/* This is a public domain general purpose hash table package originally written by Peter Moore @ UCB. The hash table data structures were redesigned and the package was rewritten by Vladimir Makarov . */ /* The original package implemented classic bucket-based hash tables with entries doubly linked for an access by their insertion order. To decrease pointer chasing and as a consequence to improve a data locality the current implementation is based on storing entries in an array and using hash tables with open addressing. The current entries are more compact in comparison with the original ones and this also improves the data locality. The hash table has two arrays called *bins* and *entries*. bins: ------- | | entries array: |-------| -------------------------------- | index | | | entry: | | | |-------| | | | | | | ... | | ... | hash | ... | ... | |-------| | | key | | | | empty | | | record | | | |-------| -------------------------------- | ... | ^ ^ |-------| |_ entries start |_ entries bound |deleted| ------- o The entry array contains table entries in the same order as they were inserted. When the first entry is deleted, a variable containing index of the current first entry (*entries start*) is changed. In all other cases of the deletion, we just mark the entry as deleted by using a reserved hash value. Such organization of the entry storage makes operations of the table shift and the entries traversal very fast. o The bins provide access to the entries by their keys. The key hash is mapped to a bin containing *index* of the corresponding entry in the entry array. The bin array size is always power of two, it makes mapping very fast by using the corresponding lower bits of the hash. Generally it is not a good idea to ignore some part of the hash. But alternative approach is worse. For example, we could use a modulo operation for mapping and a prime number for the size of the bin array. Unfortunately, the modulo operation for big 64-bit numbers are extremely slow (it takes more than 100 cycles on modern Intel CPUs). Still other bits of the hash value are used when the mapping results in a collision. In this case we use a secondary hash value which is a result of a function of the collision bin index and the original hash value. The function choice guarantees that we can traverse all bins and finally find the corresponding bin as after several iterations the function becomes a full cycle linear congruential generator because it satisfies requirements of the Hull-Dobell theorem. When an entry is removed from the table besides marking the hash in the corresponding entry described above, we also mark the bin by a special value in order to find entries which had a collision with the removed entries. There are two reserved values for the bins. One denotes an empty bin, another one denotes a bin for a deleted entry. o The length of the bin array is at least two times more than the entry array length. This keeps the table load factor healthy. The trigger of rebuilding the table is always a case when we can not insert an entry anymore at the entries bound. We could change the entries bound too in case of deletion but than we need a special code to count bins with corresponding deleted entries and reset the bin values when there are too many bins corresponding deleted entries Table rebuilding is done by creation of a new entry array and bins of an appropriate size. We also try to reuse the arrays in some cases by compacting the array and removing deleted entries. o To save memory very small tables have no allocated arrays bins. We use a linear search for an access by a key. o To save more memory we use 8-, 16-, 32- and 64- bit indexes in bins depending on the current hash table size. o The implementation takes into account that the table can be rebuilt during hashing or comparison functions. It can happen if the functions are implemented in Ruby and a thread switch occurs during their execution. This implementation speeds up the Ruby hash table benchmarks in average by more 40% on Intel Haswell CPU. */ #ifdef NOT_RUBY #include "regint.h" #include "st.h" #else #include "internal.h" #include "internal/bits.h" #include "internal/hash.h" #include "internal/sanitizers.h" #endif #include #ifdef HAVE_STDLIB_H #include #endif #include #include #ifdef __GNUC__ #define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p) #define EXPECT(expr, val) __builtin_expect(expr, val) #define ATTRIBUTE_UNUSED __attribute__((unused)) #else #define PREFETCH(addr, write_p) #define EXPECT(expr, val) (expr) #define ATTRIBUTE_UNUSED #endif /* The type of hashes. */ typedef st_index_t st_hash_t; struct st_table_entry { st_hash_t hash; st_data_t key; st_data_t record; }; #define type_numhash st_hashtype_num static const struct st_hash_type st_hashtype_num = { st_numcmp, st_numhash, }; static int st_strcmp(st_data_t, st_data_t); static st_index_t strhash(st_data_t); static const struct st_hash_type type_strhash = { st_strcmp, strhash, }; static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs); static st_index_t strcasehash(st_data_t); static const struct st_hash_type type_strcasehash = { st_locale_insensitive_strcasecmp_i, strcasehash, }; /* Value used to catch uninitialized entries/bins during debugging. There is a possibility for a false alarm, but its probability is extremely small. */ #define ST_INIT_VAL 0xafafafafafafafaf #define ST_INIT_VAL_BYTE 0xafa #ifdef RUBY #undef malloc #undef realloc #undef calloc #undef free #define malloc ruby_xmalloc #define calloc ruby_xcalloc #define realloc ruby_xrealloc #define free ruby_xfree #endif #define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0) #define PTR_EQUAL(tab, ptr, hash_val, key_) \ ((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key)) /* As PRT_EQUAL only its result is returned in RES. REBUILT_P is set up to TRUE if the table is rebuilt during the comparison. */ #define DO_PTR_EQUAL_CHECK(tab, ptr, hash_val, key, res, rebuilt_p) \ do { \ unsigned int _old_rebuilds_num = (tab)->rebuilds_num; \ res = PTR_EQUAL(tab, ptr, hash_val, key); \ rebuilt_p = _old_rebuilds_num != (tab)->rebuilds_num; \ } while (FALSE) /* Features of a table. */ struct st_features { /* Power of 2 used for number of allocated entries. */ unsigned char entry_power; /* Power of 2 used for number of allocated bins. Depending on the table size, the number of bins is 2-4 times more than the number of entries. */ unsigned char bin_power; /* Enumeration of sizes of bins (8-bit, 16-bit etc). */ unsigned char size_ind; /* Bins are packed in words of type st_index_t. The following is a size of bins counted by words. */ st_index_t bins_words; }; /* Features of all possible size tables. */ #if SIZEOF_ST_INDEX_T == 8 #define MAX_POWER2 62 static const struct st_features features[] = { {0, 1, 0, 0x0}, {1, 2, 0, 0x1}, {2, 3, 0, 0x1}, {3, 4, 0, 0x2}, {4, 5, 0, 0x4}, {5, 6, 0, 0x8}, {6, 7, 0, 0x10}, {7, 8, 0, 0x20}, {8, 9, 1, 0x80}, {9, 10, 1, 0x100}, {10, 11, 1, 0x200}, {11, 12, 1, 0x400}, {12, 13, 1, 0x800}, {13, 14, 1, 0x1000}, {14, 15, 1, 0x2000}, {15, 16, 1, 0x4000}, {16, 17, 2, 0x10000}, {17, 18, 2, 0x20000}, {18, 19, 2, 0x40000}, {19, 20, 2, 0x80000}, {20, 21, 2, 0x100000}, {21, 22, 2, 0x200000}, {22, 23, 2, 0x400000}, {23, 24, 2, 0x800000}, {24, 25, 2, 0x1000000}, {25, 26, 2, 0x2000000}, {26, 27, 2, 0x4000000}, {27, 28, 2, 0x8000000}, {28, 29, 2, 0x10000000}, {29, 30, 2, 0x20000000}, {30, 31, 2, 0x40000000}, {31, 32, 2, 0x80000000}, {32, 33, 3, 0x200000000}, {33, 34, 3, 0x400000000}, {34, 35, 3, 0x800000000}, {35, 36, 3, 0x1000000000}, {36, 37, 3, 0x2000000000}, {37, 38, 3, 0x4000000000}, {38, 39, 3, 0x8000000000}, {39, 40, 3, 0x10000000000}, {40, 41, 3, 0x20000000000}, {41, 42, 3, 0x40000000000}, {42, 43, 3, 0x80000000000}, {43, 44, 3, 0x100000000000}, {44, 45, 3, 0x200000000000}, {45, 46, 3, 0x400000000000}, {46, 47, 3, 0x800000000000}, {47, 48, 3, 0x1000000000000}, {48, 49, 3, 0x2000000000000}, {49, 50, 3, 0x4000000000000}, {50, 51, 3, 0x8000000000000}, {51, 52, 3, 0x10000000000000}, {52, 53, 3, 0x20000000000000}, {53, 54, 3, 0x40000000000000}, {54, 55, 3, 0x80000000000000}, {55, 56, 3, 0x100000000000000}, {56, 57, 3, 0x200000000000000}, {57, 58, 3, 0x400000000000000}, {58, 59, 3, 0x800000000000000}, {59, 60, 3, 0x1000000000000000}, {60, 61, 3, 0x2000000000000000}, {61, 62, 3, 0x4000000000000000}, {62, 63, 3, 0x8000000000000000}, }; #else #define MAX_POWER2 30 static const struct st_features features[] = { {0, 1, 0, 0x1}, {1, 2, 0, 0x1}, {2, 3, 0, 0x2}, {3, 4, 0, 0x4}, {4, 5, 0, 0x8}, {5, 6, 0, 0x10}, {6, 7, 0, 0x20}, {7, 8, 0, 0x40}, {8, 9, 1, 0x100}, {9, 10, 1, 0x200}, {10, 11, 1, 0x400}, {11, 12, 1, 0x800}, {12, 13, 1, 0x1000}, {13, 14, 1, 0x2000}, {14, 15, 1, 0x4000}, {15, 16, 1, 0x8000}, {16, 17, 2, 0x20000}, {17, 18, 2, 0x40000}, {18, 19, 2, 0x80000}, {19, 20, 2, 0x100000}, {20, 21, 2, 0x200000}, {21, 22, 2, 0x400000}, {22, 23, 2, 0x800000}, {23, 24, 2, 0x1000000}, {24, 25, 2, 0x2000000}, {25, 26, 2, 0x4000000}, {26, 27, 2, 0x8000000}, {27, 28, 2, 0x10000000}, {28, 29, 2, 0x20000000}, {29, 30, 2, 0x40000000}, {30, 31, 2, 0x80000000}, }; #endif /* The reserved hash value and its substitution. */ #define RESERVED_HASH_VAL (~(st_hash_t) 0) #define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0) /* Return hash value of KEY for table TAB. */ static inline st_hash_t do_hash(st_data_t key, st_table *tab) { st_hash_t hash = (st_hash_t)(tab->type->hash)(key); /* RESERVED_HASH_VAL is used for a deleted entry. Map it into another value. Such mapping should be extremely rare. */ return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash; } /* Power of 2 defining the minimal number of allocated entries. */ #define MINIMAL_POWER2 2 #if MINIMAL_POWER2 < 2 #error "MINIMAL_POWER2 should be >= 2" #endif /* If the power2 of the allocated `entries` is less than the following value, don't allocate bins and use a linear search. */ #define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4 /* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE. */ static int get_power2(st_index_t size) { unsigned int n = ST_INDEX_BITS - nlz_intptr(size); if (n <= MAX_POWER2) return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n; #ifndef NOT_RUBY /* Ran out of the table entries */ rb_raise(rb_eRuntimeError, "st_table too big"); #endif /* should raise exception */ return -1; } /* Return value of N-th bin in array BINS of table with bins size index S. */ static inline st_index_t get_bin(st_index_t *bins, int s, st_index_t n) { return (s == 0 ? ((unsigned char *) bins)[n] : s == 1 ? ((unsigned short *) bins)[n] : s == 2 ? ((unsigned int *) bins)[n] : ((st_index_t *) bins)[n]); } /* Set up N-th bin in array BINS of table with bins size index S to value V. */ static inline void set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v) { if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v; else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v; else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v; else ((st_index_t *) bins)[n] = v; } /* These macros define reserved values for empty table bin and table bin which contains a deleted entry. We will never use such values for an entry index in bins. */ #define EMPTY_BIN 0 #define DELETED_BIN 1 /* Base of a real entry index in the bins. */ #define ENTRY_BASE 2 /* Mark I-th bin of table TAB as empty, in other words not corresponding to any entry. */ #define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN)) /* Values used for not found entry and bin with given characteristics. */ #define UNDEFINED_ENTRY_IND (~(st_index_t) 0) #define UNDEFINED_BIN_IND (~(st_index_t) 0) /* Entry and bin values returned when we found a table rebuild during the search. */ #define REBUILT_TABLE_ENTRY_IND (~(st_index_t) 1) #define REBUILT_TABLE_BIN_IND (~(st_index_t) 1) /* Mark I-th bin of table TAB as corresponding to a deleted table entry. Update number of entries in the table and number of bins corresponding to deleted entries. */ #define MARK_BIN_DELETED(tab, i) \ do { \ set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \ } while (0) /* Macros to check that value B is used empty bins and bins corresponding deleted entries. */ #define EMPTY_BIN_P(b) ((b) == EMPTY_BIN) #define DELETED_BIN_P(b) ((b) == DELETED_BIN) #define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN) /* Macros to check empty bins and bins corresponding to deleted entries. Bins are given by their index I in table TAB. */ #define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) #define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) #define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) /* Macros for marking and checking deleted entries given by their pointer E_PTR. */ #define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL) #define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL) /* Return bin size index of table TAB. */ static inline unsigned int get_size_ind(const st_table *tab) { return tab->size_ind; } /* Return the number of allocated bins of table TAB. */ static inline st_index_t get_bins_num(const st_table *tab) { return ((st_index_t) 1)<bin_power; } /* Return mask for a bin index in table TAB. */ static inline st_index_t bins_mask(const st_table *tab) { return get_bins_num(tab) - 1; } /* Return the index of table TAB bin corresponding to HASH_VALUE. */ static inline st_index_t hash_bin(st_hash_t hash_value, st_table *tab) { return hash_value & bins_mask(tab); } /* Return the number of allocated entries of table TAB. */ static inline st_index_t get_allocated_entries(const st_table *tab) { return ((st_index_t) 1)<entry_power; } /* Return size of the allocated bins of table TAB. */ static inline st_index_t bins_size(const st_table *tab) { return features[tab->entry_power].bins_words * sizeof (st_index_t); } /* Mark all bins of table TAB as empty. */ static void initialize_bins(st_table *tab) { memset(tab->bins, 0, bins_size(tab)); } /* Make table TAB empty. */ static void make_tab_empty(st_table *tab) { tab->num_entries = 0; tab->entries_start = tab->entries_bound = 0; if (tab->bins != NULL) initialize_bins(tab); } #ifdef HASH_LOG #ifdef HAVE_UNISTD_H #include #endif static struct { int all, total, num, str, strcase; } collision; /* Flag switching off output of package statistics at the end of program. */ static int init_st = 0; /* Output overall number of table searches and collisions into a temporary file. */ static void stat_col(void) { char fname[10+sizeof(long)*3]; FILE *f; if (!collision.total) return; f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w"); if (f == NULL) return; fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total, ((double)collision.all / (collision.total)) * 100); fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase); fclose(f); } #endif /* Create and return table with TYPE which can hold at least SIZE entries. The real number of entries which the table can hold is the nearest power of two for SIZE. */ st_table * st_init_table_with_size(const struct st_hash_type *type, st_index_t size) { st_table *tab; int n; #ifdef HASH_LOG #if HASH_LOG+0 < 0 { const char *e = getenv("ST_HASH_LOG"); if (!e || !*e) init_st = 1; } #endif if (init_st == 0) { init_st = 1; atexit(stat_col); } #endif n = get_power2(size); #ifndef RUBY if (n < 0) return NULL; #endif tab = (st_table *) malloc(sizeof (st_table)); #ifndef RUBY if (tab == NULL) return NULL; #endif tab->type = type; tab->entry_power = n; tab->bin_power = features[n].bin_power; tab->size_ind = features[n].size_ind; if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) tab->bins = NULL; else { tab->bins = (st_index_t *) malloc(bins_size(tab)); #ifndef RUBY if (tab->bins == NULL) { free(tab); return NULL; } #endif } tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab) * sizeof(st_table_entry)); #ifndef RUBY if (tab->entries == NULL) { st_free_table(tab); return NULL; } #endif make_tab_empty(tab); tab->rebuilds_num = 0; return tab; } /* Create and return table with TYPE which can hold a minimal number of entries (see comments for get_power2). */ st_table * st_init_table(const struct st_hash_type *type) { return st_init_table_with_size(type, 0); } /* Create and return table which can hold a minimal number of numbers. */ st_table * st_init_numtable(void) { return st_init_table(&type_numhash); } /* Create and return table which can hold SIZE numbers. */ st_table * st_init_numtable_with_size(st_index_t size) { return st_init_table_with_size(&type_numhash, size); } /* Create and return table which can hold a minimal number of strings. */ st_table * st_init_strtable(void) { return st_init_table(&type_strhash); } /* Create and return table which can hold SIZE strings. */ st_table * st_init_strtable_with_size(st_index_t size) { return st_init_table_with_size(&type_strhash, size); } /* Create and return table which can hold a minimal number of strings whose character case is ignored. */ st_table * st_init_strcasetable(void) { return st_init_table(&type_strcasehash); } /* Create and return table which can hold SIZE strings whose character case is ignored. */ st_table * st_init_strcasetable_with_size(st_index_t size) { return st_init_table_with_size(&type_strcasehash, size); } /* Make table TAB empty. */ void st_clear(st_table *tab) { make_tab_empty(tab); tab->rebuilds_num++; } /* Free table TAB space. */ void st_free_table(st_table *tab) { if (tab->bins != NULL) free(tab->bins); free(tab->entries); free(tab); } /* Return byte size of memory allocated for table TAB. */ size_t st_memsize(const st_table *tab) { return(sizeof(st_table) + (tab->bins == NULL ? 0 : bins_size(tab)) + get_allocated_entries(tab) * sizeof(st_table_entry)); } static st_index_t find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key); static st_index_t find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key); static st_index_t find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key); static st_index_t find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value, st_data_t key, st_index_t *bin_ind); #ifdef HASH_LOG static void count_collision(const struct st_hash_type *type) { collision.all++; if (type == &type_numhash) { collision.num++; } else if (type == &type_strhash) { collision.strcase++; } else if (type == &type_strcasehash) { collision.str++; } } #define COLLISION (collision_check ? count_collision(tab->type) : (void)0) #define FOUND_BIN (collision_check ? collision.total++ : (void)0) #define collision_check 0 #else #define COLLISION #define FOUND_BIN #endif /* If the number of entries in the table is at least REBUILD_THRESHOLD times less than the entry array length, decrease the table size. */ #define REBUILD_THRESHOLD 4 #if REBUILD_THRESHOLD < 2 #error "REBUILD_THRESHOLD should be >= 2" #endif /* Rebuild table TAB. Rebuilding removes all deleted bins and entries and can change size of the table entries and bins arrays. Rebuilding is implemented by creation of a new table or by compaction of the existing one. */ static void rebuild_table(st_table *tab) { st_index_t i, ni, bound; unsigned int size_ind; st_table *new_tab; st_table_entry *entries, *new_entries; st_table_entry *curr_entry_ptr; st_index_t *bins; st_index_t bin_ind; bound = tab->entries_bound; entries = tab->entries; if ((2 * tab->num_entries <= get_allocated_entries(tab) && REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab)) || tab->num_entries < (1 << MINIMAL_POWER2)) { /* Compaction: */ tab->num_entries = 0; if (tab->bins != NULL) initialize_bins(tab); new_tab = tab; new_entries = entries; } else { new_tab = st_init_table_with_size(tab->type, 2 * tab->num_entries - 1); new_entries = new_tab->entries; } ni = 0; bins = new_tab->bins; size_ind = get_size_ind(new_tab); for (i = tab->entries_start; i < bound; i++) { curr_entry_ptr = &entries[i]; PREFETCH(entries + i + 1, 0); if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0)) continue; if (&new_entries[ni] != curr_entry_ptr) new_entries[ni] = *curr_entry_ptr; if (EXPECT(bins != NULL, 1)) { bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash, curr_entry_ptr->key); set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE); } new_tab->num_entries++; ni++; } if (new_tab != tab) { tab->entry_power = new_tab->entry_power; tab->bin_power = new_tab->bin_power; tab->size_ind = new_tab->size_ind; if (tab->bins != NULL) free(tab->bins); tab->bins = new_tab->bins; free(tab->entries); tab->entries = new_tab->entries; free(new_tab); } tab->entries_start = 0; tab->entries_bound = tab->num_entries; tab->rebuilds_num++; } /* Return the next secondary hash index for table TAB using previous index IND and PERTERB. Finally modulo of the function becomes a full *cycle linear congruential generator*, in other words it guarantees traversing all table bins in extreme case. According the Hull-Dobell theorem a generator "Xnext = (a*Xprev + c) mod m" is a full cycle generator iff o m and c are relatively prime o a-1 is divisible by all prime factors of m o a-1 is divisible by 4 if m is divisible by 4. For our case a is 5, c is 1, and m is a power of two. */ static inline st_index_t secondary_hash(st_index_t ind, st_table *tab, st_index_t *perterb) { *perterb >>= 11; ind = (ind << 2) + ind + *perterb + 1; return hash_bin(ind, tab); } /* Find an entry with HASH_VALUE and KEY in TABLE using a linear search. Return the index of the found entry in array `entries`. If it is not found, return UNDEFINED_ENTRY_IND. If the table was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */ static inline st_index_t find_entry(st_table *tab, st_hash_t hash_value, st_data_t key) { int eq_p, rebuilt_p; st_index_t i, bound; st_table_entry *entries; bound = tab->entries_bound; entries = tab->entries; for (i = tab->entries_start; i < bound; i++) { DO_PTR_EQUAL_CHECK(tab, &entries[i], hash_value, key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return REBUILT_TABLE_ENTRY_IND; if (eq_p) return i; } return UNDEFINED_ENTRY_IND; } /* Use the quadratic probing. The method has a better data locality but more collisions than the current approach. In average it results in a bit slower search. */ /*#define QUADRATIC_PROBE*/ /* Return index of entry with HASH_VALUE and KEY in table TAB. If there is no such entry, return UNDEFINED_ENTRY_IND. If the table was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */ static st_index_t find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key) { int eq_p, rebuilt_p; st_index_t ind; #ifdef QUADRATIC_PROBE st_index_t d; #else st_index_t peterb; #endif st_index_t bin; st_table_entry *entries = tab->entries; ind = hash_bin(hash_value, tab); #ifdef QUADRATIC_PROBE d = 1; #else peterb = hash_value; #endif FOUND_BIN; for (;;) { bin = get_bin(tab->bins, get_size_ind(tab), ind); if (! EMPTY_OR_DELETED_BIN_P(bin)) { DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return REBUILT_TABLE_ENTRY_IND; if (eq_p) break; } else if (EMPTY_BIN_P(bin)) return UNDEFINED_ENTRY_IND; #ifdef QUADRATIC_PROBE ind = hash_bin(ind + d, tab); d++; #else ind = secondary_hash(ind, tab, &peterb); #endif COLLISION; } return bin; } /* Find and return index of table TAB bin corresponding to an entry with HASH_VALUE and KEY. If there is no such bin, return UNDEFINED_BIN_IND. If the table was rebuilt during the search, return REBUILT_TABLE_BIN_IND. */ static st_index_t find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key) { int eq_p, rebuilt_p; st_index_t ind; #ifdef QUADRATIC_PROBE st_index_t d; #else st_index_t peterb; #endif st_index_t bin; st_table_entry *entries = tab->entries; ind = hash_bin(hash_value, tab); #ifdef QUADRATIC_PROBE d = 1; #else peterb = hash_value; #endif FOUND_BIN; for (;;) { bin = get_bin(tab->bins, get_size_ind(tab), ind); if (! EMPTY_OR_DELETED_BIN_P(bin)) { DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return REBUILT_TABLE_BIN_IND; if (eq_p) break; } else if (EMPTY_BIN_P(bin)) return UNDEFINED_BIN_IND; #ifdef QUADRATIC_PROBE ind = hash_bin(ind + d, tab); d++; #else ind = secondary_hash(ind, tab, &peterb); #endif COLLISION; } return ind; } /* Find and return index of table TAB bin corresponding to an entry with HASH_VALUE and KEY. The entry should be in the table already. */ static st_index_t find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key) { st_index_t ind; #ifdef QUADRATIC_PROBE st_index_t d; #else st_index_t peterb; #endif st_index_t bin; ind = hash_bin(hash_value, tab); #ifdef QUADRATIC_PROBE d = 1; #else peterb = hash_value; #endif FOUND_BIN; for (;;) { bin = get_bin(tab->bins, get_size_ind(tab), ind); if (EMPTY_OR_DELETED_BIN_P(bin)) return ind; #ifdef QUADRATIC_PROBE ind = hash_bin(ind + d, tab); d++; #else ind = secondary_hash(ind, tab, &peterb); #endif COLLISION; } } /* Return index of table TAB bin for HASH_VALUE and KEY through BIN_IND and the pointed value as the function result. Reserve the bin for inclusion of the corresponding entry into the table if it is not there yet. We always find such bin as bins array length is bigger entries array. Although we can reuse a deleted bin, the result bin value is always empty if the table has no entry with KEY. Return the entries array index of the found entry or UNDEFINED_ENTRY_IND if it is not found. If the table was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */ static st_index_t find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value, st_data_t key, st_index_t *bin_ind) { int eq_p, rebuilt_p; st_index_t ind; st_hash_t curr_hash_value = *hash_value; #ifdef QUADRATIC_PROBE st_index_t d; #else st_index_t peterb; #endif st_index_t entry_index; st_index_t first_deleted_bin_ind; st_table_entry *entries; ind = hash_bin(curr_hash_value, tab); #ifdef QUADRATIC_PROBE d = 1; #else peterb = curr_hash_value; #endif FOUND_BIN; first_deleted_bin_ind = UNDEFINED_BIN_IND; entries = tab->entries; for (;;) { entry_index = get_bin(tab->bins, get_size_ind(tab), ind); if (EMPTY_BIN_P(entry_index)) { tab->num_entries++; entry_index = UNDEFINED_ENTRY_IND; if (first_deleted_bin_ind != UNDEFINED_BIN_IND) { /* We can reuse bin of a deleted entry. */ ind = first_deleted_bin_ind; MARK_BIN_EMPTY(tab, ind); } break; } else if (! DELETED_BIN_P(entry_index)) { DO_PTR_EQUAL_CHECK(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return REBUILT_TABLE_ENTRY_IND; if (eq_p) break; } else if (first_deleted_bin_ind == UNDEFINED_BIN_IND) first_deleted_bin_ind = ind; #ifdef QUADRATIC_PROBE ind = hash_bin(ind + d, tab); d++; #else ind = secondary_hash(ind, tab, &peterb); #endif COLLISION; } *bin_ind = ind; return entry_index; } /* Find an entry with KEY in table TAB. Return non-zero if we found it. Set up *RECORD to the found entry record. */ int st_lookup(st_table *tab, st_data_t key, st_data_t *value) { st_index_t bin; st_hash_t hash = do_hash(key, tab); retry: if (tab->bins == NULL) { bin = find_entry(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; if (bin == UNDEFINED_ENTRY_IND) return 0; } else { bin = find_table_entry_ind(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; if (bin == UNDEFINED_ENTRY_IND) return 0; bin -= ENTRY_BASE; } if (value != 0) *value = tab->entries[bin].record; return 1; } /* Find an entry with KEY in table TAB. Return non-zero if we found it. Set up *RESULT to the found table entry key. */ int st_get_key(st_table *tab, st_data_t key, st_data_t *result) { st_index_t bin; st_hash_t hash = do_hash(key, tab); retry: if (tab->bins == NULL) { bin = find_entry(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; if (bin == UNDEFINED_ENTRY_IND) return 0; } else { bin = find_table_entry_ind(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; if (bin == UNDEFINED_ENTRY_IND) return 0; bin -= ENTRY_BASE; } if (result != 0) *result = tab->entries[bin].key; return 1; } /* Check the table and rebuild it if it is necessary. */ static inline void rebuild_table_if_necessary (st_table *tab) { st_index_t bound = tab->entries_bound; if (bound == get_allocated_entries(tab)) rebuild_table(tab); } /* Insert (KEY, VALUE) into table TAB and return zero. If there is already entry with KEY in the table, return nonzero and update the value of the found entry. */ int st_insert(st_table *tab, st_data_t key, st_data_t value) { st_table_entry *entry; st_index_t bin; st_index_t ind; st_hash_t hash_value; st_index_t bin_ind; int new_p; hash_value = do_hash(key, tab); retry: rebuild_table_if_necessary(tab); if (tab->bins == NULL) { bin = find_entry(tab, hash_value, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; new_p = bin == UNDEFINED_ENTRY_IND; if (new_p) tab->num_entries++; bin_ind = UNDEFINED_BIN_IND; } else { bin = find_table_bin_ptr_and_reserve(tab, &hash_value, key, &bin_ind); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; new_p = bin == UNDEFINED_ENTRY_IND; bin -= ENTRY_BASE; } if (new_p) { ind = tab->entries_bound++; entry = &tab->entries[ind]; entry->hash = hash_value; entry->key = key; entry->record = value; if (bin_ind != UNDEFINED_BIN_IND) set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); return 0; } tab->entries[bin].record = value; return 1; } /* Insert (KEY, VALUE, HASH) into table TAB. The table should not have entry with KEY before the insertion. */ static inline void st_add_direct_with_hash(st_table *tab, st_data_t key, st_data_t value, st_hash_t hash) { st_table_entry *entry; st_index_t ind; st_index_t bin_ind; rebuild_table_if_necessary(tab); ind = tab->entries_bound++; entry = &tab->entries[ind]; entry->hash = hash; entry->key = key; entry->record = value; tab->num_entries++; if (tab->bins != NULL) { bin_ind = find_table_bin_ind_direct(tab, hash, key); set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); } } /* Insert (KEY, VALUE) into table TAB. The table should not have entry with KEY before the insertion. */ void st_add_direct(st_table *tab, st_data_t key, st_data_t value) { st_hash_t hash_value; hash_value = do_hash(key, tab); st_add_direct_with_hash(tab, key, value, hash_value); } /* Insert (FUNC(KEY), VALUE) into table TAB and return zero. If there is already entry with KEY in the table, return nonzero and update the value of the found entry. */ int st_insert2(st_table *tab, st_data_t key, st_data_t value, st_data_t (*func)(st_data_t)) { st_table_entry *entry; st_index_t bin; st_index_t ind; st_hash_t hash_value; st_index_t bin_ind; int new_p; hash_value = do_hash(key, tab); retry: rebuild_table_if_necessary (tab); if (tab->bins == NULL) { bin = find_entry(tab, hash_value, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; new_p = bin == UNDEFINED_ENTRY_IND; if (new_p) tab->num_entries++; bin_ind = UNDEFINED_BIN_IND; } else { bin = find_table_bin_ptr_and_reserve(tab, &hash_value, key, &bin_ind); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; new_p = bin == UNDEFINED_ENTRY_IND; bin -= ENTRY_BASE; } if (new_p) { key = (*func)(key); ind = tab->entries_bound++; entry = &tab->entries[ind]; entry->hash = hash_value; entry->key = key; entry->record = value; if (bin_ind != UNDEFINED_BIN_IND) set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); return 0; } tab->entries[bin].record = value; return 1; } /* Create and return a copy of table OLD_TAB. */ st_table * st_copy(st_table *old_tab) { st_table *new_tab; new_tab = (st_table *) malloc(sizeof(st_table)); #ifndef RUBY if (new_tab == NULL) return NULL; #endif *new_tab = *old_tab; if (old_tab->bins == NULL) new_tab->bins = NULL; else { new_tab->bins = (st_index_t *) malloc(bins_size(old_tab)); #ifndef RUBY if (new_tab->bins == NULL) { free(new_tab); return NULL; } #endif } new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab) * sizeof(st_table_entry)); #ifndef RUBY if (new_tab->entries == NULL) { st_free_table(new_tab); return NULL; } #endif MEMCPY(new_tab->entries, old_tab->entries, st_table_entry, get_allocated_entries(old_tab)); if (old_tab->bins != NULL) MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab)); return new_tab; } /* Update the entries start of table TAB after removing an entry with index N in the array entries. */ static inline void update_range_for_deleted(st_table *tab, st_index_t n) { /* Do not update entries_bound here. Otherwise, we can fill all bins by deleted entry value before rebuilding the table. */ if (tab->entries_start == n) tab->entries_start = n + 1; } /* Delete entry with KEY from table TAB, set up *VALUE (unless VALUE is zero) from deleted table entry, and return non-zero. If there is no entry with KEY in the table, clear *VALUE (unless VALUE is zero), and return zero. */ static int st_general_delete(st_table *tab, st_data_t *key, st_data_t *value) { st_table_entry *entry; st_index_t bin; st_index_t bin_ind; st_hash_t hash; hash = do_hash(*key, tab); retry: if (tab->bins == NULL) { bin = find_entry(tab, hash, *key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; if (bin == UNDEFINED_ENTRY_IND) { if (value != 0) *value = 0; return 0; } } else { bin_ind = find_table_bin_ind(tab, hash, *key); if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) goto retry; if (bin_ind == UNDEFINED_BIN_IND) { if (value != 0) *value = 0; return 0; } bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; MARK_BIN_DELETED(tab, bin_ind); } entry = &tab->entries[bin]; *key = entry->key; if (value != 0) *value = entry->record; MARK_ENTRY_DELETED(entry); tab->num_entries--; update_range_for_deleted(tab, bin); return 1; } int st_delete(st_table *tab, st_data_t *key, st_data_t *value) { return st_general_delete(tab, key, value); } /* The function and other functions with suffix '_safe' or '_check' are originated from the previous implementation of the hash tables. It was necessary for correct deleting entries during traversing tables. The current implementation permits deletion during traversing without a specific way to do this. */ int st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value, st_data_t never ATTRIBUTE_UNUSED) { return st_general_delete(tab, key, value); } /* If table TAB is empty, clear *VALUE (unless VALUE is zero), and return zero. Otherwise, remove the first entry in the table. Return its key through KEY and its record through VALUE (unless VALUE is zero). */ int st_shift(st_table *tab, st_data_t *key, st_data_t *value) { st_index_t i, bound; st_index_t bin; st_table_entry *entries, *curr_entry_ptr; st_index_t bin_ind; entries = tab->entries; bound = tab->entries_bound; for (i = tab->entries_start; i < bound; i++) { curr_entry_ptr = &entries[i]; if (! DELETED_ENTRY_P(curr_entry_ptr)) { st_hash_t entry_hash = curr_entry_ptr->hash; st_data_t entry_key = curr_entry_ptr->key; if (value != 0) *value = curr_entry_ptr->record; *key = entry_key; retry: if (tab->bins == NULL) { bin = find_entry(tab, entry_hash, entry_key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) { entries = tab->entries; goto retry; } curr_entry_ptr = &entries[bin]; } else { bin_ind = find_table_bin_ind(tab, entry_hash, entry_key); if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) { entries = tab->entries; goto retry; } curr_entry_ptr = &entries[get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE]; MARK_BIN_DELETED(tab, bin_ind); } MARK_ENTRY_DELETED(curr_entry_ptr); tab->num_entries--; update_range_for_deleted(tab, i); return 1; } } tab->entries_start = tab->entries_bound = 0; if (value != 0) *value = 0; return 0; } /* See comments for function st_delete_safe. */ void st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED, st_data_t never ATTRIBUTE_UNUSED) { } /* Find entry with KEY in table TAB, call FUNC with pointers to copies of the key and the value of the found entry, and non-zero as the 3rd argument. If the entry is not found, call FUNC with a pointer to KEY, a pointer to zero, and a zero argument. If the call returns ST_CONTINUE, the table will have an entry with key and value returned by FUNC through the 1st and 2nd parameters. If the call of FUNC returns ST_DELETE, the table will not have entry with KEY. The function returns flag of that the entry with KEY was in the table before the call. */ int st_update(st_table *tab, st_data_t key, st_update_callback_func *func, st_data_t arg) { st_table_entry *entry = NULL; /* to avoid uninitialized value warning */ st_index_t bin = 0; /* Ditto */ st_table_entry *entries; st_index_t bin_ind; st_data_t value = 0, old_key; int retval, existing; st_hash_t hash = do_hash(key, tab); retry: entries = tab->entries; if (tab->bins == NULL) { bin = find_entry(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; existing = bin != UNDEFINED_ENTRY_IND; entry = &entries[bin]; bin_ind = UNDEFINED_BIN_IND; } else { bin_ind = find_table_bin_ind(tab, hash, key); if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) goto retry; existing = bin_ind != UNDEFINED_BIN_IND; if (existing) { bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; entry = &entries[bin]; } } if (existing) { key = entry->key; value = entry->record; } old_key = key; retval = (*func)(&key, &value, arg, existing); switch (retval) { case ST_CONTINUE: if (! existing) { st_add_direct_with_hash(tab, key, value, hash); break; } if (old_key != key) { entry->key = key; } entry->record = value; break; case ST_DELETE: if (existing) { if (bin_ind != UNDEFINED_BIN_IND) MARK_BIN_DELETED(tab, bin_ind); MARK_ENTRY_DELETED(entry); tab->num_entries--; update_range_for_deleted(tab, bin); } break; } return existing; } /* Traverse all entries in table TAB calling FUNC with current entry key and value and zero. If the call returns ST_STOP, stop traversing. If the call returns ST_DELETE, delete the current entry from the table. In case of ST_CHECK or ST_CONTINUE, continue traversing. The function returns zero unless an error is found. CHECK_P is flag of st_foreach_check call. The behavior is a bit different for ST_CHECK and when the current element is removed during traversing. */ static inline int st_general_foreach(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg, int check_p) { st_index_t bin; st_index_t bin_ind; st_table_entry *entries, *curr_entry_ptr; enum st_retval retval; st_index_t i, rebuilds_num; st_hash_t hash; st_data_t key; int error_p, packed_p = tab->bins == NULL; entries = tab->entries; /* The bound can change inside the loop even without rebuilding the table, e.g. by an entry insertion. */ for (i = tab->entries_start; i < tab->entries_bound; i++) { curr_entry_ptr = &entries[i]; if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0)) continue; key = curr_entry_ptr->key; rebuilds_num = tab->rebuilds_num; hash = curr_entry_ptr->hash; retval = (*func)(key, curr_entry_ptr->record, arg, 0); if (retval == ST_REPLACE && replace) { st_data_t value; value = curr_entry_ptr->record; retval = (*replace)(&key, &value, arg, TRUE); curr_entry_ptr->key = key; curr_entry_ptr->record = value; } if (rebuilds_num != tab->rebuilds_num) { retry: entries = tab->entries; packed_p = tab->bins == NULL; if (packed_p) { i = find_entry(tab, hash, key); if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; error_p = i == UNDEFINED_ENTRY_IND; } else { i = find_table_entry_ind(tab, hash, key); if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0)) goto retry; error_p = i == UNDEFINED_ENTRY_IND; i -= ENTRY_BASE; } if (error_p && check_p) { /* call func with error notice */ retval = (*func)(0, 0, arg, 1); return 1; } curr_entry_ptr = &entries[i]; } switch (retval) { case ST_REPLACE: break; case ST_CONTINUE: break; case ST_CHECK: if (check_p) break; case ST_STOP: return 0; case ST_DELETE: { st_data_t key = curr_entry_ptr->key; again: if (packed_p) { bin = find_entry(tab, hash, key); if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) goto again; if (bin == UNDEFINED_ENTRY_IND) break; } else { bin_ind = find_table_bin_ind(tab, hash, key); if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) goto again; if (bin_ind == UNDEFINED_BIN_IND) break; bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; MARK_BIN_DELETED(tab, bin_ind); } curr_entry_ptr = &entries[bin]; MARK_ENTRY_DELETED(curr_entry_ptr); tab->num_entries--; update_range_for_deleted(tab, bin); break; } } } return 0; } int st_foreach_with_replace(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { return st_general_foreach(tab, func, replace, arg, TRUE); } struct functor { st_foreach_callback_func *func; st_data_t arg; }; static int apply_functor(st_data_t k, st_data_t v, st_data_t d, int _) { const struct functor *f = (void *)d; return f->func(k, v, f->arg); } int st_foreach(st_table *tab, st_foreach_callback_func *func, st_data_t arg) { const struct functor f = { func, arg }; return st_general_foreach(tab, apply_functor, 0, (st_data_t)&f, FALSE); } /* See comments for function st_delete_safe. */ int st_foreach_check(st_table *tab, st_foreach_check_callback_func *func, st_data_t arg, st_data_t never ATTRIBUTE_UNUSED) { return st_general_foreach(tab, func, 0, arg, TRUE); } /* Set up array KEYS by at most SIZE keys of head table TAB entries. Return the number of keys set up in array KEYS. */ static inline st_index_t st_general_keys(st_table *tab, st_data_t *keys, st_index_t size) { st_index_t i, bound; st_data_t key, *keys_start, *keys_end; st_table_entry *curr_entry_ptr, *entries = tab->entries; bound = tab->entries_bound; keys_start = keys; keys_end = keys + size; for (i = tab->entries_start; i < bound; i++) { if (keys == keys_end) break; curr_entry_ptr = &entries[i]; key = curr_entry_ptr->key; if (! DELETED_ENTRY_P(curr_entry_ptr)) *keys++ = key; } return keys - keys_start; } st_index_t st_keys(st_table *tab, st_data_t *keys, st_index_t size) { return st_general_keys(tab, keys, size); } /* See comments for function st_delete_safe. */ st_index_t st_keys_check(st_table *tab, st_data_t *keys, st_index_t size, st_data_t never ATTRIBUTE_UNUSED) { return st_general_keys(tab, keys, size); } /* Set up array VALUES by at most SIZE values of head table TAB entries. Return the number of values set up in array VALUES. */ static inline st_index_t st_general_values(st_table *tab, st_data_t *values, st_index_t size) { st_index_t i, bound; st_data_t *values_start, *values_end; st_table_entry *curr_entry_ptr, *entries = tab->entries; values_start = values; values_end = values + size; bound = tab->entries_bound; for (i = tab->entries_start; i < bound; i++) { if (values == values_end) break; curr_entry_ptr = &entries[i]; if (! DELETED_ENTRY_P(curr_entry_ptr)) *values++ = curr_entry_ptr->record; } return values - values_start; } st_index_t st_values(st_table *tab, st_data_t *values, st_index_t size) { return st_general_values(tab, values, size); } /* See comments for function st_delete_safe. */ st_index_t st_values_check(st_table *tab, st_data_t *values, st_index_t size, st_data_t never ATTRIBUTE_UNUSED) { return st_general_values(tab, values, size); } #define FNV1_32A_INIT 0x811c9dc5 /* * 32 bit magic FNV-1a prime */ #define FNV_32_PRIME 0x01000193 #ifndef UNALIGNED_WORD_ACCESS # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \ defined(__powerpc64__) || defined(__aarch64__) || \ defined(__mc68020__) # define UNALIGNED_WORD_ACCESS 1 # endif #endif #ifndef UNALIGNED_WORD_ACCESS # define UNALIGNED_WORD_ACCESS 0 #endif /* This hash function is quite simplified MurmurHash3 * Simplification is legal, cause most of magic still happens in finalizator. * And finalizator is almost the same as in MurmurHash3 */ #define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y)) #define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n))) #if ST_INDEX_BITS <= 32 #define C1 (st_index_t)0xcc9e2d51 #define C2 (st_index_t)0x1b873593 #else #define C1 BIG_CONSTANT(0x87c37b91,0x114253d5); #define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f); #endif NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_step(st_index_t h, st_index_t k)); NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_finish(st_index_t h)); NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash(const void *ptr, size_t len, st_index_t h)); static inline st_index_t murmur_step(st_index_t h, st_index_t k) { #if ST_INDEX_BITS <= 32 #define r1 (17) #define r2 (11) #else #define r1 (33) #define r2 (24) #endif k *= C1; h ^= ROTL(k, r1); h *= C2; h = ROTL(h, r2); return h; } #undef r1 #undef r2 static inline st_index_t murmur_finish(st_index_t h) { #if ST_INDEX_BITS <= 32 #define r1 (16) #define r2 (13) #define r3 (16) const st_index_t c1 = 0x85ebca6b; const st_index_t c2 = 0xc2b2ae35; #else /* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */ #define r1 (30) #define r2 (27) #define r3 (31) const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9); const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb); #endif #if ST_INDEX_BITS > 64 h ^= h >> 64; h *= c2; h ^= h >> 65; #endif h ^= h >> r1; h *= c1; h ^= h >> r2; h *= c2; h ^= h >> r3; return h; } #undef r1 #undef r2 #undef r3 st_index_t st_hash(const void *ptr, size_t len, st_index_t h) { const char *data = ptr; st_index_t t = 0; size_t l = len; #define data_at(n) (st_index_t)((unsigned char)data[(n)]) #define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0) #if SIZEOF_ST_INDEX_T > 4 #define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4 #if SIZEOF_ST_INDEX_T > 8 #define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \ UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8 #define UNALIGNED_ADD_ALL UNALIGNED_ADD_16 #endif #define UNALIGNED_ADD_ALL UNALIGNED_ADD_8 #else #define UNALIGNED_ADD_ALL UNALIGNED_ADD_4 #endif #undef SKIP_TAIL if (len >= sizeof(st_index_t)) { #if !UNALIGNED_WORD_ACCESS int align = (int)((st_data_t)data % sizeof(st_index_t)); if (align) { st_index_t d = 0; int sl, sr, pack; switch (align) { #ifdef WORDS_BIGENDIAN # define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \ t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2) #else # define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \ t |= data_at(n) << CHAR_BIT*(n) #endif UNALIGNED_ADD_ALL; #undef UNALIGNED_ADD } #ifdef WORDS_BIGENDIAN t >>= (CHAR_BIT * align) - CHAR_BIT; #else t <<= (CHAR_BIT * align); #endif data += sizeof(st_index_t)-align; len -= sizeof(st_index_t)-align; sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align); sr = CHAR_BIT * align; while (len >= sizeof(st_index_t)) { d = *(st_index_t *)data; #ifdef WORDS_BIGENDIAN t = (t << sr) | (d >> sl); #else t = (t >> sr) | (d << sl); #endif h = murmur_step(h, t); t = d; data += sizeof(st_index_t); len -= sizeof(st_index_t); } pack = len < (size_t)align ? (int)len : align; d = 0; switch (pack) { #ifdef WORDS_BIGENDIAN # define UNALIGNED_ADD(n) case (n) + 1: \ d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1) #else # define UNALIGNED_ADD(n) case (n) + 1: \ d |= data_at(n) << CHAR_BIT*(n) #endif UNALIGNED_ADD_ALL; #undef UNALIGNED_ADD } #ifdef WORDS_BIGENDIAN t = (t << sr) | (d >> sl); #else t = (t >> sr) | (d << sl); #endif if (len < (size_t)align) goto skip_tail; # define SKIP_TAIL 1 h = murmur_step(h, t); data += pack; len -= pack; } else #endif #ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED #define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t)) #else #define aligned_data data #endif { do { h = murmur_step(h, *(st_index_t *)aligned_data); data += sizeof(st_index_t); len -= sizeof(st_index_t); } while (len >= sizeof(st_index_t)); } } t = 0; switch (len) { #if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8 /* in this case byteorder doesn't really matter */ #if SIZEOF_ST_INDEX_T > 4 case 7: t |= data_at(6) << 48; case 6: t |= data_at(5) << 40; case 5: t |= data_at(4) << 32; case 4: t |= (st_index_t)*(uint32_t*)aligned_data; goto skip_tail; # define SKIP_TAIL 1 #endif case 3: t |= data_at(2) << 16; case 2: t |= data_at(1) << 8; case 1: t |= data_at(0); #else #ifdef WORDS_BIGENDIAN # define UNALIGNED_ADD(n) case (n) + 1: \ t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1) #else # define UNALIGNED_ADD(n) case (n) + 1: \ t |= data_at(n) << CHAR_BIT*(n) #endif UNALIGNED_ADD_ALL; #undef UNALIGNED_ADD #endif #ifdef SKIP_TAIL skip_tail: #endif h ^= t; h -= ROTL(t, 7); h *= C2; } h ^= l; #undef aligned_data return murmur_finish(h); } st_index_t st_hash_uint32(st_index_t h, uint32_t i) { return murmur_step(h, i); } NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash_uint(st_index_t h, st_index_t i)); st_index_t st_hash_uint(st_index_t h, st_index_t i) { i += h; /* no matter if it is BigEndian or LittleEndian, * we hash just integers */ #if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8 h = murmur_step(h, i >> 8*8); #endif h = murmur_step(h, i); return h; } st_index_t st_hash_end(st_index_t h) { h = murmur_finish(h); return h; } #undef st_hash_start st_index_t rb_st_hash_start(st_index_t h) { return h; } static st_index_t strhash(st_data_t arg) { register const char *string = (const char *)arg; return st_hash(string, strlen(string), FNV1_32A_INIT); } int st_locale_insensitive_strcasecmp(const char *s1, const char *s2) { char c1, c2; while (1) { c1 = *s1++; c2 = *s2++; if (c1 == '\0' || c2 == '\0') { if (c1 != '\0') return 1; if (c2 != '\0') return -1; return 0; } if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A'; if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A'; if (c1 != c2) { if (c1 > c2) return 1; else return -1; } } } int st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n) { char c1, c2; size_t i; for (i = 0; i < n; i++) { c1 = *s1++; c2 = *s2++; if (c1 == '\0' || c2 == '\0') { if (c1 != '\0') return 1; if (c2 != '\0') return -1; return 0; } if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A'; if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A'; if (c1 != c2) { if (c1 > c2) return 1; else return -1; } } return 0; } static int st_strcmp(st_data_t lhs, st_data_t rhs) { const char *s1 = (char *)lhs; const char *s2 = (char *)rhs; return strcmp(s1, s2); } static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs) { const char *s1 = (char *)lhs; const char *s2 = (char *)rhs; return st_locale_insensitive_strcasecmp(s1, s2); } NO_SANITIZE("unsigned-integer-overflow", PUREFUNC(static st_index_t strcasehash(st_data_t))); static st_index_t strcasehash(st_data_t arg) { register const char *string = (const char *)arg; register st_index_t hval = FNV1_32A_INIT; /* * FNV-1a hash each octet in the buffer */ while (*string) { unsigned int c = (unsigned char)*string++; if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A'; hval ^= c; /* multiply by the 32 bit FNV magic prime mod 2^32 */ hval *= FNV_32_PRIME; } return hval; } int st_numcmp(st_data_t x, st_data_t y) { return x != y; } st_index_t st_numhash(st_data_t n) { enum {s1 = 11, s2 = 3}; return (st_index_t)((n>>s1|(n<>s2)); } /* Expand TAB to be suitable for holding SIZ entries in total. Pre-existing entries remain not deleted inside of TAB, but its bins are cleared to expect future reconstruction. See rehash below. */ static void st_expand_table(st_table *tab, st_index_t siz) { st_table *tmp; st_index_t n; if (siz <= get_allocated_entries(tab)) return; /* enough room already */ tmp = st_init_table_with_size(tab->type, siz); n = get_allocated_entries(tab); MEMCPY(tmp->entries, tab->entries, st_table_entry, n); free(tab->entries); if (tab->bins != NULL) free(tab->bins); if (tmp->bins != NULL) free(tmp->bins); tab->entry_power = tmp->entry_power; tab->bin_power = tmp->bin_power; tab->size_ind = tmp->size_ind; tab->entries = tmp->entries; tab->bins = NULL; tab->rebuilds_num++; free(tmp); } /* Rehash using linear search. Return TRUE if we found that the table was rebuilt. */ static int st_rehash_linear(st_table *tab) { int eq_p, rebuilt_p; st_index_t i, j; st_table_entry *p, *q; if (tab->bins) { free(tab->bins); tab->bins = NULL; } for (i = tab->entries_start; i < tab->entries_bound; i++) { p = &tab->entries[i]; if (DELETED_ENTRY_P(p)) continue; for (j = i + 1; j < tab->entries_bound; j++) { q = &tab->entries[j]; if (DELETED_ENTRY_P(q)) continue; DO_PTR_EQUAL_CHECK(tab, p, q->hash, q->key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return TRUE; if (eq_p) { *p = *q; MARK_ENTRY_DELETED(q); tab->num_entries--; update_range_for_deleted(tab, j); } } } return FALSE; } /* Rehash using index. Return TRUE if we found that the table was rebuilt. */ static int st_rehash_indexed(st_table *tab) { int eq_p, rebuilt_p; st_index_t i; st_index_t const n = bins_size(tab); unsigned int const size_ind = get_size_ind(tab); st_index_t *bins = realloc(tab->bins, n); tab->bins = bins; initialize_bins(tab); for (i = tab->entries_start; i < tab->entries_bound; i++) { st_table_entry *p = &tab->entries[i]; st_index_t ind; #ifdef QUADRATIC_PROBE st_index_t d = 1; #else st_index_t peterb = p->hash; #endif if (DELETED_ENTRY_P(p)) continue; ind = hash_bin(p->hash, tab); for(;;) { st_index_t bin = get_bin(bins, size_ind, ind); if (EMPTY_OR_DELETED_BIN_P(bin)) { /* ok, new room */ set_bin(bins, size_ind, ind, i + ENTRY_BASE); break; } else { st_table_entry *q = &tab->entries[bin - ENTRY_BASE]; DO_PTR_EQUAL_CHECK(tab, q, p->hash, p->key, eq_p, rebuilt_p); if (EXPECT(rebuilt_p, 0)) return TRUE; if (eq_p) { /* duplicated key; delete it */ q->record = p->record; MARK_ENTRY_DELETED(p); tab->num_entries--; update_range_for_deleted(tab, bin); break; } else { /* hash collision; skip it */ #ifdef QUADRATIC_PROBE ind = hash_bin(ind + d, tab); d++; #else ind = secondary_hash(ind, tab, &peterb); #endif } } } } return FALSE; } /* Reconstruct TAB's bins according to TAB's entries. This function permits conflicting keys inside of entries. No errors are reported then. All but one of them are discarded silently. */ static void st_rehash(st_table *tab) { int rebuilt_p; do { if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) rebuilt_p = st_rehash_linear(tab); else rebuilt_p = st_rehash_indexed(tab); } while (rebuilt_p); } #ifdef RUBY static st_data_t st_stringify(VALUE key) { return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ? rb_hash_key_str(key) : key; } static void st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val) { st_data_t k = st_stringify(key); st_table_entry e; e.hash = do_hash(k, tab); e.key = k; e.record = val; tab->entries[tab->entries_bound++] = e; tab->num_entries++; RB_OBJ_WRITTEN(hash, Qundef, k); RB_OBJ_WRITTEN(hash, Qundef, val); } static void st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash) { long i; for (i = 0; i < argc; /* */) { st_data_t k = st_stringify(argv[i++]); st_data_t v = argv[i++]; st_insert(tab, k, v); RB_OBJ_WRITTEN(hash, Qundef, k); RB_OBJ_WRITTEN(hash, Qundef, v); } } static void st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash) { long i; /* push elems */ for (i = 0; i < argc; /* */) { VALUE key = argv[i++]; VALUE val = argv[i++]; st_insert_single(tab, hash, key, val); } /* reindex */ st_rehash(tab); } /* Mimics ruby's { foo => bar } syntax. This function is subpart of rb_hash_bulk_insert. */ void rb_hash_bulk_insert_into_st_table(long argc, const VALUE *argv, VALUE hash) { st_index_t n, size = argc / 2; st_table *tab = RHASH_ST_TABLE(hash); tab = RHASH_TBL_RAW(hash); n = tab->entries_bound + size; st_expand_table(tab, n); if (UNLIKELY(tab->num_entries)) st_insert_generic(tab, argc, argv, hash); else if (argc <= 2) st_insert_single(tab, hash, argv[0], argv[1]); else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) st_insert_linear(tab, argc, argv, hash); else st_insert_generic(tab, argc, argv, hash); } // to iterate iv_index_tbl st_data_t rb_st_nth_key(st_table *tab, st_index_t index) { if (LIKELY(tab->entries_start == 0 && tab->num_entries == tab->entries_bound && index < tab->num_entries)) { return tab->entries[index].key; } else { rb_bug("unreachable"); } } #endif