/* -*-c-*- */ /********************************************************************** thread_pthread.ci - $Author$ $Date$ Copyright (C) 2004-2006 Koichi Sasada **********************************************************************/ #ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION #define native_mutex_initialize(lock) do { \ pthread_mutex_t _lock = PTHREAD_MUTEX_INITIALIZER; \ ((*lock) = _lock); \ } while (0) #define native_cleanup_push pthread_cleanup_push #define native_cleanup_pop pthread_cleanup_pop #define native_thread_yield() sched_yield() static void yarv_add_signal_thread_list(yarv_thread_t *th); static void yarv_remove_signal_thread_list(yarv_thread_t *th); static yarv_thread_lock_t signal_thread_list_lock; static void null_func() { } static void Init_native_thread() { GET_THREAD()->thread_id = pthread_self(); native_mutex_initialize(&signal_thread_list_lock); posix_signal(SIGVTALRM, null_func); } NOINLINE(static int thread_start_func_2(yarv_thread_t *th, VALUE *stack_start)); void static thread_cleanup_func(void *th_ptr); static yarv_thread_t *register_cached_thread_and_wait(void); #define USE_THREAD_CACHE 0 static void * thread_start_func_1(void *th_ptr) { #if USE_THREAD_CACHE thread_start: #endif { yarv_thread_t *th = th_ptr; VALUE stack_start; /* ignore self and klass */ native_cleanup_push(thread_cleanup_func, th); /* run */ thread_start_func_2(th, &stack_start); /* cleanup */ thread_cleanup_func(th); native_cleanup_pop(0); } #if USE_THREAD_CACHE if (1) { /* cache thread */ yarv_thread_t *th; if ((th = register_cached_thread_and_wait()) != 0) { th_ptr = (void *)th; th->thread_id = pthread_self(); goto thread_start; } } #endif return 0; } void rb_thread_create_control_thread(void); static pthread_mutex_t thread_cache_lock = PTHREAD_MUTEX_INITIALIZER; struct cached_thread_entry { volatile yarv_thread_t **th_area; pthread_cond_t *cond; struct cached_thread_entry *next; }; struct cached_thread_entry *cached_thread_root; static yarv_thread_t * register_cached_thread_and_wait(void) { pthread_cond_t cond = PTHREAD_COND_INITIALIZER; volatile yarv_thread_t *th_area = 0; struct cached_thread_entry *entry = (struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry)); struct timeval tv; struct timespec ts; gettimeofday(&tv, 0); ts.tv_sec = tv.tv_sec + 60; ts.tv_nsec = tv.tv_usec * 1000; pthread_mutex_lock(&thread_cache_lock); { entry->th_area = &th_area; entry->cond = &cond; entry->next = cached_thread_root; cached_thread_root = entry; pthread_cond_timedwait(&cond, &thread_cache_lock, &ts); { struct cached_thread_entry *e = cached_thread_root; struct cached_thread_entry *prev = cached_thread_root; while (e) { if (e == entry) { if (prev == cached_thread_root) { cached_thread_root = e->next; } else { prev->next = e->next; } break; } prev = e; e = e->next; } } free(entry); pthread_cond_destroy(&cond); } pthread_mutex_unlock(&thread_cache_lock); return (yarv_thread_t *)th_area; } static int use_cached_thread(yarv_thread_t *th) { int result = 0; #if USE_THREAD_CACHE struct cached_thread_entry *entry; if (cached_thread_root) { pthread_mutex_lock(&thread_cache_lock); entry = cached_thread_root; { if (cached_thread_root) { cached_thread_root = entry->next; *entry->th_area = th; result = 1; } } if (result) { pthread_cond_signal(entry->cond); } pthread_mutex_unlock(&thread_cache_lock); } #endif return result; } static int native_thread_create(yarv_thread_t *th) { int err = 0; if (use_cached_thread(th)) { thread_debug("create (use cahced thread): %p\n", th); } else { pthread_attr_t attr; size_t stack_size = 512 * 1024 - sizeof(int); /* 512KB */ #ifdef PTHREAD_STACK_MIN if (stack_size < PTHREAD_STACK_MIN) { stack_size = PTHREAD_STACK_MIN * 2; } #endif thread_debug("create: %p, stack size: %ld\n", th, stack_size); pthread_attr_init(&attr); #ifdef PTHREAD_STACK_MIN pthread_attr_setstacksize(&attr, stack_size); #endif pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th); if (err != 0) { th->status = THREAD_KILLED; rb_raise(rb_eThreadError, "can't create Thread (%d)", err); } } return err; } static void native_thread_join(pthread_t th) { int err = pthread_join(th, 0); if (err) { rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err); } } static void native_thread_apply_priority(yarv_thread_t *th) { struct sched_param sp; int policy; int priority = 0 - th->priority; int max, min; pthread_getschedparam(th->thread_id, &policy, &sp); max = sched_get_priority_max(policy); min = sched_get_priority_min(policy); if (min < priority) { priority = max; } else if (max > priority) { priority = min; } sp.sched_priority = priority; pthread_setschedparam(th->thread_id, policy, &sp); } static void interrupt_using_pthread_cond_signal(yarv_thread_t *th) { thread_debug("interrupt_using_pthread_cond_signal (%p)\n", th); pthread_cond_signal(&th->native_thread_data.sleep_cond); } static void native_thread_send_interrupt_signal(yarv_thread_t *th) { thread_debug("native_thread_send_interrupt_signal (%p)\n", th->thread_id); if (th) { pthread_kill(th->thread_id, SIGVTALRM); } } static void native_sleep(yarv_thread_t *th, struct timeval *tv) { int prev_status = th->status; struct timespec ts; struct timeval tvn; if (tv) { gettimeofday(&tvn, NULL); ts.tv_sec = tvn.tv_sec + tv->tv_sec; ts.tv_nsec = (tvn.tv_usec + tv->tv_usec) * 1000; if (ts.tv_nsec >= 1000000000){ ts.tv_sec += 1; ts.tv_nsec -= 1000000000; } } th->status = THREAD_STOPPED; pthread_cond_init(&th->native_thread_data.sleep_cond, 0); thread_debug("native_sleep %d\n", tv ? tv->tv_sec : -1); GVL_UNLOCK_BEGIN(); { pthread_mutex_lock(&th->interrupt_lock); if (th->interrupt_flag) { /* interrupted. return immediate */ thread_debug("native_sleep: interrupted before sleep\n"); } else { th->interrupt_function = interrupt_using_pthread_cond_signal; if (tv == 0) { thread_debug("native_sleep: pthread_cond_wait start\n"); pthread_cond_wait(&th->native_thread_data.sleep_cond, &th->interrupt_lock); thread_debug("native_sleep: pthread_cond_wait end\n"); } else { int r; thread_debug("native_sleep: pthread_cond_timedwait start (%d, %d)\n", ts.tv_sec, ts.tv_nsec); r = pthread_cond_timedwait(&th->native_thread_data.sleep_cond, &th->interrupt_lock, &ts); thread_debug("native_sleep: pthread_cond_timedwait end (%d)\n", r); } th->interrupt_function = 0; } pthread_mutex_unlock(&th->interrupt_lock); th->status = prev_status; } GVL_UNLOCK_END(); thread_debug("native_sleep done\n"); } static void native_thread_interrupt(yarv_thread_t *th) { yarv_add_signal_thread_list(th); } struct yarv_signal_thread_list { yarv_thread_t *th; struct yarv_signal_thread_list *prev; struct yarv_signal_thread_list *next; }; static struct yarv_signal_thread_list signal_thread_list_anchor = { 0, 0, 0, }; #define FGLOCK(lock, body) do { \ native_mutex_lock(lock); \ { \ body; \ } \ native_mutex_unlock(lock); \ } while (0) static void print_signal_list(char *str) { struct yarv_signal_thread_list *list = signal_thread_list_anchor.next; thread_debug("list (%s)> ", str); while(list){ thread_debug("%p (%p), ", list->th, list->th->thread_id); list = list->next; } thread_debug("\n"); } static void yarv_add_signal_thread_list(yarv_thread_t *th) { if (!th->native_thread_data.signal_thread_list) { FGLOCK(&signal_thread_list_lock, { struct yarv_signal_thread_list *list = malloc(sizeof(struct yarv_signal_thread_list)); if (list == 0) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(1); } list->th = th; list->prev = &signal_thread_list_anchor; list->next = signal_thread_list_anchor.next; if (list->next) { list->next->prev = list; } signal_thread_list_anchor.next = list; th->native_thread_data.signal_thread_list = list; }); } } static void yarv_remove_signal_thread_list(yarv_thread_t *th) { if (th->native_thread_data.signal_thread_list) { FGLOCK(&signal_thread_list_lock, { struct yarv_signal_thread_list *list = (struct yarv_signal_thread_list *) th->native_thread_data.signal_thread_list; list->prev->next = list->next; if (list->next) { list->next->prev = list->prev; } th->native_thread_data.signal_thread_list = 0; list->th = 0; free(list); }); } else { /* */ } } static pthread_t timer_thread_id; static void timer_thread_function(void); static void * thread_timer(void *dummy) { while (system_working) { #ifdef HAVE_NANOSLEEP struct timespec req, rem; req.tv_sec = 0; req.tv_nsec = 10 * 1000 * 1000; /* 10 ms */ nanosleep(&req, &rem); #else struct timeval tv; tv.tv_sec = 0; tv.tv_usec = 10000; /* 10 ms */ select(0, NULL, NULL, NULL, &tv); #endif if (signal_thread_list_anchor.next) { FGLOCK(&signal_thread_list_lock, { struct yarv_signal_thread_list *list; list = signal_thread_list_anchor.next; while (list) { native_thread_send_interrupt_signal(list->th); list = list->next; } }); } timer_thread_function(); } return NULL; } static void rb_thread_create_timer_thread(void) { rb_enable_interrupt(); if (!timer_thread_id) { pthread_attr_t attr; int err; pthread_attr_init(&attr); #ifdef PTHREAD_STACK_MIN pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN); #endif err = pthread_create(&timer_thread_id, &attr, thread_timer, 0); if (err != 0) { rb_bug("rb_thread_create_timer_thread: return non-zero (%d)", err); } } rb_disable_interrupt(); /* only timer thread recieve signal */ } #endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */