# frozen_string_literal: false require 'test/unit' require 'matrix' class SubMatrix < Matrix end class TestMatrix < Test::Unit::TestCase def setup @m1 = Matrix[[1,2,3], [4,5,6]] @m2 = Matrix[[1,2,3], [4,5,6]] @m3 = @m1.clone @m4 = Matrix[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] @n1 = Matrix[[2,3,4], [5,6,7]] @c1 = Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] @e1 = Matrix.empty(2,0) @e2 = Matrix.empty(0,3) @a3 = Matrix[[4, 1, -3], [0, 3, 7], [11, -4, 2]] @a5 = Matrix[[2, 0, 9, 3, 9], [8, 7, 0, 1, 9], [7, 5, 6, 6, 5], [0, 7, 8, 3, 0], [7, 8, 2, 3, 1]] @b3 = Matrix[[-7, 7, -10], [9, -3, -2], [-1, 3, 9]] @rot = Matrix[[0, -1, 0], [1, 0, 0], [0, 0, -1]] end def test_matrix assert_equal(1, @m1[0, 0]) assert_equal(2, @m1[0, 1]) assert_equal(3, @m1[0, 2]) assert_equal(4, @m1[1, 0]) assert_equal(5, @m1[1, 1]) assert_equal(6, @m1[1, 2]) end def test_identity assert_same @m1, @m1 assert_not_same @m1, @m2 assert_not_same @m1, @m3 assert_not_same @m1, @m4 assert_not_same @m1, @n1 end def test_equality assert_equal @m1, @m1 assert_equal @m1, @m2 assert_equal @m1, @m3 assert_equal @m1, @m4 assert_not_equal @m1, @n1 end def test_hash_equality assert @m1.eql?(@m1) assert @m1.eql?(@m2) assert @m1.eql?(@m3) assert !@m1.eql?(@m4) assert !@m1.eql?(@n1) hash = { @m1 => :value } assert hash.key?(@m1) assert hash.key?(@m2) assert hash.key?(@m3) assert !hash.key?(@m4) assert !hash.key?(@n1) end def test_hash assert_equal @m1.hash, @m1.hash assert_equal @m1.hash, @m2.hash assert_equal @m1.hash, @m3.hash end def test_uplus assert_equal(@m1, +@m1) end def test_negate assert_equal(Matrix[[-1, -2, -3], [-4, -5, -6]], -@m1) assert_equal(@m1, -(-@m1)) end def test_rank [ [[0]], [[0], [0]], [[0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], ].each do |rows| assert_equal 0, Matrix[*rows].rank end [ [[1], [0]], [[1, 0], [0, 0]], [[1, 0], [1, 0]], [[0, 0], [1, 0]], [[1, 0], [0, 0], [0, 0]], [[0, 0], [1, 0], [0, 0]], [[0, 0], [0, 0], [1, 0]], [[1, 0], [1, 0], [0, 0]], [[0, 0], [1, 0], [1, 0]], [[1, 0], [1, 0], [1, 0]], [[1, 0, 0]], [[1, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0]], [[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [1, 0, 0]], [[1, 0, 0], [0, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [1, 0, 0]], [[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[1, 0, 0], [1, 0, 0], [0, 0, 0], [0, 0, 0]], [[1, 0, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]], [[1, 0, 0], [0, 0, 0], [0, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 0, 0]], [[1, 0, 0], [0, 0, 0], [1, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [0, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0]], [[1]], [[1], [1]], [[1, 1]], [[1, 1], [1, 1]], [[1, 1], [1, 1], [1, 1]], [[1, 1, 1]], [[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], ].each do |rows| matrix = Matrix[*rows] assert_equal 1, matrix.rank assert_equal 1, matrix.transpose.rank end [ [[1, 0], [0, 1]], [[1, 0], [0, 1], [0, 0]], [[1, 0], [0, 1], [0, 1]], [[1, 0], [0, 1], [1, 1]], [[1, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 0, 1]], [[1, 0, 0], [0, 1, 0], [0, 0, 0]], [[1, 0, 0], [0, 0, 1], [0, 0, 0]], [[1, 0, 0], [0, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 0, 0], [0, 0, 1]], [[1, 0], [1, 1]], [[1, 2], [1, 1]], [[1, 2], [0, 1], [1, 1]], ].each do |rows| m = Matrix[*rows] assert_equal 2, m.rank assert_equal 2, m.transpose.rank end [ [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], [[1, 1, 0], [0, 1, 1], [1, 0, 1], [0, 0, 0]], [[1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 2], [1, 3, 1], [4, 1, 1]], ].each do |rows| m = Matrix[*rows] assert_equal 3, m.rank assert_equal 3, m.transpose.rank end end def test_inverse assert_equal(Matrix.empty(0, 0), Matrix.empty.inverse) assert_equal(Matrix[[-1, 1], [0, -1]], Matrix[[-1, -1], [0, -1]].inverse) assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.inverse } end def test_determinant assert_equal(0, Matrix[[0,0],[0,0]].determinant) assert_equal(45, Matrix[[7,6], [3,9]].determinant) assert_equal(-18, Matrix[[2,0,1],[0,-2,2],[1,2,3]].determinant) assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].determinant) assert_equal(42, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].determinant) end def test_new_matrix assert_raise(TypeError) { Matrix[Object.new] } o = Object.new def o.to_ary; [1,2,3]; end assert_equal(@m1, Matrix[o, [4,5,6]]) end def test_round a = Matrix[[1.0111, 2.32320, 3.04343], [4.81, 5.0, 6.997]] b = Matrix[[1.01, 2.32, 3.04], [4.81, 5.0, 7.0]] assert_equal(a.round(2), b) end def test_rows assert_equal(@m1, Matrix.rows([[1, 2, 3], [4, 5, 6]])) end def test_rows_copy rows1 = [[1], [1]] rows2 = [[1], [1]] m1 = Matrix.rows(rows1, copy = false) m2 = Matrix.rows(rows2, copy = true) rows1.uniq! rows2.uniq! assert_equal([[1]], m1.to_a) assert_equal([[1], [1]], m2.to_a) end def test_to_matrix assert @m1.equal? @m1.to_matrix end def test_columns assert_equal(@m1, Matrix.columns([[1, 4], [2, 5], [3, 6]])) end def test_diagonal assert_equal(Matrix.empty(0, 0), Matrix.diagonal( )) assert_equal(Matrix[[3,0,0],[0,2,0],[0,0,1]], Matrix.diagonal(3, 2, 1)) assert_equal(Matrix[[4,0,0,0],[0,3,0,0],[0,0,2,0],[0,0,0,1]], Matrix.diagonal(4, 3, 2, 1)) end def test_scalar assert_equal(Matrix.empty(0, 0), Matrix.scalar(0, 1)) assert_equal(Matrix[[2,0,0],[0,2,0],[0,0,2]], Matrix.scalar(3, 2)) assert_equal(Matrix[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]], Matrix.scalar(4, 2)) end def test_identity2 assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.identity(3)) assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.unit(3)) assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.I(3)) assert_equal(Matrix[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], Matrix.identity(4)) end def test_zero assert_equal(Matrix[[0,0,0],[0,0,0],[0,0,0]], Matrix.zero(3)) assert_equal(Matrix[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]], Matrix.zero(4)) assert_equal(Matrix[[0]], Matrix.zero(1)) end def test_row_vector assert_equal(Matrix[[1,2,3,4]], Matrix.row_vector([1,2,3,4])) end def test_column_vector assert_equal(Matrix[[1],[2],[3],[4]], Matrix.column_vector([1,2,3,4])) end def test_empty m = Matrix.empty(2, 0) assert_equal(Matrix[ [], [] ], m) n = Matrix.empty(0, 3) assert_equal(Matrix.columns([ [], [], [] ]), n) assert_equal(Matrix[[0, 0, 0], [0, 0, 0]], m * n) end def test_row assert_equal(Vector[1, 2, 3], @m1.row(0)) assert_equal(Vector[4, 5, 6], @m1.row(1)) a = []; @m1.row(0) {|x| a << x } assert_equal([1, 2, 3], a) end def test_column assert_equal(Vector[1, 4], @m1.column(0)) assert_equal(Vector[2, 5], @m1.column(1)) assert_equal(Vector[3, 6], @m1.column(2)) a = []; @m1.column(0) {|x| a << x } assert_equal([1, 4], a) end def test_collect m1 = Matrix.zero(2,2) m2 = Matrix.build(3,4){|row, col| 1} assert_equal(Matrix[[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], m2.collect{|e| e * 5}) assert_equal(Matrix[[7, 0],[0, 7]], m1.collect(:diagonal){|e| e + 7}) assert_equal(Matrix[[0, 5],[5, 0]], m1.collect(:off_diagonal){|e| e + 5}) assert_equal(Matrix[[8, 1, 1, 1], [8, 8, 1, 1], [8, 8, 8, 1]], m2.collect(:lower){|e| e + 7}) assert_equal(Matrix[[1, 1, 1, 1], [-11, 1, 1, 1], [-11, -11, 1, 1]], m2.collect(:strict_lower){|e| e - 12}) assert_equal(Matrix[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], m2.collect(:strict_upper){|e| e ** 2}) assert_equal(Matrix[[-1, -1, -1, -1], [1, -1, -1, -1], [1, 1, -1, -1]], m2.collect(:upper){|e| -e}) assert_raise(ArgumentError) {m1.collect(:test){|e| e + 7}} assert_not_equal(m2, m2.collect {|e| e * 2 }) end def test_minor assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0..1, 0..1)) assert_equal(Matrix[[2], [5]], @m1.minor(0..1, 1..1)) assert_equal(Matrix[[4, 5]], @m1.minor(1..1, 0..1)) assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0, 2, 0, 2)) assert_equal(Matrix[[4, 5]], @m1.minor(1, 1, 0, 2)) assert_equal(Matrix[[2], [5]], @m1.minor(0, 2, 1, 1)) assert_raise(ArgumentError) { @m1.minor(0) } end def test_first_minor assert_equal(Matrix.empty(0, 0), Matrix[[1]].first_minor(0, 0)) assert_equal(Matrix.empty(0, 2), Matrix[[1, 4, 2]].first_minor(0, 1)) assert_equal(Matrix[[1, 3]], @m1.first_minor(1, 1)) assert_equal(Matrix[[4, 6]], @m1.first_minor(0, 1)) assert_equal(Matrix[[1, 2]], @m1.first_minor(1, 2)) assert_raise(RuntimeError) { Matrix.empty(0, 0).first_minor(0, 0) } assert_raise(ArgumentError) { @m1.first_minor(4, 0) } assert_raise(ArgumentError) { @m1.first_minor(0, -1) } assert_raise(ArgumentError) { @m1.first_minor(-1, 4) } end def test_cofactor assert_equal(1, Matrix[[1]].cofactor(0, 0)) assert_equal(9, Matrix[[7,6],[3,9]].cofactor(0, 0)) assert_equal(0, Matrix[[0,0],[0,0]].cofactor(0, 0)) assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].cofactor(1, 0)) assert_equal(-21, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].cofactor(2, 3)) assert_raise(RuntimeError) { Matrix.empty(0, 0).cofactor(0, 0) } assert_raise(ArgumentError) { Matrix[[0,0],[0,0]].cofactor(-1, 4) } assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { Matrix[[2,0,1],[0,-2,2]].cofactor(0, 0) } end def test_adjugate assert_equal(Matrix.empty, Matrix.empty.adjugate) assert_equal(Matrix[[1]], Matrix[[5]].adjugate) assert_equal(Matrix[[9,-6],[-3,7]], Matrix[[7,6],[3,9]].adjugate) assert_equal(Matrix[[45,3,-7],[6,-1,0],[-7,0,0]], Matrix[[0,0,1],[0,7,6],[1,3,9]].adjugate) assert_equal(Matrix.identity(5), (@a5.adjugate * @a5) / @a5.det) assert_equal(Matrix.I(3), Matrix.I(3).adjugate) assert_equal((@a3 * @b3).adjugate, @b3.adjugate * @a3.adjugate) assert_equal(4**(@a3.row_count-1) * @a3.adjugate, (4 * @a3).adjugate) assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.adjugate } end def test_laplace_expansion assert_equal(1, Matrix[[1]].laplace_expansion(row: 0)) assert_equal(45, Matrix[[7,6], [3,9]].laplace_expansion(row: 1)) assert_equal(0, Matrix[[0,0],[0,0]].laplace_expansion(column: 0)) assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: 2)) assert_equal(Vector[3, -2], Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)) assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.laplace_expansion(row: 1) } assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion() } assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(foo: 1) } assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 1, column: 1) } assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 2) } assert_raise(ArgumentError) { Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: -1) } assert_raise(RuntimeError) { Matrix.empty(0, 0).laplace_expansion(row: 0) } end def test_regular? assert(Matrix[[1, 0], [0, 1]].regular?) assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].regular?) assert(!Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].regular?) end def test_singular? assert(!Matrix[[1, 0], [0, 1]].singular?) assert(!Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].singular?) assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].singular?) end def test_square? assert(Matrix[[1, 0], [0, 1]].square?) assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].square?) assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].square?) assert(!Matrix[[1, 0, 0], [0, 1, 0]].square?) end def test_mul assert_equal(Matrix[[2,4],[6,8]], Matrix[[2,4],[6,8]] * Matrix.I(2)) assert_equal(Matrix[[4,8],[12,16]], Matrix[[2,4],[6,8]] * 2) assert_equal(Matrix[[4,8],[12,16]], 2 * Matrix[[2,4],[6,8]]) assert_equal(Matrix[[14,32],[32,77]], @m1 * @m1.transpose) assert_equal(Matrix[[17,22,27],[22,29,36],[27,36,45]], @m1.transpose * @m1) assert_equal(Vector[14,32], @m1 * Vector[1,2,3]) o = Object.new def o.coerce(m) [m, m.transpose] end assert_equal(Matrix[[14,32],[32,77]], @m1 * o) end def test_add assert_equal(Matrix[[6,0],[-4,12]], Matrix.scalar(2,5) + Matrix[[1,0],[-4,7]]) assert_equal(Matrix[[3,5,7],[9,11,13]], @m1 + @n1) assert_equal(Matrix[[3,5,7],[9,11,13]], @n1 + @m1) assert_equal(Matrix[[2],[4],[6]], Matrix[[1],[2],[3]] + Vector[1,2,3]) assert_raise(Matrix::ErrOperationNotDefined) { @m1 + 1 } o = Object.new def o.coerce(m) [m, m] end assert_equal(Matrix[[2,4,6],[8,10,12]], @m1 + o) end def test_sub assert_equal(Matrix[[4,0],[4,-2]], Matrix.scalar(2,5) - Matrix[[1,0],[-4,7]]) assert_equal(Matrix[[-1,-1,-1],[-1,-1,-1]], @m1 - @n1) assert_equal(Matrix[[1,1,1],[1,1,1]], @n1 - @m1) assert_equal(Matrix[[0],[0],[0]], Matrix[[1],[2],[3]] - Vector[1,2,3]) assert_raise(Matrix::ErrOperationNotDefined) { @m1 - 1 } o = Object.new def o.coerce(m) [m, m] end assert_equal(Matrix[[0,0,0],[0,0,0]], @m1 - o) end def test_div assert_equal(Matrix[[0,1,1],[2,2,3]], @m1 / 2) assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / Matrix.scalar(2,2)) o = Object.new def o.coerce(m) [m, Matrix.scalar(2,2)] end assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / o) end def test_hadamard_product assert_equal(Matrix[[1,4], [9,16]], Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,4]])) assert_equal(Matrix[[2, 6, 12], [20, 30, 42]], @m1.hadamard_product(@n1)) o = Object.new def o.to_matrix Matrix[[1, 2, 3], [-1, 0, 1]] end assert_equal(Matrix[[1, 4, 9], [-4, 0, 6]], @m1.hadamard_product(o)) e = Matrix.empty(3, 0) assert_equal(e, e.hadamard_product(e)) e = Matrix.empty(0, 3) assert_equal(e, e.hadamard_product(e)) end def test_exp assert_equal(Matrix[[67,96],[48,99]], Matrix[[7,6],[3,9]] ** 2) assert_equal(Matrix.I(5), Matrix.I(5) ** -1) assert_raise(Matrix::ErrOperationNotDefined) { Matrix.I(5) ** Object.new } end def test_det assert_equal(Matrix.instance_method(:determinant), Matrix.instance_method(:det)) end def test_rank2 assert_equal(2, Matrix[[7,6],[3,9]].rank) assert_equal(0, Matrix[[0,0],[0,0]].rank) assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].rank) assert_equal(1, Matrix[[0,1],[0,1],[0,1]].rank) assert_equal(2, @m1.rank) end def test_trace assert_equal(1+5+9, Matrix[[1,2,3],[4,5,6],[7,8,9]].trace) end def test_transpose assert_equal(Matrix[[1,4],[2,5],[3,6]], @m1.transpose) end def test_conjugate assert_equal(Matrix[[Complex(1,-2), Complex(0,-1), 0], [1, 2, 3]], @c1.conjugate) end def test_eigensystem m = Matrix[[1, 2], [3, 4]] v, d, v_inv = m.eigensystem assert(d.diagonal?) assert_equal(v.inv, v_inv) assert_equal((v * d * v_inv).round(5), m) end def test_imaginary assert_equal(Matrix[[2, 1, 0], [0, 0, 0]], @c1.imaginary) end def test_lup m = Matrix[[1, 2], [3, 4]] l, u, p = m.lup assert(l.lower_triangular?) assert(u.upper_triangular?) assert(p.permutation?) assert(l * u == p * m) assert_equal(m.lup.solve([2, 5]), Vector[1, Rational(1,2)]) end def test_real assert_equal(Matrix[[1, 0, 0], [1, 2, 3]], @c1.real) end def test_rect assert_equal([Matrix[[1, 0, 0], [1, 2, 3]], Matrix[[2, 1, 0], [0, 0, 0]]], @c1.rect) end def test_row_vectors assert_equal([Vector[1,2,3], Vector[4,5,6]], @m1.row_vectors) end def test_column_vectors assert_equal([Vector[1,4], Vector[2,5], Vector[3,6]], @m1.column_vectors) end def test_to_s assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.to_s) assert_equal("Matrix.empty(0, 0)", Matrix[].to_s) assert_equal("Matrix.empty(1, 0)", Matrix[[]].to_s) end def test_inspect assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.inspect) assert_equal("Matrix.empty(0, 0)", Matrix[].inspect) assert_equal("Matrix.empty(1, 0)", Matrix[[]].inspect) end def test_scalar_add s1 = @m1.coerce(1).first assert_equal(Matrix[[1]], (s1 + 0) * Matrix[[1]]) assert_raise(Matrix::ErrOperationNotDefined) { s1 + Vector[0] } assert_raise(Matrix::ErrOperationNotDefined) { s1 + Matrix[[0]] } o = Object.new def o.coerce(x) [1, 1] end assert_equal(2, s1 + o) end def test_scalar_sub s1 = @m1.coerce(1).first assert_equal(Matrix[[1]], (s1 - 0) * Matrix[[1]]) assert_raise(Matrix::ErrOperationNotDefined) { s1 - Vector[0] } assert_raise(Matrix::ErrOperationNotDefined) { s1 - Matrix[[0]] } o = Object.new def o.coerce(x) [1, 1] end assert_equal(0, s1 - o) end def test_scalar_mul s1 = @m1.coerce(1).first assert_equal(Matrix[[1]], (s1 * 1) * Matrix[[1]]) assert_equal(Vector[2], s1 * Vector[2]) assert_equal(Matrix[[2]], s1 * Matrix[[2]]) o = Object.new def o.coerce(x) [1, 1] end assert_equal(1, s1 * o) end def test_scalar_div s1 = @m1.coerce(1).first assert_equal(Matrix[[1]], (s1 / 1) * Matrix[[1]]) assert_raise(Matrix::ErrOperationNotDefined) { s1 / Vector[0] } assert_equal(Matrix[[Rational(1,2)]], s1 / Matrix[[2]]) o = Object.new def o.coerce(x) [1, 1] end assert_equal(1, s1 / o) end def test_scalar_pow s1 = @m1.coerce(1).first assert_equal(Matrix[[1]], (s1 ** 1) * Matrix[[1]]) assert_raise(Matrix::ErrOperationNotDefined) { s1 ** Vector[0] } assert_raise(Matrix::ErrOperationNotImplemented) { s1 ** Matrix[[1]] } o = Object.new def o.coerce(x) [1, 1] end assert_equal(1, s1 ** o) end def test_abs s1 = @a3.abs assert_equal(s1, Matrix[[4, 1, 3], [0, 3, 7], [11, 4, 2]]) end def test_hstack assert_equal Matrix[[1,2,3,2,3,4,1,2,3], [4,5,6,5,6,7,4,5,6]], @m1.hstack(@n1, @m1) # Error checking: assert_raise(TypeError) { @m1.hstack(42) } assert_raise(TypeError) { Matrix.hstack(42, @m1) } assert_raise(Matrix::ErrDimensionMismatch) { @m1.hstack(Matrix.identity(3)) } assert_raise(Matrix::ErrDimensionMismatch) { @e1.hstack(@e2) } # Corner cases: assert_equal @m1, @m1.hstack assert_equal @e1, @e1.hstack(@e1) assert_equal Matrix.empty(0,6), @e2.hstack(@e2) assert_equal SubMatrix, SubMatrix.hstack(@e1).class # From Vectors: assert_equal Matrix[[1, 3],[2, 4]], Matrix.hstack(Vector[1,2], Vector[3, 4]) end def test_vstack assert_equal Matrix[[1,2,3], [4,5,6], [2,3,4], [5,6,7], [1,2,3], [4,5,6]], @m1.vstack(@n1, @m1) # Error checking: assert_raise(TypeError) { @m1.vstack(42) } assert_raise(TypeError) { Matrix.vstack(42, @m1) } assert_raise(Matrix::ErrDimensionMismatch) { @m1.vstack(Matrix.identity(2)) } assert_raise(Matrix::ErrDimensionMismatch) { @e1.vstack(@e2) } # Corner cases: assert_equal @m1, @m1.vstack assert_equal Matrix.empty(4,0), @e1.vstack(@e1) assert_equal @e2, @e2.vstack(@e2) assert_equal SubMatrix, SubMatrix.vstack(@e1).class # From Vectors: assert_equal Matrix[[1],[2],[3]], Matrix.vstack(Vector[1,2], Vector[3]) end def test_combine x = Matrix[[6, 6], [4, 4]] y = Matrix[[1, 2], [3, 4]] assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y) {|a, b| a - b} assert_equal Matrix[[5, 4], [1, 0]], x.combine(y) {|a, b| a - b} # Without block assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y).each {|a, b| a - b} # With vectors assert_equal Matrix[[111], [222]], Matrix.combine(Matrix[[1], [2]], Vector[10,20], Vector[100,200], &:sum) # Basic checks assert_raise(Matrix::ErrDimensionMismatch) { @m1.combine(x) { raise } } # Edge cases assert_equal Matrix.empty, Matrix.combine{ raise } assert_equal Matrix.empty(3,0), Matrix.combine(Matrix.empty(3,0), Matrix.empty(3,0)) { raise } assert_equal Matrix.empty(0,3), Matrix.combine(Matrix.empty(0,3), Matrix.empty(0,3)) { raise } end def test_set_element src = Matrix[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], ] rows = { range: [1..2, 1...3, 1..-1, -2..2, 1.., 1..., -2.., -2...], int: [2, -1], invalid: [-4, 4, -4..2, 2..-4, 0...0, 2..0, -4..], } columns = { range: [2..3, 2...4, 2..-1, -2..3, 2.., 2..., -2..., -2..], int: [3, -1], invalid: [-5, 5, -5..2, 2..-5, 0...0, -5..], } values = { element: 42, matrix: Matrix[[20, 21], [22, 23]], vector: Vector[30, 31], row: Matrix[[60, 61]], column: Matrix[[50], [51]], mismatched_matrix: Matrix.identity(3), mismatched_vector: Vector[0, 1, 2, 3], } solutions = { [:int, :int] => { element: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 42]], }, [:range , :int] => { element: Matrix[[1, 2, 3, 4], [5, 6, 7, 42], [9, 10, 11, 42]], column: Matrix[[1, 2, 3, 4], [5, 6, 7, 50], [9, 10, 11, 51]], vector: Matrix[[1, 2, 3, 4], [5, 6, 7, 30], [9, 10, 11, 31]], }, [:int, :range] => { element: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 42, 42]], row: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 60, 61]], vector: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 30, 31]], }, [:range , :range] => { element: Matrix[[1, 2, 3, 4], [5, 6, 42, 42], [9, 10, 42, 42]], matrix: Matrix[[1, 2, 3, 4], [5, 6, 20, 21], [9, 10, 22, 23]], }, } solutions.default = Hash.new(IndexError) rows.each do |row_style, row_arguments| row_arguments.each do |row_argument| columns.each do |column_style, column_arguments| column_arguments.each do |column_argument| values.each do |value_type, value| expected = solutions[[row_style, column_style]][value_type] || Matrix::ErrDimensionMismatch result = src.clone begin result[row_argument, column_argument] = value assert_equal expected, result, "m[#{row_argument.inspect}][#{column_argument.inspect}] = #{value.inspect} failed" rescue Exception => e raise if e.class != expected end end end end end end end def test_map! m1 = Matrix.zero(2,2) m2 = Matrix.build(3,4){|row, col| 1} m3 = Matrix.zero(3,5).freeze m4 = Matrix.empty.freeze assert_equal Matrix[[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], m2.map!{|e| e * 5} assert_equal Matrix[[7, 0],[0, 7]], m1.map!(:diagonal){|e| e + 7} assert_equal Matrix[[7, 5],[5, 7]], m1.map!(:off_diagonal){|e| e + 5} assert_equal Matrix[[12, 5, 5, 5], [12, 12, 5, 5], [12, 12, 12, 5]], m2.map!(:lower){|e| e + 7} assert_equal Matrix[[12, 5, 5, 5], [0, 12, 5, 5], [0, 0, 12, 5]], m2.map!(:strict_lower){|e| e - 12} assert_equal Matrix[[12, 25, 25, 25], [0, 12, 25, 25], [0, 0, 12, 25]], m2.map!(:strict_upper){|e| e ** 2} assert_equal Matrix[[-12, -25, -25, -25], [0, -12, -25, -25], [0, 0, -12, -25]], m2.map!(:upper){|e| -e} assert_equal m1, m1.map!{|e| e ** 2 } assert_equal m2, m2.map!(:lower){ |e| e - 3 } assert_raise(ArgumentError) {m1.map!(:test){|e| e + 7}} assert_raise(FrozenError) { m3.map!{|e| e * 2} } assert_raise(FrozenError) { m4.map!{} } end def test_freeze m = Matrix[[1, 2, 3],[4, 5, 6]] f = m.freeze assert_equal true, f.frozen? assert m.equal?(f) assert m.equal?(f.freeze) assert_raise(FrozenError){ m[0, 1] = 56 } assert_equal m.dup, m end def test_clone a = Matrix[[4]] def a.foo 42 end m = a.clone m[0, 0] = 2 assert_equal a, m * 2 assert_equal 42, m.foo a.freeze m = a.clone assert m.frozen? assert_equal 42, m.foo end def test_dup a = Matrix[[4]] def a.foo 42 end a.freeze m = a.dup m[0, 0] = 2 assert_equal a, m * 2 assert !m.respond_to?(:foo) end def test_eigenvalues_and_eigenvectors_symmetric m = Matrix[ [8, 1], [1, 8] ] values = m.eigensystem.eigenvalues assert_in_epsilon(7.0, values[0]) assert_in_epsilon(9.0, values[1]) vectors = m.eigensystem.eigenvectors assert_in_epsilon(-vectors[0][0], vectors[0][1]) assert_in_epsilon(vectors[1][0], vectors[1][1]) end def test_eigenvalues_and_eigenvectors_nonsymmetric m = Matrix[ [8, 1], [4, 5] ] values = m.eigensystem.eigenvalues assert_in_epsilon(9.0, values[0]) assert_in_epsilon(4.0, values[1]) vectors = m.eigensystem.eigenvectors assert_in_epsilon(vectors[0][0], vectors[0][1]) assert_in_epsilon(-4 * vectors[1][0], vectors[1][1]) end def test_unitary? assert_equal true, @rot.unitary? assert_equal true, ((0+1i) * @rot).unitary? assert_equal false, @a3.unitary? assert_raise(Matrix::ErrDimensionMismatch) { @m1.unitary? } end def test_orthogonal assert_equal true, @rot.orthogonal? assert_equal false, ((0+1i) * @rot).orthogonal? assert_equal false, @a3.orthogonal? assert_raise(Matrix::ErrDimensionMismatch) { @m1.orthogonal? } end def test_adjoint assert_equal(Matrix[[(1-2i), 1], [(0-1i), 2], [0, 3]], @c1.adjoint) assert_equal(Matrix.empty(0,2), @e1.adjoint) end end