/* * Copyright (c) 1993, Intergraph Corporation * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the perl README file. * * Various Unix compatibility functions and NT specific functions. * * Some of this code was derived from the MSDOS port(s) and the OS/2 port. * */ #include "ruby.h" #include "rubysig.h" #include #include #include /* #include */ #include #include #include #include #include #include #include #ifdef __MINGW32__ #include #endif #include "win32.h" #include "win32/dir.h" #ifdef _WIN32_WCE #include "wince.h" #endif #ifndef index #define index(x, y) strchr((x), (y)) #endif #define isdirsep(x) ((x) == '/' || (x) == '\\') #undef stat #undef fclose #undef close #undef setsockopt #ifndef bool #define bool int #endif #ifdef _M_IX86 # define WIN95 1 #else # undef WIN95 #endif #if defined __BORLANDC__ || defined _WIN32_WCE # define _filbuf _fgetc # define _flsbuf _fputc # define enough_to_get(n) (--(n) >= 0) # define enough_to_put(n) (++(n) < 0) #else # define enough_to_get(n) (--(n) >= 0) # define enough_to_put(n) (--(n) >= 0) #endif #if HAVE_WSAWAITFORMULTIPLEEVENTS # define USE_INTERRUPT_WINSOCK #endif #if USE_INTERRUPT_WINSOCK # define WaitForMultipleEvents WSAWaitForMultipleEvents # define CreateSignal() (HANDLE)WSACreateEvent() # define SetSignal(ev) WSASetEvent(ev) # define ResetSignal(ev) WSAResetEvent(ev) #else /* USE_INTERRUPT_WINSOCK */ # define WaitForMultipleEvents WaitForMultipleObjectsEx # define CreateSignal() CreateEvent(NULL, FALSE, FALSE, NULL); # define SetSignal(ev) SetEvent(ev) # define ResetSignal(ev) (void)0 #endif /* USE_INTERRUPT_WINSOCK */ #ifdef WIN32_DEBUG #define Debug(something) something #else #define Debug(something) /* nothing */ #endif #define TO_SOCKET(x) _get_osfhandle(x) bool NtSyncProcess = TRUE; static struct ChildRecord *CreateChild(char *, char *, SECURITY_ATTRIBUTES *, HANDLE, HANDLE, HANDLE); static bool NtHasRedirection (char *); static int valid_filename(char *s); static void StartSockets (); static char *str_grow(struct RString *str, size_t new_size); static DWORD wait_events(HANDLE event, DWORD timeout); #if !defined(__BORLANDC__) && !defined(_WIN32_WCE) static int rb_w32_open_osfhandle(long osfhandle, int flags); #else #define rb_w32_open_osfhandle(osfhandle, flags) _open_osfhandle(osfhandle, flags) #endif /* errno mapping */ static struct { DWORD winerr; int err; } errmap[] = { { ERROR_INVALID_FUNCTION, EINVAL }, { ERROR_FILE_NOT_FOUND, ENOENT }, { ERROR_PATH_NOT_FOUND, ENOENT }, { ERROR_TOO_MANY_OPEN_FILES, EMFILE }, { ERROR_ACCESS_DENIED, EACCES }, { ERROR_INVALID_HANDLE, EBADF }, { ERROR_ARENA_TRASHED, ENOMEM }, { ERROR_NOT_ENOUGH_MEMORY, ENOMEM }, { ERROR_INVALID_BLOCK, ENOMEM }, { ERROR_BAD_ENVIRONMENT, E2BIG }, { ERROR_BAD_FORMAT, ENOEXEC }, { ERROR_INVALID_ACCESS, EINVAL }, { ERROR_INVALID_DATA, EINVAL }, { ERROR_INVALID_DRIVE, ENOENT }, { ERROR_CURRENT_DIRECTORY, EACCES }, { ERROR_NOT_SAME_DEVICE, EXDEV }, { ERROR_NO_MORE_FILES, ENOENT }, { ERROR_WRITE_PROTECT, EROFS }, { ERROR_BAD_UNIT, ENODEV }, { ERROR_NOT_READY, ENXIO }, { ERROR_BAD_COMMAND, EACCES }, { ERROR_CRC, EACCES }, { ERROR_BAD_LENGTH, EACCES }, { ERROR_SEEK, EIO }, { ERROR_NOT_DOS_DISK, EACCES }, { ERROR_SECTOR_NOT_FOUND, EACCES }, { ERROR_OUT_OF_PAPER, EACCES }, { ERROR_WRITE_FAULT, EIO }, { ERROR_READ_FAULT, EIO }, { ERROR_GEN_FAILURE, EACCES }, { ERROR_LOCK_VIOLATION, EACCES }, { ERROR_SHARING_VIOLATION, EACCES }, { ERROR_WRONG_DISK, EACCES }, { ERROR_SHARING_BUFFER_EXCEEDED, EACCES }, { ERROR_BAD_NETPATH, ENOENT }, { ERROR_NETWORK_ACCESS_DENIED, EACCES }, { ERROR_BAD_NET_NAME, ENOENT }, { ERROR_FILE_EXISTS, EEXIST }, { ERROR_CANNOT_MAKE, EACCES }, { ERROR_FAIL_I24, EACCES }, { ERROR_INVALID_PARAMETER, EINVAL }, { ERROR_NO_PROC_SLOTS, EAGAIN }, { ERROR_DRIVE_LOCKED, EACCES }, { ERROR_BROKEN_PIPE, EPIPE }, { ERROR_DISK_FULL, ENOSPC }, { ERROR_INVALID_TARGET_HANDLE, EBADF }, { ERROR_INVALID_HANDLE, EINVAL }, { ERROR_WAIT_NO_CHILDREN, ECHILD }, { ERROR_CHILD_NOT_COMPLETE, ECHILD }, { ERROR_DIRECT_ACCESS_HANDLE, EBADF }, { ERROR_NEGATIVE_SEEK, EINVAL }, { ERROR_SEEK_ON_DEVICE, EACCES }, { ERROR_DIR_NOT_EMPTY, ENOTEMPTY }, { ERROR_NOT_LOCKED, EACCES }, { ERROR_BAD_PATHNAME, ENOENT }, { ERROR_MAX_THRDS_REACHED, EAGAIN }, { ERROR_LOCK_FAILED, EACCES }, { ERROR_ALREADY_EXISTS, EEXIST }, { ERROR_INVALID_STARTING_CODESEG, ENOEXEC }, { ERROR_INVALID_STACKSEG, ENOEXEC }, { ERROR_INVALID_MODULETYPE, ENOEXEC }, { ERROR_INVALID_EXE_SIGNATURE, ENOEXEC }, { ERROR_EXE_MARKED_INVALID, ENOEXEC }, { ERROR_BAD_EXE_FORMAT, ENOEXEC }, { ERROR_ITERATED_DATA_EXCEEDS_64k,ENOEXEC }, { ERROR_INVALID_MINALLOCSIZE, ENOEXEC }, { ERROR_DYNLINK_FROM_INVALID_RING,ENOEXEC }, { ERROR_IOPL_NOT_ENABLED, ENOEXEC }, { ERROR_INVALID_SEGDPL, ENOEXEC }, { ERROR_AUTODATASEG_EXCEEDS_64k, ENOEXEC }, { ERROR_RING2SEG_MUST_BE_MOVABLE, ENOEXEC }, { ERROR_RELOC_CHAIN_XEEDS_SEGLIM, ENOEXEC }, { ERROR_INFLOOP_IN_RELOC_CHAIN, ENOEXEC }, { ERROR_FILENAME_EXCED_RANGE, ENOENT }, { ERROR_NESTING_NOT_ALLOWED, EAGAIN }, { ERROR_NOT_ENOUGH_QUOTA, ENOMEM }, { 0, 0 } }; static int map_errno(void) { DWORD winerr = GetLastError(); int i; if (winerr == 0) { return 0; } for (i = 0; errmap[i].winerr; i++) { if (errmap[i].winerr == winerr) { return errmap[i].err; } } return EINVAL; } char *NTLoginName; #ifdef WIN95 DWORD Win32System = (DWORD)-1; static DWORD IdOS(void) { static OSVERSIONINFO osver; if (osver.dwPlatformId != Win32System) { memset(&osver, 0, sizeof(OSVERSIONINFO)); osver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&osver); Win32System = osver.dwPlatformId; } return (Win32System); } static int IsWin95(void) { return (IdOS() == VER_PLATFORM_WIN32_WINDOWS); } static int IsWinNT(void) { return (IdOS() == VER_PLATFORM_WIN32_NT); } #else # define IsWinNT() TRUE # define IsWin95() FALSE #endif /* main thread constants */ static struct { HANDLE handle; DWORD id; } main_thread; /* interrupt stuff */ static HANDLE interrupted_event; HANDLE GetCurrentThreadHandle(void) { static HANDLE current_process_handle = NULL; HANDLE h; if (!current_process_handle) current_process_handle = GetCurrentProcess(); if (!DuplicateHandle(current_process_handle, GetCurrentThread(), current_process_handle, &h, 0, FALSE, DUPLICATE_SAME_ACCESS)) return NULL; return h; } /* simulate flock by locking a range on the file */ #define LK_ERR(f,i) ((f) ? (i = 0) : (errno = GetLastError() == ERROR_LOCK_VIOLATION ? EWOULDBLOCK : EACCES)) #define LK_LEN ULONG_MAX static VALUE flock_winnt(VALUE self, int argc, VALUE* argv) { OVERLAPPED o; int i = -1; const HANDLE fh = (HANDLE)self; const int oper = argc; memset(&o, 0, sizeof(o)); switch(oper) { case LOCK_SH: /* shared lock */ LK_ERR(LockFileEx(fh, 0, 0, LK_LEN, LK_LEN, &o), i); break; case LOCK_EX: /* exclusive lock */ LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK, 0, LK_LEN, LK_LEN, &o), i); break; case LOCK_SH|LOCK_NB: /* non-blocking shared lock */ LK_ERR(LockFileEx(fh, LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, LK_LEN, &o), i); break; case LOCK_EX|LOCK_NB: /* non-blocking exclusive lock */ LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK|LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, LK_LEN, &o), i); break; case LOCK_UN: /* unlock lock */ LK_ERR(UnlockFileEx(fh, 0, LK_LEN, LK_LEN, &o), i); break; default: /* unknown */ errno = EINVAL; break; } return i; } #ifdef WIN95 static VALUE flock_win95(VALUE self, int argc, VALUE* argv) { int i = -1; const HANDLE fh = (HANDLE)self; const int oper = argc; switch(oper) { case LOCK_EX: do { LK_ERR(LockFile(fh, 0, 0, LK_LEN, LK_LEN), i); } while (i && errno == EWOULDBLOCK); break; case LOCK_EX|LOCK_NB: LK_ERR(LockFile(fh, 0, 0, LK_LEN, LK_LEN), i); break; case LOCK_UN: LK_ERR(UnlockFile(fh, 0, 0, LK_LEN, LK_LEN), i); break; default: errno = EINVAL; break; } return i; } #endif #undef LK_ERR int flock(int fd, int oper) { #ifdef WIN95 static asynchronous_func_t locker = NULL; if (!locker) { if (IsWinNT()) locker = flock_winnt; else locker = flock_win95; } #else const asynchronous_func_t locker = flock_winnt; #endif return rb_w32_asynchronize(locker, (VALUE)_get_osfhandle(fd), oper, NULL, (DWORD)-1); } //#undef const //FILE *fdopen(int, const char *); // // Initialization stuff // void NtInitialize(int *argc, char ***argv) { WORD version; int ret; // // subvert cmd.exe's feeble attempt at command line parsing // *argc = NtMakeCmdVector((char *)GetCommandLine(), argv, TRUE); // // Now set up the correct time stuff // tzset(); // Initialize Winsock StartSockets(); #ifdef _WIN32_WCE // free commandline buffer wce_FreeCommandLine(); #endif } char *getlogin() { char buffer[200]; DWORD len = 200; extern char *NTLoginName; if (NTLoginName == NULL) { if (GetUserName(buffer, &len)) { NTLoginName = ALLOC_N(char, len+1); strncpy(NTLoginName, buffer, len); NTLoginName[len] = '\0'; } else { NTLoginName = ""; } } return NTLoginName; } #define MAXCHILDNUM 256 /* max num of child processes */ struct ChildRecord { HANDLE hProcess; /* process handle */ pid_t pid; /* process id */ } ChildRecord[MAXCHILDNUM]; #define FOREACH_CHILD(v) do { \ struct ChildRecord* v; \ for (v = ChildRecord; v < ChildRecord + sizeof(ChildRecord) / sizeof(ChildRecord[0]); ++v) #define END_FOREACH_CHILD } while (0) static struct ChildRecord * FindFirstChildSlot(void) { FOREACH_CHILD(child) { if (child->pid) return child; } END_FOREACH_CHILD; return NULL; } static struct ChildRecord * FindChildSlot(pid_t pid) { FOREACH_CHILD(child) { if (child->pid == pid) { return child; } } END_FOREACH_CHILD; return NULL; } static void CloseChildHandle(struct ChildRecord *child) { HANDLE h = child->hProcess; child->hProcess = NULL; child->pid = 0; CloseHandle(h); } static struct ChildRecord * FindFreeChildSlot(void) { FOREACH_CHILD(child) { if (!child->pid) { child->pid = -1; /* lock the slot */ child->hProcess = NULL; return child; } } END_FOREACH_CHILD; return NULL; } int SafeFree(char **vec, int vecc) { // vec // | // V ^---------------------V // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // | | | .... | NULL | | ..... |\0 | | ..... |\0 |... // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // |- elements+1 -| ^ 1st element ^ 2nd element char *p; p = (char *)vec; free(p); return 0; } static char *szInternalCmds[] = { "append", "break", "call", "cd", "chdir", "cls", "copy", "date", "del", "dir", "echo", "erase", "label", "md", "mkdir", "path", "pause", "rd", "rem", "ren", "rename", "rmdir", "set", "start", "time", "type", "ver", "vol", NULL }; int isInternalCmd(char *cmd) { int i, fRet=0; char **vec; int vecc = NtMakeCmdVector(cmd, &vec, FALSE); if (vecc == 0) return 0; for( i = 0; szInternalCmds[i] ; i++){ if(!strcasecmp(szInternalCmds[i], vec[0])){ fRet = 1; break; } } SafeFree(vec, vecc); return fRet; } SOCKET rb_w32_get_osfhandle(int fh) { return _get_osfhandle(fh); } pid_t pipe_exec(char *cmd, int mode, FILE **fpr, FILE **fpw) { struct ChildRecord* child; HANDLE hReadIn, hReadOut; HANDLE hWriteIn, hWriteOut; HANDLE hDupInFile, hDupOutFile; HANDLE hCurProc; SECURITY_ATTRIBUTES sa; BOOL fRet; BOOL reading, writing; int fd; int pipemode; char modes[3]; int ret; /* Figure out what we're doing... */ writing = (mode & (O_WRONLY | O_RDWR)) ? TRUE : FALSE; reading = ((mode & O_RDWR) || !writing) ? TRUE : FALSE; if (mode & O_BINARY) { pipemode = O_BINARY; modes[1] = 'b'; modes[2] = '\0'; } else { pipemode = O_TEXT; modes[1] = '\0'; } sa.nLength = sizeof (SECURITY_ATTRIBUTES); sa.lpSecurityDescriptor = NULL; sa.bInheritHandle = TRUE; ret = -1; hWriteIn = hReadOut = NULL; RUBY_CRITICAL(do { /* create pipe */ hCurProc = GetCurrentProcess(); if (reading) { fRet = CreatePipe(&hReadIn, &hReadOut, &sa, 2048L); if (!fRet) { errno = map_errno(); break; } if (!DuplicateHandle(hCurProc, hReadIn, hCurProc, &hDupInFile, 0, FALSE, DUPLICATE_SAME_ACCESS)) { errno = map_errno(); CloseHandle(hReadIn); CloseHandle(hReadOut); CloseHandle(hCurProc); break; } CloseHandle(hReadIn); } if (writing) { fRet = CreatePipe(&hWriteIn, &hWriteOut, &sa, 2048L); if (!fRet) { errno = map_errno(); write_pipe_failed: if (reading) { CloseHandle(hDupInFile); CloseHandle(hReadOut); } break; } if (!DuplicateHandle(hCurProc, hWriteOut, hCurProc, &hDupOutFile, 0, FALSE, DUPLICATE_SAME_ACCESS)) { errno = map_errno(); CloseHandle(hWriteIn); CloseHandle(hWriteOut); CloseHandle(hCurProc); goto write_pipe_failed; } CloseHandle(hWriteOut); } CloseHandle(hCurProc); /* create child process */ child = CreateChild(cmd, NULL, &sa, hWriteIn, hReadOut, NULL); if (!child) { if (reading) { CloseHandle(hReadOut); CloseHandle(hDupInFile); } if (writing) { CloseHandle(hWriteIn); CloseHandle(hDupOutFile); } break; } /* associate handle to fp */ if (reading) { fd = rb_w32_open_osfhandle((long)hDupInFile, (_O_RDONLY | pipemode)); CloseHandle(hReadOut); if (fd == -1) { CloseHandle(hDupInFile); read_open_failed: if (writing) { CloseHandle(hWriteIn); CloseHandle(hDupOutFile); } CloseChildHandle(child); break; } modes[0] = 'r'; if ((*fpr = (FILE *)fdopen(fd, modes)) == NULL) { _close(fd); goto read_open_failed; } } if (writing) { fd = rb_w32_open_osfhandle((long)hDupOutFile, (_O_WRONLY | pipemode)); CloseHandle(hWriteIn); if (fd == -1) { CloseHandle(hDupOutFile); write_open_failed: if (reading) { fclose(*fpr); } CloseChildHandle(child); break; } modes[0] = 'w'; if ((*fpw = (FILE *)fdopen(fd, modes)) == NULL) { _close(fd); goto write_open_failed; } } ret = child->pid; } while (0)); return ret; } extern VALUE rb_last_status; int do_spawn(mode, cmd) int mode; char *cmd; { struct ChildRecord *child; switch (mode) { case P_WAIT: case P_NOWAIT: case P_OVERLAY: break; default: errno = EINVAL; return -1; } child = CreateChild(cmd, NULL, NULL, NULL, NULL, NULL); if (!child) { return -1; } switch (mode) { case P_WAIT: rb_syswait(child->pid); return NUM2INT(rb_last_status); case P_NOWAIT: return child->pid; case P_OVERLAY: exit(0); default: return -1; /* not reached */ } } int do_aspawn(mode, prog, argv) int mode; char *prog; char **argv; { char *cmd, *p, *q, *s, **t; int len, n, bs, quote; struct ChildRecord *child; switch (mode) { case P_WAIT: case P_NOWAIT: case P_OVERLAY: break; default: errno = EINVAL; return -1; } for (t = argv, len = 0; *t; t++) { for (p = *t, n = quote = bs = 0; *p; ++p) { switch (*p) { case '\\': ++bs; break; case '"': n += bs + 1; bs = 0; quote = 1; break; case ' ': case '\t': quote = 1; default: bs = 0; p = CharNext(p) - 1; break; } } len += p - *t + n + 1; if (quote) len += 2; } cmd = ALLOCA_N(char, len); for (t = argv, q = cmd; p = *t; t++) { quote = 0; s = p; if (!*p || strpbrk(p, " \t\"")) { quote = 1; *q++ = '"'; } for (bs = 0; *p; ++p) { switch (*p) { case '\\': ++bs; break; case '"': memcpy(q, s, n = p - s); q += n; s = p; memset(q, '\\', ++bs); q += bs; bs = 0; break; default: bs = 0; p = CharNext(p) - 1; break; } } memcpy(q, s, n = p - s); q += n; if (quote) *q++ = '"'; *q++ = ' '; } if (q > cmd) --q; *q = '\0'; child = CreateChild(cmd, prog, NULL, NULL, NULL, NULL); if (!child) { return -1; } switch (mode) { case P_WAIT: rb_syswait(child->pid); return NUM2INT(rb_last_status); case P_NOWAIT: return child->pid; case P_OVERLAY: exit(0); default: return -1; /* not reached */ } } static struct ChildRecord * CreateChild(char *cmd, char *prog, SECURITY_ATTRIBUTES *psa, HANDLE hInput, HANDLE hOutput, HANDLE hError) { BOOL fRet; DWORD dwCreationFlags; STARTUPINFO aStartupInfo; PROCESS_INFORMATION aProcessInformation; SECURITY_ATTRIBUTES sa; char *shell; struct ChildRecord *child; child = FindFreeChildSlot(); if (!child) { errno = EAGAIN; return NULL; } if (!psa) { sa.nLength = sizeof (SECURITY_ATTRIBUTES); sa.lpSecurityDescriptor = NULL; sa.bInheritHandle = TRUE; psa = &sa; } memset(&aStartupInfo, 0, sizeof (STARTUPINFO)); memset(&aProcessInformation, 0, sizeof (PROCESS_INFORMATION)); aStartupInfo.cb = sizeof (STARTUPINFO); if (hInput || hOutput || hError) { aStartupInfo.dwFlags = STARTF_USESTDHANDLES; if (hInput) { aStartupInfo.hStdInput = hInput; } else { aStartupInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE); } if (hOutput) { aStartupInfo.hStdOutput = hOutput; } else { aStartupInfo.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE); } if (hError) { aStartupInfo.hStdError = hError; } else { aStartupInfo.hStdError = GetStdHandle(STD_ERROR_HANDLE); } } dwCreationFlags = (NORMAL_PRIORITY_CLASS); if (prog) { shell = prog; } else { if ((shell = getenv("RUBYSHELL")) && NtHasRedirection(cmd)) { char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) + sizeof (" -c ")); sprintf(tmp, "%s -c %s", shell, cmd); cmd = tmp; } else if ((shell = getenv("COMSPEC")) && (NtHasRedirection(cmd) || isInternalCmd(cmd))) { char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) + sizeof (" /c ")); sprintf(tmp, "%s /c %s", shell, cmd); cmd = tmp; } else { shell = NULL; } } RUBY_CRITICAL({ fRet = CreateProcess(shell, cmd, psa, psa, psa->bInheritHandle, dwCreationFlags, NULL, NULL, &aStartupInfo, &aProcessInformation); errno = map_errno(); }); if (!fRet) { child->pid = 0; /* release the slot */ return NULL; } CloseHandle(aProcessInformation.hThread); child->hProcess = aProcessInformation.hProcess; child->pid = (pid_t)aProcessInformation.dwProcessId; if (!IsWinNT()) { /* On Win9x, make pid positive similarly to cygwin and perl */ child->pid = -child->pid; } return child; } typedef struct _NtCmdLineElement { struct _NtCmdLineElement *next, *prev; char *str; int len; int flags; } NtCmdLineElement; // // Possible values for flags // #define NTGLOB 0x1 // element contains a wildcard #define NTMALLOC 0x2 // string in element was malloc'ed #define NTSTRING 0x4 // element contains a quoted string NtCmdLineElement *NtCmdHead = NULL, *NtCmdTail = NULL; void NtFreeCmdLine(void) { NtCmdLineElement *ptr; while(NtCmdHead) { ptr = NtCmdHead; NtCmdHead = NtCmdHead->next; free(ptr); } NtCmdHead = NtCmdTail = NULL; } // // This function expands wild card characters that were spotted // during the parse phase. The idea here is to call FindFirstFile and // FindNextFile with the wildcard pattern specified, and splice in the // resulting list of new names. If the wildcard pattern doesn't match // any existing files, just leave it in the list. // typedef struct { NtCmdLineElement *head; NtCmdLineElement *tail; } ListInfo; static void insert(const char *path, VALUE vinfo) { NtCmdLineElement *tmpcurr; ListInfo *listinfo = (ListInfo *)vinfo; tmpcurr = ALLOC(NtCmdLineElement); MEMZERO(tmpcurr, NtCmdLineElement, 1); tmpcurr->len = strlen(path); tmpcurr->str = ALLOC_N(char, tmpcurr->len + 1); tmpcurr->flags |= NTMALLOC; strcpy(tmpcurr->str, path); if (listinfo->tail) { listinfo->tail->next = tmpcurr; tmpcurr->prev = listinfo->tail; listinfo->tail = tmpcurr; } else { listinfo->tail = listinfo->head = tmpcurr; } } #ifdef HAVE_SYS_PARAM_H # include #else # define MAXPATHLEN 512 #endif void NtCmdGlob (NtCmdLineElement *patt) { ListInfo listinfo; char buffer[MAXPATHLEN], *buf = buffer; char *p; listinfo.head = listinfo.tail = 0; if (patt->len >= MAXPATHLEN) buf = ruby_xmalloc(patt->len + 1); strncpy (buf, patt->str, patt->len); buf[patt->len] = '\0'; for (p = buf; *p; p = CharNext(p)) if (*p == '\\') *p = '/'; rb_globi(buf, insert, (VALUE)&listinfo); if (buf != buffer) free(buf); if (listinfo.head && listinfo.tail) { listinfo.head->prev = patt->prev; listinfo.tail->next = patt->next; if (listinfo.head->prev) listinfo.head->prev->next = listinfo.head; if (listinfo.tail->next) listinfo.tail->next->prev = listinfo.tail; } if (patt->flags & NTMALLOC) free(patt->str); // free(patt); //TODO: memory leak occures here. we have to fix it. } // // Check a command string to determine if it has I/O redirection // characters that require it to be executed by a command interpreter // static bool NtHasRedirection (char *cmd) { int inquote = 0; char quote = '\0'; char *ptr ; // // Scan the string, looking for redirection (< or >) or pipe // characters (|) that are not in a quoted string // for (ptr = cmd; *ptr; ptr++) { switch (*ptr) { case '\'': case '\"': if (inquote) { if (quote == *ptr) { inquote = 0; quote = '\0'; } } else { quote = *ptr; inquote++; } break; case '>': case '<': case '|': if (!inquote) return TRUE; } } return FALSE; } int NtMakeCmdVector (char *cmdline, char ***vec, int InputCmd) { int cmdlen = strlen(cmdline); int done, instring, globbing, quoted, len; int newline, need_free = 0, i; int elements, strsz; int slashes = 0; char *ptr, *base, *buffer; char **vptr; char quote; NtCmdLineElement *curr; // // just return if we don't have a command line // if (cmdlen == 0) { *vec = NULL; return 0; } cmdline = strdup(cmdline); // // strip trailing white space // ptr = cmdline+(cmdlen - 1); while(ptr >= cmdline && ISSPACE(*ptr)) --ptr; *++ptr = '\0'; // // Ok, parse the command line, building a list of CmdLineElements. // When we've finished, and it's an input command (meaning that it's // the processes argv), we'll do globing and then build the argument // vector. // The outer loop does one interation for each element seen. // The inner loop does one interation for each character in the element. // for (done = 0, ptr = cmdline; *ptr;) { // // zap any leading whitespace // while(ISSPACE(*ptr)) ptr++; base = ptr; for (done = newline = globbing = instring = quoted = 0; *ptr && !done; ptr++) { // // Switch on the current character. We only care about the // white-space characters, the wild-card characters, and the // quote characters. // switch (*ptr) { case '\\': if (ptr[1] == '"') ptr++; break; case ' ': case '\t': #if 0 case '/': // have to do this for NT/DOS option strings // // check to see if we're parsing an option switch // if (*ptr == '/' && base == ptr) continue; #endif // // if we're not in a string, then we're finished with this // element // if (!instring) done++; break; case '*': case '?': // // record the fact that this element has a wildcard character // N.B. Don't glob if inside a single quoted string // if (!(instring && quote == '\'')) globbing++; break; case '\n': // // If this string contains a newline, mark it as such so // we can replace it with the two character sequence "\n" // (cmd.exe doesn't like raw newlines in strings...sigh). // newline++; break; case '\'': case '\"': // // if we're already in a string, see if this is the // terminating close-quote. If it is, we're finished with // the string, but not neccessarily with the element. // If we're not already in a string, start one. // if (instring) { if (quote == *ptr) { instring = 0; quote = '\0'; } } else { instring++; quote = *ptr; quoted++; } break; } } // // need to back up ptr by one due to last increment of for loop // (if we got out by seeing white space) // if (*ptr) ptr--; // // when we get here, we've got a pair of pointers to the element, // base and ptr. Base points to the start of the element while ptr // points to the character following the element. // curr = ALLOC(NtCmdLineElement); memset (curr, 0, sizeof(*curr)); len = ptr - base; // // if it's an input vector element and it's enclosed by quotes, // we can remove them. // if (InputCmd && (base[0] == '\"' && base[len-1] == '\"')) { char *p; base++; len -= 2; base[len] = 0; for (p = base; p < base + len; p++) { if ((p[0] == '\\' || p[0] == '\"') && p[1] == '"') { strcpy(p, p + 1); len--; } } } else if (InputCmd && (base[0] == '\'' && base[len-1] == '\'')) { base++; len -= 2; } curr->str = base; curr->len = len; curr->flags |= (globbing ? NTGLOB : 0); // // Now put it in the list of elements // if (NtCmdTail) { NtCmdTail->next = curr; curr->prev = NtCmdTail; NtCmdTail = curr; } else { NtCmdHead = NtCmdTail = curr; } } if (InputCmd) { // // When we get here we've finished parsing the command line. Now // we need to run the list, expanding any globbing patterns. // for(curr = NtCmdHead; curr; curr = curr->next) { if (curr->flags & NTGLOB) { NtCmdGlob(curr); } } } // // Almost done! // Count up the elements, then allocate space for a vector of pointers // (argv) and a string table for the elements. // for (elements = 0, strsz = 0, curr = NtCmdHead; curr; curr = curr->next) { elements++; strsz += (curr->len + 1); } len = (elements+1)*sizeof(char *) + strsz; buffer = ALLOC_N(char, len); memset (buffer, 0, len); // // make vptr point to the start of the buffer // and ptr point to the area we'll consider the string table. // // buffer (*vec) // | // V ^---------------------V // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // | | | .... | NULL | | ..... |\0 | | ..... |\0 |... // +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ // |- elements+1 -| ^ 1st element ^ 2nd element vptr = (char **) buffer; ptr = buffer + (elements+1) * sizeof(char *); for (curr = NtCmdHead; curr; curr = curr->next) { strncpy (ptr, curr->str, curr->len); ptr[curr->len] = '\0'; *vptr++ = ptr; ptr += curr->len + 1; } NtFreeCmdLine(); *vec = (char **) buffer; free(cmdline); return elements; } // // UNIX compatible directory access functions for NT // #define PATHLEN 1024 // // The idea here is to read all the directory names into a string table // (separated by nulls) and when one of the other dir functions is called // return the pointer to the current file name. // DIR * rb_w32_opendir(const char *filename) { DIR *p; long len; long idx; char scannamespc[PATHLEN]; char *scanname = scannamespc; struct stat sbuf; struct _finddata_t fd; long fh; // // check to see if we've got a directory // if ((rb_w32_stat(filename, &sbuf) < 0 || ( #ifdef __BORLANDC__ (unsigned short)(sbuf.st_mode) #else sbuf.st_mode #endif & _S_IFDIR) == 0) && (!ISALPHA(filename[0]) || filename[1] != ':' || filename[2] != '\0' || ((1 << (filename[0] & 0x5f) - 'A') & GetLogicalDrives()) == 0)) { return NULL; } // // Get us a DIR structure // p = xcalloc(sizeof(DIR), 1); if (p == NULL) return NULL; // // Create the search pattern // strcpy(scanname, filename); if (index("/\\:", *CharPrev(scanname, scanname + strlen(scanname))) == NULL) strcat(scanname, "/*"); else strcat(scanname, "*"); // // do the FindFirstFile call // fh = _findfirst(scanname, &fd); if (fh == -1) { return NULL; } // // now allocate the first part of the string table for the // filenames that we find. // idx = strlen(fd.name)+1; p->start = ALLOC_N(char, idx); strcpy(p->start, fd.name); p->nfiles++; // // loop finding all the files that match the wildcard // (which should be all of them in this directory!). // the variable idx should point one past the null terminator // of the previous string found. // while (_findnext(fh, &fd) == 0) { len = strlen(fd.name); // // bump the string table size by enough for the // new name and it's null terminator // #define Renew(x, y, z) (x = (z *)realloc(x, y)) Renew (p->start, idx+len+1, char); if (p->start == NULL) { rb_fatal ("opendir: malloc failed!\n"); } strcpy(&p->start[idx], fd.name); p->nfiles++; idx += len+1; } _findclose(fh); p->size = idx; p->curr = p->start; return p; } // // Readdir just returns the current string pointer and bumps the // string pointer to the next entry. // struct direct * rb_w32_readdir(DIR *dirp) { int len; static int dummy = 0; if (dirp->curr) { // // first set up the structure to return // len = strlen(dirp->curr); strcpy(dirp->dirstr.d_name, dirp->curr); dirp->dirstr.d_namlen = len; // // Fake inode // dirp->dirstr.d_ino = dummy++; // // Now set up for the next call to readdir // dirp->curr += len + 1; if (dirp->curr >= (dirp->start + dirp->size)) { dirp->curr = NULL; } return &(dirp->dirstr); } else return NULL; } // // Telldir returns the current string pointer position // long rb_w32_telldir(DIR *dirp) { return (long) dirp->curr; /* ouch! pointer to long cast */ } // // Seekdir moves the string pointer to a previously saved position // (Saved by telldir). void rb_w32_seekdir(DIR *dirp, long loc) { dirp->curr = (char *) loc; /* ouch! long to pointer cast */ } // // Rewinddir resets the string pointer to the start // void rb_w32_rewinddir(DIR *dirp) { dirp->curr = dirp->start; } // // This just free's the memory allocated by opendir // void rb_w32_closedir(DIR *dirp) { free(dirp->start); free(dirp); } static int valid_filename(char *s) { int fd; // // if the file exists, then it's a valid filename! // if (_access(s, 0) == 0) { return 1; } // // It doesn't exist, so see if we can open it. // if ((fd = _open(s, _O_CREAT, 0666)) >= 0) { close(fd); _unlink (s); // don't leave it laying around return 1; } return 0; } // // This is a clone of fdopen so that we can handle the // brain damaged version of sockets that NT gets to use. // // The problem is that sockets are not real file handles and // cannot be fdopen'ed. This causes problems in the do_socket // routine in doio.c, since it tries to create two file pointers // for the socket just created. We'll fake out an fdopen and see // if we can prevent perl from trying to do stdio on sockets. // //EXTERN_C int __cdecl _alloc_osfhnd(void); //EXTERN_C int __cdecl _set_osfhnd(int fh, long value); EXTERN_C void __cdecl _lock_fhandle(int); EXTERN_C void __cdecl _unlock_fhandle(int); EXTERN_C void __cdecl _unlock(int); #if (defined _MT || defined __MSVCRT__) && !defined __BORLANDC__ #define MSVCRT_THREADS #endif #ifdef MSVCRT_THREADS # define MTHREAD_ONLY(x) x # define STHREAD_ONLY(x) #elif defined(__BORLANDC__) # define MTHREAD_ONLY(x) # define STHREAD_ONLY(x) #else # define MTHREAD_ONLY(x) # define STHREAD_ONLY(x) x #endif typedef struct { long osfhnd; /* underlying OS file HANDLE */ char osfile; /* attributes of file (e.g., open in text mode?) */ char pipech; /* one char buffer for handles opened on pipes */ #ifdef MSVCRT_THREADS int lockinitflag; CRITICAL_SECTION lock; #endif } ioinfo; #if !defined _CRTIMP #define _CRTIMP __declspec(dllimport) #endif #if !defined(__BORLANDC__) && !defined(_WIN32_WCE) EXTERN_C _CRTIMP ioinfo * __pioinfo[]; #define IOINFO_L2E 5 #define IOINFO_ARRAY_ELTS (1 << IOINFO_L2E) #define _pioinfo(i) (__pioinfo[i >> IOINFO_L2E] + (i & (IOINFO_ARRAY_ELTS - 1))) #define _osfhnd(i) (_pioinfo(i)->osfhnd) #define _osfile(i) (_pioinfo(i)->osfile) #define _pipech(i) (_pioinfo(i)->pipech) #define _set_osfhnd(fh, osfh) (void)(_osfhnd(fh) = osfh) #define _set_osflags(fh, flags) (_osfile(fh) = (flags)) #define FOPEN 0x01 /* file handle open */ #define FNOINHERIT 0x10 /* file handle opened O_NOINHERIT */ #define FAPPEND 0x20 /* file handle opened O_APPEND */ #define FDEV 0x40 /* file handle refers to device */ #define FTEXT 0x80 /* file handle is in text mode */ static int rb_w32_open_osfhandle(long osfhandle, int flags) { int fh; char fileflags; /* _osfile flags */ HANDLE hF; /* copy relevant flags from second parameter */ fileflags = FDEV; if (flags & O_APPEND) fileflags |= FAPPEND; if (flags & O_TEXT) fileflags |= FTEXT; if (flags & O_NOINHERIT) fileflags |= FNOINHERIT; /* attempt to allocate a C Runtime file handle */ hF = CreateFile("NUL", 0, 0, NULL, OPEN_ALWAYS, 0, NULL); fh = _open_osfhandle((long)hF, 0); CloseHandle(hF); if (fh == -1) { errno = EMFILE; /* too many open files */ _doserrno = 0L; /* not an OS error */ } else { MTHREAD_ONLY(EnterCriticalSection(&(_pioinfo(fh)->lock))); /* the file is open. now, set the info in _osfhnd array */ _set_osfhnd(fh, osfhandle); fileflags |= FOPEN; /* mark as open */ _set_osflags(fh, fileflags); /* set osfile entry */ MTHREAD_ONLY(LeaveCriticalSection(&_pioinfo(fh)->lock)); } return fh; /* return handle */ } #else #define _set_osfhnd(fh, osfh) (void)((fh), (osfh)) #define _set_osflags(fh, flags) (void)((fh), (flags)) #endif #undef getsockopt static int is_socket(SOCKET fd) { char sockbuf[80]; int optlen; int retval; int result = TRUE; optlen = sizeof(sockbuf); RUBY_CRITICAL({ retval = getsockopt(fd, SOL_SOCKET, SO_TYPE, sockbuf, &optlen); if (retval == SOCKET_ERROR) { int iRet; iRet = WSAGetLastError(); if (iRet == WSAENOTSOCK || iRet == WSANOTINITIALISED) result = FALSE; } }); // // If we get here, then fd is actually a socket. // return result; } // // Since the errors returned by the socket error function // WSAGetLastError() are not known by the library routine strerror // we have to roll our own. // #undef strerror char * rb_w32_strerror(int e) { static char buffer[512]; #if !defined __MINGW32__ extern int sys_nerr; #endif DWORD source = 0; char *p; if (e < 0 || e > sys_nerr) { if (e < 0) e = GetLastError(); if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, &source, e, 0, buffer, 512, NULL) == 0) { strcpy(buffer, "Unknown Error"); } for (p = buffer + strlen(buffer) - 1; buffer <= p; p--) { if (*p != '\r' && *p != '\n') break; *p = 0; } return buffer; } return strerror(e); } // // various stubs // // Ownership // // Just pretend that everyone is a superuser. NT will let us know if // we don't really have permission to do something. // #define ROOT_UID 0 #define ROOT_GID 0 UIDTYPE getuid(void) { return ROOT_UID; } UIDTYPE geteuid(void) { return ROOT_UID; } GIDTYPE getgid(void) { return ROOT_GID; } GIDTYPE getegid(void) { return ROOT_GID; } int setuid(int uid) { return (uid == ROOT_UID ? 0 : -1); } int setgid(int gid) { return (gid == ROOT_GID ? 0 : -1); } // // File system stuff // int /* ioctl(int i, unsigned int u, char *data) */ #ifdef __BORLANDC__ ioctl(int i, int u, ...) #else ioctl(int i, unsigned int u, long data) #endif { return -1; } #undef FD_SET void rb_w32_fdset(int fd, fd_set *set) { unsigned int i; SOCKET s = TO_SOCKET(fd); for (i = 0; i < set->fd_count; i++) { if (set->fd_array[i] == s) { return; } } if (i == set->fd_count) { if (set->fd_count < FD_SETSIZE) { set->fd_array[i] = s; set->fd_count++; } } } #undef FD_CLR void rb_w32_fdclr(int fd, fd_set *set) { unsigned int i; SOCKET s = TO_SOCKET(fd); for (i = 0; i < set->fd_count; i++) { if (set->fd_array[i] == s) { while (i < set->fd_count - 1) { set->fd_array[i] = set->fd_array[i + 1]; i++; } set->fd_count--; break; } } } #undef FD_ISSET int rb_w32_fdisset(int fd, fd_set *set) { return __WSAFDIsSet(TO_SOCKET(fd), set); } // // Networking trampolines // These are used to avoid socket startup/shutdown overhead in case // the socket routines aren't used. // #undef select static int NtSocketsInitialized = 0; static int extract_file_fd(fd_set *set, fd_set *fileset) { int idx; fileset->fd_count = 0; if (!set) return 0; for (idx = 0; idx < set->fd_count; idx++) { SOCKET fd = set->fd_array[idx]; if (!is_socket(fd)) { int i; for (i = 0; i < fileset->fd_count; i++) { if (fileset->fd_array[i] == fd) { break; } } if (i == fileset->fd_count) { if (fileset->fd_count < FD_SETSIZE) { fileset->fd_array[i] = fd; fileset->fd_count++; } } } } return fileset->fd_count; } long rb_w32_select (int nfds, fd_set *rd, fd_set *wr, fd_set *ex, struct timeval *timeout) { long r; fd_set file_rd; fd_set file_wr; #ifdef USE_INTERRUPT_WINSOCK fd_set trap; #endif /* USE_INTERRUPT_WINSOCK */ int file_nfds; if (!NtSocketsInitialized) { StartSockets(); } r = 0; if (rd && rd->fd_count > r) r = rd->fd_count; if (wr && wr->fd_count > r) r = wr->fd_count; if (ex && ex->fd_count > r) r = ex->fd_count; if (nfds > r) nfds = r; if (nfds == 0 && timeout) { Sleep(timeout->tv_sec * 1000 + timeout->tv_usec / 1000); return 0; } file_nfds = extract_file_fd(rd, &file_rd); file_nfds += extract_file_fd(wr, &file_wr); if (file_nfds) { // assume normal files are always readable/writable // fake read/write fd_set and return value if (rd) *rd = file_rd; if (wr) *wr = file_wr; return file_nfds; } #if USE_INTERRUPT_WINSOCK if (ex) trap = *ex; else trap.fd_count = 0; if (trap.fd_count < FD_SETSIZE) trap.fd_array[trap.fd_count++] = (SOCKET)interrupted_event; // else unable to catch interrupt. ex = &trap; #endif /* USE_INTERRUPT_WINSOCK */ RUBY_CRITICAL({ r = select(nfds, rd, wr, ex, timeout); if (r == SOCKET_ERROR) { errno = WSAGetLastError() - WSABASEERR; } }); return r; } static void StartSockets () { WORD version; WSADATA retdata; int ret; int iSockOpt; // // initalize the winsock interface and insure that it's // cleaned up at exit. // version = MAKEWORD(1, 1); if (ret = WSAStartup(version, &retdata)) rb_fatal ("Unable to locate winsock library!\n"); if (LOBYTE(retdata.wVersion) != 1) rb_fatal("could not find version 1 of winsock dll\n"); if (HIBYTE(retdata.wVersion) != 1) rb_fatal("could not find version 1 of winsock dll\n"); atexit((void (*)(void)) WSACleanup); #ifndef SO_SYNCHRONOUS_NONALERT #define SO_SYNCHRONOUS_NONALERT 0x20 #endif iSockOpt = SO_SYNCHRONOUS_NONALERT; /* * Enable the use of sockets as filehandles */ #ifndef SO_OPENTYPE #define SO_OPENTYPE 0x7008 #endif setsockopt(INVALID_SOCKET, SOL_SOCKET, SO_OPENTYPE, (char *)&iSockOpt, sizeof(iSockOpt)); main_thread.handle = GetCurrentThreadHandle(); main_thread.id = GetCurrentThreadId(); interrupted_event = CreateSignal(); if (!interrupted_event) rb_fatal("Unable to create interrupt event!\n"); NtSocketsInitialized = 1; } #undef accept int rb_w32_accept(int s, struct sockaddr *addr, int *addrlen) { SOCKET r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = accept(TO_SOCKET(s), addr, addrlen); if (r == INVALID_SOCKET) { errno = WSAGetLastError() - WSABASEERR; s = -1; } else { s = rb_w32_open_osfhandle(r, O_RDWR|O_BINARY); } }); return s; } #undef bind int rb_w32_bind(int s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = bind(TO_SOCKET(s), addr, addrlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef connect int rb_w32_connect(int s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = connect(TO_SOCKET(s), addr, addrlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getpeername int rb_w32_getpeername(int s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getpeername(TO_SOCKET(s), addr, addrlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getsockname int rb_w32_getsockname(int s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getsockname(TO_SOCKET(s), addr, addrlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } int rb_w32_getsockopt(int s, int level, int optname, char *optval, int *optlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getsockopt(TO_SOCKET(s), level, optname, optval, optlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef ioctlsocket int rb_w32_ioctlsocket(int s, long cmd, u_long *argp) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = ioctlsocket(TO_SOCKET(s), cmd, argp); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef listen int rb_w32_listen(int s, int backlog) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = listen(TO_SOCKET(s), backlog); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef recv int rb_w32_recv(int s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = recv(TO_SOCKET(s), buf, len, flags); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef recvfrom int rb_w32_recvfrom(int s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = recvfrom(TO_SOCKET(s), buf, len, flags, from, fromlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef send int rb_w32_send(int s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = send(TO_SOCKET(s), buf, len, flags); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef sendto int rb_w32_sendto(int s, char *buf, int len, int flags, struct sockaddr *to, int tolen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = sendto(TO_SOCKET(s), buf, len, flags, to, tolen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef setsockopt int rb_w32_setsockopt(int s, int level, int optname, char *optval, int optlen) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = setsockopt(TO_SOCKET(s), level, optname, optval, optlen); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef shutdown int rb_w32_shutdown(int s, int how) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = shutdown(TO_SOCKET(s), how); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef socket int rb_w32_socket(int af, int type, int protocol) { SOCKET s; int fd; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ s = socket(af, type, protocol); if (s == INVALID_SOCKET) { errno = WSAGetLastError() - WSABASEERR; fd = -1; } else { fd = rb_w32_open_osfhandle(s, O_RDWR|O_BINARY); } }); return fd; } #undef gethostbyaddr struct hostent * rb_w32_gethostbyaddr (char *addr, int len, int type) { struct hostent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = gethostbyaddr(addr, len, type); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef gethostbyname struct hostent * rb_w32_gethostbyname (char *name) { struct hostent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = gethostbyname(name); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef gethostname int rb_w32_gethostname (char *name, int len) { int r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = gethostname(name, len); if (r == SOCKET_ERROR) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getprotobyname struct protoent * rb_w32_getprotobyname (char *name) { struct protoent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getprotobyname(name); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getprotobynumber struct protoent * rb_w32_getprotobynumber (int num) { struct protoent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getprotobynumber(num); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getservbyname struct servent * rb_w32_getservbyname (char *name, char *proto) { struct servent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getservbyname(name, proto); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } #undef getservbyport struct servent * rb_w32_getservbyport (int port, char *proto) { struct servent *r; if (!NtSocketsInitialized) { StartSockets(); } RUBY_CRITICAL({ r = getservbyport(port, proto); if (r == NULL) errno = WSAGetLastError() - WSABASEERR; }); return r; } // // Networking stubs // void endhostent() {} void endnetent() {} void endprotoent() {} void endservent() {} struct netent *getnetent (void) {return (struct netent *) NULL;} struct netent *getnetbyaddr(char *name) {return (struct netent *)NULL;} struct netent *getnetbyname(long net, int type) {return (struct netent *)NULL;} struct protoent *getprotoent (void) {return (struct protoent *) NULL;} struct servent *getservent (void) {return (struct servent *) NULL;} void sethostent (int stayopen) {} void setnetent (int stayopen) {} void setprotoent (int stayopen) {} void setservent (int stayopen) {} #ifndef WNOHANG #define WNOHANG -1 #endif static pid_t poll_child_status(struct ChildRecord *child, int *stat_loc) { DWORD exitcode; DWORD err; if (!GetExitCodeProcess(child->hProcess, &exitcode)) { /* If an error occured, return immediatly. */ err = GetLastError(); if (err == ERROR_INVALID_PARAMETER) errno = ECHILD; else errno = map_errno(); CloseChildHandle(child); return -1; } if (exitcode != STILL_ACTIVE) { /* If already died, return immediatly. */ pid_t pid = child->pid; CloseChildHandle(child); if (stat_loc) *stat_loc = exitcode << 8; return pid; } return 0; } pid_t waitpid (pid_t pid, int *stat_loc, int options) { DWORD timeout; if (options == WNOHANG) { timeout = 0; } else { timeout = INFINITE; } if (pid == -1) { int count = 0; DWORD ret; HANDLE events[MAXCHILDNUM + 1]; FOREACH_CHILD(child) { if (!child->pid || child->pid < 0) continue; if ((pid = poll_child_status(child, stat_loc))) return pid; events[count++] = child->hProcess; } END_FOREACH_CHILD; if (!count) { errno = ECHILD; return -1; } events[count] = interrupted_event; ret = WaitForMultipleEvents(count + 1, events, FALSE, timeout, TRUE); if (ret == WAIT_TIMEOUT) return 0; if ((ret -= WAIT_OBJECT_0) == count) { ResetSignal(interrupted_event); errno = EINTR; return -1; } if (ret > count) { errno = map_errno(); return -1; } return poll_child_status(ChildRecord + ret, stat_loc); } else { struct ChildRecord* child = FindChildSlot(pid); if (!child) { errno = ECHILD; return -1; } while (!(pid = poll_child_status(child, stat_loc))) { /* wait... */ if (wait_events(child->hProcess, timeout) != WAIT_OBJECT_0) { /* still active */ pid = 0; break; } } } return pid; } #include int _cdecl gettimeofday(struct timeval *tv, struct timezone *tz) { SYSTEMTIME st; time_t t; struct tm tm; GetLocalTime(&st); tm.tm_sec = st.wSecond; tm.tm_min = st.wMinute; tm.tm_hour = st.wHour; tm.tm_mday = st.wDay; tm.tm_mon = st.wMonth - 1; tm.tm_year = st.wYear - 1900; tm.tm_isdst = -1; t = mktime(&tm); tv->tv_sec = t; tv->tv_usec = st.wMilliseconds * 1000; return 0; } char * rb_w32_getcwd(buffer, size) char *buffer; int size; { int length; char *bp; #undef getcwd if (getcwd(buffer, size) == NULL) { return NULL; } length = strlen(buffer); if (length >= size) { return NULL; } for (bp = buffer; *bp != '\0'; bp = CharNext(bp)) { if (*bp == '\\') { *bp = '/'; } } return buffer; } static char * str_grow(struct RString *str, size_t new_size) { char *p; p = realloc(str->ptr, new_size); if (p == NULL) rb_fatal("cannot grow string\n"); str->len = new_size; str->ptr = p; return p; } int chown(const char *path, int owner, int group) { return 0; } int kill(int pid, int sig) { int ret = 0; DWORD err; if (pid <= 0) { errno = EINVAL; return -1; } if (IsWin95()) pid = -pid; if ((unsigned int)pid == GetCurrentProcessId() && sig != SIGKILL) return raise(sig); switch (sig) { case SIGINT: RUBY_CRITICAL({ if (!GenerateConsoleCtrlEvent(CTRL_C_EVENT, (DWORD)pid)) { if ((err = GetLastError()) == 0) errno = EPERM; else errno = map_errno(); ret = -1; } }); break; case SIGKILL: RUBY_CRITICAL({ HANDLE hProc = OpenProcess(PROCESS_TERMINATE, FALSE, (DWORD)pid); if (hProc == NULL || hProc == INVALID_HANDLE_VALUE) { if (GetLastError() == ERROR_INVALID_PARAMETER) { errno = ESRCH; } else { errno = EPERM; } ret = -1; } else if (!TerminateProcess(hProc, 0)) { errno = EPERM; ret = -1; } CloseHandle(hProc); }); break; define: errno = EINVAL; ret = -1; break; } return ret; } int link(char *from, char *to) { static BOOL (WINAPI *pCreateHardLink)(LPCTSTR, LPCTSTR, LPSECURITY_ATTRIBUTES) = NULL; static int myerrno = 0; if (!pCreateHardLink && !myerrno) { HANDLE hKernel; hKernel = GetModuleHandle("kernel32.dll"); if (hKernel) { pCreateHardLink = (BOOL (WINAPI *)(LPCTSTR, LPCTSTR, LPSECURITY_ATTRIBUTES))GetProcAddress(hKernel, "CreateHardLinkA"); if (!pCreateHardLink) { myerrno = map_errno(); } CloseHandle(hKernel); } else { myerrno = map_errno(); } } if (!pCreateHardLink) { errno = myerrno; return -1; } if (!pCreateHardLink(to, from, NULL)) { errno = map_errno(); return -1; } return 0; } int wait() { return 0; } char * rb_w32_getenv(const char *name) { static char *curitem = NULL; static DWORD curlen = 0; DWORD needlen; if (curitem == NULL || curlen == 0) { curlen = 512; curitem = ALLOC_N(char, curlen); } needlen = GetEnvironmentVariable(name, curitem, curlen); if (needlen != 0) { while (needlen > curlen) { REALLOC_N(curitem, char, needlen); curlen = needlen; needlen = GetEnvironmentVariable(name, curitem, curlen); } } else { return NULL; } return curitem; } int rb_w32_rename(const char *oldpath, const char *newpath) { int res = 0; int oldatts; int newatts; oldatts = GetFileAttributes(oldpath); newatts = GetFileAttributes(newpath); if (oldatts == -1) { errno = map_errno(); return -1; } RUBY_CRITICAL({ if (newatts != -1 && newatts & FILE_ATTRIBUTE_READONLY) SetFileAttributesA(newpath, newatts & ~ FILE_ATTRIBUTE_READONLY); if (!MoveFile(oldpath, newpath)) res = -1; if (res) { switch (GetLastError()) { case ERROR_ALREADY_EXISTS: case ERROR_FILE_EXISTS: if (IsWinNT()) { if (MoveFileEx(oldpath, newpath, MOVEFILE_REPLACE_EXISTING)) res = 0; } else { for (;;) { if (!DeleteFile(newpath) && GetLastError() != ERROR_FILE_NOT_FOUND) break; else if (MoveFile(oldpath, newpath)) { res = 0; break; } } } } } if (res) errno = map_errno(); else SetFileAttributes(newpath, oldatts); }); return res; } static int isUNCRoot(const char *path) { if (path[0] == '\\' && path[1] == '\\') { const char *p; for (p = path + 3; *p; p = CharNext(p)) { if (*p == '\\') break; } if (p[0] && p[1]) { for (p++; *p; p = CharNext(p)) { if (*p == '\\') break; } if (!p[0] || !p[1]) return 1; } } return 0; } int rb_w32_stat(const char *path, struct stat *st) { const char *p; char *buf1, *buf2, *s; int len; int ret; if (!path || !st) { errno = EFAULT; return -1; } buf1 = ALLOCA_N(char, strlen(path) + 2); for (p = path, s = buf1; *p; p++, s++) { if (*p == '/') *s = '\\'; else *s = *p; } *s = '\0'; len = s - buf1; if (!len || '\"' == *(--s)) { errno = ENOENT; return -1; } p = CharPrev(buf1, buf1 + len); if (isUNCRoot(buf1)) { if (*p != '\\') strcat(buf1, "\\"); } else if (*p == '\\' || *p == ':') strcat(buf1, "."); buf2 = ALLOCA_N(char, MAXPATHLEN); if (_fullpath(buf2, buf1, MAXPATHLEN)) { ret = stat(buf2, st); if (ret == 0) { st->st_mode &= ~(S_IWGRP | S_IWOTH); } return ret; } else return -1; } static long filetime_to_clock(FILETIME *ft) { __int64 qw = ft->dwHighDateTime; qw <<= 32; qw |= ft->dwLowDateTime; qw /= 10000; /* File time ticks at 0.1uS, clock at 1mS */ return (long) qw; } int rb_w32_times(struct tms *tmbuf) { FILETIME create, exit, kernel, user; if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { tmbuf->tms_utime = filetime_to_clock(&user); tmbuf->tms_stime = filetime_to_clock(&kernel); tmbuf->tms_cutime = 0; tmbuf->tms_cstime = 0; } else { tmbuf->tms_utime = clock(); tmbuf->tms_stime = 0; tmbuf->tms_cutime = 0; tmbuf->tms_cstime = 0; } return 0; } #undef Sleep #define yield_once() Sleep(0) #define yield_until(condition) do yield_once(); while (!(condition)) static DWORD wait_events(HANDLE event, DWORD timeout) { HANDLE events[2]; int count = 0; DWORD ret; if (event) { events[count++] = event; } events[count++] = interrupted_event; ret = WaitForMultipleEvents(count, events, FALSE, timeout, TRUE); if (ret == WAIT_OBJECT_0 + count - 1) { ResetSignal(interrupted_event); errno = EINTR; } return ret; } static CRITICAL_SECTION* system_state(void) { static int initialized = 0; static CRITICAL_SECTION syssect; if (!initialized) { InitializeCriticalSection(&syssect); initialized = 1; } return &syssect; } static LONG flag_interrupt = -1; static volatile DWORD tlsi_interrupt = TLS_OUT_OF_INDEXES; void rb_w32_enter_critical(void) { if (IsWinNT()) { EnterCriticalSection(system_state()); return; } if (tlsi_interrupt == TLS_OUT_OF_INDEXES) { tlsi_interrupt = TlsAlloc(); } { DWORD ti = (DWORD)TlsGetValue(tlsi_interrupt); while (InterlockedIncrement(&flag_interrupt) > 0 && !ti) { InterlockedDecrement(&flag_interrupt); Sleep(1); } TlsSetValue(tlsi_interrupt, (PVOID)++ti); } } void rb_w32_leave_critical(void) { if (IsWinNT()) { LeaveCriticalSection(system_state()); return; } InterlockedDecrement(&flag_interrupt); TlsSetValue(tlsi_interrupt, (PVOID)((DWORD)TlsGetValue(tlsi_interrupt) - 1)); } struct handler_arg_t { void (*handler)(int); int arg; int status; int finished; HANDLE handshake; }; static void rb_w32_call_handler(struct handler_arg_t* h) { int status; RUBY_CRITICAL(rb_protect((VALUE (*)(VALUE))h->handler, (VALUE)h->arg, &h->status); status = h->status; SetEvent(h->handshake)); if (status) { rb_jump_tag(status); } h->finished = 1; Sleep(INFINITE); /* safe on Win95? */ } static struct handler_arg_t* setup_handler(struct handler_arg_t *harg, int arg, void (*handler)(int), HANDLE handshake) { harg->handler = handler; harg->arg = arg; harg->status = 0; harg->finished = 0; harg->handshake = handshake; return harg; } static void setup_call(CONTEXT* ctx, struct handler_arg_t *harg) { #ifdef _M_IX86 DWORD *esp = (DWORD *)ctx->Esp; *--esp = (DWORD)harg; *--esp = ctx->Eip; ctx->Esp = (DWORD)esp; ctx->Eip = (DWORD)rb_w32_call_handler; #else #ifndef _WIN32_WCE #error unsupported processor #endif #endif } int rb_w32_main_context(int arg, void (*handler)(int)) { static HANDLE interrupt_done = NULL; struct handler_arg_t harg; CONTEXT ctx_orig; HANDLE current_thread = GetCurrentThread(); int old_priority = GetThreadPriority(current_thread); if (GetCurrentThreadId() == main_thread.id) return FALSE; SetSignal(interrupted_event); RUBY_CRITICAL({ /* the main thread must be in user state */ CONTEXT ctx; SuspendThread(main_thread.handle); SetThreadPriority(current_thread, GetThreadPriority(main_thread.handle)); ZeroMemory(&ctx, sizeof(CONTEXT)); ctx.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT; GetThreadContext(main_thread.handle, &ctx); ctx_orig = ctx; /* handler context setup */ if (!interrupt_done) { interrupt_done = CreateEvent(NULL, FALSE, FALSE, NULL); /* anonymous one-shot event */ } else { ResetEvent(interrupt_done); } setup_call(&ctx, setup_handler(&harg, arg, handler, interrupt_done)); ctx.ContextFlags = CONTEXT_CONTROL; SetThreadContext(main_thread.handle, &ctx); ResumeThread(main_thread.handle); }); /* give a chance to the main thread */ yield_once(); WaitForSingleObject(interrupt_done, INFINITE); /* handshaking */ if (!harg.status) { /* no exceptions raised, restore old context. */ RUBY_CRITICAL({ /* ensure the main thread is in user state. */ yield_until(harg.finished); SuspendThread(main_thread.handle); ctx_orig.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT; SetThreadContext(main_thread.handle, &ctx_orig); ResumeThread(main_thread.handle); }); } /* otherwise leave the main thread raised */ SetThreadPriority(current_thread, old_priority); return TRUE; } int rb_w32_sleep(unsigned long msec) { DWORD ret; RUBY_CRITICAL(ret = wait_events(NULL, msec)); yield_once(); CHECK_INTS; return ret != WAIT_TIMEOUT; } static void catch_interrupt(void) { yield_once(); RUBY_CRITICAL(wait_events(NULL, 0)); CHECK_INTS; } #undef fgetc int rb_w32_getc(FILE* stream) { int c, trap_immediate = rb_trap_immediate; #ifndef _WIN32_WCE if (enough_to_get(stream->FILE_COUNT)) { c = (unsigned char)*stream->FILE_READPTR++; rb_trap_immediate = trap_immediate; } else #endif { c = _filbuf(stream); #if defined __BORLANDC__ || defined _WIN32_WCE if( ( c == EOF )&&( errno == EPIPE ) ) { clearerr(stream); } #endif rb_trap_immediate = trap_immediate; catch_interrupt(); } return c; } #undef fputc int rb_w32_putc(int c, FILE* stream) { int trap_immediate = rb_trap_immediate; #ifndef _WIN32_WCE if (enough_to_put(stream->FILE_COUNT)) { c = (unsigned char)(*stream->FILE_READPTR++ = (char)c); rb_trap_immediate = trap_immediate; } else #endif { c = _flsbuf(c, stream); rb_trap_immediate = trap_immediate; catch_interrupt(); } return c; } struct asynchronous_arg_t { /* output field */ void* stackaddr; int errnum; /* input field */ VALUE (*func)(VALUE self, int argc, VALUE* argv); VALUE self; int argc; VALUE* argv; }; static DWORD WINAPI call_asynchronous(PVOID argp) { DWORD ret; struct asynchronous_arg_t *arg = argp; arg->stackaddr = &argp; ret = (DWORD)arg->func(arg->self, arg->argc, arg->argv); arg->errnum = errno; return ret; } VALUE rb_w32_asynchronize(asynchronous_func_t func, VALUE self, int argc, VALUE* argv, VALUE intrval) { DWORD val; BOOL interrupted = FALSE; HANDLE thr; RUBY_CRITICAL({ struct asynchronous_arg_t arg; arg.stackaddr = NULL; arg.errnum = 0; arg.func = func; arg.self = self; arg.argc = argc; arg.argv = argv; thr = CreateThread(NULL, 0, call_asynchronous, &arg, 0, &val); if (thr) { yield_until(arg.stackaddr); if (wait_events(thr, INFINITE) != WAIT_OBJECT_0) { interrupted = TRUE; if (TerminateThread(thr, intrval)) { yield_once(); } } GetExitCodeThread(thr, &val); CloseHandle(thr); if (interrupted) { /* must release stack of killed thread, why doesn't Windows? */ MEMORY_BASIC_INFORMATION m; memset(&m, 0, sizeof(m)); if (!VirtualQuery(arg.stackaddr, &m, sizeof(m))) { Debug(fprintf(stderr, "couldn't get stack base:%p:%d\n", arg.stackaddr, GetLastError())); } else if (!VirtualFree(m.AllocationBase, 0, MEM_RELEASE)) { Debug(fprintf(stderr, "couldn't release stack:%p:%d\n", m.AllocationBase, GetLastError())); } errno = EINTR; } else { errno = arg.errnum; } } }); if (!thr) { rb_fatal("failed to launch waiter thread:%d", GetLastError()); } if (interrupted) { CHECK_INTS; } return val; } char **rb_w32_get_environ(void) { char *envtop, *env; char **myenvtop, **myenv; int num; /* * We avoid values started with `='. If you want to deal those values, * change this function, and some functions in hash.c which recognize * `=' as delimiter or rb_w32_getenv() and ruby_setenv(). * CygWin deals these values by changing first `=' to '!'. But we don't * use such trick and follow cmd.exe's way that just doesn't show these * values. * (U.N. 2001-11-15) */ envtop = GetEnvironmentStrings(); for (env = envtop, num = 0; *env; env += strlen(env) + 1) if (*env != '=') num++; myenvtop = ALLOC_N(char*, num + 1); for (env = envtop, myenv = myenvtop; *env; env += strlen(env) + 1) { if (*env != '=') { *myenv = ALLOC_N(char, strlen(env) + 1); strcpy(*myenv, env); myenv++; } } *myenv = NULL; FreeEnvironmentStrings(envtop); return myenvtop; } void rb_w32_free_environ(char **env) { char **t = env; while (*t) free(*t++); free(env); } pid_t rb_w32_getpid(void) { pid_t pid; pid = _getpid(); if (IsWin95()) pid = -pid; return pid; } int rb_w32_fclose(FILE *fp) { int fd = fileno(fp); SOCKET sock = TO_SOCKET(fd); if (fflush(fp)) return -1; if (!is_socket(sock)) { UnlockFile((HANDLE)sock, 0, 0, LK_LEN, LK_LEN); return fclose(fp); } _set_osfhnd(fd, (SOCKET)INVALID_HANDLE_VALUE); fclose(fp); if (closesocket(sock) == SOCKET_ERROR) { errno = WSAGetLastError() - WSABASEERR; return -1; } return 0; } int rb_w32_close(int fd) { SOCKET sock = TO_SOCKET(fd); if (!is_socket(sock)) { UnlockFile((HANDLE)sock, 0, 0, LK_LEN, LK_LEN); return _close(fd); } if (closesocket(sock) == SOCKET_ERROR) { errno = WSAGetLastError() - WSABASEERR; return -1; } return 0; } static int unixtime_to_filetime(time_t time, FILETIME *ft) { struct tm *tm; SYSTEMTIME st; tm = gmtime(&time); st.wYear = tm->tm_year + 1900; st.wMonth = tm->tm_mon + 1; st.wDayOfWeek = tm->tm_wday; st.wDay = tm->tm_mday; st.wHour = tm->tm_hour; st.wMinute = tm->tm_min; st.wSecond = tm->tm_sec; st.wMilliseconds = 0; if (!SystemTimeToFileTime(&st, ft)) { errno = map_errno(); return -1; } return 0; } #undef utime #ifdef __BORLANDC__ #define utime _utime #endif int rb_w32_utime(const char *path, struct utimbuf *times) { HANDLE hDir; SYSTEMTIME st; FILETIME atime, mtime; struct tm *tm; struct stat stat; int ret = 0; if (rb_w32_stat(path, &stat)) { return -1; } if ((stat.st_mode & S_IFDIR) == 0 || IsWin95()) { return utime(path, times); } if (unixtime_to_filetime(times->actime, &atime)) { return -1; } if (unixtime_to_filetime(times->modtime, &mtime)) { return -1; } hDir = CreateFile(path, GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, 0); if (hDir == INVALID_HANDLE_VALUE) { errno = map_errno(); return -1; } if (!SetFileTime(hDir, NULL, &atime, &mtime)) { errno = map_errno(); ret = -1; } CloseHandle(hDir); return ret; }