/********************************************************************** scheduler.c $Author$ Copyright (C) 2020 Samuel Grant Dawson Williams **********************************************************************/ #include "vm_core.h" #include "internal/scheduler.h" #include "ruby/io.h" static ID id_close; static ID id_block; static ID id_unblock; static ID id_kernel_sleep; static ID id_io_read; static ID id_io_write; static ID id_io_wait; void Init_Scheduler(void) { id_close = rb_intern_const("close"); id_block = rb_intern_const("block"); id_unblock = rb_intern_const("unblock"); id_kernel_sleep = rb_intern_const("kernel_sleep"); id_io_read = rb_intern_const("io_read"); id_io_write = rb_intern_const("io_write"); id_io_wait = rb_intern_const("io_wait"); } VALUE rb_scheduler_get(void) { rb_thread_t *thread = GET_THREAD(); VM_ASSERT(thread); return thread->scheduler; } VALUE rb_scheduler_set(VALUE scheduler) { rb_thread_t *thread = GET_THREAD(); VM_ASSERT(thread); // We invoke Scheduler#close when setting it to something else, to ensure the previous scheduler runs to completion before changing the scheduler. That way, we do not need to consider interactions, e.g., of a Fiber from the previous scheduler with the new scheduler. if (thread->scheduler != Qnil) { rb_scheduler_close(thread->scheduler); } thread->scheduler = scheduler; return thread->scheduler; } static VALUE rb_threadptr_scheduler_current(rb_thread_t *thread) { VM_ASSERT(thread); if (thread->blocking == 0) { return thread->scheduler; } else { return Qnil; } } VALUE rb_scheduler_current(void) { return rb_threadptr_scheduler_current(GET_THREAD()); } VALUE rb_thread_scheduler_current(VALUE thread) { return rb_threadptr_scheduler_current(rb_thread_ptr(thread)); } VALUE rb_scheduler_close(VALUE scheduler) { if (rb_respond_to(scheduler, id_close)) { return rb_funcall(scheduler, id_close, 0); } return Qnil; } VALUE rb_scheduler_timeout(struct timeval *timeout) { if (timeout) { return rb_float_new((double)timeout->tv_sec + (0.000001f * timeout->tv_usec)); } return Qnil; } VALUE rb_scheduler_kernel_sleep(VALUE scheduler, VALUE timeout) { return rb_funcall(scheduler, id_kernel_sleep, 1, timeout); } VALUE rb_scheduler_kernel_sleepv(VALUE scheduler, int argc, VALUE * argv) { return rb_funcallv(scheduler, id_kernel_sleep, argc, argv); } VALUE rb_scheduler_block(VALUE scheduler, VALUE blocker, VALUE timeout) { return rb_funcall(scheduler, id_block, 2, blocker, timeout); } VALUE rb_scheduler_unblock(VALUE scheduler, VALUE blocker, VALUE fiber) { return rb_funcall(scheduler, id_unblock, 2, blocker, fiber); } VALUE rb_scheduler_io_wait(VALUE scheduler, VALUE io, VALUE events, VALUE timeout) { return rb_funcall(scheduler, id_io_wait, 3, io, events, timeout); } VALUE rb_scheduler_io_wait_readable(VALUE scheduler, VALUE io) { return rb_scheduler_io_wait(scheduler, io, RB_UINT2NUM(RUBY_IO_READABLE), Qnil); } VALUE rb_scheduler_io_wait_writable(VALUE scheduler, VALUE io) { return rb_scheduler_io_wait(scheduler, io, RB_UINT2NUM(RUBY_IO_WRITABLE), Qnil); } int rb_scheduler_supports_io_read(VALUE scheduler) { return rb_respond_to(scheduler, id_io_read); } VALUE rb_scheduler_io_read(VALUE scheduler, VALUE io, VALUE buffer, size_t offset, size_t length) { return rb_funcall(scheduler, id_io_read, 4, io, buffer, SIZET2NUM(offset), SIZET2NUM(length)); } int rb_scheduler_supports_io_write(VALUE scheduler) { return rb_respond_to(scheduler, id_io_write); } VALUE rb_scheduler_io_write(VALUE scheduler, VALUE io, VALUE buffer, size_t offset, size_t length) { // We should ensure string has capacity to receive data, and then resize it afterwards. return rb_funcall(scheduler, id_io_write, 4, io, buffer, SIZET2NUM(offset), SIZET2NUM(length)); }