/* included by thread.c */ #include "ccan/list/list.h" #include "coroutine/Stack.h" static VALUE rb_cMutex, rb_cQueue, rb_cSizedQueue, rb_cConditionVariable; static VALUE rb_eClosedQueueError; /* Mutex */ typedef struct rb_mutex_struct { rb_fiber_t *fiber; struct rb_mutex_struct *next_mutex; struct list_head waitq; /* protected by GVL */ } rb_mutex_t; /* sync_waiter is always on-stack */ struct sync_waiter { VALUE self; rb_thread_t *th; rb_fiber_t *fiber; struct list_node node; }; #define MUTEX_ALLOW_TRAP FL_USER1 static void sync_wakeup(struct list_head *head, long max) { struct sync_waiter *cur = 0, *next; list_for_each_safe(head, cur, next, node) { list_del_init(&cur->node); if (cur->th->status != THREAD_KILLED) { if (cur->th->scheduler != Qnil) { rb_scheduler_unblock(cur->th->scheduler, cur->self, rb_fiberptr_self(cur->fiber)); } else { rb_threadptr_interrupt(cur->th); cur->th->status = THREAD_RUNNABLE; } if (--max == 0) return; } } } static void wakeup_one(struct list_head *head) { sync_wakeup(head, 1); } static void wakeup_all(struct list_head *head) { sync_wakeup(head, LONG_MAX); } #if defined(HAVE_WORKING_FORK) static void rb_mutex_abandon_all(rb_mutex_t *mutexes); static void rb_mutex_abandon_keeping_mutexes(rb_thread_t *th); static void rb_mutex_abandon_locking_mutex(rb_thread_t *th); #endif static const char* rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t *th, rb_fiber_t *fiber); /* * Document-class: Mutex * * Mutex implements a simple semaphore that can be used to coordinate access to * shared data from multiple concurrent threads. * * Example: * * semaphore = Mutex.new * * a = Thread.new { * semaphore.synchronize { * # access shared resource * } * } * * b = Thread.new { * semaphore.synchronize { * # access shared resource * } * } * */ #define mutex_mark ((void(*)(void*))0) static size_t rb_mutex_num_waiting(rb_mutex_t *mutex) { struct sync_waiter *w = 0; size_t n = 0; list_for_each(&mutex->waitq, w, node) { n++; } return n; } rb_thread_t* rb_fiber_threadptr(const rb_fiber_t *fiber); static void mutex_free(void *ptr) { rb_mutex_t *mutex = ptr; if (mutex->fiber) { /* rb_warn("free locked mutex"); */ const char *err = rb_mutex_unlock_th(mutex, rb_fiber_threadptr(mutex->fiber), mutex->fiber); if (err) rb_bug("%s", err); } ruby_xfree(ptr); } static size_t mutex_memsize(const void *ptr) { return sizeof(rb_mutex_t); } static const rb_data_type_t mutex_data_type = { "mutex", {mutex_mark, mutex_free, mutex_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static rb_mutex_t * mutex_ptr(VALUE obj) { rb_mutex_t *mutex; TypedData_Get_Struct(obj, rb_mutex_t, &mutex_data_type, mutex); return mutex; } VALUE rb_obj_is_mutex(VALUE obj) { if (rb_typeddata_is_kind_of(obj, &mutex_data_type)) { return Qtrue; } else { return Qfalse; } } static VALUE mutex_alloc(VALUE klass) { VALUE obj; rb_mutex_t *mutex; obj = TypedData_Make_Struct(klass, rb_mutex_t, &mutex_data_type, mutex); list_head_init(&mutex->waitq); return obj; } /* * call-seq: * Mutex.new -> mutex * * Creates a new Mutex */ static VALUE mutex_initialize(VALUE self) { return self; } VALUE rb_mutex_new(void) { return mutex_alloc(rb_cMutex); } /* * call-seq: * mutex.locked? -> true or false * * Returns +true+ if this lock is currently held by some thread. */ VALUE rb_mutex_locked_p(VALUE self) { rb_mutex_t *mutex = mutex_ptr(self); return mutex->fiber ? Qtrue : Qfalse; } static void thread_mutex_insert(rb_thread_t *thread, rb_mutex_t *mutex) { if (thread->keeping_mutexes) { mutex->next_mutex = thread->keeping_mutexes; } thread->keeping_mutexes = mutex; } static void thread_mutex_remove(rb_thread_t *thread, rb_mutex_t *mutex) { rb_mutex_t **keeping_mutexes = &thread->keeping_mutexes; while (*keeping_mutexes && *keeping_mutexes != mutex) { // Move to the next mutex in the list: keeping_mutexes = &(*keeping_mutexes)->next_mutex; } if (*keeping_mutexes) { *keeping_mutexes = mutex->next_mutex; mutex->next_mutex = NULL; } } static void mutex_locked(rb_thread_t *th, VALUE self) { rb_mutex_t *mutex = mutex_ptr(self); thread_mutex_insert(th, mutex); } /* * call-seq: * mutex.try_lock -> true or false * * Attempts to obtain the lock and returns immediately. Returns +true+ if the * lock was granted. */ VALUE rb_mutex_trylock(VALUE self) { rb_mutex_t *mutex = mutex_ptr(self); if (mutex->fiber == 0) { rb_fiber_t *fiber = GET_EC()->fiber_ptr; rb_thread_t *th = GET_THREAD(); mutex->fiber = fiber; mutex_locked(th, self); return Qtrue; } return Qfalse; } /* * At maximum, only one thread can use cond_timedwait and watch deadlock * periodically. Multiple polling thread (i.e. concurrent deadlock check) * introduces new race conditions. [Bug #6278] [ruby-core:44275] */ static const rb_thread_t *patrol_thread = NULL; static VALUE mutex_owned_p(rb_fiber_t *fiber, rb_mutex_t *mutex) { if (mutex->fiber == fiber) { return Qtrue; } else { return Qfalse; } } static VALUE call_rb_scheduler_block(VALUE mutex) { return rb_scheduler_block(rb_scheduler_current(), mutex, Qnil); } static VALUE delete_from_waitq(VALUE v) { struct sync_waiter *w = (void *)v; list_del(&w->node); COROUTINE_STACK_FREE(w); return Qnil; } static VALUE do_mutex_lock(VALUE self, int interruptible_p) { rb_execution_context_t *ec = GET_EC(); rb_thread_t *th = ec->thread_ptr; rb_fiber_t *fiber = ec->fiber_ptr; rb_mutex_t *mutex = mutex_ptr(self); /* When running trap handler */ if (!FL_TEST_RAW(self, MUTEX_ALLOW_TRAP) && th->ec->interrupt_mask & TRAP_INTERRUPT_MASK) { rb_raise(rb_eThreadError, "can't be called from trap context"); } if (rb_mutex_trylock(self) == Qfalse) { if (mutex->fiber == fiber) { rb_raise(rb_eThreadError, "deadlock; recursive locking"); } while (mutex->fiber != fiber) { VALUE scheduler = rb_scheduler_current(); if (scheduler != Qnil) { COROUTINE_STACK_LOCAL(struct sync_waiter, w); w->self = self; w->th = th; w->fiber = fiber; list_add_tail(&mutex->waitq, &w->node); rb_ensure(call_rb_scheduler_block, self, delete_from_waitq, (VALUE)w); if (!mutex->fiber) { mutex->fiber = fiber; } } else { enum rb_thread_status prev_status = th->status; rb_hrtime_t *timeout = 0; rb_hrtime_t rel = rb_msec2hrtime(100); th->status = THREAD_STOPPED_FOREVER; th->locking_mutex = self; rb_ractor_sleeper_threads_inc(th->ractor); /* * Carefully! while some contended threads are in native_sleep(), * ractor->sleeper is unstable value. we have to avoid both deadlock * and busy loop. */ if ((rb_ractor_living_thread_num(th->ractor) == rb_ractor_sleeper_thread_num(th->ractor)) && !patrol_thread) { timeout = &rel; patrol_thread = th; } COROUTINE_STACK_LOCAL(struct sync_waiter, w); w->self = self; w->th = th; w->fiber = fiber; list_add_tail(&mutex->waitq, &w->node); native_sleep(th, timeout); /* release GVL */ list_del(&w->node); COROUTINE_STACK_FREE(w); if (!mutex->fiber) { mutex->fiber = fiber; } if (patrol_thread == th) patrol_thread = NULL; th->locking_mutex = Qfalse; if (mutex->fiber && timeout && !RUBY_VM_INTERRUPTED(th->ec)) { rb_check_deadlock(th->ractor); } if (th->status == THREAD_STOPPED_FOREVER) { th->status = prev_status; } rb_ractor_sleeper_threads_dec(th->ractor); } if (interruptible_p) { /* release mutex before checking for interrupts...as interrupt checking * code might call rb_raise() */ if (mutex->fiber == fiber) mutex->fiber = 0; RUBY_VM_CHECK_INTS_BLOCKING(th->ec); /* may release mutex */ if (!mutex->fiber) { mutex->fiber = fiber; } } } if (mutex->fiber == fiber) mutex_locked(th, self); } // assertion if (mutex_owned_p(fiber, mutex) == Qfalse) rb_bug("do_mutex_lock: mutex is not owned."); return self; } static VALUE mutex_lock_uninterruptible(VALUE self) { return do_mutex_lock(self, 0); } /* * call-seq: * mutex.lock -> self * * Attempts to grab the lock and waits if it isn't available. * Raises +ThreadError+ if +mutex+ was locked by the current thread. */ VALUE rb_mutex_lock(VALUE self) { return do_mutex_lock(self, 1); } /* * call-seq: * mutex.owned? -> true or false * * Returns +true+ if this lock is currently held by current thread. */ VALUE rb_mutex_owned_p(VALUE self) { rb_fiber_t *fiber = GET_EC()->fiber_ptr; rb_mutex_t *mutex = mutex_ptr(self); return mutex_owned_p(fiber, mutex); } static const char * rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t *th, rb_fiber_t *fiber) { const char *err = NULL; if (mutex->fiber == 0) { err = "Attempt to unlock a mutex which is not locked"; } else if (mutex->fiber != fiber) { err = "Attempt to unlock a mutex which is locked by another thread/fiber"; } else { struct sync_waiter *cur = 0, *next; mutex->fiber = 0; list_for_each_safe(&mutex->waitq, cur, next, node) { list_del_init(&cur->node); if (cur->th->scheduler != Qnil) { rb_scheduler_unblock(cur->th->scheduler, cur->self, rb_fiberptr_self(cur->fiber)); goto found; } else { switch (cur->th->status) { case THREAD_RUNNABLE: /* from someone else calling Thread#run */ case THREAD_STOPPED_FOREVER: /* likely (rb_mutex_lock) */ rb_threadptr_interrupt(cur->th); goto found; case THREAD_STOPPED: /* probably impossible */ rb_bug("unexpected THREAD_STOPPED"); case THREAD_KILLED: /* not sure about this, possible in exit GC? */ rb_bug("unexpected THREAD_KILLED"); continue; } } } found: thread_mutex_remove(th, mutex); } return err; } /* * call-seq: * mutex.unlock -> self * * Releases the lock. * Raises +ThreadError+ if +mutex+ wasn't locked by the current thread. */ VALUE rb_mutex_unlock(VALUE self) { const char *err; rb_mutex_t *mutex = mutex_ptr(self); rb_thread_t *th = GET_THREAD(); err = rb_mutex_unlock_th(mutex, th, GET_EC()->fiber_ptr); if (err) rb_raise(rb_eThreadError, "%s", err); return self; } #if defined(HAVE_WORKING_FORK) static void rb_mutex_abandon_keeping_mutexes(rb_thread_t *th) { rb_mutex_abandon_all(th->keeping_mutexes); th->keeping_mutexes = NULL; } static void rb_mutex_abandon_locking_mutex(rb_thread_t *th) { if (th->locking_mutex) { rb_mutex_t *mutex = mutex_ptr(th->locking_mutex); list_head_init(&mutex->waitq); th->locking_mutex = Qfalse; } } static void rb_mutex_abandon_all(rb_mutex_t *mutexes) { rb_mutex_t *mutex; while (mutexes) { mutex = mutexes; mutexes = mutex->next_mutex; mutex->fiber = 0; mutex->next_mutex = 0; list_head_init(&mutex->waitq); } } #endif static VALUE rb_mutex_sleep_forever(VALUE self) { rb_thread_sleep_deadly_allow_spurious_wakeup(self); return Qnil; } static VALUE rb_mutex_wait_for(VALUE time) { rb_hrtime_t *rel = (rb_hrtime_t *)time; /* permit spurious check */ sleep_hrtime(GET_THREAD(), *rel, 0); return Qnil; } VALUE rb_mutex_sleep(VALUE self, VALUE timeout) { struct timeval t; if (!NIL_P(timeout)) { t = rb_time_interval(timeout); } rb_mutex_unlock(self); time_t beg = time(0); VALUE scheduler = rb_scheduler_current(); if (scheduler != Qnil) { rb_scheduler_kernel_sleep(scheduler, timeout); mutex_lock_uninterruptible(self); } else { if (NIL_P(timeout)) { rb_ensure(rb_mutex_sleep_forever, self, mutex_lock_uninterruptible, self); } else { rb_hrtime_t rel = rb_timeval2hrtime(&t); rb_ensure(rb_mutex_wait_for, (VALUE)&rel, mutex_lock_uninterruptible, self); } } RUBY_VM_CHECK_INTS_BLOCKING(GET_EC()); time_t end = time(0) - beg; return INT2FIX(end); } /* * call-seq: * mutex.sleep(timeout = nil) -> number * * Releases the lock and sleeps +timeout+ seconds if it is given and * non-nil or forever. Raises +ThreadError+ if +mutex+ wasn't locked by * the current thread. * * When the thread is next woken up, it will attempt to reacquire * the lock. * * Note that this method can wakeup without explicit Thread#wakeup call. * For example, receiving signal and so on. */ static VALUE mutex_sleep(int argc, VALUE *argv, VALUE self) { VALUE timeout; timeout = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; return rb_mutex_sleep(self, timeout); } /* * call-seq: * mutex.synchronize { ... } -> result of the block * * Obtains a lock, runs the block, and releases the lock when the block * completes. See the example under +Mutex+. */ VALUE rb_mutex_synchronize(VALUE mutex, VALUE (*func)(VALUE arg), VALUE arg) { rb_mutex_lock(mutex); return rb_ensure(func, arg, rb_mutex_unlock, mutex); } /* * call-seq: * mutex.synchronize { ... } -> result of the block * * Obtains a lock, runs the block, and releases the lock when the block * completes. See the example under +Mutex+. */ static VALUE rb_mutex_synchronize_m(VALUE self) { if (!rb_block_given_p()) { rb_raise(rb_eThreadError, "must be called with a block"); } return rb_mutex_synchronize(self, rb_yield, Qundef); } void rb_mutex_allow_trap(VALUE self, int val) { Check_TypedStruct(self, &mutex_data_type); if (val) FL_SET_RAW(self, MUTEX_ALLOW_TRAP); else FL_UNSET_RAW(self, MUTEX_ALLOW_TRAP); } /* Queue */ #define queue_waitq(q) UNALIGNED_MEMBER_PTR(q, waitq) PACKED_STRUCT_UNALIGNED(struct rb_queue { struct list_head waitq; rb_serial_t fork_gen; const VALUE que; int num_waiting; }); #define szqueue_waitq(sq) UNALIGNED_MEMBER_PTR(sq, q.waitq) #define szqueue_pushq(sq) UNALIGNED_MEMBER_PTR(sq, pushq) PACKED_STRUCT_UNALIGNED(struct rb_szqueue { struct rb_queue q; int num_waiting_push; struct list_head pushq; long max; }); static void queue_mark(void *ptr) { struct rb_queue *q = ptr; /* no need to mark threads in waitq, they are on stack */ rb_gc_mark(q->que); } static size_t queue_memsize(const void *ptr) { return sizeof(struct rb_queue); } static const rb_data_type_t queue_data_type = { "queue", {queue_mark, RUBY_TYPED_DEFAULT_FREE, queue_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED }; static VALUE queue_alloc(VALUE klass) { VALUE obj; struct rb_queue *q; obj = TypedData_Make_Struct(klass, struct rb_queue, &queue_data_type, q); list_head_init(queue_waitq(q)); return obj; } static int queue_fork_check(struct rb_queue *q) { rb_serial_t fork_gen = GET_VM()->fork_gen; if (q->fork_gen == fork_gen) { return 0; } /* forked children can't reach into parent thread stacks */ q->fork_gen = fork_gen; list_head_init(queue_waitq(q)); q->num_waiting = 0; return 1; } static struct rb_queue * queue_ptr(VALUE obj) { struct rb_queue *q; TypedData_Get_Struct(obj, struct rb_queue, &queue_data_type, q); queue_fork_check(q); return q; } #define QUEUE_CLOSED FL_USER5 static void szqueue_mark(void *ptr) { struct rb_szqueue *sq = ptr; queue_mark(&sq->q); } static size_t szqueue_memsize(const void *ptr) { return sizeof(struct rb_szqueue); } static const rb_data_type_t szqueue_data_type = { "sized_queue", {szqueue_mark, RUBY_TYPED_DEFAULT_FREE, szqueue_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED }; static VALUE szqueue_alloc(VALUE klass) { struct rb_szqueue *sq; VALUE obj = TypedData_Make_Struct(klass, struct rb_szqueue, &szqueue_data_type, sq); list_head_init(szqueue_waitq(sq)); list_head_init(szqueue_pushq(sq)); return obj; } static struct rb_szqueue * szqueue_ptr(VALUE obj) { struct rb_szqueue *sq; TypedData_Get_Struct(obj, struct rb_szqueue, &szqueue_data_type, sq); if (queue_fork_check(&sq->q)) { list_head_init(szqueue_pushq(sq)); sq->num_waiting_push = 0; } return sq; } static VALUE ary_buf_new(void) { return rb_ary_tmp_new(1); } static VALUE check_array(VALUE obj, VALUE ary) { if (!RB_TYPE_P(ary, T_ARRAY)) { rb_raise(rb_eTypeError, "%+"PRIsVALUE" not initialized", obj); } return ary; } static long queue_length(VALUE self, struct rb_queue *q) { return RARRAY_LEN(check_array(self, q->que)); } static int queue_closed_p(VALUE self) { return FL_TEST_RAW(self, QUEUE_CLOSED) != 0; } /* * Document-class: ClosedQueueError * * The exception class which will be raised when pushing into a closed * Queue. See Queue#close and SizedQueue#close. */ NORETURN(static void raise_closed_queue_error(VALUE self)); static void raise_closed_queue_error(VALUE self) { rb_raise(rb_eClosedQueueError, "queue closed"); } static VALUE queue_closed_result(VALUE self, struct rb_queue *q) { assert(queue_length(self, q) == 0); return Qnil; } /* * Document-class: Queue * * The Queue class implements multi-producer, multi-consumer queues. * It is especially useful in threaded programming when information * must be exchanged safely between multiple threads. The Queue class * implements all the required locking semantics. * * The class implements FIFO type of queue. In a FIFO queue, the first * tasks added are the first retrieved. * * Example: * * queue = Queue.new * * producer = Thread.new do * 5.times do |i| * sleep rand(i) # simulate expense * queue << i * puts "#{i} produced" * end * end * * consumer = Thread.new do * 5.times do |i| * value = queue.pop * sleep rand(i/2) # simulate expense * puts "consumed #{value}" * end * end * * consumer.join * */ /* * Document-method: Queue::new * * Creates a new queue instance. */ static VALUE rb_queue_initialize(VALUE self) { struct rb_queue *q = queue_ptr(self); RB_OBJ_WRITE(self, &q->que, ary_buf_new()); list_head_init(queue_waitq(q)); return self; } static VALUE queue_do_push(VALUE self, struct rb_queue *q, VALUE obj) { if (queue_closed_p(self)) { raise_closed_queue_error(self); } rb_ary_push(check_array(self, q->que), obj); wakeup_one(queue_waitq(q)); return self; } /* * Document-method: Queue#close * call-seq: * close * * Closes the queue. A closed queue cannot be re-opened. * * After the call to close completes, the following are true: * * - +closed?+ will return true * * - +close+ will be ignored. * * - calling enq/push/<< will raise a +ClosedQueueError+. * * - when +empty?+ is false, calling deq/pop/shift will return an object * from the queue as usual. * - when +empty?+ is true, deq(false) will not suspend the thread and will return nil. * deq(true) will raise a +ThreadError+. * * ClosedQueueError is inherited from StopIteration, so that you can break loop block. * * Example: * * q = Queue.new * Thread.new{ * while e = q.deq # wait for nil to break loop * # ... * end * } * q.close */ static VALUE rb_queue_close(VALUE self) { struct rb_queue *q = queue_ptr(self); if (!queue_closed_p(self)) { FL_SET(self, QUEUE_CLOSED); wakeup_all(queue_waitq(q)); } return self; } /* * Document-method: Queue#closed? * call-seq: closed? * * Returns +true+ if the queue is closed. */ static VALUE rb_queue_closed_p(VALUE self) { return queue_closed_p(self) ? Qtrue : Qfalse; } /* * Document-method: Queue#push * call-seq: * push(object) * enq(object) * <<(object) * * Pushes the given +object+ to the queue. */ static VALUE rb_queue_push(VALUE self, VALUE obj) { return queue_do_push(self, queue_ptr(self), obj); } static VALUE queue_sleep(VALUE self) { rb_thread_sleep_deadly_allow_spurious_wakeup(self); return Qnil; } struct queue_waiter { struct sync_waiter w; union { struct rb_queue *q; struct rb_szqueue *sq; } as; }; static VALUE queue_sleep_done(VALUE p) { struct queue_waiter *qw = (struct queue_waiter *)p; list_del(&qw->w.node); qw->as.q->num_waiting--; COROUTINE_STACK_FREE(qw); return Qfalse; } static VALUE szqueue_sleep_done(VALUE p) { struct queue_waiter *qw = (struct queue_waiter *)p; list_del(&qw->w.node); qw->as.sq->num_waiting_push--; COROUTINE_STACK_FREE(qw); return Qfalse; } static VALUE queue_do_pop(VALUE self, struct rb_queue *q, int should_block) { check_array(self, q->que); while (RARRAY_LEN(q->que) == 0) { if (!should_block) { rb_raise(rb_eThreadError, "queue empty"); } else if (queue_closed_p(self)) { return queue_closed_result(self, q); } else { rb_execution_context_t *ec = GET_EC(); assert(RARRAY_LEN(q->que) == 0); assert(queue_closed_p(self) == 0); COROUTINE_STACK_LOCAL(struct queue_waiter, qw); qw->w.self = self; qw->w.th = ec->thread_ptr; qw->w.fiber = ec->fiber_ptr; qw->as.q = q; list_add_tail(queue_waitq(qw->as.q), &qw->w.node); qw->as.q->num_waiting++; rb_ensure(queue_sleep, self, queue_sleep_done, (VALUE)qw); } } return rb_ary_shift(q->que); } static int queue_pop_should_block(int argc, const VALUE *argv) { int should_block = 1; rb_check_arity(argc, 0, 1); if (argc > 0) { should_block = !RTEST(argv[0]); } return should_block; } /* * Document-method: Queue#pop * call-seq: * pop(non_block=false) * deq(non_block=false) * shift(non_block=false) * * Retrieves data from the queue. * * If the queue is empty, the calling thread is suspended until data is pushed * onto the queue. If +non_block+ is true, the thread isn't suspended, and * +ThreadError+ is raised. */ static VALUE rb_queue_pop(int argc, VALUE *argv, VALUE self) { int should_block = queue_pop_should_block(argc, argv); return queue_do_pop(self, queue_ptr(self), should_block); } /* * Document-method: Queue#empty? * call-seq: empty? * * Returns +true+ if the queue is empty. */ static VALUE rb_queue_empty_p(VALUE self) { return queue_length(self, queue_ptr(self)) == 0 ? Qtrue : Qfalse; } /* * Document-method: Queue#clear * * Removes all objects from the queue. */ static VALUE rb_queue_clear(VALUE self) { struct rb_queue *q = queue_ptr(self); rb_ary_clear(check_array(self, q->que)); return self; } /* * Document-method: Queue#length * call-seq: * length * size * * Returns the length of the queue. */ static VALUE rb_queue_length(VALUE self) { return LONG2NUM(queue_length(self, queue_ptr(self))); } /* * Document-method: Queue#num_waiting * * Returns the number of threads waiting on the queue. */ static VALUE rb_queue_num_waiting(VALUE self) { struct rb_queue *q = queue_ptr(self); return INT2NUM(q->num_waiting); } /* * Document-class: SizedQueue * * This class represents queues of specified size capacity. The push operation * may be blocked if the capacity is full. * * See Queue for an example of how a SizedQueue works. */ /* * Document-method: SizedQueue::new * call-seq: new(max) * * Creates a fixed-length queue with a maximum size of +max+. */ static VALUE rb_szqueue_initialize(VALUE self, VALUE vmax) { long max; struct rb_szqueue *sq = szqueue_ptr(self); max = NUM2LONG(vmax); if (max <= 0) { rb_raise(rb_eArgError, "queue size must be positive"); } RB_OBJ_WRITE(self, &sq->q.que, ary_buf_new()); list_head_init(szqueue_waitq(sq)); list_head_init(szqueue_pushq(sq)); sq->max = max; return self; } /* * Document-method: SizedQueue#close * call-seq: * close * * Similar to Queue#close. * * The difference is behavior with waiting enqueuing threads. * * If there are waiting enqueuing threads, they are interrupted by * raising ClosedQueueError('queue closed'). */ static VALUE rb_szqueue_close(VALUE self) { if (!queue_closed_p(self)) { struct rb_szqueue *sq = szqueue_ptr(self); FL_SET(self, QUEUE_CLOSED); wakeup_all(szqueue_waitq(sq)); wakeup_all(szqueue_pushq(sq)); } return self; } /* * Document-method: SizedQueue#max * * Returns the maximum size of the queue. */ static VALUE rb_szqueue_max_get(VALUE self) { return LONG2NUM(szqueue_ptr(self)->max); } /* * Document-method: SizedQueue#max= * call-seq: max=(number) * * Sets the maximum size of the queue to the given +number+. */ static VALUE rb_szqueue_max_set(VALUE self, VALUE vmax) { long max = NUM2LONG(vmax); long diff = 0; struct rb_szqueue *sq = szqueue_ptr(self); if (max <= 0) { rb_raise(rb_eArgError, "queue size must be positive"); } if (max > sq->max) { diff = max - sq->max; } sq->max = max; sync_wakeup(szqueue_pushq(sq), diff); return vmax; } static int szqueue_push_should_block(int argc, const VALUE *argv) { int should_block = 1; rb_check_arity(argc, 1, 2); if (argc > 1) { should_block = !RTEST(argv[1]); } return should_block; } /* * Document-method: SizedQueue#push * call-seq: * push(object, non_block=false) * enq(object, non_block=false) * <<(object) * * Pushes +object+ to the queue. * * If there is no space left in the queue, waits until space becomes * available, unless +non_block+ is true. If +non_block+ is true, the * thread isn't suspended, and +ThreadError+ is raised. */ static VALUE rb_szqueue_push(int argc, VALUE *argv, VALUE self) { struct rb_szqueue *sq = szqueue_ptr(self); int should_block = szqueue_push_should_block(argc, argv); while (queue_length(self, &sq->q) >= sq->max) { if (!should_block) { rb_raise(rb_eThreadError, "queue full"); } else if (queue_closed_p(self)) { break; } else { rb_execution_context_t *ec = GET_EC(); COROUTINE_STACK_LOCAL(struct queue_waiter, qw); struct list_head *pushq = szqueue_pushq(sq); qw->w.self = self; qw->w.th = ec->thread_ptr; qw->w.fiber = ec->fiber_ptr; qw->as.sq = sq; list_add_tail(pushq, &qw->w.node); sq->num_waiting_push++; rb_ensure(queue_sleep, self, szqueue_sleep_done, (VALUE)qw); } } if (queue_closed_p(self)) { raise_closed_queue_error(self); } return queue_do_push(self, &sq->q, argv[0]); } static VALUE szqueue_do_pop(VALUE self, int should_block) { struct rb_szqueue *sq = szqueue_ptr(self); VALUE retval = queue_do_pop(self, &sq->q, should_block); if (queue_length(self, &sq->q) < sq->max) { wakeup_one(szqueue_pushq(sq)); } return retval; } /* * Document-method: SizedQueue#pop * call-seq: * pop(non_block=false) * deq(non_block=false) * shift(non_block=false) * * Retrieves data from the queue. * * If the queue is empty, the calling thread is suspended until data is pushed * onto the queue. If +non_block+ is true, the thread isn't suspended, and * +ThreadError+ is raised. */ static VALUE rb_szqueue_pop(int argc, VALUE *argv, VALUE self) { int should_block = queue_pop_should_block(argc, argv); return szqueue_do_pop(self, should_block); } /* * Document-method: SizedQueue#clear * * Removes all objects from the queue. */ static VALUE rb_szqueue_clear(VALUE self) { struct rb_szqueue *sq = szqueue_ptr(self); rb_ary_clear(check_array(self, sq->q.que)); wakeup_all(szqueue_pushq(sq)); return self; } /* * Document-method: SizedQueue#length * call-seq: * length * size * * Returns the length of the queue. */ static VALUE rb_szqueue_length(VALUE self) { struct rb_szqueue *sq = szqueue_ptr(self); return LONG2NUM(queue_length(self, &sq->q)); } /* * Document-method: SizedQueue#num_waiting * * Returns the number of threads waiting on the queue. */ static VALUE rb_szqueue_num_waiting(VALUE self) { struct rb_szqueue *sq = szqueue_ptr(self); return INT2NUM(sq->q.num_waiting + sq->num_waiting_push); } /* * Document-method: SizedQueue#empty? * call-seq: empty? * * Returns +true+ if the queue is empty. */ static VALUE rb_szqueue_empty_p(VALUE self) { struct rb_szqueue *sq = szqueue_ptr(self); return queue_length(self, &sq->q) == 0 ? Qtrue : Qfalse; } /* ConditionalVariable */ struct rb_condvar { struct list_head waitq; rb_serial_t fork_gen; }; /* * Document-class: ConditionVariable * * ConditionVariable objects augment class Mutex. Using condition variables, * it is possible to suspend while in the middle of a critical section until a * resource becomes available. * * Example: * * mutex = Mutex.new * resource = ConditionVariable.new * * a = Thread.new { * mutex.synchronize { * # Thread 'a' now needs the resource * resource.wait(mutex) * # 'a' can now have the resource * } * } * * b = Thread.new { * mutex.synchronize { * # Thread 'b' has finished using the resource * resource.signal * } * } */ static size_t condvar_memsize(const void *ptr) { return sizeof(struct rb_condvar); } static const rb_data_type_t cv_data_type = { "condvar", {0, RUBY_TYPED_DEFAULT_FREE, condvar_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED }; static struct rb_condvar * condvar_ptr(VALUE self) { struct rb_condvar *cv; rb_serial_t fork_gen = GET_VM()->fork_gen; TypedData_Get_Struct(self, struct rb_condvar, &cv_data_type, cv); /* forked children can't reach into parent thread stacks */ if (cv->fork_gen != fork_gen) { cv->fork_gen = fork_gen; list_head_init(&cv->waitq); } return cv; } static VALUE condvar_alloc(VALUE klass) { struct rb_condvar *cv; VALUE obj; obj = TypedData_Make_Struct(klass, struct rb_condvar, &cv_data_type, cv); list_head_init(&cv->waitq); return obj; } /* * Document-method: ConditionVariable::new * * Creates a new condition variable instance. */ static VALUE rb_condvar_initialize(VALUE self) { struct rb_condvar *cv = condvar_ptr(self); list_head_init(&cv->waitq); return self; } struct sleep_call { VALUE mutex; VALUE timeout; }; static ID id_sleep; static VALUE do_sleep(VALUE args) { struct sleep_call *p = (struct sleep_call *)args; return rb_funcallv(p->mutex, id_sleep, 1, &p->timeout); } /* * Document-method: ConditionVariable#wait * call-seq: wait(mutex, timeout=nil) * * Releases the lock held in +mutex+ and waits; reacquires the lock on wakeup. * * If +timeout+ is given, this method returns after +timeout+ seconds passed, * even if no other thread doesn't signal. */ static VALUE rb_condvar_wait(int argc, VALUE *argv, VALUE self) { rb_execution_context_t *ec = GET_EC(); struct rb_condvar *cv = condvar_ptr(self); struct sleep_call args; rb_scan_args(argc, argv, "11", &args.mutex, &args.timeout); COROUTINE_STACK_LOCAL(struct sync_waiter, w); w->self = args.mutex; w->th = ec->thread_ptr; w->fiber = ec->fiber_ptr; list_add_tail(&cv->waitq, &w->node); rb_ensure(do_sleep, (VALUE)&args, delete_from_waitq, (VALUE)w); return self; } /* * Document-method: ConditionVariable#signal * * Wakes up the first thread in line waiting for this lock. */ static VALUE rb_condvar_signal(VALUE self) { struct rb_condvar *cv = condvar_ptr(self); wakeup_one(&cv->waitq); return self; } /* * Document-method: ConditionVariable#broadcast * * Wakes up all threads waiting for this lock. */ static VALUE rb_condvar_broadcast(VALUE self) { struct rb_condvar *cv = condvar_ptr(self); wakeup_all(&cv->waitq); return self; } NORETURN(static VALUE undumpable(VALUE obj)); /* :nodoc: */ static VALUE undumpable(VALUE obj) { rb_raise(rb_eTypeError, "can't dump %"PRIsVALUE, rb_obj_class(obj)); UNREACHABLE_RETURN(Qnil); } static VALUE define_thread_class(VALUE outer, const char *name, VALUE super) { VALUE klass = rb_define_class_under(outer, name, super); rb_define_const(rb_cObject, name, klass); return klass; } static void Init_thread_sync(void) { #undef rb_intern #if 0 rb_cMutex = rb_define_class("Mutex", rb_cObject); /* teach rdoc Mutex */ rb_cConditionVariable = rb_define_class("ConditionVariable", rb_cObject); /* teach rdoc ConditionVariable */ rb_cQueue = rb_define_class("Queue", rb_cObject); /* teach rdoc Queue */ rb_cSizedQueue = rb_define_class("SizedQueue", rb_cObject); /* teach rdoc SizedQueue */ #endif #define DEFINE_CLASS(name, super) \ rb_c##name = define_thread_class(rb_cThread, #name, rb_c##super) /* Mutex */ DEFINE_CLASS(Mutex, Object); rb_define_alloc_func(rb_cMutex, mutex_alloc); rb_define_method(rb_cMutex, "initialize", mutex_initialize, 0); rb_define_method(rb_cMutex, "locked?", rb_mutex_locked_p, 0); rb_define_method(rb_cMutex, "try_lock", rb_mutex_trylock, 0); rb_define_method(rb_cMutex, "lock", rb_mutex_lock, 0); rb_define_method(rb_cMutex, "unlock", rb_mutex_unlock, 0); rb_define_method(rb_cMutex, "sleep", mutex_sleep, -1); rb_define_method(rb_cMutex, "synchronize", rb_mutex_synchronize_m, 0); rb_define_method(rb_cMutex, "owned?", rb_mutex_owned_p, 0); /* Queue */ DEFINE_CLASS(Queue, Object); rb_define_alloc_func(rb_cQueue, queue_alloc); rb_eClosedQueueError = rb_define_class("ClosedQueueError", rb_eStopIteration); rb_define_method(rb_cQueue, "initialize", rb_queue_initialize, 0); rb_undef_method(rb_cQueue, "initialize_copy"); rb_define_method(rb_cQueue, "marshal_dump", undumpable, 0); rb_define_method(rb_cQueue, "close", rb_queue_close, 0); rb_define_method(rb_cQueue, "closed?", rb_queue_closed_p, 0); rb_define_method(rb_cQueue, "push", rb_queue_push, 1); rb_define_method(rb_cQueue, "pop", rb_queue_pop, -1); rb_define_method(rb_cQueue, "empty?", rb_queue_empty_p, 0); rb_define_method(rb_cQueue, "clear", rb_queue_clear, 0); rb_define_method(rb_cQueue, "length", rb_queue_length, 0); rb_define_method(rb_cQueue, "num_waiting", rb_queue_num_waiting, 0); rb_define_alias(rb_cQueue, "enq", "push"); rb_define_alias(rb_cQueue, "<<", "push"); rb_define_alias(rb_cQueue, "deq", "pop"); rb_define_alias(rb_cQueue, "shift", "pop"); rb_define_alias(rb_cQueue, "size", "length"); DEFINE_CLASS(SizedQueue, Queue); rb_define_alloc_func(rb_cSizedQueue, szqueue_alloc); rb_define_method(rb_cSizedQueue, "initialize", rb_szqueue_initialize, 1); rb_define_method(rb_cSizedQueue, "close", rb_szqueue_close, 0); rb_define_method(rb_cSizedQueue, "max", rb_szqueue_max_get, 0); rb_define_method(rb_cSizedQueue, "max=", rb_szqueue_max_set, 1); rb_define_method(rb_cSizedQueue, "push", rb_szqueue_push, -1); rb_define_method(rb_cSizedQueue, "pop", rb_szqueue_pop, -1); rb_define_method(rb_cSizedQueue, "empty?", rb_szqueue_empty_p, 0); rb_define_method(rb_cSizedQueue, "clear", rb_szqueue_clear, 0); rb_define_method(rb_cSizedQueue, "length", rb_szqueue_length, 0); rb_define_method(rb_cSizedQueue, "num_waiting", rb_szqueue_num_waiting, 0); rb_define_alias(rb_cSizedQueue, "enq", "push"); rb_define_alias(rb_cSizedQueue, "<<", "push"); rb_define_alias(rb_cSizedQueue, "deq", "pop"); rb_define_alias(rb_cSizedQueue, "shift", "pop"); rb_define_alias(rb_cSizedQueue, "size", "length"); /* CVar */ DEFINE_CLASS(ConditionVariable, Object); rb_define_alloc_func(rb_cConditionVariable, condvar_alloc); id_sleep = rb_intern("sleep"); rb_define_method(rb_cConditionVariable, "initialize", rb_condvar_initialize, 0); rb_undef_method(rb_cConditionVariable, "initialize_copy"); rb_define_method(rb_cConditionVariable, "marshal_dump", undumpable, 0); rb_define_method(rb_cConditionVariable, "wait", rb_condvar_wait, -1); rb_define_method(rb_cConditionVariable, "signal", rb_condvar_signal, 0); rb_define_method(rb_cConditionVariable, "broadcast", rb_condvar_broadcast, 0); rb_provide("thread.rb"); }