require 'test/unit' require 'etc' require_relative 'allpairs' class TestM17NComb < Test::Unit::TestCase def assert_encoding(encname, actual, message=nil) assert_equal(Encoding.find(encname), actual, message) end module AESU def a(str) str.dup.force_encoding(Encoding::US_ASCII) end def b(str) str.b end def e(str) str.dup.force_encoding(Encoding::EUC_JP) end def s(str) str.dup.force_encoding(Encoding::SJIS) end def u(str) str.dup.force_encoding(Encoding::UTF_8) end end include AESU extend AESU def assert_strenc(bytes, enc, actual, message=nil) assert_instance_of(String, actual, message) enc = Encoding.find(enc) if String === enc assert_equal(enc, actual.encoding, message) assert_equal(b(bytes), b(actual), message) end STRINGS = [ b(""), e(""), s(""), u(""), b("a"), e("a"), s("a"), u("a"), b("."), e("."), s("."), u("."), # single character b("\x80"), b("\xff"), e("\xa1\xa1"), e("\xfe\xfe"), e("\x8e\xa1"), e("\x8e\xfe"), e("\x8f\xa1\xa1"), e("\x8f\xfe\xfe"), s("\x81\x40"), s("\xfc\xfc"), s("\xa1"), s("\xdf"), u("\xc2\x80"), u("\xf4\x8f\xbf\xbf"), # same byte sequence b("\xc2\xa1"), e("\xc2\xa1"), s("\xc2\xa1"), u("\xc2\xa1"), s("\x81A"), # mutibyte character which contains "A" s("\x81a"), # mutibyte character which contains "a" # invalid e("\xa1"), e("\x80"), s("\x81"), s("\x80"), u("\xc2"), u("\x80"), # for transitivity test u("\xe0\xa0\xa1"), e("\xe0\xa0\xa1"), s("\xe0\xa0\xa1"), # [ruby-dev:32693] e("\xa1\xa1"), b("\xa1\xa1"), s("\xa1\xa1"), # [ruby-dev:36484] ] WSTRINGS = [ "aa".force_encoding("utf-16be"), "aaaa".force_encoding("utf-32be"), "aaa".force_encoding("utf-32be"), ] def combination(*args, &b) AllPairs.each(*args, &b) #AllPairs.exhaustive_each(*args, &b) end def encdump(str) d = str.dump if /\.force_encoding\("[A-Za-z0-9.:_+-]*"\)\z/ =~ d d else "#{d}.force_encoding(#{str.encoding.name.dump})" end end def encdumpargs(args) r = '(' args.each_with_index {|a, i| r << ',' if 0 < i if String === a r << encdump(a) else r << a.inspect end } r << ')' r end def encdumpcall(recv, meth, *args, &block) desc = '' if String === recv desc << encdump(recv) else desc << recv.inspect end desc << '.' << meth.to_s if !args.empty? desc << '(' args.each_with_index {|a, i| desc << ',' if 0 < i if String === a desc << encdump(a) else desc << a.inspect end } desc << ')' end if block desc << ' {}' end desc end def assert_enccall(recv, meth, *args, &block) desc = encdumpcall(recv, meth, *args, &block) result = nil assert_nothing_raised(desc) { result = recv.send(meth, *args, &block) } result end alias enccall assert_enccall def assert_str_enc_propagation(t, s1, s2) if !s1.ascii_only? assert_equal(s1.encoding, t.encoding) elsif !s2.ascii_only? assert_equal(s2.encoding, t.encoding) else assert_include([s1.encoding, s2.encoding], t.encoding) end end def assert_same_result(expected_proc, actual_proc) e = nil begin t = expected_proc.call rescue e = $! end if e assert_raise(e.class) { actual_proc.call } else assert_equal(t, actual_proc.call) end end def each_slice_call combination(STRINGS, -2..2) {|s, nth| yield s, nth } combination(STRINGS, -2..2, 0..2) {|s, nth, len| yield s, nth, len } combination(STRINGS, STRINGS) {|s, substr| yield s, substr } combination(STRINGS, -2..2, 0..2) {|s, first, last| yield s, first..last yield s, first...last } combination(STRINGS, STRINGS) {|s1, s2| if !s2.valid_encoding? next end yield s1, Regexp.new(Regexp.escape(s2)) } combination(STRINGS, STRINGS, 0..2) {|s1, s2, nth| if !s2.valid_encoding? next end yield s1, Regexp.new(Regexp.escape(s2)), nth } end ASCII_INCOMPATIBLE_ENCODINGS = %w[ UTF-16BE UTF-16LE UTF-32BE UTF-32LE ] def str_enc_compatible?(*strs) encs = [] ascii_incompatible_encodings = {} has_ascii_compatible = false strs.each {|s| encs << s.encoding if !s.ascii_only? if /\A#{Regexp.union ASCII_INCOMPATIBLE_ENCODINGS}\z/o =~ s.encoding.name ascii_incompatible_encodings[s.encoding] = true else has_ascii_compatible = true end } if ascii_incompatible_encodings.empty? encs.uniq! encs.length <= 1 else !has_ascii_compatible && ascii_incompatible_encodings.size == 1 end end # tests start def test_str_new STRINGS.each {|s| t = String.new(s) assert_strenc(b(s), s.encoding, t) } end def test_str_plus combination(STRINGS, STRINGS) {|s1, s2| if s1.encoding != s2.encoding && !s1.ascii_only? && !s2.ascii_only? assert_raise(Encoding::CompatibilityError) { s1 + s2 } else t = enccall(s1, :+, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_equal(b(s1) + b(s2), b(t)) assert_str_enc_propagation(t, s1, s2) end } end def test_str_times STRINGS.each {|s| [0,1,2].each {|n| t = s * n assert_predicate(t, :valid_encoding?) if s.valid_encoding? assert_strenc(b(s) * n, s.encoding, t) } } end def test_sprintf_s STRINGS.each {|s| assert_strenc(b(s), s.encoding, "%s".force_encoding(s.encoding) % s) if !s.empty? # xxx t = enccall(b("%s"), :%, s) assert_strenc(b(s), (b('')+s).encoding, t) end } end def test_str_eq_reflexive STRINGS.each {|s| assert_equal(s, s, "#{encdump s} == #{encdump s}") } end def test_str_eq_symmetric combination(STRINGS, STRINGS) {|s1, s2| if s1 == s2 assert_equal(s2, s1, "#{encdump s2} == #{encdump s1}") else assert_not_equal(s2, s1, "!(#{encdump s2} == #{encdump s1})") end } end def test_str_eq_transitive combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| if s1 == s2 && s2 == s3 assert_equal(s1, s3, "transitive: #{encdump s1} == #{encdump s2} == #{encdump s3}") end } end def test_str_eq combination(STRINGS, STRINGS) {|s1, s2| desc_eq = "#{encdump s1} == #{encdump s2}" if b(s1) == b(s2) and (s1.ascii_only? && s2.ascii_only? or s1.encoding == s2.encoding) then assert_operator(s1, :==, s2, desc_eq) assert_not_operator(s1, :!=, s2) assert_equal(0, s1 <=> s2) assert_operator(s1, :eql?, s2, desc_eq) else assert_not_operator(s1, :==, s2, "!(#{desc_eq})") assert_operator(s1, :!=, s2) assert_not_equal(0, s1 <=> s2) assert_not_operator(s1, :eql?, s2) end } end def test_str_concat combination(STRINGS, STRINGS) {|s1, s2| s = s1.dup if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding s << s2 assert_predicate(s, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_equal(b(s), b(s1) + b(s2)) assert_str_enc_propagation(s, s1, s2) else assert_raise(Encoding::CompatibilityError) { s << s2 } end } end def test_str_aref STRINGS.each {|s| t = ''.force_encoding(s.encoding) 0.upto(s.length-1) {|i| u = s[i] assert_predicate(u, :valid_encoding?) if s.valid_encoding? t << u } assert_equal(t, s) } end def test_str_aref_len STRINGS.each {|s| t = ''.force_encoding(s.encoding) 0.upto(s.length-1) {|i| u = s[i,1] assert_predicate(u, :valid_encoding?) if s.valid_encoding? t << u } assert_equal(t, s) } STRINGS.each {|s| t = ''.force_encoding(s.encoding) 0.step(s.length-1, 2) {|i| u = s[i,2] assert_predicate(u, :valid_encoding?) if s.valid_encoding? t << u } assert_equal(t, s) } end def test_str_aref_substr combination(STRINGS, STRINGS) {|s1, s2| if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding t = enccall(s1, :[], s2) if t != nil assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_equal(s2, t) assert_match(/#{Regexp.escape(b(s2))}/, b(s1)) if s1.valid_encoding? assert_match(/#{Regexp.escape(s2)}/, s1) end end else assert_raise(Encoding::CompatibilityError) { s1[s2] } end } end def test_str_aref_range2 combination(STRINGS, -2..2, -2..2) {|s, first, last| desc = "#{encdump s}[#{first}..#{last}]" t = s[first..last] if first < 0 first += s.length if first < 0 assert_nil(t, desc) next end end if s.length < first assert_nil(t, desc) next end assert_predicate(t, :valid_encoding?) if s.valid_encoding? if last < 0 last += s.length end t2 = '' first.upto(last) {|i| c = s[i] t2 << c if c } assert_equal(t2, t, desc) } end def test_str_aref_range3 combination(STRINGS, -2..2, -2..2) {|s, first, last| desc = "#{encdump s}[#{first}..#{last}]" t = s[first...last] if first < 0 first += s.length if first < 0 assert_nil(t, desc) next end end if s.length < first assert_nil(t, desc) next end if last < 0 last += s.length end assert_predicate(t, :valid_encoding?) if s.valid_encoding? t2 = '' first.upto(last-1) {|i| c = s[i] t2 << c if c } assert_equal(t2, t, desc) } end def test_str_assign combination(STRINGS, STRINGS) {|s1, s2| (-2).upto(2) {|i| t = s1.dup if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding if i < -s1.length || s1.length < i assert_raise(IndexError) { t[i] = s2 } else t[i] = s2 assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s2)]) if s1.valid_encoding? && s2.valid_encoding? if i == s1.length && s2.empty? assert_nil(t[i]) elsif i < 0 assert_equal(s2, t[i-s2.length+1,s2.length], "t = #{encdump(s1)}; t[#{i}] = #{encdump(s2)}; t[#{i-s2.length+1},#{s2.length}]") else assert_equal(s2, t[i,s2.length], "t = #{encdump(s1)}; t[#{i}] = #{encdump(s2)}; t[#{i},#{s2.length}]") end end end else assert_raise(Encoding::CompatibilityError) { t[i] = s2 } end } } end def test_str_assign_len combination(STRINGS, -2..2, 0..2, STRINGS) {|s1, i, len, s2| t = s1.dup if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding if i < -s1.length || s1.length < i assert_raise(IndexError) { t[i,len] = s2 } else assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? t[i,len] = s2 assert_send([b(t), :index, b(s2)]) if s1.valid_encoding? && s2.valid_encoding? if i == s1.length && s2.empty? assert_nil(t[i]) elsif i < 0 if -i < len len = -i end assert_equal(s2, t[i-s2.length+len,s2.length], "t = #{encdump(s1)}; t[#{i},#{len}] = #{encdump(s2)}; t[#{i-s2.length+len},#{s2.length}]") else assert_equal(s2, t[i,s2.length], "t = #{encdump(s1)}; t[#{i},#{len}] = #{encdump(s2)}; t[#{i},#{s2.length}]") end end end else assert_raise(Encoding::CompatibilityError) { t[i,len] = s2 } end } end def test_str_assign_substr combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| t = s1.dup encs = [ !s1.ascii_only? ? s1.encoding : nil, !s2.ascii_only? ? s2.encoding : nil, !s3.ascii_only? ? s3.encoding : nil].uniq.compact if 1 < encs.length assert_raise(Encoding::CompatibilityError, IndexError) { t[s2] = s3 } else if encs.empty? encs = [ s1.encoding, s2.encoding, s3.encoding].uniq.reject {|e| e == Encoding.find("ASCII-8BIT") } if encs.empty? encs = [Encoding.find("ASCII-8BIT")] end end if !t[s2] else enccall(t, :[]=, s2, s3) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? && s3.valid_encoding? end end } end def test_str_assign_range2 combination(STRINGS, -2..2, -2..2, STRINGS) {|s1, first, last, s2| t = s1.dup if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding if first < -s1.length || s1.length < first assert_raise(RangeError) { t[first..last] = s2 } else enccall(t, :[]=, first..last, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s2)]) if s1.valid_encoding? && s2.valid_encoding? if first < 0 assert_equal(s2, t[s1.length+first, s2.length]) else assert_equal(s2, t[first, s2.length]) end end end else assert_raise(Encoding::CompatibilityError, RangeError, "t=#{encdump(s1)};t[#{first}..#{last}]=#{encdump(s2)}") { t[first..last] = s2 } end } end def test_str_assign_range3 combination(STRINGS, -2..2, -2..2, STRINGS) {|s1, first, last, s2| t = s1.dup if s1.ascii_only? || s2.ascii_only? || s1.encoding == s2.encoding if first < -s1.length || s1.length < first assert_raise(RangeError) { t[first...last] = s2 } else enccall(t, :[]=, first...last, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s2)]) if s1.valid_encoding? && s2.valid_encoding? if first < 0 assert_equal(s2, t[s1.length+first, s2.length]) else assert_equal(s2, t[first, s2.length]) end end end else assert_raise(Encoding::CompatibilityError, RangeError, "t=#{encdump(s1)};t[#{first}...#{last}]=#{encdump(s2)}") { t[first...last] = s2 } end } end def test_str_cmp combination(STRINGS, STRINGS) {|s1, s2| desc = "#{encdump s1} <=> #{encdump s2}" r = s1 <=> s2 if s1 == s2 assert_equal(0, r, desc) else assert_not_equal(0, r, desc) end } end def test_str_capitalize STRINGS.each {|s| begin t1 = s.capitalize rescue ArgumentError assert_not_predicate(s, :valid_encoding?) next end assert_predicate(t1, :valid_encoding?) if s.valid_encoding? assert_operator(t1, :casecmp, s) t2 = s.dup t2.capitalize! assert_equal(t1, t2) r = s.downcase r = enccall(r, :sub, /\A[a-z]/) {|ch| b(ch).upcase } assert_equal(r, t1) } end def test_str_casecmp combination(STRINGS, STRINGS) {|s1, s2| #puts "#{encdump(s1)}.casecmp(#{encdump(s2)})" next unless s1.valid_encoding? && s2.valid_encoding? && Encoding.compatible?(s1, s2) r = s1.casecmp(s2) assert_equal(s1.upcase <=> s2.upcase, r) } end def test_str_center combination(STRINGS, [0,1,2,3,10]) {|s1, width| t = s1.center(width) assert_send([b(t), :index, b(s1)]) } combination(STRINGS, [0,1,2,3,10], STRINGS) {|s1, width, s2| if s2.empty? assert_raise(ArgumentError) { s1.center(width, s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.center(width, s2) } next end t = enccall(s1, :center, width, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s1)]) assert_str_enc_propagation(t, s1, s2) if (t != s1) } end def test_str_ljust combination(STRINGS, [0,1,2,3,10]) {|s1, width| t = s1.ljust(width) assert_send([b(t), :index, b(s1)]) } combination(STRINGS, [0,1,2,3,10], STRINGS) {|s1, width, s2| if s2.empty? assert_raise(ArgumentError) { s1.ljust(width, s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.ljust(width, s2) } next end t = enccall(s1, :ljust, width, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s1)]) assert_str_enc_propagation(t, s1, s2) if (t != s1) } end def test_str_rjust combination(STRINGS, [0,1,2,3,10]) {|s1, width| t = s1.rjust(width) assert_send([b(t), :index, b(s1)]) } combination(STRINGS, [0,1,2,3,10], STRINGS) {|s1, width, s2| if s2.empty? assert_raise(ArgumentError) { s1.rjust(width, s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.rjust(width, s2) } next end t = enccall(s1, :rjust, width, s2) assert_predicate(t, :valid_encoding?) if s1.valid_encoding? && s2.valid_encoding? assert_send([b(t), :index, b(s1)]) assert_str_enc_propagation(t, s1, s2) if (t != s1) } end def test_str_chomp combination(STRINGS, STRINGS) {|s1, s2| if !s1.ascii_only? && !s2.ascii_only? && !Encoding.compatible?(s1,s2) if s1.bytesize > s2.bytesize assert_raise(Encoding::CompatibilityError) { s1.chomp(s2) } end next end t = enccall(s1, :chomp, s2) assert_predicate(t, :valid_encoding?, "#{encdump(s1)}.chomp(#{encdump(s2)})") if s1.valid_encoding? && s2.valid_encoding? assert_equal(s1.encoding, t.encoding) t2 = s1.dup t2.chomp!(s2) assert_equal(t, t2) } end def test_str_chop STRINGS.each {|s| s = s.dup desc = "#{encdump s}.chop" t = nil assert_nothing_raised(desc) { t = s.chop } assert_predicate(t, :valid_encoding?) if s.valid_encoding? assert_send([b(s), :index, b(t)]) t2 = s.dup t2.chop! assert_equal(t, t2) } end def test_str_clear STRINGS.each {|s| t = s.dup t.clear assert_predicate(t, :valid_encoding?) assert_empty(t) } end def test_str_clone STRINGS.each {|s| t = s.clone assert_equal(s, t) assert_equal(s.encoding, t.encoding) assert_equal(b(s), b(t)) } end def test_str_dup STRINGS.each {|s| t = s.dup assert_equal(s, t) assert_equal(s.encoding, t.encoding) assert_equal(b(s), b(t)) } end def test_str_count combination(STRINGS, STRINGS) {|s1, s2| desc = proc {encdumpcall(s1, :count, s2)} if !s1.valid_encoding? || !s2.valid_encoding? assert_raise(ArgumentError, Encoding::CompatibilityError, desc) { s1.count(s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError, desc) { s1.count(s2) } next end n = enccall(s1, :count, s2) n0 = b(s1).count(b(s2)) assert_operator(n, :<=, n0) } end def test_str_crypt strict_crypt = nil # glibc 2.16 or later denies salt contained other than [0-9A-Za-z./] #7312 if defined? Etc::CS_GNU_LIBC_VERSION glibcver = Etc.confstr(Etc::CS_GNU_LIBC_VERSION).scan(/\d+/).map(&:to_i) strict_crypt = (glibcver <=> [2, 16]) >= 0 end combination(STRINGS, STRINGS) {|str, salt| if strict_crypt next unless salt.ascii_only? && /\A[0-9a-zA-Z.\/]+\z/ =~ salt end if b(salt).length < 2 assert_raise(ArgumentError) { str.crypt(salt) } next end t = str.crypt(salt) assert_equal(b(str).crypt(b(salt)), t, "#{encdump(str)}.crypt(#{encdump(salt)})") assert_encoding('ASCII-8BIT', t.encoding) } end def test_str_delete combination(STRINGS, STRINGS) {|s1, s2| if s1.empty? assert_equal(s1, s1.delete(s2)) next end if !s1.valid_encoding? || !s2.valid_encoding? assert_raise(ArgumentError, Encoding::CompatibilityError) { s1.delete(s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.delete(s2) } next end t = enccall(s1, :delete, s2) assert_predicate(t, :valid_encoding?) assert_equal(t.encoding, s1.encoding) assert_operator(t.length, :<=, s1.length) t2 = s1.dup t2.delete!(s2) assert_equal(t, t2) } end def test_str_downcase STRINGS.each {|s| if !s.valid_encoding? assert_raise(ArgumentError) { s.downcase } next end t = s.downcase assert_predicate(t, :valid_encoding?) assert_equal(t.encoding, s.encoding) assert_operator(t, :casecmp, s) t2 = s.dup t2.downcase! assert_equal(t, t2) } end def test_str_dump STRINGS.each {|s| t = s.dump assert_predicate(t, :valid_encoding?) assert_predicate(t, :ascii_only?) u = eval(t) assert_equal(b(s), b(u)) } end def test_str_each_line combination(STRINGS, STRINGS) {|s1, s2| if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.each_line(s2) {} } next end lines = [] enccall(s1, :each_line, s2) {|line| assert_equal(s1.encoding, line.encoding) lines << line } next if lines.size == 0 s2 = lines.join('') assert_equal(s1.encoding, s2.encoding) assert_equal(s1, s2) } end def test_str_each_byte STRINGS.each {|s| bytes = [] s.each_byte {|b| bytes << b } b(s).split(//).each_with_index {|ch, i| assert_equal(ch.ord, bytes[i]) } } end def test_str_empty? STRINGS.each {|s| if s.length == 0 assert_empty(s) else assert_not_empty(s) end } end def test_str_hex STRINGS.each {|s| t = s.hex t2 = b(s)[/\A[0-9a-fA-Fx]*/].hex assert_equal(t2, t) } end def test_str_include? combination(STRINGS, STRINGS) {|s1, s2| if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.include?(s2) } assert_raise(Encoding::CompatibilityError) { s1.index(s2) } assert_raise(Encoding::CompatibilityError) { s1.rindex(s2) } next end t = enccall(s1, :include?, s2) if t assert_include(b(s1), b(s2)) assert_send([s1, :index, s2]) assert_send([s1, :rindex, s2]) else assert_not_send([s1, :index, s2]) assert_not_send([s1, :rindex, s2], "!#{encdump(s1)}.rindex(#{encdump(s2)})") end if s2.empty? assert_equal(true, t) next end if !s1.valid_encoding? || !s2.valid_encoding? assert_equal(false, t, "#{encdump s1}.include?(#{encdump s2})") next end if t && s1.valid_encoding? && s2.valid_encoding? assert_match(/#{Regexp.escape(s2)}/, s1) else assert_no_match(/#{Regexp.escape(s2)}/, s1) end } end def test_str_index combination(STRINGS, STRINGS, -2..2) {|s1, s2, pos| if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.index(s2) } next end t = enccall(s1, :index, s2, pos) if s2.empty? if pos < 0 && pos+s1.length < 0 assert_equal(nil, t, "#{encdump s1}.index(#{encdump s2}, #{pos})"); elsif pos < 0 assert_equal(s1.length+pos, t, "#{encdump s1}.index(#{encdump s2}, #{pos})"); elsif s1.length < pos assert_equal(nil, t, "#{encdump s1}.index(#{encdump s2}, #{pos})"); else assert_equal(pos, t, "#{encdump s1}.index(#{encdump s2}, #{pos})"); end next end if !s1.valid_encoding? || !s2.valid_encoding? assert_equal(nil, t, "#{encdump s1}.index(#{encdump s2}, #{pos})"); next end if t re = /#{Regexp.escape(s2)}/ assert(re.match(s1, pos)) assert_equal($`.length, t, "#{encdump s1}.index(#{encdump s2}, #{pos})") else assert_no_match(/#{Regexp.escape(s2)}/, s1[pos..-1]) end } end def test_str_rindex combination(STRINGS, STRINGS, -2..2) {|s1, s2, pos| if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.rindex(s2) } next end t = enccall(s1, :rindex, s2, pos) if s2.empty? if pos < 0 && pos+s1.length < 0 assert_equal(nil, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") elsif pos < 0 assert_equal(s1.length+pos, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") elsif s1.length < pos assert_equal(s1.length, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") else assert_equal(pos, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") end next end if !s1.valid_encoding? || !s2.valid_encoding? assert_equal(nil, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") next end if t #puts "#{encdump s1}.rindex(#{encdump s2}, #{pos}) => #{t}" assert_send([b(s1), :index, b(s2)]) pos2 = pos pos2 += s1.length if pos < 0 re = /\A(.{0,#{pos2}})#{Regexp.escape(s2)}/m m = enccall(re, :match, s1) assert(m, "#{re.inspect}.match(#{encdump(s1)})") assert_equal(m[1].length, t, "#{encdump s1}.rindex(#{encdump s2}, #{pos})") else re = /#{Regexp.escape(s2)}/ n = re =~ s1 if n if pos < 0 assert_operator(n, :>, s1.length+pos) else assert_operator(n, :>, pos) end end end } end def test_str_insert combination(STRINGS, 0..2, STRINGS) {|s1, nth, s2| t1 = s1.dup t2 = s1.dup begin t1[nth, 0] = s2 rescue Encoding::CompatibilityError, IndexError => e1 end begin t2.insert(nth, s2) rescue Encoding::CompatibilityError, IndexError => e2 end assert_equal(t1, t2, "t=#{encdump s1}; t.insert(#{nth},#{encdump s2}); t") assert_equal(e1.class, e2.class, "begin #{encdump s1}.insert(#{nth},#{encdump s2}); rescue ArgumentError, IndexError => e; e end") } combination(STRINGS, -2..-1, STRINGS) {|s1, nth, s2| next if s1.length + nth < 0 next unless s1.valid_encoding? next unless s2.valid_encoding? t1 = s1.dup begin t1.insert(nth, s2) slen = s2.length assert_equal(t1[nth-slen+1,slen], s2, "t=#{encdump s1}; t.insert(#{nth},#{encdump s2}); t") rescue Encoding::CompatibilityError, IndexError end } end def test_str_intern STRINGS.each {|s| if /\0/ =~ b(s) assert_raise(ArgumentError) { s.intern } elsif s.valid_encoding? sym = s.intern assert_equal(s, sym.to_s, "#{encdump s}.intern.to_s") assert_equal(sym, s.to_sym) else assert_raise(EncodingError) { s.intern } end } end def test_str_length STRINGS.each {|s| assert_operator(s.length, :<=, s.bytesize) } end def test_str_oct STRINGS.each {|s| t = s.oct t2 = b(s)[/\A[0-9a-fA-FxX]*/].oct assert_equal(t2, t) } end def test_str_replace combination(STRINGS, STRINGS) {|s1, s2| t = s1.dup t.replace s2 assert_equal(s2, t) assert_equal(s2.encoding, t.encoding) } end def test_str_reverse STRINGS.each {|s| t = s.reverse assert_equal(s.bytesize, t.bytesize) if !s.valid_encoding? assert_operator(t.length, :<=, s.length) next end assert_equal(s, t.reverse) } end def test_str_scan combination(STRINGS, STRINGS) {|s1, s2| desc = proc {"#{s1.dump}.scan(#{s2.dump})"} if !s2.valid_encoding? assert_raise(RegexpError, desc) { s1.scan(s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding if s1.valid_encoding? assert_raise(Encoding::CompatibilityError, desc) { s1.scan(s2) } else assert_raise_with_message(ArgumentError, /invalid byte sequence/, desc) { s1.scan(s2) } end next end if !s1.valid_encoding? assert_raise(ArgumentError, desc) { s1.scan(s2) } next end r = enccall(s1, :scan, s2) r.each {|t| assert_equal(s2, t, desc) } } end def test_str_slice each_slice_call {|obj, *args| assert_same_result(lambda { obj[*args] }, lambda { obj.slice(*args) }) } end def test_str_slice! each_slice_call {|s, *args| desc_slice = "#{encdump s}.slice#{encdumpargs args}" desc_slice_bang = "#{encdump s}.slice!#{encdumpargs args}" t = s.dup begin r = t.slice!(*args) rescue e = $! end if e assert_raise(e.class, desc_slice) { s.slice(*args) } next end if !r assert_nil(s.slice(*args), desc_slice) next end assert_equal(s.slice(*args), r, desc_slice_bang) assert_equal(s.bytesize, r.bytesize + t.bytesize) if args.length == 1 && String === args[0] assert_equal(args[0].encoding, r.encoding, "#{encdump s}.slice!#{encdumpargs args}.encoding") else assert_equal(s.encoding, r.encoding, "#{encdump s}.slice!#{encdumpargs args}.encoding") end if [s, *args].all? {|o| !(String === o) || o.valid_encoding? } assert_predicate(r, :valid_encoding?) assert_predicate(t, :valid_encoding?) assert_equal(s.length, r.length + t.length) end } end def test_str_split combination(STRINGS, STRINGS) {|s1, s2| if !s2.valid_encoding? assert_raise(ArgumentError, RegexpError) { s1.split(s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(ArgumentError, Encoding::CompatibilityError) { s1.split(s2) } next end if !s1.valid_encoding? assert_raise(ArgumentError) { s1.split(s2) } next end t = enccall(s1, :split, s2) t.each {|r| assert_include(b(s1), b(r)) assert_equal(s1.encoding, r.encoding) } assert_include(b(s1), t.map {|u| b(u) }.join(b(s2))) if s1.valid_encoding? && s2.valid_encoding? t.each {|r| assert_predicate(r, :valid_encoding?) } end } end def test_str_squeeze combination(STRINGS, STRINGS) {|s1, s2| if !s1.valid_encoding? || !s2.valid_encoding? assert_raise(ArgumentError, Encoding::CompatibilityError, "#{encdump s1}.squeeze(#{encdump s2})") { s1.squeeze(s2) } next end if !s1.ascii_only? && !s2.ascii_only? && s1.encoding != s2.encoding assert_raise(Encoding::CompatibilityError) { s1.squeeze(s2) } next end t = enccall(s1, :squeeze, s2) assert_operator(t.length, :<=, s1.length) t2 = s1.dup t2.squeeze!(s2) assert_equal(t, t2) } end def test_str_strip STRINGS.each {|s| if !s.valid_encoding? assert_raise(ArgumentError, "#{encdump s}.strip") { s.strip } next end t = s.strip l = s.lstrip r = s.rstrip assert_operator(l.length, :<=, s.length) assert_operator(r.length, :<=, s.length) assert_operator(t.length, :<=, l.length) assert_operator(t.length, :<=, r.length) t2 = s.dup t2.strip! assert_equal(t, t2) l2 = s.dup l2.lstrip! assert_equal(l, l2) r2 = s.dup r2.rstrip! assert_equal(r, r2) } end def test_str_sum STRINGS.each {|s| assert_equal(b(s).sum, s.sum) } end def test_str_swapcase STRINGS.each {|s| if !s.valid_encoding? assert_raise(ArgumentError, "#{encdump s}.swapcase") { s.swapcase } next end t1 = s.swapcase assert_predicate(t1, :valid_encoding?) if s.valid_encoding? assert_operator(t1, :casecmp, s) t2 = s.dup t2.swapcase! assert_equal(t1, t2) t3 = t1.swapcase assert_equal(s, t3); } end def test_str_to_f STRINGS.each {|s| assert_nothing_raised { s.to_f } } end def test_str_to_i STRINGS.each {|s| assert_nothing_raised { s.to_i } 2.upto(36) {|radix| assert_nothing_raised { s.to_i(radix) } } } end def test_str_to_s STRINGS.each {|s| assert_same(s, s.to_s) assert_same(s, s.to_str) } end def test_tr combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| desc = "#{encdump s1}.tr(#{encdump s2}, #{encdump s3})" if s1.empty? assert_equal(s1, s1.tr(s2, s3), desc) next end if !str_enc_compatible?(s1, s2, s3) assert_raise(Encoding::CompatibilityError, desc) { s1.tr(s2, s3) } next end if !s1.valid_encoding? assert_raise(ArgumentError, desc) { s1.tr(s2, s3) } next end if s2.empty? t = enccall(s1, :tr, s2, s3) assert_equal(s1, t, desc) next end if !s2.valid_encoding? || !s3.valid_encoding? assert_raise(ArgumentError, desc) { s1.tr(s2, s3) } next end t = enccall(s1, :tr, s2, s3) assert_operator(s1.length, :>=, t.length, desc) } end def test_tr_sjis expected = "\x83}\x83~\x83\x80\x83\x81\x83\x82".force_encoding(Encoding::SJIS) source = "\xCF\xD0\xD1\xD2\xD3".force_encoding(Encoding::SJIS) from = "\xCF-\xD3".force_encoding(Encoding::SJIS) to = "\x83}-\x83\x82".force_encoding(Encoding::SJIS) assert_equal(expected, source.tr(from, to)) expected = "\x84}\x84~\x84\x80\x84\x81\x84\x82".force_encoding(Encoding::SJIS) source = "\x84M\x84N\x84O\x84P\x84Q".force_encoding(Encoding::SJIS) from = "\x84@-\x84`".force_encoding(Encoding::SJIS) to = "\x84p-\x84\x91".force_encoding(Encoding::SJIS) assert_equal(expected, source.tr(from, to)) end def test_tr_s combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| desc = "#{encdump s1}.tr_s(#{encdump s2}, #{encdump s3})" if s1.empty? assert_equal(s1, s1.tr_s(s2, s3), desc) next end if !s1.valid_encoding? assert_raise(ArgumentError, Encoding::CompatibilityError, desc) { s1.tr_s(s2, s3) } next end if !str_enc_compatible?(s1, s2, s3) assert_raise(Encoding::CompatibilityError, desc) { s1.tr(s2, s3) } next end if s2.empty? t = enccall(s1, :tr_s, s2, s3) assert_equal(s1, t, desc) next end if !s2.valid_encoding? || !s3.valid_encoding? assert_raise(ArgumentError, desc) { s1.tr_s(s2, s3) } next end t = enccall(s1, :tr_s, s2, s3) assert_operator(s1.length, :>=, t.length, desc) } end def test_str_upcase STRINGS.each {|s| desc = "#{encdump s}.upcase" if !s.valid_encoding? assert_raise(ArgumentError, desc) { s.upcase } next end t1 = s.upcase assert_predicate(t1, :valid_encoding?) assert_operator(t1, :casecmp, s) t2 = s.dup t2.upcase! assert_equal(t1, t2) } end def test_str_succ STRINGS.each {|s0| next if s0.empty? s = s0.dup n = 300 h = {} n.times {|i| if h[s] assert(false, "#{encdump s} cycle with succ #{i-h[s]} times") end h[s] = i assert_operator(s.length, :<=, s0.length + Math.log2(i+1) + 1, "#{encdump s0} succ #{i} times => #{encdump s}") #puts encdump(s) t = s.succ if s.valid_encoding? assert_predicate(t, :valid_encoding?, "#{encdump s}.succ.valid_encoding?") end s = t } } Encoding.list.each do |enc| next if enc.dummy? {"A"=>"B", "A1"=>"A2", "A9"=>"B0", "9"=>"10", "Z"=>"AA"}.each do |orig, expected| s = orig.encode(enc) assert_strenc(expected.encode(enc), enc, s.succ, proc {"#{orig.dump}.encode(#{enc}).succ"}) end end end def test_str_succ2 assert_equal(a("\x01\x00"), a("\x7f").succ) assert_equal(b("\x01\x00"), b("\xff").succ) end def test_str_hash combination(STRINGS, STRINGS) {|s1, s2| if s1.eql?(s2) assert_equal(s1.hash, s2.hash, "#{encdump s1}.hash == #{encdump s2}.dump") end } end def test_marshal STRINGS.each {|s| m = Marshal.dump(s) t = Marshal.load(m) assert_equal(s, t) } end def test_str_sub combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| if !s2.valid_encoding? assert_raise(RegexpError) { Regexp.new(Regexp.escape(s2)) } next end r2 = Regexp.new(Regexp.escape(s2)) [ [ "#{encdump s1}.sub(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { s1.sub(r2, s3) }, false ], [ "#{encdump s1}.sub(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { s1.sub(r2) { s3 } }, false ], [ "#{encdump s1}.gsub(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { s1.gsub(r2, s3) }, true ], [ "#{encdump s1}.gsub(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { s1.gsub(r2) { s3 } }, true ] ].each {|desc, doit, g| if !s1.valid_encoding? assert_raise(ArgumentError, desc) { doit.call } next end if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { doit.call } next end if !enccall(s1, :include?, s2) assert_equal(s1, doit.call) next end if !str_enc_compatible?(g ? s1.gsub(r2, '') : s1.sub(r2, ''), s3) assert_raise(Encoding::CompatibilityError, desc) { doit.call } next end t = nil assert_nothing_raised(desc) { t = doit.call } if s2 == s3 assert_equal(s1, t, desc) else assert_not_equal(s1, t, desc) end } } end def test_str_sub! combination(STRINGS, STRINGS, STRINGS) {|s1, s2, s3| if !s2.valid_encoding? assert_raise(RegexpError) { Regexp.new(Regexp.escape(s2)) } next end r2 = Regexp.new(Regexp.escape(s2)) [ [ "t=#{encdump s1}.dup;t.sub!(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { t=s1.dup; [t, t.sub!(r2, s3)] }, false ], [ "t=#{encdump s1}.dup;t.sub!(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { t=s1.dup; [t, t.sub!(r2) { s3 }] }, false ], [ "t=#{encdump s1}.dup;t.gsub!(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { t=s1.dup; [t, t.gsub!(r2, s3)] }, true ], [ "t=#{encdump s1}.dup;t.gsub!(Regexp.new(#{encdump s2}), #{encdump s3})", lambda { t=s1.dup; [t, t.gsub!(r2) { s3 }] }, true ] ].each {|desc, doit, g| if !s1.valid_encoding? assert_raise(ArgumentError, desc) { doit.call } next end if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { doit.call } next end if !enccall(s1, :include?, s2) assert_equal([s1, nil], doit.call) next end if !str_enc_compatible?(g ? s1.gsub(r2, '') : s1.sub(r2, ''), s3) assert_raise(Encoding::CompatibilityError, desc) { doit.call } next end t = ret = nil assert_nothing_raised(desc) { t, ret = doit.call } assert(ret) if s2 == s3 assert_equal(s1, t, desc) else assert_not_equal(s1, t, desc) end } } end def test_str_bytes STRINGS.each {|s1| ary = [] s1.bytes.each {|b| ary << b } assert_equal(s1.unpack("C*"), ary) } end def test_str_bytesize STRINGS.each {|s1| assert_equal(s1.unpack("C*").length, s1.bytesize) } end def test_str_chars STRINGS.each {|s1| ary = [] s1.chars.each {|c| ary << c } expected = [] s1.length.times {|i| expected << s1[i] } assert_equal(expected, ary) } end def test_str_chr STRINGS.each {|s1| if s1.empty? assert_equal("", s1.chr) next end assert_equal(s1[0], s1.chr) } end def test_str_end_with? combination(STRINGS, STRINGS) {|s1, s2| desc = "#{encdump s1}.end_with?(#{encdump s2})" if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { s1.end_with?(s2) } next end if s1.length < s2.length assert_equal(false, enccall(s1, :end_with?, s2), desc) next end if s1[s1.length-s2.length, s2.length] == s2 assert_equal(true, enccall(s1, :end_with?, s2), desc) next end assert_equal(false, enccall(s1, :end_with?, s2), desc) } end def test_str_start_with? combination(STRINGS, STRINGS) {|s1, s2| desc = "#{encdump s1}.start_with?(#{encdump s2})" if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { s1.start_with?(s2) } next end s1 = s1.dup.force_encoding("ASCII-8BIT") s2 = s2.dup.force_encoding("ASCII-8BIT") if s1.length < s2.length assert_equal(false, enccall(s1, :start_with?, s2), desc) next end if s1[0, s2.length] == s2 assert_equal(true, enccall(s1, :start_with?, s2), desc) next end assert_equal(false, enccall(s1, :start_with?, s2), desc) } end def test_str_ord STRINGS.each {|s1| if s1.empty? assert_raise(ArgumentError) { s1.ord } next end if !s1.valid_encoding? assert_raise(ArgumentError) { s1.ord } next end assert_equal(s1[0].ord, s1.ord) } end def test_str_partition combination(STRINGS, STRINGS) {|s1, s2| desc = "#{encdump s1}.partition(#{encdump s2})" if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { s1.partition(s2) } next end i = enccall(s1, :index, s2) if !i assert_equal([s1, "", ""], s1.partition(s2), desc) next end assert_equal([s1[0,i], s2, s1[(i+s2.length)..-1]], s1.partition(s2), desc) } end def test_str_rpartition combination(STRINGS, STRINGS) {|s1, s2| desc = "#{encdump s1}.rpartition(#{encdump s2})" if !str_enc_compatible?(s1, s2) assert_raise(Encoding::CompatibilityError, desc) { s1.rpartition(s2) } next end i = enccall(s1, :rindex, s2) if !i assert_equal(["", "", s1], s1.rpartition(s2), desc) next end assert_equal([s1[0,i], s2, s1[(i+s2.length)..-1]], s1.rpartition(s2), desc) } end end