate space for a vector of pointers // (argv) and a string table for the elements. // for (elements = 0, strsz = 0, curr = NtCmdHead; curr; curr = curr->next) { elements++; strsz += (curr->len + 1); } len = (elements+1)*sizeof(char *) + strsz; buffer = ALLOC_N(char, len); memset (buffer, 0, len); // // make vptr point to the start of the buffer // and ptr point to the area we\'ll consider the string table. // // buffer (*vec) // | // V ^---------------------V // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // | | | .... | NULL | | ..... |\0 | | ..... |\0 |... // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // |- elements+1 -| ^ 1st element ^ 2nd element vptr = (char **) buffer; ptr = buffer + (elements+1) * sizeof(char *); for (curr = NtCmdHead; curr; curr = curr->next) { strncpy (ptr, curr->str, curr->len); ptr[curr->len] = '\0'; *vptr++ = ptr; ptr += curr->len + 1; } NtFreeCmdLine(); *vec = (char **) buffer; free(cmdline); return elements; } #if !defined __MINGW32__ // // UNIX compatible directory access functions for NT // #define PATHLEN 1024 // // The idea here is to read all the directory names into a string table // (separated by nulls) and when one of the other dir functions is called // return the pointer to the current file name. // DIR * opendir(char *filename) { DIR *p; long len; long idx; char scannamespc[PATHLEN]; char *scanname = scannamespc; struct stat sbuf; WIN32_FIND_DATA FindData; HANDLE fh; char root[PATHLEN]; char volname[PATHLEN]; DWORD serial, maxname, flags; // // check to see if we\'ve got a directory // if ((stat (filename, &sbuf) < 0 || sbuf.st_mode & _S_IFDIR == 0) && (!isalpha(filename[0]) || filename[1] != ':' || filename[2] != '\0' || ((1 << (filename[0] & 0x5f) - 'A') & GetLogicalDrives()) == 0)) { return NULL; } // // Get us a DIR structure // p = xcalloc(sizeof(DIR), 1); if (p == NULL) return NULL; // // Create the search pattern // strcpy(scanname, filename); if (index("/\\:", *CharPrev(scanname, scanname + strlen(scanname))) == NULL) strcat(scanname, "/*"); else strcat(scanname, "*"); // // do the FindFirstFile call // fh = FindFirstFile (scanname, &FindData); if (fh == INVALID_HANDLE_VALUE) { return NULL; } // // now allocate the first part of the string table for the // filenames that we find. // idx = strlen(FindData.cFileName)+1; p->start = ALLOC_N(char, idx); strcpy (p->start, FindData.cFileName); p->nfiles++; // // loop finding all the files that match the wildcard // (which should be all of them in this directory!). // the variable idx should point one past the null terminator // of the previous string found. // while (FindNextFile(fh, &FindData)) { len = strlen (FindData.cFileName); // // bump the string table size by enough for the // new name and it's null terminator // #define Renew(x, y, z) (x = (z *)realloc(x, y)) Renew (p->start, idx+len+1, char); if (p->start == NULL) { rb_fatal ("opendir: malloc failed!\n"); } strcpy(&p->start[idx], FindData.cFileName); p->nfiles++; idx += len+1; } FindClose(fh); p->size = idx; p->curr = p->start; return p; } // // Readdir just returns the current string pointer and bumps the // string pointer to the next entry. // struct direct * readdir(DIR *dirp) { int len; static int dummy = 0; if (dirp->curr) { // // first set up the structure to return // len = strlen(dirp->curr); strcpy(dirp->dirstr.d_name, dirp->curr); dirp->dirstr.d_namlen = len; // // Fake inode // dirp->dirstr.d_ino = dummy++; // // Now set up for the next call to readdir // dirp->curr += len + 1; if (dirp->curr >= (dirp->start + dirp->size)) { dirp->curr = NULL; } return &(dirp->dirstr); } else return NULL; } // // Telldir returns the current string pointer position // long telldir(DIR *dirp) { return (long) dirp->curr; /* ouch! pointer to long cast */ } // // Seekdir moves the string pointer to a previously saved position // (Saved by telldir). void seekdir(DIR *dirp, long loc) { dirp->curr = (char *) loc; /* ouch! long to pointer cast */ } // // Rewinddir resets the string pointer to the start // void rewinddir(DIR *dirp) { dirp->curr = dirp->start; } // // This just free\'s the memory allocated by opendir // void closedir(DIR *dirp) { free(dirp->start); free(dirp); } #endif // // 98.2% of this code was lifted from the OS2 port. (JCW) // #if 0 // add_suffix is in util.c too. /* * Suffix appending for in-place editing under MS-DOS and OS/2 (and now NT!). * * Here are the rules: * * Style 0: Append the suffix exactly as standard perl would do it. * If the filesystem groks it, use it. (HPFS will always * grok it. So will NTFS. FAT will rarely accept it.) * * Style 1: The suffix begins with a '.'. The extension is replaced. * If the name matches the original name, use the fallback method. * * Style 2: The suffix is a single character, not a '.'. Try to add the * suffix to the following places, using the first one that works. * [1] Append to extension. * [2] Append to filename, * [3] Replace end of extension, * [4] Replace end of filename. * If the name matches the original name, use the fallback method. * * Style 3: Any other case: Ignore the suffix completely and use the * fallback method. * * Fallback method: Change the extension to ".$$$". If that matches the * original name, then change the extension to ".~~~". * * If filename is more than 1000 characters long, we die a horrible * death. Sorry. * * The filename restriction is a cheat so that we can use buf[] to store * assorted temporary goo. * * Examples, assuming style 0 failed. * * suffix = ".bak" (style 1) * foo.bar => foo.bak * foo.bak => foo.$$$ (fallback) * foo.$$$ => foo.~~~ (fallback) * makefile => makefile.bak * * suffix = "~" (style 2) * foo.c => foo.c~ * foo.c~ => foo.c~~ * foo.c~~ => foo~.c~~ * foo~.c~~ => foo~~.c~~ * foo~~~~~.c~~ => foo~~~~~.$$$ (fallback) * * foo.pas => foo~.pas * makefile => makefile.~ * longname.fil => longname.fi~ * longname.fi~ => longnam~.fi~ * longnam~.fi~ => longnam~.$$$ * */ static char suffix1[] = ".$$$"; static char suffix2[] = ".~~~"; #define ext (&buf[1000]) #define strEQ(s1,s2) (strcmp(s1,s2) == 0) void add_suffix(struct RString *str, char *suffix) { int baselen; int extlen = strlen(suffix); char *s, *t, *p; int slen; char buf[1024]; if (str->len > 1000) rb_fatal("Cannot do inplace edit on long filename (%d characters)", str->len); /* Style 0 */ slen = str->len; str_cat(str, suffix, extlen); if (valid_filename(str->ptr)) return; /* Fooey, style 0 failed. Fix str before continuing. */ str->ptr[str->len = slen] = '\0'; slen = extlen; t = buf; baselen = 0; s = str->ptr; while ( (*t = *s) && *s != '.') { baselen++; if (*s == '\\' || *s == '/') baselen = 0; s++; t++; } p = t; t = ext; extlen = 0; while (*t++ = *s++) extlen++; if (extlen == 0) { ext[0] = '.'; ext[1] = 0; extlen++; } if (*suffix == '.') { /* Style 1 */ if (strEQ(ext, suffix)) goto fallback; strcpy(p, suffix); } else if (suffix[1] == '\0') { /* Style 2 */ if (extlen < 4) { ext[extlen] = *suffix; ext[++extlen] = '\0'; } else if (baselen < 8) { *p++ = *suffix; } else if (ext[3] != *suffix) { ext[3] = *suffix; } else if (buf[7] != *suffix) { buf[7] = *suffix; } else goto fallback; strcpy(p, ext); } else { /* Style 3: Panic */ fallback: (void)memcpy(p, strEQ(ext, suffix1) ? suffix2 : suffix1, 5); } str_grow(str, strlen(buf)); memcpy(str->ptr, buf, str->len); } #endif static int valid_filename(char *s) { int fd; // // if the file exists, then it\'s a valid filename! // if (_access(s, 0) == 0) { return 1; } // // It doesn\'t exist, so see if we can open it. // if ((fd = _open(s, _O_CREAT, 0666)) >= 0) { close(fd); _unlink (s); // don\'t leave it laying around return 1; } return 0; } // // This is a clone of fdopen so that we can handle the // brain damaged version of sockets that NT gets to use. // // The problem is that sockets are not real file handles and // cannot be fdopen\'ed. This causes problems in the do_socket // routine in doio.c, since it tries to create two file pointers // for the socket just created. We\'ll fake out an fdopen and see // if we can prevent perl from trying to do stdio on sockets. // //EXTERN_C int __cdecl _alloc_osfhnd(void); //EXTERN_C int __cdecl _set_osfhnd(int fh, long value); EXTERN_C void __cdecl _lock_fhandle(int); EXTERN_C void __cdecl _unlock_fhandle(int); EXTERN_C void __cdecl _unlock(int); #if defined _MT || defined __MSVCRT__ #define MSVCRT_THREADS #endif typedef struct { long osfhnd; /* underlying OS file HANDLE */ char osfile; /* attributes of file (e.g., open in text mode?) */ char pipech; /* one char buffer for handles opened on pipes */ #ifdef MSVCRT_THREADS int lockinitflag; CRITICAL_SECTION lock; #endif } ioinfo; #if !defined _CRTIMP #define _CRTIMP __declspec(dllimport) #endif EXTERN_C _CRTIMP ioinfo * __pioinfo[]; #define IOINFO_L2E 5 #define IOINFO_ARRAY_ELTS (1 << IOINFO_L2E) #define _pioinfo(i) (__pioinfo[i >> IOINFO_L2E] + (i & (IOINFO_ARRAY_ELTS - 1))) #define _osfhnd(i) (_pioinfo(i)->osfhnd) #define _osfile(i) (_pioinfo(i)->osfile) #define _pipech(i) (_pioinfo(i)->pipech) #define FOPEN 0x01 /* file handle open */ #define FNOINHERIT 0x10 /* file handle opened O_NOINHERIT */ #define FAPPEND 0x20 /* file handle opened O_APPEND */ #define FDEV 0x40 /* file handle refers to device */ #define FTEXT 0x80 /* file handle is in text mode */ #define _set_osfhnd(fh, osfh) (void)(_osfhnd(fh) = osfh) static int _alloc_osfhnd(void) { HANDLE hF = CreateFile("NUL", 0, 0, NULL, OPEN_ALWAYS, 0, NULL); int fh = _open_osfhandle((long)hF, 0); CloseHandle(hF); if (fh == -1) return fh; #ifdef MSVCRT_THREADS EnterCriticalSection(&(_pioinfo(fh)->lock)); #endif return fh; } static int my_open_osfhandle(long osfhandle, int flags) { int fh; char fileflags; /* _osfile flags */ /* copy relevant flags from second parameter */ fileflags = FDEV; if (flags & O_APPEND) fileflags |= FAPPEND; if (flags & O_TEXT) fileflags |= FTEXT; if (flags & O_NOINHERIT) fileflags |= FNOINHERIT; /* attempt to allocate a C Runtime file handle */ if ((fh = _alloc_osfhnd()) == -1) { errno = EMFILE; /* too many open files */ _doserrno = 0L; /* not an OS error */ return -1; /* return error to caller */ } /* the file is open. now, set the info in _osfhnd array */ _set_osfhnd(fh, osfhandle); fileflags |= FOPEN; /* mark as open */ _osfile(fh) = fileflags; /* set osfile entry */ #ifdef MSVCRT_THREADS LeaveCriticalSection(&_pioinfo(fh)->lock); #endif return fh; /* return handle */ } #undef getsockopt static int is_socket(SOCKET fd) { char sockbuf[80]; int optlen; int retval; optlen = sizeof(sockbuf); retval = getsockopt(fd, SOL_SOCKET, SO_TYPE, sockbuf, &optlen); if (retval == SOCKET_ERROR) { int iRet; iRet = WSAGetLastError(); if (iRet == WSAENOTSOCK || iRet == WSANOTINITIALISED) return FALSE; } // // If we get here, then fd is actually a socket. // return TRUE; } int myfddup (int fd) { SOCKET s = TO_SOCKET(fd); if (s == -1) return -1; return my_open_osfhandle(s, O_RDWR|O_BINARY); } void myfdclose(FILE *fp) { #if !defined MSVCRT_THREADS _free_osfhnd(fileno(fp)); #endif fclose(fp); } // // Since the errors returned by the socket error function // WSAGetLastError() are not known by the library routine strerror // we have to roll our own. // #undef strerror char * mystrerror(int e) { static char buffer[512]; #if !defined __MINGW32__ extern int sys_nerr; #endif DWORD source = 0; char *p; if (e < 0 || e > sys_nerr) { if (e < 0) e = GetLastError(); if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, &source, e, 0, buffer, 512, NULL) == 0) { strcpy(buffer, "Unknown Error"); } for (p = buffer + strlen(buffer) - 1; buffer <= p; p--) { if (*p != '\r' && *p != '\n') break; *p = 0; } return buffer; } return strerror(e); } // // various stubs // // Ownership // // Just pretend that everyone is a superuser. NT will let us know if // we don\'t really have permission to do something. // #define ROOT_UID 0 #define ROOT_GID 0 UIDTYPE getuid(void) { return ROOT_UID; } UIDTYPE geteuid(void) { return ROOT_UID; } GIDTYPE getgid(void) { return ROOT_GID; } GIDTYPE getegid(void) { return ROOT_GID; } int setuid(int uid) { return (uid == ROOT_UID ? 0 : -1); } int setgid(int gid) { return (gid == ROOT_GID ? 0 : -1); } // // File system stuff // int /* ioctl(int i, unsigned int u, char *data) */ ioctl(int i, unsigned int u, long data) { return -1; } #undef FD_SET void myfdset(int fd, fd_set *set) { unsigned int i; SOCKET s = TO_SOCKET(fd); for (i = 0; i < set->fd_count; i++) { if (set->fd_array[i] == s) { return; } } if (i == set->fd_count) { if (set->fd_count < FD_SETSIZE) { set->fd_array[i] = s; set->fd_count++; } } } #undef FD_CLR void myfdclr(int fd, fd_set *set) { unsigned int i; SOCKET s = TO_SOCKET(fd); for (i = 0; i < set->fd_count; i++) { if (set->fd_array[i] == s) { while (i < set->fd_count - 1) { set->fd_array[i] = set->fd_array[i + 1]; i++; } set->fd_count--; break; } } } #undef FD_ISSET int myfdisset(int fd, fd_set *set) { return __WSAFDIsSet(TO_SOCKET(fd), set); } // // Networking trampolines // These are used to avoid socket startup/shutdown overhead in case // the socket routines aren\'t used. // #undef select static int NtSocketsInitialized = 0; static int extract_file_fd(fd_set *set, fd_set *fileset) { int idx; fileset->fd_count = 0; if (!set) return 0; for (idx = 0; idx < set->fd_count; idx++) { SOCKET fd = set->fd_array[idx]; if (!is_socket(fd)) { int i; for (i = 0; i < fileset->fd_count; i++) { if (fileset->fd_array[i] == fd) { break; } } if (i == fileset->fd_count) { if (fileset->fd_count < FD_SETSIZE) { fileset->fd_array[i] = fd; fileset->fd_count++; } } } } return fileset->fd_count; } long myselect (int nfds, fd_set *rd, fd_set *wr, fd_set *ex, struct timeval *timeout) { long r; fd_set file_rd; fd_set file_wr; #ifdef USE_INTERRUPT_WINSOCK fd_set trap; #endif /* USE_INTERRUPT_WINSOCK */ int file_nfds; if (!NtSocketsInitialized++) { StartSockets(); } r = 0; if (rd && rd->fd_count > r) r = rd->fd_count; if (wr && wr->fd_count > r) r = wr->fd_count; if (ex && ex->fd_count > r) r = ex->fd_count; if (nfds > r) nfds = r; if (nfds == 0 && timeout) { Sleep(timeout->tv_sec * 1000 + timeout->tv_usec / 1000); return 0; } file_nfds = extract_file_fd(rd, &file_rd); file_nfds += extract_file_fd(wr, &file_wr); if (file_nfds) { // assume normal files are always readable/writable // fake read/write fd_set and return value if (rd) *rd = file_rd; if (wr) *wr = file_wr; return file_nfds; } #if USE_INTERRUPT_WINSOCK if (ex) trap = *ex; else trap.fd_count = 0; if (trap.fd_count < FD_SETSIZE) trap.fd_array[trap.fd_count++] = (SOCKET)interrupted_event; // else unable to catch interrupt. ex = &trap; #endif /* USE_INTERRUPT_WINSOCK */ if ((r = select (nfds, rd, wr, ex, timeout)) == SOCKET_ERROR) { errno = WSAGetLastError(); switch (errno) { case WSAEINTR: errno = EINTR; break; } } return r; } static void StartSockets () { WORD version; WSADATA retdata; int ret; int iSockOpt; // // initalize the winsock interface and insure that it\'s // cleaned up at exit. // version = MAKEWORD(1, 1); if (ret = WSAStartup(version, &retdata)) rb_fatal ("Unable to locate winsock library!\n"); if (LOBYTE(retdata.wVersion) != 1) rb_fatal("could not find version 1 of winsock dll\n"); if (HIBYTE(retdata.wVersion) != 1) rb_fatal("could not find version 1 of winsock dll\n"); atexit((void (*)(void)) WSACleanup); iSockOpt = SO_SYNCHRONOUS_NONALERT; /* * Enable the use of sockets as filehandles */ setsockopt(INVALID_SOCKET, SOL_SOCKET, SO_OPENTYPE, (char *)&iSockOpt, sizeof(iSockOpt)); main_thread.handle = GetCurrentThreadHandle(); main_thread.id = GetCurrentThreadId(); interrupted_event = CreateSignal(); if (!interrupted_event) rb_fatal("Unable to create interrupt event!\n"); } #undef accept SOCKET myaccept (SOCKET s, struct sockaddr *addr, int *addrlen) { SOCKET r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = accept (TO_SOCKET(s), addr, addrlen)) == INVALID_SOCKET) errno = WSAGetLastError(); return my_open_osfhandle(r, O_RDWR|O_BINARY); } #undef bind int mybind (SOCKET s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = bind (TO_SOCKET(s), addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef connect int myconnect (SOCKET s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = connect (TO_SOCKET(s), addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getpeername int mygetpeername (SOCKET s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getpeername (TO_SOCKET(s), addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getsockname int mygetsockname (SOCKET s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getsockname (TO_SOCKET(s), addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } int mygetsockopt (SOCKET s, int level, int optname, char *optval, int *optlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getsockopt (TO_SOCKET(s), level, optname, optval, optlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef ioctlsocket int myioctlsocket (SOCKET s, long cmd, u_long *argp) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = ioctlsocket (TO_SOCKET(s), cmd, argp)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef listen int mylisten (SOCKET s, int backlog) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = listen (TO_SOCKET(s), backlog)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef recv int myrecv (SOCKET s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = recv (TO_SOCKET(s), buf, len, flags)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef recvfrom int myrecvfrom (SOCKET s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = recvfrom (TO_SOCKET(s), buf, len, flags, from, fromlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef send int mysend (SOCKET s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = send (TO_SOCKET(s), buf, len, flags)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef sendto int mysendto (SOCKET s, char *buf, int len, int flags, struct sockaddr *to, int tolen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = sendto (TO_SOCKET(s), buf, len, flags, to, tolen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef setsockopt int mysetsockopt (SOCKET s, int level, int optname, char *optval, int optlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = setsockopt (TO_SOCKET(s), level, optname, optval, optlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef shutdown int myshutdown (SOCKET s, int how) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = shutdown (TO_SOCKET(s), how)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef socket SOCKET mysocket (int af, int type, int protocol) { SOCKET s; if (!NtSocketsInitialized++) { StartSockets(); } if ((s = socket (af, type, protocol)) == INVALID_SOCKET) { errno = WSAGetLastError(); //fprintf(stderr, "socket fail (%d)", WSAGetLastError()); } return my_open_osfhandle(s, O_RDWR|O_BINARY); } #undef gethostbyaddr struct hostent * mygethostbyaddr (char *addr, int len, int type) { struct hostent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostbyaddr (addr, len, type)) == NULL) errno = WSAGetLastError(); return r; } #undef gethostbyname struct hostent * mygethostbyname (char *name) { struct hostent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostbyname (name)) == NULL) errno = WSAGetLastError(); return r; } #undef gethostname int mygethostname (char *name, int len) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostname (name, len)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getprotobyname struct protoent * mygetprotobyname (char *name) { struct protoent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getprotobyname (name)) == NULL) errno = WSAGetLastError(); return r; } #undef getprotobynumber struct protoent * mygetprotobynumber (int num) { struct protoent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getprotobynumber (num)) == NULL) errno = WSAGetLastError(); return r; } #undef getservbyname struct servent * mygetservbyname (char *name, char *proto) { struct servent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getservbyname (name, proto)) == NULL) errno = WSAGetLastError(); return r; } #undef getservbyport struct servent * mygetservbyport (int port, char *proto) { struct servent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getservbyport (port, proto)) == NULL) errno = WSAGetLastError(); return r; } // // Networking stubs // void endhostent() {} void endnetent() {} void endprotoent() {} void endservent() {} struct netent *getnetent (void) {return (struct netent *) NULL;} struct netent *getnetbyaddr(char *name) {return (struct netent *)NULL;} struct netent *getnetbyname(long net, int type) {return (struct netent *)NULL;} struct protoent *getprotoent (void) {return (struct protoent *) NULL;} struct servent *getservent (void) {return (struct servent *) NULL;} void sethostent (int stayopen) {} void setnetent (int stayopen) {} void setprotoent (int stayopen) {} void setservent (int stayopen) {} #ifndef WNOHANG #define WNOHANG -1 #endif pid_t waitpid (pid_t pid, int *stat_loc, int options) { DWORD timeout; if (options == WNOHANG) { timeout = 0; } else { timeout = INFINITE; } if (wait_events((HANDLE)pid, timeout) == WAIT_OBJECT_0) { pid = _cwait(stat_loc, pid, 0); #if !defined __BORLANDC__ *stat_loc <<= 8; #endif return pid; } return 0; } #include int _cdecl gettimeofday(struct timeval *tv, struct timezone *tz) { struct timeb tb; ftime(&tb); tv->tv_sec = tb.time; tv->tv_usec = tb.millitm * 1000; return 0; } char * win32_getcwd(buffer, size) char *buffer; int size; { int length; char *bp; if (_getcwd(buffer, size) == NULL) { return NULL; } length = strlen(buffer); if (length >= size) { return NULL; } for (bp = buffer; *bp != '\0'; bp = CharNext(bp)) { if (*bp == '\\') { *bp = '/'; } } return buffer; } static char * str_grow(struct RString *str, size_t new_size) { char *p; p = realloc(str->ptr, new_size); if (p == NULL) rb_fatal("cannot grow string\n"); str->len = new_size; str->ptr = p; return p; } int chown(const char *path, int owner, int group) { return 0; } #include int kill(int pid, int sig) { #if 1 if ((unsigned int)pid == GetCurrentProcessId()) return raise(sig); if (sig == 2 && pid > 0) if (GenerateConsoleCtrlEvent(CTRL_C_EVENT, (DWORD)pid)) return 0; return -1; #else return 0; #endif } int link(char *from, char *to) { return -1; } int wait() { return 0; } char * win32_getenv(const char *name) { char *curitem = NULL; /* XXX threadead */ DWORD curlen = 0; /* XXX threadead */ DWORD needlen; curlen = 512; curitem = ALLOC_N(char, curlen); needlen = GetEnvironmentVariable(name,curitem,curlen); if (needlen != 0) { while (needlen > curlen) { REALLOC_N(curitem, char, needlen); curlen = needlen; needlen = GetEnvironmentVariable(name, curitem, curlen); } } else { return NULL; } return curitem; } int myrename(const char *oldpath, const char *newpath) { int res = 0; int oldatts; int newatts; oldatts = GetFileAttributes(oldpath); newatts = GetFileAttributes(newpath); if (oldatts == -1) { printf("file to move doesn't exist"); return -1; } if (newatts != -1 && newatts & FILE_ATTRIBUTE_READONLY) SetFileAttributesA(newpath, newatts & ~ FILE_ATTRIBUTE_READONLY); if (!MoveFile(oldpath, newpath)) res = -1; if (res) { switch (GetLastError()) { case ERROR_ALREADY_EXISTS: case ERROR_FILE_EXISTS: if (IsWinNT()) { if (MoveFileEx(oldpath, newpath, MOVEFILE_REPLACE_EXISTING)) res = 0; } else { for (;;) { if (!DeleteFile(newpath) && GetLastError() != ERROR_FILE_NOT_FOUND) break; else if (MoveFile(oldpath, newpath)) { res = 0; break; } } } } } if (res) errno = GetLastError(); else SetFileAttributes(newpath, oldatts); return res; } static long filetime_to_clock(FILETIME *ft) { __int64 qw = ft->dwHighDateTime; qw <<= 32; qw |= ft->dwLowDateTime; qw /= 10000; /* File time ticks at 0.1uS, clock at 1mS */ return (long) qw; } int mytimes(struct tms *tmbuf) { FILETIME create, exit, kernel, user; if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { tmbuf->tms_utime = filetime_to_clock(&user); tmbuf->tms_stime = filetime_to_clock(&kernel); tmbuf->tms_cutime = 0; tmbuf->tms_cstime = 0; } else { tmbuf->tms_utime = clock(); tmbuf->tms_stime = 0; tmbuf->tms_cutime = 0; tmbuf->tms_cstime = 0; } return 0; } #undef Sleep #define yield_once() Sleep(0) #define yield_until(condition) do yield_once(); while (!(condition)) static DWORD wait_events(HANDLE event, DWORD timeout) { HANDLE events[2]; int count = 0; DWORD ret; if (event) { events[count++] = event; } events[count++] = interrupted_event; ret = WaitForMultipleEvents(count, events, FALSE, timeout, TRUE); if (ret == WAIT_OBJECT_0 + count - 1) { ResetSignal(interrupted_event); errno = EINTR; } return ret; } static CRITICAL_SECTION* system_state(void) { static int initialized = 0; static CRITICAL_SECTION syssect; if (!initialized) { InitializeCriticalSection(&syssect); initialized = 1; } return &syssect; } static LONG flag_interrupt = -1; static volatile DWORD tlsi_interrupt = TLS_OUT_OF_INDEXES; void win32_disable_interrupt(void) { if (IsWinNT()) { EnterCriticalSection(system_state()); return; } if (tlsi_interrupt == TLS_OUT_OF_INDEXES) { tlsi_interrupt = TlsAlloc(); } { DWORD ti = (DWORD)TlsGetValue(tlsi_interrupt); while (InterlockedIncrement(&flag_interrupt) > 0 && !ti) { InterlockedDecrement(&flag_interrupt); Sleep(1); } TlsSetValue(tlsi_interrupt, (PVOID)++ti); } } void win32_enable_interrupt(void) { if (IsWinNT()) { LeaveCriticalSection(system_state()); return; } InterlockedDecrement(&flag_interrupt); TlsSetValue(tlsi_interrupt, (PVOID)((DWORD)TlsGetValue(tlsi_interrupt) - 1)); } struct handler_arg_t { void (*handler)(int); int arg; int status; int userstate; HANDLE handshake; }; static void win32_call_handler(struct handler_arg_t* h) { int status; RUBY_CRITICAL(rb_protect((VALUE (*)())h->handler, (VALUE)h->arg, &h->status); status = h->status; SetEvent(h->handshake)); if (status) { rb_jump_tag(status); } h->userstate = 1; /* never syscall after here */ for (;;); /* wait here in user state */ } static struct handler_arg_t* setup_handler(struct handler_arg_t *harg, int arg, void (*handler)(int), HANDLE handshake) { harg->handler = handler; harg->arg = arg; harg->status = 0; harg->userstate = 0; harg->handshake = handshake; return harg; } static void setup_call(CONTEXT* ctx, struct handler_arg_t *harg) { #ifdef _M_IX86 DWORD *esp = (DWORD *)ctx->Esp; *--esp = (DWORD)harg; *--esp = ctx->Eip; ctx->Esp = (DWORD)esp; ctx->Eip = (DWORD)win32_call_handler; #else #error unsupported processor #endif } int win32_main_context(int arg, void (*handler)(int)) { static HANDLE interrupt_done = NULL; struct handler_arg_t harg; CONTEXT ctx_orig; HANDLE current_thread = GetCurrentThread(); int old_priority = GetThreadPriority(current_thread); if (GetCurrentThreadId() == main_thread.id) return FALSE; SetSignal(interrupted_event); RUBY_CRITICAL({ /* the main thread must be in user state */ CONTEXT ctx; SuspendThread(main_thread.handle); SetThreadPriority(current_thread, GetThreadPriority(main_thread.handle)); ZeroMemory(&ctx, sizeof(CONTEXT)); ctx.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT; GetThreadContext(main_thread.handle, &ctx); ctx_orig = ctx; /* handler context setup */ if (!interrupt_done) { interrupt_done = CreateEvent(NULL, FALSE, FALSE, NULL); /* anonymous one-shot event */ } else { ResetEvent(interrupt_done); } setup_call(&ctx, setup_handler(&harg, arg, handler, interrupt_done)); ctx.ContextFlags = CONTEXT_CONTROL; SetThreadContext(main_thread.handle, &ctx); ResumeThread(main_thread.handle); }); /* give a chance to the main thread */ yield_once(); WaitForSingleObject(interrupt_done, INFINITE); /* handshaking */ if (!harg.status) { /* no exceptions raised, restore old context. */ RUBY_CRITICAL({ /* ensure the main thread is in user state. */ yield_until(harg.userstate); SuspendThread(main_thread.handle); ctx_orig.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT; SetThreadContext(main_thread.handle, &ctx_orig); ResumeThread(main_thread.handle); }); } /* otherwise leave the main thread raised */ SetThreadPriority(current_thread, old_priority); return TRUE; } int win32_sleep(unsigned long msec) { return wait_events(NULL, msec) != WAIT_TIMEOUT; } static void catch_interrupt(void) { yield_once(); win32_sleep(0); CHECK_INTS; } void win32_enter_syscall(void) { InterlockedExchange(&rb_trap_immediate, 1); catch_interrupt(); win32_disable_interrupt(); } void win32_leave_syscall(void) { win32_enable_interrupt(); catch_interrupt(); InterlockedExchange(&rb_trap_immediate, 0); } struct asynchronous_arg_t { /* output field */ void* stackaddr; /* input field */ VALUE (*func)(VALUE self, int argc, VALUE* argv); VALUE self; int argc; VALUE* argv; }; static DWORD WINAPI call_asynchronous(PVOID argp) { struct asynchronous_arg_t *arg = argp; arg->stackaddr = &argp; return (DWORD)arg->func(arg->self, arg->argc, arg->argv); } VALUE win32_asynchronize(asynchronous_func_t func, VALUE self, int argc, VALUE* argv, VALUE intrval) { DWORD val; BOOL interrupted = FALSE; HANDLE thr; RUBY_CRITICAL({ struct asynchronous_arg_t arg; arg.stackaddr = NULL; arg.func = func; arg.self = self; arg.argc = argc; arg.argv = argv; thr = CreateThread(NULL, 0, call_asynchronous, &arg, 0, &val); if (thr) { yield_until(arg.stackaddr); if (wait_events(thr, INFINITE) != WAIT_OBJECT_0) { interrupted = TRUE; if (TerminateThread(thr, intrval)) { yield_once(); } } GetExitCodeThread(thr, &val); CloseHandle(thr); if (interrupted) { /* must release stack of killed thread, why doesn't Windows? */ MEMORY_BASIC_INFORMATION m; memset(&m, 0, sizeof(m)); if (!VirtualQuery(arg.stackaddr, &m, sizeof(m))) { Debug(fprintf(stderr, "couldn't get stack base:%p:%d\n", arg.stackaddr, GetLastError())); } else if (!VirtualFree(m.AllocationBase, 0, MEM_RELEASE)) { Debug(fprintf(stderr, "couldn't release stack:%p:%d\n", m.AllocationBase, GetLastError())); } } } }); if (!thr) { rb_fatal("failed to launch waiter thread:%d", GetLastError()); } if (interrupted) { errno = EINTR; CHECK_INTS; } return val; }