# frozen_string_literal: false require 'test/unit' require 'prime' require 'timeout' class TestPrime < Test::Unit::TestCase # The first 100 prime numbers PRIMES = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, ] def test_each primes = [] Prime.each do |p| break if p > 541 primes << p end assert_equal PRIMES, primes end def test_each_by_prime_number_theorem 3.upto(15) do |i| max = 2**i primes = [] Prime.each do |p| break if p >= max primes << p end # Prime number theorem assert_operator primes.length, :>=, max/Math.log(max) delta = 0.05 li = (2..max).step(delta).inject(0){|sum,x| sum + delta/Math.log(x)} assert_operator primes.length, :<=, li end end def test_each_without_block enum = Prime.each assert_respond_to(enum, :each) assert_kind_of(Enumerable, enum) assert_respond_to(enum, :with_index) assert_respond_to(enum, :next) assert_respond_to(enum, :succ) assert_respond_to(enum, :rewind) end def test_instance_without_block enum = Prime.instance.each assert_respond_to(enum, :each) assert_kind_of(Enumerable, enum) assert_respond_to(enum, :with_index) assert_respond_to(enum, :next) assert_respond_to(enum, :succ) assert_respond_to(enum, :rewind) end def test_new exception = assert_raise(NoMethodError) { Prime.new } end def test_enumerator_succ enum = Prime.each assert_equal PRIMES[0, 50], 50.times.map{ enum.succ } assert_equal PRIMES[50, 50], 50.times.map{ enum.succ } enum.rewind assert_equal PRIMES[0, 100], 100.times.map{ enum.succ } end def test_enumerator_with_index enum = Prime.each last = -1 enum.with_index do |p,i| break if i >= 100 assert_equal last+1, i assert_equal PRIMES[i], p last = i end end def test_enumerator_with_index_with_offset enum = Prime.each last = 5-1 enum.with_index(5).each do |p,i| break if i >= 100+5 assert_equal last+1, i assert_equal PRIMES[i-5], p last = i end end def test_enumerator_with_object object = Object.new enum = Prime.each enum.with_object(object).each do |p, o| assert_equal object, o break end end def test_enumerator_size enum = Prime.each assert_equal Float::INFINITY, enum.size assert_equal Float::INFINITY, enum.with_object(nil).size assert_equal Float::INFINITY, enum.with_index(42).size end def test_default_instance_does_not_have_compatibility_methods assert_not_respond_to(Prime.instance, :succ) assert_not_respond_to(Prime.instance, :next) end def test_prime_each_basic_argument_checking assert_raise(ArgumentError) { Prime.prime?(1,2) } assert_raise(ArgumentError) { Prime.prime?(1.2) } end class TestInteger < Test::Unit::TestCase def test_prime_division pd = PRIMES.inject(&:*).prime_division assert_equal PRIMES.map{|p| [p, 1]}, pd pd = (-PRIMES.inject(&:*)).prime_division assert_equal [-1, *PRIMES].map{|p| [p, 1]}, pd end def test_from_prime_division assert_equal PRIMES.inject(&:*), Integer.from_prime_division(PRIMES.map{|p| [p,1]}) assert_equal(-PRIMES.inject(&:*), Integer.from_prime_division([[-1, 1]] + PRIMES.map{|p| [p,1]})) end def test_prime? # zero and unit assert_not_predicate(0, :prime?) assert_not_predicate(1, :prime?) # small primes assert_predicate(2, :prime?) assert_predicate(3, :prime?) # squared prime assert_not_predicate(4, :prime?) assert_not_predicate(9, :prime?) # mersenne numbers assert_predicate((2**31-1), :prime?) assert_not_predicate((2**32-1), :prime?) # fermat numbers assert_predicate((2**(2**4)+1), :prime?) assert_not_predicate((2**(2**5)+1), :prime?) # Euler! # large composite assert_not_predicate(((2**13-1) * (2**17-1)), :prime?) # factorial assert_not_predicate((2...100).inject(&:*), :prime?) # negative assert_not_predicate(-1, :prime?) assert_not_predicate(-2, :prime?) assert_not_predicate(-3, :prime?) assert_not_predicate(-4, :prime?) end end def test_eratosthenes_works_fine_after_timeout sieve = Prime::EratosthenesSieve.instance sieve.send(:initialize) begin # simulates that Timeout.timeout interrupts Prime::EratosthenesSieve#extend_table def sieve.Integer(n) n = super(n) sleep 10 if /compute_primes/ =~ caller.first return n end assert_raise(Timeout::Error) do Timeout.timeout(0.5) { Prime.each(7*37){} } end ensure class << sieve remove_method :Integer end end assert_not_include Prime.each(7*37).to_a, 7*37, "[ruby-dev:39465]" end end