#include #include "insns.inc" #include "internal.h" #include "vm_core.h" #include "vm_sync.h" #include "vm_callinfo.h" #include "builtin.h" #include "internal/compile.h" #include "internal/class.h" #include "insns_info.inc" #include "ujit.h" #include "ujit_iface.h" #include "ujit_codegen.h" #include "ujit_core.h" #include "ujit_hooks.inc" bool rb_ujit_enabled; // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; // Keep track of mapping from instructions to generated code // See comment for rb_encoded_insn_data in iseq.c void map_addr2insn(void *code_ptr, int insn) { const void * const *table = rb_vm_get_insns_address_table(); const void * const translated_address = table[insn]; st_data_t encoded_insn_data; if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) { st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data); } else { rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn"); } } int opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc) { const VALUE at_pc = *pc; if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) { return rb_vm_insn_addr2opcode((const void *)at_pc); } else { return (int)at_pc; } } // GC root for interacting with the GC struct ujit_root_struct {}; // Map cme_or_cc => [[iseq, offset]]. An entry in the map means compiled code at iseq[offset] // is only valid when cme_or_cc is valid static st_table *method_lookup_dependency; struct compiled_region_array { int32_t size; int32_t capa; struct compiled_region { const rb_iseq_t *iseq; size_t start_idx; uint8_t *code; } data[]; }; // Add an element to a region array, or allocate a new region array. static struct compiled_region_array * add_compiled_region(struct compiled_region_array *array, const rb_iseq_t *iseq, size_t start_idx, uint8_t *code) { if (!array) { // Allocate a brand new array with space for one array = malloc(sizeof(*array) + sizeof(struct compiled_region)); if (!array) { return NULL; } array->size = 0; array->capa = 1; } if (array->size == INT32_MAX) { return NULL; } // Check if the region is already present for (int32_t i = 0; i < array->size; i++) { if (array->data[i].iseq == iseq && array->data[i].start_idx == start_idx) { return array; } } if (array->size + 1 > array->capa) { // Double the array's capacity. int64_t double_capa = ((int64_t)array->capa) * 2; int32_t new_capa = (int32_t)double_capa; if (new_capa != double_capa) { return NULL; } array = realloc(array, sizeof(*array) + new_capa * sizeof(struct compiled_region)); if (array == NULL) { return NULL; } array->capa = new_capa; } int32_t size = array->size; array->data[size].iseq = iseq; array->data[size].start_idx = start_idx; array->data[size].code = code; array->size++; return array; } static int add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing) { ctx_t *ctx = (ctx_t *)data; struct compiled_region_array *regions = NULL; if (existing) { regions = (struct compiled_region_array *)*value; } regions = add_compiled_region(regions, ctx->iseq, ctx->start_idx, ctx->code_ptr); if (!regions) { rb_bug("ujit: failed to add method lookup dependency"); // TODO: we could bail out of compiling instead } *value = (st_data_t)regions; return ST_CONTINUE; } // Remember that the currently compiling region is only valid while cme and cc are valid void assume_method_lookup_stable(const struct rb_callcache *cc, const rb_callable_method_entry_t *cme, ctx_t *ctx) { st_update(method_lookup_dependency, (st_data_t)cme, add_lookup_dependency_i, (st_data_t)ctx); st_update(method_lookup_dependency, (st_data_t)cc, add_lookup_dependency_i, (st_data_t)ctx); // FIXME: This is a leak! When either the cme or the cc become invalid, the other also needs to go } static int ujit_root_mark_i(st_data_t k, st_data_t v, st_data_t ignore) { // FIXME: This leaks everything that end up in the dependency table! // One way to deal with this is with weak references... rb_gc_mark((VALUE)k); struct compiled_region_array *regions = (void *)v; for (int32_t i = 0; i < regions->size; i++) { rb_gc_mark((VALUE)regions->data[i].iseq); } return ST_CONTINUE; } // GC callback during mark phase static void ujit_root_mark(void *ptr) { if (method_lookup_dependency) { st_foreach(method_lookup_dependency, ujit_root_mark_i, 0); } } static void ujit_root_free(void *ptr) { // Do nothing. The root lives as long as the process. } static size_t ujit_root_memsize(const void *ptr) { // Count off-gc-heap allocation size of the dependency table return st_memsize(method_lookup_dependency); // TODO: more accurate accounting } // Custom type for interacting with the GC // TODO: compaction support // TODO: make this write barrier protected static const rb_data_type_t ujit_root_type = { "ujit_root", {ujit_root_mark, ujit_root_free, ujit_root_memsize, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; // Callback when cme or cc become invalid void rb_ujit_method_lookup_change(VALUE cme_or_cc) { if (!method_lookup_dependency) return; RUBY_ASSERT(IMEMO_TYPE_P(cme_or_cc, imemo_ment) || IMEMO_TYPE_P(cme_or_cc, imemo_callcache)); st_data_t image; if (st_lookup(method_lookup_dependency, (st_data_t)cme_or_cc, &image)) { struct compiled_region_array *array = (void *)image; // Invalidate all regions that depend on the cme or cc for (int32_t i = 0; i < array->size; i++) { struct compiled_region *region = &array->data[i]; const struct rb_iseq_constant_body *body = region->iseq->body; RUBY_ASSERT((unsigned int)region->start_idx < body->iseq_size); // Restore region address to interpreter address in bytecode sequence if (body->iseq_encoded[region->start_idx] == (VALUE)region->code) { const void *const *code_threading_table = rb_vm_get_insns_address_table(); int opcode = rb_vm_insn_addr2insn(region->code); body->iseq_encoded[region->start_idx] = (VALUE)code_threading_table[opcode]; if (UJIT_DUMP_MODE > 0) { fprintf(stderr, "cc_or_cme=%p now out of date. Restored idx=%u in iseq=%p\n", (void *)cme_or_cc, (unsigned)region->start_idx, (void *)region->iseq); } } } array->size = 0; } } void rb_ujit_compile_iseq(const rb_iseq_t *iseq) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE RB_VM_LOCK_ENTER(); VALUE *encoded = (VALUE *)iseq->body->iseq_encoded; unsigned int insn_idx; unsigned int next_ujit_idx = 0; for (insn_idx = 0; insn_idx < iseq->body->iseq_size; /* */) { int insn = opcode_at_pc(iseq, &encoded[insn_idx]); int len = insn_len(insn); uint8_t *native_code_ptr = NULL; // If ujit hasn't already compiled this instruction if (insn_idx >= next_ujit_idx) { native_code_ptr = ujit_compile_insn(iseq, insn_idx, &next_ujit_idx); } if (native_code_ptr) { encoded[insn_idx] = (VALUE)native_code_ptr; } insn_idx += len; } RB_VM_LOCK_LEAVE(); #endif } void rb_ujit_init(void) { if (!ujit_scrape_successful || !PLATFORM_SUPPORTED_P) { return; } rb_ujit_enabled = true; // Initialize ujit codegen ujit_init_codegen(); // Initialize the GC hooks method_lookup_dependency = st_init_numtable(); struct ujit_root_struct *root; VALUE ujit_root = TypedData_Make_Struct(0, struct ujit_root_struct, &ujit_root_type, root); rb_gc_register_mark_object(ujit_root); }