#include #include "insns.inc" #include "internal.h" #include "vm_core.h" #include "vm_callinfo.h" #include "builtin.h" #include "insns_info.inc" #include "ujit_compile.h" #include "ujit_asm.h" #include "ujit_utils.h" // TODO: give ujit_examples.h some more meaningful file name // eg ujit_hook.h #include "ujit_examples.h" // Code generation context typedef struct ctx_struct { // Current PC VALUE* pc; // Difference between the current stack pointer and actual stack top int32_t stack_diff; } ctx_t; // Code generation function typedef void (*codegen_fn)(codeblock_t* cb, ctx_t* ctx); // Map from YARV opcodes to code generation functions static st_table *gen_fns; // Code block into which we write machine code static codeblock_t block; static codeblock_t* cb = NULL; // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; static void ujit_init(); // Ruby instruction entry static void ujit_instr_entry(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i) cb_write_byte(cb, ujit_pre_call_bytes[i]); } // Ruby instruction exit static void ujit_instr_exit(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i) cb_write_byte(cb, ujit_post_call_bytes[i]); } // Keep track of mapping from instructions to generated code // See comment for rb_encoded_insn_data in iseq.c static void addr2insn_bookkeeping(void *code_ptr, int insn) { const void * const *table = rb_vm_get_insns_address_table(); const void * const translated_address = table[insn]; st_data_t encoded_insn_data; if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) { // This is a roundabout way of doing an insert. Doing a plain insert can cause GC // while inserting. While inserting, the table is in an inconsistent state and the // GC can do a lookup in the table. st_table *new_table = st_copy(rb_encoded_insn_data); st_table *old_table = rb_encoded_insn_data; st_insert(new_table, (st_data_t)code_ptr, encoded_insn_data); rb_encoded_insn_data = new_table; st_free_table(old_table); } else { rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn"); } } // Get the current instruction opcode from the context object int ctx_get_opcode(ctx_t* ctx) { return (int)(*ctx->pc); } // Get an instruction argument from the context object VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx) { assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx))); return *(ctx->pc + arg_idx + 1); } /* Make space on the stack for N values Return a pointer to the new stack top */ x86opnd_t ctx_stack_push(ctx_t* ctx, size_t n) { ctx->stack_diff += n; // SP points just above the topmost value int32_t offset = (ctx->stack_diff - 1) * 8; return mem_opnd(64, RSI, offset); } /* Pop N values off the stack Return a pointer to the stack top before the pop operation */ x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n) { // SP points just above the topmost value int32_t offset = (ctx->stack_diff - 1) * 8; x86opnd_t top = mem_opnd(64, RSI, offset); ctx->stack_diff -= n; return top; } /* Generate a chunk of machine code for one individual bytecode instruction Eventually, this will handle multiple instructions in a sequence MicroJIT code gets a pointer to the cfp as the first argument in RDI See rb_ujit_empty_func(rb_control_frame_t *cfp) in iseq.c Throughout the generated code, we store the current stack pointer in RSI System V ABI reference: https://wiki.osdev.org/System_V_ABI#x86-64 */ uint8_t * ujit_compile_insn(rb_iseq_t *iseq, unsigned int insn_idx, unsigned int* next_ujit_idx) { // If not previously done, initialize ujit if (!cb) { ujit_init(); } // NOTE: if we are ever deployed in production, we // should probably just log an error and return NULL here, // so we can fail more gracefully if (cb->write_pos + 1024 >= cb->mem_size) { rb_bug("out of executable memory"); } // Align the current write positon to cache line boundaries cb_align_pos(cb, 64); // Get a pointer to the current write position in the code block uint8_t *code_ptr = &cb->mem_block[cb->write_pos]; //printf("write pos: %ld\n", cb->write_pos); // Get the first opcode in the sequence int first_opcode = (int)iseq->body->iseq_encoded[insn_idx]; // Create codegen context ctx_t ctx; ctx.pc = NULL; ctx.stack_diff = 0; // For each instruction to compile size_t num_instrs; for (num_instrs = 0;; ++num_instrs) { // Set the current PC ctx.pc = &iseq->body->iseq_encoded[insn_idx]; // Get the current opcode int opcode = ctx_get_opcode(&ctx); // Lookup the codegen function for this instruction st_data_t st_gen_fn; if (!rb_st_lookup(gen_fns, opcode, &st_gen_fn)) { //print_int(cb, imm_opnd(num_instrs)); //print_str(cb, insn_name(opcode)); break; } // Write the pre call bytes before the first instruction if (num_instrs == 0) { ujit_instr_entry(cb); // Load the current SP from the CFP into RSI mov(cb, RSI, mem_opnd(64, RDI, 8)); } // Call the code generation function codegen_fn gen_fn = (codegen_fn)st_gen_fn; gen_fn(cb, &ctx); // Move to the next instruction insn_idx += insn_len(opcode); } // Let the caller know how many instructions ujit compiled *next_ujit_idx = insn_idx; // If no instructions were compiled if (num_instrs == 0) { return NULL; } // Write the adjusted SP back into the CFP if (ctx.stack_diff != 0) { // The stack pointer points one above the actual stack top x86opnd_t stack_pointer = ctx_stack_push(&ctx, 1); lea(cb, RSI, stack_pointer); mov(cb, mem_opnd(64, RDI, 8), RSI); } // Directly return the next PC, which is a constant mov(cb, RAX, const_ptr_opnd(ctx.pc)); // Write the post call bytes ujit_instr_exit(cb); /* // Hack to patch a relative 32-bit jump to the instruction handler int next_opcode = (int)*ctx.pc; const void * const *table = rb_vm_get_insns_address_table(); VALUE encoded = (VALUE)table[next_opcode]; uint8_t* p_handler = (uint8_t*)encoded; uint8_t* p_code = &cb->mem_block[cb->write_pos]; int64_t rel64 = ((int64_t)p_handler) - ((int64_t)p_code - 2 + 5); //printf("p_handler: %lld\n", (int64_t)p_handler); //printf("rel64: %lld\n", rel64); uint8_t byte0 = cb->mem_block[cb->write_pos - 2]; uint8_t byte1 = cb->mem_block[cb->write_pos - 1]; //printf("cb_init: %lld\n", (int64_t)&cb_init); //printf("%lld\n", rel64); if (byte0 == 0xFF && byte1 == 0x20 && rel64 >= -2147483648 && rel64 <= 2147483647) { //printf("%02X %02X\n", (int)byte0, (int)byte1); cb->write_pos -= 2; jmp32(cb, (int32_t)rel64); } */ addr2insn_bookkeeping(code_ptr, first_opcode); return code_ptr; } void gen_dup(codeblock_t* cb, ctx_t* ctx) { x86opnd_t dup_val = ctx_stack_pop(ctx, 1); x86opnd_t loc0 = ctx_stack_push(ctx, 1); x86opnd_t loc1 = ctx_stack_push(ctx, 1); mov(cb, RAX, dup_val); mov(cb, loc0, RAX); mov(cb, loc1, RAX); } void gen_nop(codeblock_t* cb, ctx_t* ctx) { // Do nothing } void gen_pop(codeblock_t* cb, ctx_t* ctx) { // Decrement SP ctx_stack_pop(ctx, 1); } void gen_putnil(codeblock_t* cb, ctx_t* ctx) { // Write constant at SP x86opnd_t stack_top = ctx_stack_push(ctx, 1); mov(cb, stack_top, imm_opnd(Qnil)); } void gen_putobject(codeblock_t* cb, ctx_t* ctx) { // Get the argument VALUE object = ctx_get_arg(ctx, 0); x86opnd_t ptr_imm = const_ptr_opnd((void*)object); // Write constant at SP x86opnd_t stack_top = ctx_stack_push(ctx, 1); mov(cb, RAX, ptr_imm); mov(cb, stack_top, RAX); } void gen_putobject_int2fix(codeblock_t* cb, ctx_t* ctx) { int opcode = ctx_get_opcode(ctx); int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1; // Write constant at SP x86opnd_t stack_top = ctx_stack_push(ctx, 1); mov(cb, stack_top, imm_opnd(INT2FIX(cst_val))); } void gen_putself(codeblock_t* cb, ctx_t* ctx) { // Load self from CFP mov(cb, RAX, mem_opnd(64, RDI, 24)); // Write it on the stack x86opnd_t stack_top = ctx_stack_push(ctx, 1); mov(cb, stack_top, RAX); } void gen_getlocal_wc0(codeblock_t* cb, ctx_t* ctx) { // Load block pointer from CFP mov(cb, RDX, mem_opnd(64, RDI, 32)); // Compute the offset from BP to the local int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0); const int32_t offs = -8 * local_idx; // Load the local from the block mov(cb, RCX, mem_opnd(64, RDX, offs)); // Write the local at SP x86opnd_t stack_top = ctx_stack_push(ctx, 1); mov(cb, stack_top, RCX); } static void ujit_init() { // 64MB ought to be enough for anybody cb = █ cb_init(cb, 64 * 1024 * 1024); // Initialize the codegen function table gen_fns = rb_st_init_numtable(); // Map YARV opcodes to the corresponding codegen functions st_insert(gen_fns, (st_data_t)BIN(dup), (st_data_t)&gen_dup); st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop); st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop); st_insert(gen_fns, (st_data_t)BIN(putnil), (st_data_t)&gen_putnil); st_insert(gen_fns, (st_data_t)BIN(putobject), (st_data_t)&gen_putobject); st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix); st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix); st_insert(gen_fns, (st_data_t)BIN(putself), (st_data_t)&gen_putself); st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0); }