/* Extended regular expression matching and search library. Copyright (C) 1985, 1989-90 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Multi-byte extension added May, 1993 by t^2 (Takahiro Tanimoto) Last change: May 21, 1993 by t^2 */ /* To test, compile with -Dtest. This Dtestable feature turns this into a self-contained program which reads a pattern, describes how it compiles, then reads a string and searches for it. On the other hand, if you compile with both -Dtest and -Dcanned you can run some tests we've already thought of. */ /* We write fatal error messages on standard error. */ #include /* isalpha(3) etc. are used for the character classes. */ #include #include #ifdef __STDC__ #define P(s) s #define MALLOC_ARG_T size_t #else #define P(s) () #define MALLOC_ARG_T unsigned #define volatile #define const #endif #ifdef __MWERKS__ #include "ruby.h" #else #include "config.h" #include "defines.h" void *xmalloc P((unsigned long)); void *xcalloc P((unsigned long,unsigned long)); void *xrealloc P((void*,unsigned long)); void free P((void*)); #endif /* #define NO_ALLOCA /* try it out for now */ #ifndef NO_ALLOCA /* Make alloca work the best possible way. */ #ifdef __GNUC__ #ifndef atarist #ifndef alloca #define alloca __builtin_alloca #endif #endif /* atarist */ #else #if defined(HAVE_ALLOCA_H) && !defined(__GNUC__) #include #else char *alloca(); #endif #endif /* __GNUC__ */ #ifdef _AIX #pragma alloca #endif #ifdef HAVE_STRING_H # include #else # include #endif #define RE_ALLOCATE alloca #ifdef C_ALLOCA #define FREE_VARIABLES() alloca(0) #else #define FREE_VARIABLES() #endif #define FREE_AND_RETURN_VOID(stackb) return #define FREE_AND_RETURN(stackb,val) return(val) #define DOUBLE_STACK(stackx,stackb,len,type) \ (stackx = (type*) alloca(2 * len * sizeof(type)), \ /* Only copy what is in use. */ \ (type*) memcpy(stackx, stackb, len * sizeof (type))) #else /* NO_ALLOCA defined */ #define RE_ALLOCATE xmalloc #define FREE_VAR(var) if (var) free(var); var = NULL #define FREE_VARIABLES() \ do { \ FREE_VAR(regstart); \ FREE_VAR(regend); \ FREE_VAR(best_regstart); \ FREE_VAR(best_regend); \ FREE_VAR(reg_info); \ } while (0) #define FREE_AND_RETURN_VOID(stackb) free(stackb);return #define FREE_AND_RETURN(stackb,val) free(stackb);return(val) #define DOUBLE_STACK(stackx,stackb,len,type) \ (type*)xrealloc(stackb, 2 * len * sizeof(type)) #endif /* NO_ALLOCA */ #define RE_TALLOC(n,t) ((t*)RE_ALLOCATE((n)*sizeof(t))) #define TMALLOC(n,t) ((t*)xmalloc((n)*sizeof(t))) #define TREALLOC(s,n,t) (s=((t*)xrealloc(s,(n)*sizeof(t)))) #define EXPAND_FAIL_STACK(stackx,stackb,len) \ do {\ /* Roughly double the size of the stack. */ \ stackx = DOUBLE_STACK(stackx,stackb,len,unsigned char*); \ /* Rearrange the pointers. */ \ stackp = stackx + (stackp - stackb); \ stackb = stackx; \ stacke = stackb + 2 * len; \ } while (0) /* Get the interface, including the syntax bits. */ #include "regex.h" /* Subroutines for re_compile_pattern. */ static void store_jump P((char *, int, char *)); static void insert_jump P((int, char *, char *, char *)); static void store_jump_n P((char *, int, char *, unsigned)); static void insert_jump_n P((int, char *, char *, char *, unsigned)); static void insert_op P((int, char *, char *)); static void insert_op_2 P((int, char *, char *, int, int)); static int memcmp_translate P((unsigned char *, unsigned char *, int, unsigned char *)); /* Define the syntax stuff, so we can do the \<, \>, etc. */ /* This must be nonzero for the wordchar and notwordchar pattern commands in re_match_2. */ #ifndef Sword #define Sword 1 #endif #define SYNTAX(c) re_syntax_table[c] static char re_syntax_table[256]; static void init_syntax_once P((void)); #undef P #include "util.h" static void init_syntax_once() { register int c; static int done = 0; if (done) return; memset(re_syntax_table, 0, sizeof re_syntax_table); for (c = 'a'; c <= 'z'; c++) re_syntax_table[c] = Sword; for (c = 'A'; c <= 'Z'; c++) re_syntax_table[c] = Sword; for (c = '0'; c <= '9'; c++) re_syntax_table[c] = Sword; re_syntax_table['_'] = Sword; /* Add specific syntax for ISO Latin-1. */ for (c = 0300; c <= 0377; c++) re_syntax_table[c] = Sword; re_syntax_table[0327] = 0; re_syntax_table[0367] = 0; done = 1; } /* Jim Meyering writes: "... Some ctype macros are valid only for character codes that isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when using /bin/cc or gcc but without giving an ansi option). So, all ctype uses should be through macros like ISPRINT... If STDC_HEADERS is defined, then autoconf has verified that the ctype macros don't need to be guarded with references to isascii. ... Defining isascii to 1 should let any compiler worth its salt eliminate the && through constant folding." */ #if ! defined (isascii) || defined (STDC_HEADERS) #undef isascii #define isascii(c) 1 #endif #ifdef isblank #define ISBLANK(c) (isascii (c) && isblank (c)) #else #define ISBLANK(c) ((c) == ' ' || (c) == '\t') #endif #ifdef isgraph #define ISGRAPH(c) (isascii (c) && isgraph (c)) #else #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c)) #endif #define ISPRINT(c) (isascii (c) && isprint (c)) #define ISDIGIT(c) (isascii (c) && isdigit (c)) #define ISALNUM(c) (isascii (c) && isalnum (c)) #define ISALPHA(c) (isascii (c) && isalpha (c)) #define ISCNTRL(c) (isascii (c) && iscntrl (c)) #define ISLOWER(c) (isascii (c) && islower (c)) #define ISPUNCT(c) (isascii (c) && ispunct (c)) #define ISSPACE(c) (isascii (c) && isspace (c)) #define ISUPPER(c) (isascii (c) && isupper (c)) #define ISXDIGIT(c) (isascii (c) && isxdigit (c)) /* These are the command codes that appear in compiled regular expressions, one per byte. Some command codes are followed by argument bytes. A command code can specify any interpretation whatsoever for its arguments. Zero-bytes may appear in the compiled regular expression. The value of `exactn' is needed in search.c (search_buffer) in emacs. So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of `exactn' we use here must also be 1. */ enum regexpcode { unused=0, exactn=1, /* Followed by one byte giving n, then by n literal bytes. */ begline, /* Fail unless at beginning of line. */ endline, /* Fail unless at end of line. */ begbuf, /* Succeeds if at beginning of buffer (if emacs) or at beginning of string to be matched (if not). */ endbuf, /* Analogously, for end of buffer/string. */ jump, /* Followed by two bytes giving relative address to jump to. */ on_failure_jump, /* Followed by two bytes giving relative address of place to resume at in case of failure. */ finalize_jump, /* Throw away latest failure point and then jump to address. */ maybe_finalize_jump, /* Like jump but finalize if safe to do so. This is used to jump back to the beginning of a repeat. If the command that follows this jump is clearly incompatible with the one at the beginning of the repeat, such that we can be sure that there is no use backtracking out of repetitions already completed, then we finalize. */ dummy_failure_jump, /* Jump, and push a dummy failure point. This failure point will be thrown away if an attempt is made to use it for a failure. A + construct makes this before the first repeat. Also use it as an intermediary kind of jump when compiling an or construct. */ succeed_n, /* Used like on_failure_jump except has to succeed n times; then gets turned into an on_failure_jump. The relative address following it is useless until then. The address is followed by two bytes containing n. */ jump_n, /* Similar to jump, but jump n times only; also the relative address following is in turn followed by yet two more bytes containing n. */ try_next, /* Jump to next pattern for the first time, leaving this pattern on the failure stack. */ finalize_push, /* Finalize stack and push the beginning of the pattern on the stack to retry (used for non-greedy match) */ finalize_push_n, /* Similar to finalize_push, buf finalize n time only */ set_number_at, /* Set the following relative location to the subsequent number. */ anychar, /* Matches any (more or less) one character. */ charset, /* Matches any one char belonging to specified set. First following byte is number of bitmap bytes. Then come bytes for a bitmap saying which chars are in. Bits in each byte are ordered low-bit-first. A character is in the set if its bit is 1. A character too large to have a bit in the map is automatically not in the set. */ charset_not, /* Same parameters as charset, but match any character that is not one of those specified. */ start_memory, /* Start remembering the text that is matched, for storing in a memory register. Followed by one byte containing the register number. Register numbers must be in the range 0 through RE_NREGS. */ stop_memory, /* Stop remembering the text that is matched and store it in a memory register. Followed by one byte containing the register number. Register numbers must be in the range 0 through RE_NREGS. */ start_nowidth, /* Save string point to the stack. */ stop_nowidth, /* Restore string place at the point start_nowidth. */ pop_and_fail, /* Fail after popping nowidth entry from stack. */ duplicate, /* Match a duplicate of something remembered. Followed by one byte containing the index of the memory register. */ wordchar, /* Matches any word-constituent character. */ notwordchar, /* Matches any char that is not a word-constituent. */ wordbeg, /* Succeeds if at word beginning. */ wordend, /* Succeeds if at word end. */ wordbound, /* Succeeds if at a word boundary. */ notwordbound,/* Succeeds if not at a word boundary. */ }; /* Number of failure points to allocate space for initially, when matching. If this number is exceeded, more space is allocated, so it is not a hard limit. */ #ifndef NFAILURES #define NFAILURES 80 #endif #if defined(CHAR_UNSIGNED) || defined(__CHAR_UNSIGNED__) #define SIGN_EXTEND_CHAR(c) ((c)>(char)127?(c)-256:(c)) /* for IBM RT */ #endif #ifndef SIGN_EXTEND_CHAR #define SIGN_EXTEND_CHAR(x) (x) #endif /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ #define STORE_NUMBER(destination, number) \ { (destination)[0] = (number) & 0377; \ (destination)[1] = (number) >> 8; } /* Same as STORE_NUMBER, except increment the destination pointer to the byte after where the number is stored. Watch out that values for DESTINATION such as p + 1 won't work, whereas p will. */ #define STORE_NUMBER_AND_INCR(destination, number) \ { STORE_NUMBER(destination, number); \ (destination) += 2; } /* Put into DESTINATION a number stored in two contingous bytes starting at SOURCE. */ #define EXTRACT_NUMBER(destination, source) \ { (destination) = *(source) & 0377; \ (destination) += SIGN_EXTEND_CHAR (*(char *)((source) + 1)) << 8; } /* Same as EXTRACT_NUMBER, except increment the pointer for source to point to second byte of SOURCE. Note that SOURCE has to be a value such as p, not, e.g., p + 1. */ #define EXTRACT_NUMBER_AND_INCR(destination, source) \ { EXTRACT_NUMBER(destination, source); \ (source) += 2; } /* Specify the precise syntax of regexps for compilation. This provides for compatibility for various utilities which historically have different, incompatible syntaxes. The argument SYNTAX is a bit-mask comprised of the various bits defined in regex.h. */ long re_set_syntax(syntax) long syntax; { long ret; ret = re_syntax_options; re_syntax_options = syntax; return ret; } /* Set by re_set_syntax to the current regexp syntax to recognize. */ long re_syntax_options = 0; /* Macros for re_compile_pattern, which is found below these definitions. */ /* Fetch the next character in the uncompiled pattern---translating it if necessary. Also cast from a signed character in the constant string passed to us by the user to an unsigned char that we can use as an array index (in, e.g., `translate'). */ #define PATFETCH(c) \ do {if (p == pend) goto end_of_pattern; \ c = (unsigned char) *p++; \ if (translate) c = (unsigned char)translate[c]; \ } while (0) /* Fetch the next character in the uncompiled pattern, with no translation. */ #define PATFETCH_RAW(c) \ do {if (p == pend) goto end_of_pattern; \ c = (unsigned char) *p++; \ } while (0) /* Go backwards one character in the pattern. */ #define PATUNFETCH p-- /* If the buffer isn't allocated when it comes in, use this. */ #define INIT_BUF_SIZE 28 /* Make sure we have at least N more bytes of space in buffer. */ #define GET_BUFFER_SPACE(n) \ { \ while (b - bufp->buffer + (n) >= bufp->allocated) \ EXTEND_BUFFER; \ } /* Make sure we have one more byte of buffer space and then add CH to it. */ #define BUFPUSH(ch) \ { \ GET_BUFFER_SPACE(1); \ *b++ = (char)(ch); \ } /* Extend the buffer by twice its current size via reallociation and reset the pointers that pointed into the old allocation to point to the correct places in the new allocation. If extending the buffer results in it being larger than 1 << 16, then flag memory exhausted. */ #define EXTEND_BUFFER \ { char *old_buffer = bufp->buffer; \ if (bufp->allocated == (1L<<16)) goto too_big; \ bufp->allocated *= 2; \ if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \ bufp->buffer = (char *) xrealloc (bufp->buffer, bufp->allocated); \ if (bufp->buffer == 0) \ goto memory_exhausted; \ b = (b - old_buffer) + bufp->buffer; \ if (fixup_jump) \ fixup_jump = (fixup_jump - old_buffer) + bufp->buffer; \ if (laststart) \ laststart = (laststart - old_buffer) + bufp->buffer; \ begalt = (begalt - old_buffer) + bufp->buffer; \ if (pending_exact) \ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ } /* Set the bit for character C in a character set list. */ #define SET_LIST_BIT(c) \ (b[(unsigned char)(c) / BYTEWIDTH] \ |= 1 << ((unsigned char)(c) % BYTEWIDTH)) /* Get the next unsigned number in the uncompiled pattern. */ #define GET_UNSIGNED_NUMBER(num) \ { if (p != pend) \ { \ PATFETCH(c); \ while (ISDIGIT(c)) \ { \ if (num < 0) \ num = 0; \ num = num * 10 + c - '0'; \ if (p == pend) \ break; \ PATFETCH(c); \ } \ } \ } #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ #define IS_CHAR_CLASS(string) \ (STREQ (string, "alpha") || STREQ (string, "upper") \ || STREQ (string, "lower") || STREQ (string, "digit") \ || STREQ (string, "alnum") || STREQ (string, "xdigit") \ || STREQ (string, "space") || STREQ (string, "print") \ || STREQ (string, "punct") || STREQ (string, "graph") \ || STREQ (string, "cntrl") || STREQ (string, "blank")) #define STORE_MBC(p, c) \ ((p)[0] = (unsigned char)(c >> 8), (p)[1] = (unsigned char)(c)) #define STORE_MBC_AND_INCR(p, c) \ (*(p)++ = (unsigned char)(c >> 8), *(p)++ = (unsigned char)(c)) #define EXTRACT_MBC(p) \ ((unsigned short)((unsigned char)(p)[0] << 8 | (unsigned char)(p)[1])) #define EXTRACT_MBC_AND_INCR(p) \ ((unsigned short)((p) += 2, (unsigned char)(p)[-2] << 8 | (unsigned char)(p)[-1])) #define EXTRACT_UNSIGNED(p) \ ((unsigned char)(p)[0] | (unsigned char)(p)[1] << 8) #define EXTRACT_UNSIGNED_AND_INCR(p) \ ((p) += 2, (unsigned char)(p)[-2] | (unsigned char)(p)[-1] << 8) /* Handle (mb)?charset(_not)?. Structure of mbcharset(_not)? in compiled pattern. struct { unsinged char id; mbcharset(_not)? unsigned char sbc_size; unsigned char sbc_map[sbc_size]; same as charset(_not)? up to here. unsigned short mbc_size; number of intervals. struct { unsigned short beg; beginning of interval. unsigned short end; end of interval. } intervals[mbc_size]; }; */ static void set_list_bits(c1, c2, b) unsigned short c1, c2; unsigned char *b; { unsigned char sbc_size = b[-1]; unsigned short mbc_size = EXTRACT_UNSIGNED(&b[sbc_size]); unsigned short beg, end, upb; if (c1 > c2) return; if ((int)c1 < 1 << BYTEWIDTH) { upb = c2; if (1 << BYTEWIDTH <= (int)upb) upb = (1 << BYTEWIDTH) - 1; /* The last single-byte char */ if (sbc_size <= (unsigned short)(upb / BYTEWIDTH)) { /* Allocate maximum size so it never happens again. */ /* NOTE: memcpy() would not work here. */ memmove(&b[(1 << BYTEWIDTH) / BYTEWIDTH], &b[sbc_size], 2 + mbc_size*4); memset(&b[sbc_size], 0, (1 << BYTEWIDTH) / BYTEWIDTH - sbc_size); b[-1] = sbc_size = (1 << BYTEWIDTH) / BYTEWIDTH; } for (; c1 <= upb; c1++) if (!ismbchar(c1)) SET_LIST_BIT(c1); if ((int)c2 < 1 << BYTEWIDTH) return; c1 = 0x8000; /* The first wide char */ } b = &b[sbc_size + 2]; for (beg = 0, upb = mbc_size; beg < upb; ) { unsigned short mid = (unsigned short)(beg + upb) >> 1; if ((int)c1 - 1 > (int)EXTRACT_MBC(&b[mid*4 + 2])) beg = mid + 1; else upb = mid; } for (end = beg, upb = mbc_size; end < upb; ) { unsigned short mid = (unsigned short)(end + upb) >> 1; if ((int)c2 >= (int)EXTRACT_MBC(&b[mid*4]) - 1) end = mid + 1; else upb = mid; } if (beg != end) { if (c1 > EXTRACT_MBC(&b[beg*4])) c1 = EXTRACT_MBC(&b[beg*4]); if (c2 < EXTRACT_MBC(&b[(end - 1)*4])) c2 = EXTRACT_MBC(&b[(end - 1)*4]); } if (end < mbc_size && end != beg + 1) /* NOTE: memcpy() would not work here. */ memmove(&b[(beg + 1)*4], &b[end*4], (mbc_size - end)*4); STORE_MBC(&b[beg*4 + 0], c1); STORE_MBC(&b[beg*4 + 2], c2); mbc_size += beg - end + 1; STORE_NUMBER(&b[-2], mbc_size); } static int is_in_list(c, b) unsigned short c; const unsigned char *b; { unsigned short size; unsigned short i, j; int result = 0; size = *b++; if ((int)c < 1<= 1<>BYTEWIDTH; } while (size>0 && b[size*4-2] == 0xff) { size--; if (b[size*4+1] <= i && i <= b[size*4+3]) { result = 2; break; } } } for (i = 0, j = size; i < j; ) { unsigned short k = (unsigned short)(i + j) >> 1; if (c > EXTRACT_MBC(&b[k*4+2])) i = k + 1; else j = k; } if (i < size && EXTRACT_MBC(&b[i*4]) <= c && ((unsigned char)c != '\n' && (unsigned char)c != '\0')) return 1; return result; } static void print_partial_compiled_pattern(start, end) unsigned char *start; unsigned char *end; { int mcnt, mcnt2; unsigned char *p = start; unsigned char *pend = end; if (start == NULL) { printf ("(null)\n"); return; } /* Loop over pattern commands. */ while (p < pend) { switch ((enum regexpcode) *p++) { case unused: printf ("/unused"); break; case exactn: mcnt = *p++; printf ("/exactn/%d", mcnt); do { putchar('/'); printf("%c", *p++); } while (--mcnt); break; case start_memory: mcnt = *p++; printf ("/start_memory/%d", mcnt); break; case stop_memory: mcnt = *p++; printf ("/stop_memory/%d", mcnt); break; case start_nowidth: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/start_nowidth//%d", mcnt); break; case stop_nowidth: printf ("/stop_nowidth//"); p += 2; break; case pop_and_fail: printf ("/pop_and_fail"); break; case duplicate: printf ("/duplicate/%d", *p++); break; case anychar: printf ("/anychar"); break; case charset: case charset_not: { register int c; printf ("/charset%s", (enum regexpcode) *(p - 1) == charset_not ? "_not" : ""); mcnt = *p; printf("/%d", mcnt); for (c = 0; c < mcnt; c++) { unsigned bit; unsigned char map_byte = p[1 + c]; putchar ('/'); for (bit = 0; bit < BYTEWIDTH; bit++) if (map_byte & (1 << bit)) printf("%c", c * BYTEWIDTH + bit); } p += mcnt + 1; mcnt = EXTRACT_UNSIGNED(p); p += 2; while (mcnt--) { int beg = *p++; int end = *p++; printf("/%c%c-%c%c", beg>>BYTEWIDTH, beg&0xff, end>>BYTEWIDTH, end&0xff); } break; } case begline: printf ("/begline"); break; case endline: printf ("/endline"); break; case on_failure_jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/on_failure_jump//%d", mcnt); break; case dummy_failure_jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/dummy_failure_jump//%d", mcnt); break; case finalize_jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/finalize_jump//%d", mcnt); break; case maybe_finalize_jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/maybe_finalize_jump//%d", mcnt); break; case jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/jump//%d", mcnt); break; case succeed_n: EXTRACT_NUMBER_AND_INCR (mcnt, p); EXTRACT_NUMBER_AND_INCR (mcnt2, p); printf ("/succeed_n//%d//%d", mcnt, mcnt2); break; case jump_n: EXTRACT_NUMBER_AND_INCR (mcnt, p); EXTRACT_NUMBER_AND_INCR (mcnt2, p); printf ("/jump_n//%d//%d", mcnt, mcnt2); break; case set_number_at: EXTRACT_NUMBER_AND_INCR (mcnt, p); EXTRACT_NUMBER_AND_INCR (mcnt2, p); printf ("/set_number_at//%d//%d", mcnt, mcnt2); break; case try_next: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/try_next//%d", mcnt); break; case finalize_push: EXTRACT_NUMBER_AND_INCR (mcnt, p); printf ("/finalize_push//%d", mcnt); break; case finalize_push_n: EXTRACT_NUMBER_AND_INCR (mcnt, p); EXTRACT_NUMBER_AND_INCR (mcnt2, p); printf ("/finalize_push_n//%d//%d", mcnt, mcnt2); break; case wordbound: printf ("/wordbound"); break; case notwordbound: printf ("/notwordbound"); break; case wordbeg: printf ("/wordbeg"); break; case wordend: printf ("/wordend"); case wordchar: printf ("/wordchar"); break; case notwordchar: printf ("/notwordchar"); break; case begbuf: printf ("/begbuf"); break; case endbuf: printf ("/endbuf"); break; default: printf ("?%d", *(p-1)); } } printf ("/\n"); } static void print_compiled_pattern(bufp) struct re_pattern_buffer *bufp; { unsigned char *buffer = bufp->buffer; print_partial_compiled_pattern (buffer, buffer + bufp->used); } static char* calculate_must_string(start, end) char *start; char *end; { int mcnt, mcnt2; int max = 0; char *p = start; char *pend = end; char *must = 0; if (start == NULL) return 0; /* Loop over pattern commands. */ while (p < pend) { switch ((enum regexpcode) *p++) { case unused: break; case exactn: mcnt = *p; if (mcnt > max) { must = p; } p += mcnt+1; break; case start_memory: case stop_memory: case duplicate: p++; break; case start_nowidth: case stop_nowidth: case pop_and_fail: case anychar: case begline: case endline: case wordbound: case notwordbound: case wordbeg: case wordend: case wordchar: case notwordchar: case begbuf: case endbuf: break; case charset: case charset_not: mcnt = *p++; p += mcnt; EXTRACT_NUMBER_AND_INCR (mcnt, p); while (mcnt--) { EXTRACT_NUMBER_AND_INCR (mcnt2, p); EXTRACT_NUMBER_AND_INCR (mcnt2, p); } break; case on_failure_jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); if (mcnt > 0) p += mcnt; if ((enum regexpcode)p[-3] == jump) { p -= 3; EXTRACT_NUMBER_AND_INCR (mcnt, p); if (mcnt > 0) p += mcnt; } break; case dummy_failure_jump: case succeed_n: case try_next: case jump: EXTRACT_NUMBER_AND_INCR (mcnt, p); if (mcnt > 0) p += mcnt; break; case finalize_jump: case maybe_finalize_jump: case finalize_push: p += 2; break; case jump_n: case set_number_at: case finalize_push_n: p += 4; break; default: break; } } return must; } /* re_compile_pattern takes a regular-expression string and converts it into a buffer full of byte commands for matching. PATTERN is the address of the pattern string SIZE is the length of it. BUFP is a struct re_pattern_buffer * which points to the info on where to store the byte commands. This structure contains a char * which points to the actual space, which should have been obtained with malloc. re_compile_pattern may use realloc to grow the buffer space. The number of bytes of commands can be found out by looking in the `struct re_pattern_buffer' that bufp pointed to, after re_compile_pattern returns. */ char * re_compile_pattern(pattern, size, bufp) char *pattern; size_t size; struct re_pattern_buffer *bufp; { register char *b = bufp->buffer; register char *p = pattern; char *pend = pattern + size; register unsigned c, c1; char *p0; int numlen; /* Address of the count-byte of the most recently inserted `exactn' command. This makes it possible to tell whether a new exact-match character can be added to that command or requires a new `exactn' command. */ char *pending_exact = 0; /* Address of the place where a forward-jump should go to the end of the containing expression. Each alternative of an `or', except the last, ends with a forward-jump of this sort. */ char *fixup_jump = 0; /* Address of start of the most recently finished expression. This tells postfix * where to find the start of its operand. */ char *laststart = 0; /* In processing a repeat, 1 means zero matches is allowed. */ char zero_times_ok; /* In processing a repeat, 1 means many matches is allowed. */ char many_times_ok; /* In processing a repeat, 1 means non-greedy matches. */ char greedy; /* Address of beginning of regexp, or inside of last \(. */ char *begalt = b; /* In processing an interval, at least this many matches must be made. */ int lower_bound; /* In processing an interval, at most this many matches can be made. */ int upper_bound; /* Stack of information saved by \( and restored by \). Five stack elements are pushed by each \(: First, the value of b. Second, the value of fixup_jump. Third, the value of begalt. Fourth, the value of regnum. Fifth, the type of the paren. */ int *stackb = RE_TALLOC(40, int); int *stackp = stackb; int *stacke = stackb + 40; int *stackt; /* Counts \('s as they are encountered. Remembered for the matching \), where it becomes the register number to put in the stop_memory command. */ int regnum = 1; int range = 0; int had_char_class = 0; /* How to translate the characters in the pattern. */ char *translate = bufp->translate; bufp->fastmap_accurate = 0; /* Initialize the syntax table. */ init_syntax_once(); if (bufp->allocated == 0) { bufp->allocated = INIT_BUF_SIZE; if (bufp->buffer) /* EXTEND_BUFFER loses when bufp->allocated is 0. */ bufp->buffer = (char *) xrealloc (bufp->buffer, INIT_BUF_SIZE); else /* Caller did not allocate a buffer. Do it for them. */ bufp->buffer = (char *) xmalloc(INIT_BUF_SIZE); if (!bufp->buffer) goto memory_exhausted; begalt = b = bufp->buffer; } while (p != pend) { PATFETCH(c); switch (c) { case '$': { char *p1 = p; /* When testing what follows the $, look past the \-constructs that don't consume anything. */ if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS)) while (p1 != pend) { if (*p1 == '\\' && p1 + 1 != pend && (p1[1] == 'b' || p1[1] == 'B')) p1 += 2; else break; } if (re_syntax_options & RE_TIGHT_VBAR) { if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS) && p1 != pend) goto normal_char; /* Make operand of last vbar end before this `$'. */ if (fixup_jump) store_jump(fixup_jump, jump, b); fixup_jump = 0; BUFPUSH(endline); break; } /* $ means succeed if at end of line, but only in special contexts. If validly in the middle of a pattern, it is a normal character. */ if (p1 == pend || *p1 == '\n' || (re_syntax_options & RE_CONTEXT_INDEP_OPS) || (re_syntax_options & RE_NO_BK_PARENS ? *p1 == ')' : *p1 == '\\' && p1[1] == ')') || (re_syntax_options & RE_NO_BK_VBAR ? *p1 == '|' : *p1 == '\\' && p1[1] == '|')) { BUFPUSH(endline); break; } goto normal_char; } case '^': /* ^ means succeed if at beg of line, but only if no preceding pattern. */ if ((re_syntax_options & RE_CONTEXTUAL_INVALID_OPS) && laststart) goto invalid_pattern; if (laststart && p - 2 >= pattern && p[-2] != '\n' && !(re_syntax_options & RE_CONTEXT_INDEP_OPS)) goto normal_char; if (re_syntax_options & RE_TIGHT_VBAR) { if (p != pattern + 1 && ! (re_syntax_options & RE_CONTEXT_INDEP_OPS)) goto normal_char; BUFPUSH(begline); begalt = b; } else { BUFPUSH(begline); } break; case '+': case '?': if (re_syntax_options & RE_LIMITED_OPS) goto normal_char; case '*': /* If there is no previous pattern, char not special. */ if (!laststart) { if (re_syntax_options & RE_CONTEXTUAL_INVALID_OPS) goto invalid_pattern; else if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS)) goto normal_char; } /* If there is a sequence of repetition chars, collapse it down to just one. */ zero_times_ok = c != '+'; many_times_ok = c != '?'; greedy = 1; if (p != pend) { PATFETCH(c); switch (c) { case '?': greedy = 0; break; case '*': case '+': goto nested_meta; default: PATUNFETCH; break; } } repeat: /* Star, etc. applied to an empty pattern is equivalent to an empty pattern. */ if (!laststart) break; /* Now we know whether or not zero matches is allowed and also whether or not two or more matches is allowed. */ if (many_times_ok) { /* If more than one repetition is allowed, put in at the end a backward relative jump from b to before the next jump we're going to put in below (which jumps from laststart to after this jump). */ GET_BUFFER_SPACE(3); store_jump(b,greedy?maybe_finalize_jump:finalize_push,laststart-3); b += 3; /* Because store_jump put stuff here. */ } /* On failure, jump from laststart to next pattern, which will be the end of the buffer after this jump is inserted. */ GET_BUFFER_SPACE(3); insert_jump(on_failure_jump, laststart, b + 3, b); b += 3; if (zero_times_ok) { if (greedy == 0) { GET_BUFFER_SPACE(3); insert_jump(try_next, laststart, b + 3, b); b += 3; } } else { /* At least one repetition is required, so insert a `dummy_failure_jump' before the initial `on_failure_jump' instruction of the loop. This effects a skip over that instruction the first time we hit that loop. */ GET_BUFFER_SPACE(3); insert_jump(dummy_failure_jump, laststart, laststart + 6, b); b += 3; } break; case '.': laststart = b; BUFPUSH(anychar); break; case '[': if (p == pend) goto invalid_pattern; while (b - bufp->buffer > bufp->allocated - 9 - (1 << BYTEWIDTH) / BYTEWIDTH) EXTEND_BUFFER; laststart = b; if (*p == '^') { BUFPUSH(charset_not); p++; } else BUFPUSH(charset); p0 = p; BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH); /* Clear the whole map */ memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2); if ((re_syntax_options & RE_HAT_NOT_NEWLINE) && b[-2] == charset_not) SET_LIST_BIT('\n'); had_char_class = 0; /* Read in characters and ranges, setting map bits. */ for (;;) { int size; unsigned last = (unsigned)-1; if ((size = EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH]))) { /* Ensure the space is enough to hold another interval of multi-byte chars in charset(_not)?. */ size = (1 << BYTEWIDTH) / BYTEWIDTH + 2 + size*4 + 4; while (b + size + 1 > bufp->buffer + bufp->allocated) EXTEND_BUFFER; } range_retry: PATFETCH(c); if (c == ']') { if (p == p0 + 1) { /* If this is an empty bracket expression. */ if ((re_syntax_options & RE_NO_EMPTY_BRACKETS) && p == pend) goto invalid_pattern; } else /* Stop if this isn't merely a ] inside a bracket expression, but rather the end of a bracket expression. */ break; } /* Look ahead to see if it's a range when the last thing was a character class. */ if (had_char_class && c == '-' && *p != ']') goto invalid_pattern; if (ismbchar(c)) { PATFETCH(c1); c = c << BYTEWIDTH | c1; } /* \ escapes characters when inside [...]. */ if (c == '\\') { PATFETCH(c); switch (c) { case 'w': for (c = 0; c < (1 << BYTEWIDTH); c++) if (SYNTAX(c) == Sword) SET_LIST_BIT(c); last = -1; continue; case 'W': for (c = 0; c < (1 << BYTEWIDTH); c++) if (SYNTAX(c) != Sword) SET_LIST_BIT(c); if (current_mbctype) { set_list_bits(0x8000, 0xffff, (unsigned char*)b); } last = -1; continue; case 's': for (c = 0; c < 256; c++) if (ISSPACE(c)) SET_LIST_BIT(c); last = -1; continue; case 'S': for (c = 0; c < 256; c++) if (!ISSPACE(c)) SET_LIST_BIT(c); if (current_mbctype) { set_list_bits(0x8000, 0xffff, (unsigned char*)b); } last = -1; continue; case 'd': for (c = '0'; c <= '9'; c++) SET_LIST_BIT(c); last = -1; continue; case 'D': for (c = 0; c < 256; c++) if (!ISDIGIT(c)) SET_LIST_BIT(c); if (current_mbctype) { set_list_bits(0x8000, 0xffff, (unsigned char*)b); } last = -1; continue; case 'x': c = scan_hex(p, 2, &numlen); if (current_mbctype && c > 0x7f) c = 0xff00 | c; p += numlen; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': PATUNFETCH; c = scan_oct(p, 3, &numlen); if (ismbchar(c)) c |= 0xff00; p += numlen; break; default: if (ismbchar(c)) { PATFETCH(c1); c = c << 8 | c1; } break; } } /* Get a range. */ if (range) { if (last > c) goto invalid_pattern; if ((re_syntax_options & RE_NO_HYPHEN_RANGE_END) && c == '-' && *p != ']') goto invalid_pattern; range = 0; if (last < 1 << BYTEWIDTH && c < 1 << BYTEWIDTH) { for (;last<=c;last++) SET_LIST_BIT(last); } else { set_list_bits(last, c, (unsigned char*)b); } } else if (p[0] == '-' && p[1] != ']') { last = c; PATFETCH(c1); range = 1; goto range_retry; } else if ((re_syntax_options & RE_CHAR_CLASSES) && c == '[' && *p == ':') { /* Leave room for the null. */ char str[CHAR_CLASS_MAX_LENGTH + 1]; PATFETCH_RAW (c); c1 = 0; /* If pattern is `[[:'. */ if (p == pend) goto invalid_pattern; for (;;) { PATFETCH (c); if (c == ':' || c == ']' || p == pend || c1 == CHAR_CLASS_MAX_LENGTH) break; str[c1++] = c; } str[c1] = '\0'; /* If isn't a word bracketed by `[:' and:`]': undo the ending character, the letters, and leave the leading `:' and `[' (but set bits for them). */ if (c == ':' && *p == ']') { int ch; char is_alnum = STREQ (str, "alnum"); char is_alpha = STREQ (str, "alpha"); char is_blank = STREQ (str, "blank"); char is_cntrl = STREQ (str, "cntrl"); char is_digit = STREQ (str, "digit"); char is_graph = STREQ (str, "graph"); char is_lower = STREQ (str, "lower"); char is_print = STREQ (str, "print"); char is_punct = STREQ (str, "punct"); char is_space = STREQ (str, "space"); char is_upper = STREQ (str, "upper"); char is_xdigit = STREQ (str, "xdigit"); if (!IS_CHAR_CLASS (str)) goto invalid_pattern; /* Throw away the ] at the end of the character class. */ PATFETCH (c); if (p == pend) goto invalid_pattern; for (ch = 0; ch < 1 << BYTEWIDTH; ch++) { if ( (is_alnum && ISALNUM (ch)) || (is_alpha && ISALPHA (ch)) || (is_blank && ISBLANK (ch)) || (is_cntrl && ISCNTRL (ch)) || (is_digit && ISDIGIT (ch)) || (is_graph && ISGRAPH (ch)) || (is_lower && ISLOWER (ch)) || (is_print && ISPRINT (ch)) || (is_punct && ISPUNCT (ch)) || (is_space && ISSPACE (ch)) || (is_upper && ISUPPER (ch)) || (is_xdigit && ISXDIGIT (ch))) SET_LIST_BIT (ch); } had_char_class = 1; } else { c1++; while (c1--) PATUNFETCH; SET_LIST_BIT(translate?translate['[']:'['); SET_LIST_BIT(translate?translate[':']:':'); had_char_class = 0; last = ':'; } } else if (c < 1 << BYTEWIDTH) SET_LIST_BIT(c); else set_list_bits(c, c, (unsigned char*)b); } /* Discard any character set/class bitmap bytes that are all 0 at the end of the map. Decrement the map-length byte too. */ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) b[-1]--; if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH) memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH], 2 + EXTRACT_UNSIGNED (&b[(1 << BYTEWIDTH) / BYTEWIDTH])*4); b += b[-1] + 2 + EXTRACT_UNSIGNED (&b[b[-1]])*4; break; case '(': PATFETCH(c); if (c == '?') { PATFETCH(c); switch (c) { case '#': case 'i': case 'm': case 's': case 'x': for (;;) { PATFETCH(c); if (c == ')') break; } c = '#'; break; case ':': case '=': case '!': break; default: FREE_AND_RETURN(stackb, "undefined (?...) sequence"); } } else { PATUNFETCH; c = '('; } if (c == '#') break; if (stackp+6 >= stacke) { int *stackx; unsigned int len = stacke - stackb; stackx = DOUBLE_STACK(stackx,stackb,len,int); /* Rearrange the pointers. */ stackp = stackx + (stackp - stackb); stackb = stackx; stacke = stackb + 2 * len; } /* Laststart should point to the start_memory that we are about to push (unless the pattern has RE_NREGS or more ('s). */ /* obsolete: now RE_NREGS is just a default register size. */ *stackp++ = b - bufp->buffer; *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0; *stackp++ = begalt - bufp->buffer; switch (c) { case '(': BUFPUSH(start_memory); BUFPUSH(regnum); *stackp++ = regnum++; /* too many ()'s to fit in a byte. (max 254) */ if (regnum >= RE_REG_MAX) goto too_big; break; case '=': case '!': BUFPUSH(start_nowidth); *stackp++ = b - bufp->buffer; BUFPUSH(0); /* temporary value */ BUFPUSH(0); if (c == '=') break; BUFPUSH(on_failure_jump); *stackp++ = b - bufp->buffer; BUFPUSH(0); /* temporary value */ BUFPUSH(0); break; case ':': pending_exact = 0; default: break; } *stackp++ = c; fixup_jump = 0; laststart = 0; begalt = b; break; case ')': if (stackp == stackb) goto unmatched_close; switch (c = *--stackp) { case '(': if (fixup_jump) store_jump(fixup_jump, jump, b); BUFPUSH(stop_memory); BUFPUSH(stackp[-1]); stackp--; break; case '!': BUFPUSH(pop_and_fail); /* back patch */ STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2); stackp--; /* fall through */ case '=': BUFPUSH(stop_nowidth); /* tell stack-pos place to start_nowidth */ STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2); BUFPUSH(0); /* space to hold stack pos */ BUFPUSH(0); stackp--; break; case ':': if (fixup_jump) store_jump(fixup_jump, jump, b); pending_exact = 0; default: break; } begalt = *--stackp + bufp->buffer; stackp--; fixup_jump = *stackp ? *stackp + bufp->buffer - 1 : 0; laststart = *--stackp + bufp->buffer; if (c == '!' || c == '=') laststart = b; break; case '|': /* Insert before the previous alternative a jump which jumps to this alternative if the former fails. */ GET_BUFFER_SPACE(6); insert_jump(on_failure_jump, begalt, b + 6, b); pending_exact = 0; b += 3; /* The alternative before the previous alternative has a jump after it which gets executed if it gets matched. Adjust that jump so it will jump to the previous alternative's analogous jump (put in below, which in turn will jump to the next (if any) alternative's such jump, etc.). The last such jump jumps to the correct final destination. */ if (fixup_jump) store_jump(fixup_jump, jump, b); /* Leave space for a jump after previous alternative---to be filled in later. */ fixup_jump = b; b += 3; laststart = 0; begalt = b; break; case '{': /* If there is no previous pattern, this isn't an interval. */ if (!laststart) { if (re_syntax_options & RE_CONTEXTUAL_INVALID_OPS) goto invalid_pattern; else goto normal_backsl; } /* It also isn't an interval if not preceded by an re matching a single character or subexpression, or if the current type of intervals can't handle back references and the previous thing is a back reference. */ if (! (*laststart == anychar || *laststart == charset || *laststart == charset_not || *laststart == wordchar || *laststart == notwordchar || *laststart == start_memory || (*laststart == exactn && (laststart[1] == 1 || laststart[1] == 2 && ismbchar(laststart[2]))) || (! (re_syntax_options & RE_NO_BK_REFS) && *laststart == duplicate))) { /* Posix extended syntax is handled in previous statement; this is for Posix basic syntax. */ if (re_syntax_options & RE_INTERVALS) goto invalid_pattern; goto normal_backsl; } lower_bound = -1; /* So can see if are set. */ upper_bound = -1; GET_UNSIGNED_NUMBER(lower_bound); if (c == ',') { GET_UNSIGNED_NUMBER(upper_bound); if (upper_bound < 0) upper_bound = RE_DUP_MAX; } if (upper_bound < 0) upper_bound = lower_bound; if (c != '}' || lower_bound < 0 || upper_bound > RE_DUP_MAX || lower_bound > upper_bound || (p != pend && *p == '{')) { goto invalid_pattern; } greedy = 1; if (p != pend) { PATFETCH(c); if (c == '?') greedy = 0; else PATUNFETCH; } /* If upper_bound is zero, don't want to succeed at all; jump from laststart to b + 3, which will be the end of the buffer after this jump is inserted. */ if (upper_bound == 0) { GET_BUFFER_SPACE(3); insert_jump(jump, laststart, b + 3, b); b += 3; break; } if (lower_bound == 0) { zero_times_ok = 1; if (upper_bound == RE_DUP_MAX) { many_times_ok = 1; goto repeat; } if (upper_bound == 1) { many_times_ok = 0; goto repeat; } } if (lower_bound == 1 && upper_bound == RE_DUP_MAX) { many_times_ok = 1; zero_times_ok = 0; goto repeat; } /* Star, etc. applied to an empty pattern is equivalent to an empty pattern. */ if (!laststart) break; { /* If the upper bound is > 1, we need to insert more at the end of the loop. */ unsigned slots_needed = upper_bound == 1 ? 5 : 10; GET_BUFFER_SPACE(5); /* Initialize lower bound of the `succeed_n', even though it will be set during matching by its attendant `set_number_at' (inserted next), because `re_compile_fastmap' needs to know. Jump to the `jump_n' we might insert below. */ insert_jump_n(succeed_n, laststart, b + slots_needed, b, lower_bound); b += 5; /* Just increment for the succeed_n here. */ /* Code to initialize the lower bound. Insert before the `succeed_n'. The `5' is the last two bytes of this `set_number_at', plus 3 bytes of the following `succeed_n'. */ GET_BUFFER_SPACE(5); insert_op_2(set_number_at, laststart, b, 5, lower_bound); b += 5; if (upper_bound > 1) { /* More than one repetition is allowed, so append a backward jump to the `succeed_n' that starts this interval. When we've reached this during matching, we'll have matched the interval once, so jump back only `upper_bound - 1' times. */ GET_BUFFER_SPACE(5); store_jump_n(b, greedy?jump_n:finalize_push_n, laststart + 5, upper_bound - 1); b += 5; /* The location we want to set is the second parameter of the `jump_n'; that is `b-2' as an absolute address. `laststart' will be the `set_number_at' we're about to insert; `laststart+3' the number to set, the source for the relative address. But we are inserting into the middle of the pattern -- so everything is getting moved up by 5. Conclusion: (b - 2) - (laststart + 3) + 5, i.e., b - laststart. We insert this at the beginning of the loop so that if we fail during matching, we'll reinitialize the bounds. */ GET_BUFFER_SPACE(5); insert_op_2(set_number_at, laststart, b, b - laststart, upper_bound - 1); b += 5; GET_BUFFER_SPACE(5); BUFPUSH(set_number_at); STORE_NUMBER_AND_INCR(b, -5); STORE_NUMBER_AND_INCR(b, upper_bound - 1); } pending_exact = 0; } break; case '\\': if (p == pend) goto invalid_pattern; /* Do not translate the character after the \, so that we can distinguish, e.g., \B from \b, even if we normally would translate, e.g., B to b. */ PATFETCH_RAW(c); switch (c) { case 's': case 'S': case 'd': case 'D': while (b - bufp->buffer > bufp->allocated - 9 - (1 << BYTEWIDTH) / BYTEWIDTH) EXTEND_BUFFER; laststart = b; if (c == 's' || c == 'd') { BUFPUSH(charset); } else { BUFPUSH(charset_not); } BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH); memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2); if (c == 's' || c == 'S') { SET_LIST_BIT(' '); SET_LIST_BIT('\t'); SET_LIST_BIT('\n'); SET_LIST_BIT('\r'); SET_LIST_BIT('\f'); } else { char cc; for (cc = '0'; cc <= '9'; cc++) { SET_LIST_BIT(cc); } } while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) b[-1]--; if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH) memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH], 2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*4); b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[b[-1]])*4; break; case 'w': laststart = b; BUFPUSH(wordchar); break; case 'W': laststart = b; BUFPUSH(notwordchar); break; case '<': BUFPUSH(wordbeg); break; case '>': BUFPUSH(wordend); break; case 'b': BUFPUSH(wordbound); break; case 'B': BUFPUSH(notwordbound); break; case 'A': BUFPUSH(begbuf); break; case 'Z': BUFPUSH(endbuf); break; /* hex */ case 'x': c1 = 0; c = scan_hex(p, 2, &numlen); p += numlen; if (current_mbctype && c > 0x7f) c1 = 0xff; goto numeric_char; /* octal */ case '0': c1 = 0; c = scan_oct(p, 3, &numlen); p += numlen; if (current_mbctype && c > 0x7f) c1 = 0xff; goto numeric_char; /* back-ref or octal */ case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { char *p_save; PATUNFETCH; p_save = p; c1 = 0; GET_UNSIGNED_NUMBER(c1); if (!ISDIGIT(c)) PATUNFETCH; if (c1 >= regnum) { /* need to get octal */ p = p_save; c = scan_oct(p_save, 3, &numlen); p = p_save + numlen; c1 = 0; if (current_mbctype && c > 0x7f) c1 = 0xff; goto numeric_char; } } /* Can't back reference to a subexpression if inside of it. */ for (stackt = stackp - 2; stackt > stackb; stackt -= 5) if (*stackt == c1) goto normal_char; laststart = b; BUFPUSH(duplicate); BUFPUSH(c1); break; default: normal_backsl: goto normal_char; } break; default: normal_char: /* Expects the character in `c'. */ c1 = 0; if (ismbchar(c)) { c1 = c; PATFETCH_RAW(c); } else if (c > 0x7f) { c1 = 0xff; } numeric_char: if (!pending_exact || pending_exact + *pending_exact + 1 != b || *pending_exact >= (c1 ? 0176 : 0177) || *p == '+' || *p == '?' || *p == '*' || *p == '^' || *p == '{') { laststart = b; BUFPUSH(exactn); pending_exact = b; BUFPUSH(0); } if (c1) { BUFPUSH(c1); (*pending_exact)++; } BUFPUSH(c); (*pending_exact)++; } } if (fixup_jump) store_jump(fixup_jump, jump, b); if (stackp != stackb) goto unmatched_open; bufp->used = b - bufp->buffer; bufp->re_nsub = regnum; bufp->must = calculate_must_string(bufp->buffer, b); FREE_AND_RETURN(stackb, 0); invalid_char: FREE_AND_RETURN(stackb, "invalid character in regular expression"); invalid_pattern: FREE_AND_RETURN(stackb, "invalid regular expression"); unmatched_open: FREE_AND_RETURN(stackb, "unmatched ("); unmatched_close: FREE_AND_RETURN(stackb, "unmatched )"); end_of_pattern: FREE_AND_RETURN(stackb, "premature end of regular expression"); too_big: FREE_AND_RETURN(stackb, "regular expression too big"); memory_exhausted: FREE_AND_RETURN(stackb, "memory exhausted"); nested_meta: FREE_AND_RETURN(stackb, "nested *?+ in regexp"); } /* Store a jump of the form . Store in the location FROM a jump operation to jump to relative address FROM - TO. OPCODE is the opcode to store. */ static void store_jump(from, opcode, to) char *from, *to; int opcode; { from[0] = (char)opcode; STORE_NUMBER(from + 1, to - (from + 3)); } /* Open up space before char FROM, and insert there a jump to TO. CURRENT_END gives the end of the storage not in use, so we know how much data to copy up. OP is the opcode of the jump to insert. If you call this function, you must zero out pending_exact. */ static void insert_jump(op, from, to, current_end) int op; char *from, *to, *current_end; { register char *pfrom = current_end; /* Copy from here... */ register char *pto = current_end + 3; /* ...to here. */ while (pfrom != from) *--pto = *--pfrom; store_jump(from, op, to); } /* Store a jump of the form . Store in the location FROM a jump operation to jump to relative address FROM - TO. OPCODE is the opcode to store, N is a number the jump uses, say, to decide how many times to jump. If you call this function, you must zero out pending_exact. */ static void store_jump_n(from, opcode, to, n) char *from, *to; int opcode; unsigned n; { from[0] = (char)opcode; STORE_NUMBER(from + 1, to - (from + 3)); STORE_NUMBER(from + 3, n); } /* Similar to insert_jump, but handles a jump which needs an extra number to handle minimum and maximum cases. Open up space at location FROM, and insert there a jump to TO. CURRENT_END gives the end of the storage in use, so we know how much data to copy up. OP is the opcode of the jump to insert. If you call this function, you must zero out pending_exact. */ static void insert_jump_n(op, from, to, current_end, n) int op; char *from, *to, *current_end; unsigned n; { register char *pfrom = current_end; /* Copy from here... */ register char *pto = current_end + 5; /* ...to here. */ while (pfrom != from) *--pto = *--pfrom; store_jump_n(from, op, to, n); } /* Open up space at location THERE, and insert operation OP. CURRENT_END gives the end of the storage in use, so we know how much data to copy up. If you call this function, you must zero out pending_exact. */ static void insert_op(op, there, current_end) int op; char *there, *current_end; { register char *pfrom = current_end; /* Copy from here... */ register char *pto = current_end + 1; /* ...to here. */ while (pfrom != there) *--pto = *--pfrom; there[0] = (char)op; } /* Open up space at location THERE, and insert operation OP followed by NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so we know how much data to copy up. If you call this function, you must zero out pending_exact. */ static void insert_op_2(op, there, current_end, num_1, num_2) int op; char *there, *current_end; int num_1, num_2; { register char *pfrom = current_end; /* Copy from here... */ register char *pto = current_end + 5; /* ...to here. */ while (pfrom != there) *--pto = *--pfrom; there[0] = (char)op; STORE_NUMBER(there + 1, num_1); STORE_NUMBER(there + 3, num_2); } #define trans_eq(c1, c2, translate) (translate?(translate[c1]==translate[c2]):((c1)==(c2))) static int must_match(little, lend, big, bend, translate) unsigned char *little, *lend; unsigned char *big, *bend; unsigned char *translate; { int c; while (little < lend && big < bend) { c = *little++; if (c == 0xff) { if (!trans_eq(*big++, *little++, translate)) break; continue; } if (!trans_eq(*big++, c, translate)) break; } if (little == lend) return 1; return 0; } static int must_instr(little, llen, big, blen, translate) unsigned char *little; int llen; unsigned char *big; int blen; char *translate; { unsigned char *bend = big + blen; register int c; int fescape = 0; if (blen < llen) return 0; c = *little; if (c == 0xff) { c = *++little; fescape = 1; } else if (translate && !ismbchar(c)) { c = translate[c]; } while (big < bend) { /* look for first character */ if (fescape) { while (big < bend) { if (*big == c) break; big++; } } else if (translate && !ismbchar(c)) { while (big < bend) { if (ismbchar(*big)) big++; else if (translate[*big] == c) break; big++; } } else { while (big < bend) { if (*big == c) break; if (ismbchar(*big)) big++; big++; } } if (must_match(little, little+llen, big, bend, translate)) return 1; if (ismbchar(*big)) big++; big++; } return 0; } /* Given a pattern, compute a fastmap from it. The fastmap records which of the (1 << BYTEWIDTH) possible characters can start a string that matches the pattern. This fastmap is used by re_search to skip quickly over totally implausible text. The caller must supply the address of a (1 << BYTEWIDTH)-byte data area as bufp->fastmap. The other components of bufp describe the pattern to be used. */ void re_compile_fastmap(bufp) struct re_pattern_buffer *bufp; { unsigned char *pattern = (unsigned char *) bufp->buffer; int size = bufp->used; register char *fastmap = bufp->fastmap; register unsigned char *p = pattern; register unsigned char *pend = pattern + size; register int j, k; unsigned char *translate = (unsigned char *)bufp->translate; unsigned is_a_succeed_n; unsigned char **stackb = RE_TALLOC(NFAILURES, unsigned char*); unsigned char **stackp = stackb; unsigned char **stacke = stackb + NFAILURES; memset(fastmap, 0, (1 << BYTEWIDTH)); bufp->fastmap_accurate = 1; bufp->can_be_null = 0; while (p) { is_a_succeed_n = 0; if (p == pend) { bufp->can_be_null = 1; break; } #ifdef SWITCH_ENUM_BUG switch ((int) ((enum regexpcode)*p++)) #else switch ((enum regexpcode)*p++) #endif { case exactn: if (p[1] == 0xff) { if (translate) fastmap[translate[p[2]]] = 2; else fastmap[p[2]] = 2; } else if (translate) fastmap[translate[p[1]]] = 1; else fastmap[p[1]] = 1; break; case begline: case begbuf: case endbuf: case wordbound: case notwordbound: case wordbeg: case wordend: case pop_and_fail: continue; case endline: if (translate) fastmap[translate['\n']] = 1; else fastmap['\n'] = 1; if (bufp->can_be_null == 0) bufp->can_be_null = 2; break; case jump_n: case finalize_jump: case maybe_finalize_jump: case jump: case dummy_failure_jump: EXTRACT_NUMBER_AND_INCR(j, p); p += j; if (j > 0) continue; /* Jump backward reached implies we just went through the body of a loop and matched nothing. Opcode jumped to should be an on_failure_jump. Just treat it like an ordinary jump. For a * loop, it has pushed its failure point already; If so, discard that as redundant. */ if ((enum regexpcode) *p != on_failure_jump && (enum regexpcode) *p != try_next && (enum regexpcode) *p != finalize_push && (enum regexpcode) *p != finalize_push_n) continue; p++; EXTRACT_NUMBER_AND_INCR(j, p); p += j; if (stackp != stackb && *stackp == p) stackp--; /* pop */ continue; case start_nowidth: case stop_nowidth: case finalize_push: p += 2; continue; case finalize_push_n: p += 4; continue; case try_next: case on_failure_jump: handle_on_failure_jump: EXTRACT_NUMBER_AND_INCR(j, p); if (p + j < pend) { if (stackp == stacke) { unsigned char **stackx; unsigned int len = stacke - stackb; EXPAND_FAIL_STACK(stackx, stackb, len); } *++stackp = p + j; /* push */ } else { bufp->can_be_null = 1; } if (is_a_succeed_n) EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */ continue; case succeed_n: is_a_succeed_n = 1; /* Get to the number of times to succeed. */ EXTRACT_NUMBER(k, p + 2); /* Increment p past the n for when k != 0. */ if (k == 0) { p += 4; } else { goto handle_on_failure_jump; } continue; case set_number_at: p += 4; continue; case start_memory: case stop_memory: p++; continue; case duplicate: bufp->can_be_null = 1; fastmap['\n'] = 1; case anychar: for (j = 0; j < (1 << BYTEWIDTH); j++) if (j != '\n') fastmap[j] = 1; if (bufp->can_be_null) { FREE_AND_RETURN_VOID(stackb); } /* Don't return; check the alternative paths so we can set can_be_null if appropriate. */ break; case wordchar: for (j = 0; j < (1 << BYTEWIDTH); j++) if (SYNTAX(j) == Sword) fastmap[j] = 1; break; case notwordchar: for (j = 0; j < 0x80; j++) if (SYNTAX(j) != Sword) fastmap[j] = 1; for (j = 0x80; j < (1 << BYTEWIDTH); j++) fastmap[j] = 1; break; case charset: /* NOTE: Charset for single-byte chars never contain multi-byte char. See set_list_bits(). */ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) { if (translate) fastmap[translate[j]] = 1; else fastmap[j] = 1; } { unsigned short size; unsigned c, end; p += p[-1] + 2; size = EXTRACT_UNSIGNED(&p[-2]); for (j = 0; j < (int)size; j++) { if ((unsigned char)p[j*4] == 0xff) { for (c = (unsigned char)p[j*4+1], end = (unsigned char)p[j*4+3]; c <= end; c++) { fastmap[c] = 2; } } else { /* set bits for 1st bytes of multi-byte chars. */ for (c = (unsigned char)p[j*4], end = (unsigned char)p[j*4 + 2]; c <= end; c++) { /* NOTE: Charset for multi-byte chars might contain single-byte chars. We must reject them. */ if (ismbchar(c)) fastmap[c] = 1; } } } } break; case charset_not: /* S: set of all single-byte chars. M: set of all first bytes that can start multi-byte chars. s: any set of single-byte chars. m: any set of first bytes that can start multi-byte chars. We assume S+M = U. ___ _ _ s+m = (S*s+M*m). */ /* Chars beyond end of map must be allowed */ /* NOTE: Charset_not for single-byte chars might contain multi-byte chars. See set_list_bits(). */ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) if (!ismbchar(j)) fastmap[j] = 1; for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) { if (!ismbchar(j)) fastmap[j] = 1; } { unsigned short size; unsigned char c, beg; p += p[-1] + 2; size = EXTRACT_UNSIGNED(&p[-2]); if (size == 0) { for (j = 0x80; j < (1 << BYTEWIDTH); j++) if (ismbchar(j)) fastmap[j] = 1; } for (j = 0,c = 0x80;j < (int)size; j++) { if ((unsigned char)p[j*4] == 0xff) { for (beg = (unsigned char)p[j*4+1]; c < beg; c++) fastmap[c] = 2; c = (unsigned char)p[j*4+3] + 1; } else { for (beg = (unsigned char)p[j*4 + 0]; c < beg; c++) if (ismbchar(c)) fastmap[c] = 1; c = (unsigned char)p[j*4 + 2] + 1; } } } break; case unused: /* pacify gcc -Wall */ break; } /* Get here means we have successfully found the possible starting characters of one path of the pattern. We need not follow this path any farther. Instead, look at the next alternative remembered in the stack. */ if (stackp != stackb) p = *stackp--; /* pop */ else break; } FREE_AND_RETURN_VOID(stackb); } /* Using the compiled pattern in BUFP->buffer, first tries to match STRING, starting first at index STARTPOS, then at STARTPOS + 1, and so on. RANGE is the number of places to try before giving up. If RANGE is negative, it searches backwards, i.e., the starting positions tried are STARTPOS, STARTPOS - 1, etc. STRING is of SIZE. In REGS, return the indices of STRING that matched the entire BUFP->buffer and its contained subexpressions. The value returned is the position in the strings at which the match was found, or -1 if no match was found, or -2 if error (such as failure stack overflow). */ int re_search(bufp, string, size, startpos, range, regs) struct re_pattern_buffer *bufp; char *string; int size, startpos, range; struct re_registers *regs; { register char *fastmap = bufp->fastmap; register unsigned char *translate = (unsigned char *) bufp->translate; int val, anchor = 0; /* Check for out-of-range starting position. */ if (startpos < 0 || startpos > size) return -1; /* If the search isn't to be a backwards one, don't waste time in a search for a pattern that must be anchored. */ if (bufp->used>0) { switch ((enum regexpcode)bufp->buffer[0]) { case begbuf: if (range > 0) { if (startpos > 0) return -1; else return re_match(bufp, string, size, 0, regs); } break; case begline: if (startpos == 0) { val = re_match(bufp, string, size, 0, regs); if (val >= 0) return 0; } anchor = 1; break; default: break; } } #if 1 if (range > 0 && bufp->must && !must_instr(bufp->must+1, bufp->must[0], string+startpos, size-startpos, translate)) { return -1; } #endif /* Update the fastmap now if not correct already. */ if (fastmap && !bufp->fastmap_accurate) { re_compile_fastmap(bufp); } for (;;) { /* If a fastmap is supplied, skip quickly over characters that cannot possibly be the start of a match. Note, however, that if the pattern can possibly match the null string, we must test it at each starting point so that we take the first null string we get. */ if (fastmap && startpos < size && bufp->can_be_null != 1 && !(anchor && startpos == 0)) { if (range > 0) /* Searching forwards. */ { register unsigned char *p, c; int irange = range; p = (unsigned char *)string+startpos; while (range > 0) { c = *p++; if (ismbchar(c)) { if (fastmap[c]) break; c = *p++; range--; if (fastmap[c] == 2) break; } else if (fastmap[translate ? translate[c] : c]) break; range--; } startpos += irange - range; } else /* Searching backwards. */ { register unsigned char c; c = string[startpos]; c &= 0xff; if (translate ? !fastmap[translate[c]] : !fastmap[c]) goto advance; } } if (anchor && startpos > 0 && startpos < size && string[startpos-1] != '\n') goto advance; if (fastmap && startpos == size && range >= 0 && (bufp->can_be_null == 0 || (bufp->can_be_null && size > 0 && string[startpos-1] == '\n'))) return -1; val = re_match(bufp, string, size, startpos, regs); if (val >= 0) return startpos; if (val == -2) return -2; #ifndef NO_ALLOCA #ifdef cALLOCA alloca(0); #endif /* cALLOCA */ #endif /* NO_ALLOCA */ advance: if (!range) break; else if (range > 0) { const char *d = string + startpos; if (ismbchar(*d)) { range--, startpos++; if (!range) break; } range--, startpos++; } else { range++, startpos--; { const char *s, *d, *p; s = string; d = string + startpos; for (p = d; p-- > s && ismbchar(*p); ) /* --p >= s would not work on 80[12]?86. (when the offset of s equals 0 other than huge model.) */ ; if (!((d - p) & 1)) { if (!range) break; range++, startpos--; } } } } return -1; } /* The following are used for re_match, defined below: */ /* Roughly the maximum number of failure points on the stack. Would be exactly that if always pushed MAX_NUM_FAILURE_ITEMS each time we failed. */ int re_max_failures = 2000; /* Routine used by re_match. */ /* static int memcmp_translate(); *//* already declared */ /* Structure and accessing macros used in re_match: */ struct register_info { unsigned is_active : 1; unsigned matched_something : 1; }; #define IS_ACTIVE(R) ((R).is_active) #define MATCHED_SOMETHING(R) ((R).matched_something) /* Macros used by re_match: */ /* I.e., regstart, regend, and reg_info. */ #define NUM_REG_ITEMS 3 /* We push at most this many things on the stack whenever we fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are arguments to the PUSH_FAILURE_POINT macro. */ #define MAX_NUM_FAILURE_ITEMS (num_regs * NUM_REG_ITEMS + 2) /* We push this many things on the stack whenever we fail. */ #define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + 2) /* This pushes most of the information about the current state we will want if we ever fail back to it. */ #define PUSH_FAILURE_POINT(pattern_place, string_place) \ { \ long last_used_reg, this_reg; \ \ /* Find out how many registers are active or have been matched. \ (Aside from register zero, which is only set at the end.) */ \ for (last_used_reg = num_regs - 1; last_used_reg > 0; last_used_reg--)\ if (regstart[last_used_reg] != (unsigned char *)(-1L)) \ break; \ \ if (stacke - stackp <= NUM_FAILURE_ITEMS) \ { \ unsigned char **stackx; \ unsigned int len = stacke - stackb; \ if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \ { \ FREE_VARIABLES(); \ FREE_AND_RETURN(stackb,(-2)); \ } \ \ /* Roughly double the size of the stack. */ \ EXPAND_FAIL_STACK(stackx, stackb, len); \ } \ \ /* Now push the info for each of those registers. */ \ for (this_reg = 1; this_reg <= last_used_reg; this_reg++) \ { \ *stackp++ = regstart[this_reg]; \ *stackp++ = regend[this_reg]; \ *stackp++ = (unsigned char *)®_info[this_reg]; \ } \ \ /* Push how many registers we saved. */ \ *stackp++ = (unsigned char *)last_used_reg; \ \ *stackp++ = pattern_place; \ *stackp++ = string_place; \ *stackp++ = (unsigned char *)0; /* non-greedy flag */ \ } /* This pops what PUSH_FAILURE_POINT pushes. */ #define POP_FAILURE_POINT() \ { \ int temp; \ stackp -= 3; /* Remove failure points (and flag). */ \ temp = (int) *--stackp; /* How many regs pushed. */ \ temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \ stackp -= temp; /* Remove the register info. */ \ } #define PREFETCH if (d == dend) goto fail /* Call this when have matched something; it sets `matched' flags for the registers corresponding to the subexpressions of which we currently are inside. */ #define SET_REGS_MATCHED \ { unsigned this_reg; \ for (this_reg = 0; this_reg < num_regs; this_reg++) \ { \ if (IS_ACTIVE(reg_info[this_reg])) \ MATCHED_SOMETHING(reg_info[this_reg]) = 1; \ else \ MATCHED_SOMETHING(reg_info[this_reg]) = 0; \ } \ } #define AT_STRINGS_BEG(d) (d == string) #define AT_STRINGS_END(d) (d == dend) #define AT_WORD_BOUNDARY(d) \ (AT_STRINGS_BEG(d) || AT_STRINGS_END(d) || IS_A_LETTER(d - 1) != IS_A_LETTER(d)) /* We have two special cases to check for: 1) if we're past the end of string1, we have to look at the first character in string2; 2) if we're before the beginning of string2, we have to look at the last character in string1; we assume there is a string1, so use this in conjunction with AT_STRINGS_BEG. */ #define IS_A_LETTER(d) (SYNTAX(*(d)) == Sword) static void init_regs(regs, num_regs) struct re_registers *regs; unsigned num_regs; { int i; regs->num_regs = num_regs; if (num_regs < RE_NREGS) num_regs = RE_NREGS; if (regs->allocated == 0) { regs->beg = TMALLOC(num_regs, int); regs->end = TMALLOC(num_regs, int); regs->allocated = num_regs; } else if (regs->allocated < num_regs) { TREALLOC(regs->beg, num_regs, int); TREALLOC(regs->end, num_regs, int); } for (i=0; ibeg[i] = regs->end[i] = -1; } } /* Match the pattern described by BUFP against STRING, which is of SIZE. Start the match at index POS in STRING. In REGS, return the indices of STRING that matched the entire BUFP->buffer and its contained subexpressions. If bufp->fastmap is nonzero, then it had better be up to date. The reason that the data to match are specified as two components which are to be regarded as concatenated is so this function can be used directly on the contents of an Emacs buffer. -1 is returned if there is no match. -2 is returned if there is an error (such as match stack overflow). Otherwise the value is the length of the substring which was matched. */ int re_match(bufp, string_arg, size, pos, regs) struct re_pattern_buffer *bufp; char *string_arg; int size, pos; struct re_registers *regs; { register unsigned char *p = (unsigned char *) bufp->buffer; /* Pointer to beyond end of buffer. */ register unsigned char *pend = p + bufp->used; unsigned num_regs = bufp->re_nsub; unsigned char *string = (unsigned char *) string_arg; register unsigned char *d, *dend; register int mcnt; /* Multipurpose. */ unsigned char *translate = (unsigned char *) bufp->translate; unsigned is_a_jump_n = 0; /* Failure point stack. Each place that can handle a failure further down the line pushes a failure point on this stack. It consists of restart, regend, and reg_info for all registers corresponding to the subexpressions we're currently inside, plus the number of such registers, and, finally, two char *'s. The first char * is where to resume scanning the pattern; the second one is where to resume scanning the strings. If the latter is zero, the failure point is a ``dummy''; if a failure happens and the failure point is a dummy, it gets discarded and the next next one is tried. */ unsigned char **stackb; unsigned char **stackp; unsigned char **stacke; /* Information on the contents of registers. These are pointers into the input strings; they record just what was matched (on this attempt) by a subexpression part of the pattern, that is, the regnum-th regstart pointer points to where in the pattern we began matching and the regnum-th regend points to right after where we stopped matching the regnum-th subexpression. (The zeroth register keeps track of what the whole pattern matches.) */ unsigned char **regstart = RE_TALLOC(num_regs, unsigned char*); unsigned char **regend = RE_TALLOC(num_regs, unsigned char*); /* The is_active field of reg_info helps us keep track of which (possibly nested) subexpressions we are currently in. The matched_something field of reg_info[reg_num] helps us tell whether or not we have matched any of the pattern so far this time through the reg_num-th subexpression. These two fields get reset each time through any loop their register is in. */ struct register_info *reg_info = RE_TALLOC(num_regs, struct register_info); /* The following record the register info as found in the above variables when we find a match better than any we've seen before. This happens as we backtrack through the failure points, which in turn happens only if we have not yet matched the entire string. */ unsigned best_regs_set = 0; unsigned char **best_regstart = RE_TALLOC(num_regs, unsigned char*); unsigned char **best_regend = RE_TALLOC(num_regs, unsigned char*); if (regs) { init_regs(regs, num_regs); } /* Initialize the stack. */ stackb = RE_TALLOC(MAX_NUM_FAILURE_ITEMS * NFAILURES, unsigned char*); stackp = stackb; stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES]; #ifdef DEBUG_REGEX fprintf (stderr, "Entering re_match(%s%s)\n", string1_arg, string2_arg); #endif /* Initialize subexpression text positions to -1 to mark ones that no \( or ( and \) or ) has been seen for. Also set all registers to inactive and mark them as not having matched anything or ever failed. */ for (mcnt = 0; mcnt < num_regs; mcnt++) { regstart[mcnt] = regend[mcnt] = (unsigned char *) (-1L); IS_ACTIVE(reg_info[mcnt]) = 0; MATCHED_SOMETHING(reg_info[mcnt]) = 0; } /* Set up pointers to ends of strings. Don't allow the second string to be empty unless both are empty. */ /* `p' scans through the pattern as `d' scans through the data. `dend' is the end of the input string that `d' points within. `d' is advanced into the following input string whenever necessary, but this happens before fetching; therefore, at the beginning of the loop, `d' can be pointing at the end of a string, but it cannot equal string2. */ d = string + pos, dend = string + size; /* This loops over pattern commands. It exits by returning from the function if match is complete, or it drops through if match fails at this starting point in the input data. */ for (;;) { #ifdef DEBUG_REGEX fprintf(stderr, "regex loop(%d): matching 0x%02d\n", p - (unsigned char *) bufp->buffer, *p); #endif is_a_jump_n = 0; /* End of pattern means we might have succeeded. */ if (p == pend) { /* If not end of string, try backtracking. Otherwise done. */ if (d != dend) { while (stackp != stackb && (int)stackp[-1] == 1) POP_FAILURE_POINT(); if (stackp != stackb) { /* More failure points to try. */ /* If exceeds best match so far, save it. */ if (! best_regs_set || (d > best_regend[0])) { best_regs_set = 1; best_regend[0] = d; /* Never use regstart[0]. */ for (mcnt = 1; mcnt < num_regs; mcnt++) { best_regstart[mcnt] = regstart[mcnt]; best_regend[mcnt] = regend[mcnt]; } } goto fail; } /* If no failure points, don't restore garbage. */ else if (best_regs_set) { restore_best_regs: /* Restore best match. */ d = best_regend[0]; for (mcnt = 0; mcnt < num_regs; mcnt++) { regstart[mcnt] = best_regstart[mcnt]; regend[mcnt] = best_regend[mcnt]; } } } /* If caller wants register contents data back, convert it to indices. */ if (regs) { regs->beg[0] = pos; regs->end[0] = d - string; for (mcnt = 1; mcnt < num_regs; mcnt++) { if (regend[mcnt] == (unsigned char *)(-1L)) { regs->beg[mcnt] = -1; regs->end[mcnt] = -1; continue; } regs->beg[mcnt] = regstart[mcnt] - string; regs->end[mcnt] = regend[mcnt] - string; } } FREE_VARIABLES(); FREE_AND_RETURN(stackb, (d - pos - string)); } /* Otherwise match next pattern command. */ #ifdef SWITCH_ENUM_BUG switch ((int)((enum regexpcode)*p++)) #else switch ((enum regexpcode)*p++) #endif { /* \( [or `(', as appropriate] is represented by start_memory, \) by stop_memory. Both of those commands are followed by a register number in the next byte. The text matched within the \( and \) is recorded under that number. */ case start_memory: regstart[*p] = d; IS_ACTIVE(reg_info[*p]) = 1; MATCHED_SOMETHING(reg_info[*p]) = 0; p++; continue; case stop_memory: regend[*p] = d; IS_ACTIVE(reg_info[*p]) = 0; /* If just failed to match something this time around with a sub- expression that's in a loop, try to force exit from the loop. */ if ((! MATCHED_SOMETHING(reg_info[*p]) || (enum regexpcode) p[-3] == start_memory) && (p + 1) != pend) { register unsigned char *p2 = p + 1; mcnt = 0; switch (*p2++) { case jump_n: is_a_jump_n = 1; case finalize_jump: case maybe_finalize_jump: case jump: case dummy_failure_jump: EXTRACT_NUMBER_AND_INCR(mcnt, p2); if (is_a_jump_n) p2 += 2; break; } p2 += mcnt; /* If the next operation is a jump backwards in the pattern to an on_failure_jump, exit from the loop by forcing a failure after pushing on the stack the on_failure_jump's jump in the pattern, and d. */ if (mcnt < 0 && (enum regexpcode) *p2++ == on_failure_jump) { EXTRACT_NUMBER_AND_INCR(mcnt, p2); PUSH_FAILURE_POINT(p2 + mcnt, d); goto fail; } } p++; continue; /* \ has been turned into a `duplicate' command which is followed by the numeric value of as the register number. */ case duplicate: { int regno = *p++; /* Get which register to match against */ register unsigned char *d2, *dend2; /* Where in input to try to start matching. */ d2 = regstart[regno]; /* Where to stop matching; if both the place to start and the place to stop matching are in the same string, then set to the place to stop, otherwise, for now have to use the end of the first string. */ dend2 = regend[regno]; for (;;) { /* At end of register contents => success */ if (d2 == dend2) break; /* If necessary, advance to next segment in data. */ PREFETCH; /* How many characters left in this segment to match. */ mcnt = dend - d; /* Want how many consecutive characters we can match in one shot, so, if necessary, adjust the count. */ if (mcnt > dend2 - d2) mcnt = dend2 - d2; /* Compare that many; failure if mismatch, else move past them. */ if (translate ? memcmp_translate(d, d2, mcnt, translate) : memcmp((char *)d, (char *)d2, mcnt)) goto fail; d += mcnt, d2 += mcnt; } } break; case start_nowidth: PUSH_FAILURE_POINT(0, d); EXTRACT_NUMBER_AND_INCR(mcnt, p); STORE_NUMBER(p+mcnt, stackp - stackb); continue; case stop_nowidth: EXTRACT_NUMBER_AND_INCR(mcnt, p); stackp = stackb + mcnt; d = stackp[-2]; POP_FAILURE_POINT(); continue; case pop_and_fail: EXTRACT_NUMBER(mcnt, p+1); stackp = stackb + mcnt; POP_FAILURE_POINT(); goto fail; case anychar: PREFETCH; /* Match anything but a newline, maybe even a null. */ if (ismbchar(*d)) { if (d + 1 == dend || d[1] == '\n' || d[1] == '\0') goto fail; SET_REGS_MATCHED; d += 2; break; } if ((translate ? translate[*d] : *d) == '\n' || ((re_syntax_options & RE_DOT_NOT_NULL) && (translate ? translate[*d] : *d) == '\000')) goto fail; SET_REGS_MATCHED; d++; break; case charset: case charset_not: { int not; /* Nonzero for charset_not. */ int half; /* 2 if need to match latter half of mbc */ int c; PREFETCH; c = (unsigned char)*d; if (ismbchar(c)) { if (d + 1 != dend) { c <<= 8; c |= (unsigned char)d[1]; } } else if (translate) c = (unsigned char)translate[c]; half = not = is_in_list(c, p); if (*(p - 1) == (unsigned char)charset_not) { not = !not; } p += 1 + *p + 2 + EXTRACT_UNSIGNED(&p[1 + *p])*4; if (!not) goto fail; SET_REGS_MATCHED; d++; if (half != 2 && d != dend && c >= 1 << BYTEWIDTH) d++; break; } case begline: if (size == 0 || d == string || (d && d[-1] == '\n')) break; else goto fail; case endline: if (d == dend || *d == '\n') break; goto fail; /* Match at the very beginning of the string. */ case begbuf: if (AT_STRINGS_BEG(d)) break; goto fail; /* Match at the very end of the data. */ case endbuf: if (AT_STRINGS_END(d)) break; /* .. or newline just before the end of the data. */ if (*d == '\n' && AT_STRINGS_END(d+1)) break; goto fail; /* `or' constructs are handled by starting each alternative with an on_failure_jump that points to the start of the next alternative. Each alternative except the last ends with a jump to the joining point. (Actually, each jump except for the last one really jumps to the following jump, because tensioning the jumps is a hassle.) */ /* The start of a stupid repeat has an on_failure_jump that points past the end of the repeat text. This makes a failure point so that on failure to match a repetition, matching restarts past as many repetitions have been found with no way to fail and look for another one. */ /* A smart repeat is similar but loops back to the on_failure_jump so that each repetition makes another failure point. */ case on_failure_jump: on_failure: EXTRACT_NUMBER_AND_INCR(mcnt, p); PUSH_FAILURE_POINT(p + mcnt, d); continue; /* The end of a smart repeat has a maybe_finalize_jump back. Change it either to a finalize_jump or an ordinary jump. */ case maybe_finalize_jump: EXTRACT_NUMBER_AND_INCR(mcnt, p); { register unsigned char *p2 = p; /* Compare what follows with the beginning of the repeat. If we can establish that there is nothing that they would both match, we can change to finalize_jump. */ while (p2 + 1 != pend && (*p2 == (unsigned char)stop_memory || *p2 == (unsigned char)start_memory)) p2 += 2; /* Skip over reg number. */ if (p2 == pend) p[-3] = (unsigned char)finalize_jump; else if (*p2 == (unsigned char)exactn || *p2 == (unsigned char)endline) { register int c = *p2 == (unsigned char)endline ? '\n' : p2[2]; register unsigned char *p1 = p + mcnt; /* p1[0] ... p1[2] are an on_failure_jump. Examine what follows that. */ if (p1[3] == (unsigned char)exactn && p1[5] != c) p[-3] = (unsigned char)finalize_jump; else if (p1[3] == (unsigned char)charset || p1[3] == (unsigned char)charset_not) { int not; if (ismbchar(c)) c = c << 8 | p2[3]; /* `is_in_list()' is TRUE if c would match */ /* That means it is not safe to finalize. */ not = is_in_list(c, p1 + 4); if (p1[3] == (unsigned char)charset_not) not = !not; if (!not) p[-3] = (unsigned char)finalize_jump; } } } p -= 2; /* Point at relative address again. */ if (p[-1] != (unsigned char)finalize_jump) { p[-1] = (unsigned char)jump; goto nofinalize; } /* Note fall through. */ /* The end of a stupid repeat has a finalize_jump back to the start, where another failure point will be made which will point to after all the repetitions found so far. */ /* Take off failure points put on by matching on_failure_jump because didn't fail. Also remove the register information put on by the on_failure_jump. */ case finalize_jump: POP_FAILURE_POINT(); /* Note fall through. */ /* Jump without taking off any failure points. */ case jump: nofinalize: EXTRACT_NUMBER_AND_INCR(mcnt, p); p += mcnt; continue; case dummy_failure_jump: /* Normally, the on_failure_jump pushes a failure point, which then gets popped at finalize_jump. We will end up at finalize_jump, also, and with a pattern of, say, `a+', we are skipping over the on_failure_jump, so we have to push something meaningless for finalize_jump to pop. */ PUSH_FAILURE_POINT(0, 0); goto nofinalize; /* Have to succeed matching what follows at least n times. Then just handle like an on_failure_jump. */ case succeed_n: EXTRACT_NUMBER(mcnt, p + 2); /* Originally, this is how many times we HAVE to succeed. */ if (mcnt > 0) { mcnt--; p += 2; STORE_NUMBER_AND_INCR(p, mcnt); PUSH_FAILURE_POINT(0, 0); } else if (mcnt == 0) { p[2] = unused; p[3] = unused; goto on_failure; } continue; case jump_n: EXTRACT_NUMBER(mcnt, p + 2); /* Originally, this is how many times we CAN jump. */ if (mcnt) { mcnt--; STORE_NUMBER(p + 2, mcnt); goto nofinalize; /* Do the jump without taking off any failure points. */ } /* If don't have to jump any more, skip over the rest of command. */ else p += 4; continue; case set_number_at: { register unsigned char *p1; EXTRACT_NUMBER_AND_INCR(mcnt, p); p1 = p + mcnt; EXTRACT_NUMBER_AND_INCR(mcnt, p); STORE_NUMBER(p1, mcnt); continue; } case try_next: EXTRACT_NUMBER_AND_INCR(mcnt, p); if (p + mcnt < pend) { PUSH_FAILURE_POINT(p, d); stackp[-1] = (unsigned char*)1; } p += mcnt; continue; case finalize_push: POP_FAILURE_POINT(); EXTRACT_NUMBER_AND_INCR(mcnt, p); PUSH_FAILURE_POINT(p + mcnt, d); stackp[-1] = (unsigned char*)1; continue; case finalize_push_n: EXTRACT_NUMBER(mcnt, p + 2); /* Originally, this is how many times we CAN jump. */ if (mcnt) { mcnt--; STORE_NUMBER(p + 2, mcnt); POP_FAILURE_POINT(); EXTRACT_NUMBER_AND_INCR(mcnt, p); PUSH_FAILURE_POINT(p + mcnt, d); stackp[-1] = (unsigned char*)1; p += 7; /* skip n and set_number_at after destination */ } /* If don't have to push any more, skip over the rest of command. */ else p += 4; continue; /* Ignore these. Used to ignore the n of succeed_n's which currently have n == 0. */ case unused: continue; case wordbound: if (AT_WORD_BOUNDARY(d)) break; goto fail; case notwordbound: if (AT_WORD_BOUNDARY(d)) goto fail; break; case wordbeg: if (IS_A_LETTER(d) && (AT_STRINGS_BEG(d) || !IS_A_LETTER(d - 1))) break; goto fail; case wordend: if (!AT_STRINGS_BEG(d) && IS_A_LETTER(d - 1) && (!IS_A_LETTER(d) || AT_STRINGS_END(d))) break; goto fail; case wordchar: PREFETCH; if (!IS_A_LETTER(d)) goto fail; d++; SET_REGS_MATCHED; break; case notwordchar: PREFETCH; if (IS_A_LETTER(d)) goto fail; if (ismbchar(*d) && d + 1 != dend) d++; d++; SET_REGS_MATCHED; break; case exactn: /* Match the next few pattern characters exactly. mcnt is how many characters to match. */ mcnt = *p++; /* This is written out as an if-else so we don't waste time testing `translate' inside the loop. */ if (translate) { do { unsigned char c; PREFETCH; c = *d++; if (*p == 0xff) { p++; if (!--mcnt || d == dend || (unsigned char)*d++ != (unsigned char)*p++) goto fail; continue; } if (ismbchar(c)) { if (c != (unsigned char)*p++ || !--mcnt /* redundant check if pattern was compiled properly. */ || d == dend || (unsigned char)*d++ != (unsigned char)*p++) goto fail; continue; } /* compiled code translation needed for ruby */ if ((unsigned char)translate[c] != (unsigned char)translate[*p++]) goto fail; } while (--mcnt); } else { do { PREFETCH; if (*p == 0xff) {p++; mcnt--;} if (*d++ != *p++) goto fail; } while (--mcnt); } SET_REGS_MATCHED; break; } continue; /* Successfully executed one pattern command; keep going. */ /* Jump here if any matching operation fails. */ fail: if (stackp != stackb) /* A restart point is known. Restart there and pop it. */ { short last_used_reg, this_reg; /* If this failure point is from a dummy_failure_point, just skip it. */ if (stackp[-3] == 0) { POP_FAILURE_POINT(); goto fail; } stackp--; /* discard flag */ d = *--stackp; p = *--stackp; /* Restore register info. */ last_used_reg = (long) *--stackp; /* Make the ones that weren't saved -1 or 0 again. */ for (this_reg = num_regs - 1; this_reg > last_used_reg; this_reg--) { regend[this_reg] = (unsigned char *)(-1L); regstart[this_reg] = (unsigned char *)(-1L); IS_ACTIVE(reg_info[this_reg]) = 0; MATCHED_SOMETHING(reg_info[this_reg]) = 0; } /* And restore the rest from the stack. */ for ( ; this_reg > 0; this_reg--) { reg_info[this_reg] = *(struct register_info *) *--stackp; regend[this_reg] = *--stackp; regstart[this_reg] = *--stackp; } } else break; /* Matching at this starting point really fails. */ } if (best_regs_set) goto restore_best_regs; FREE_AND_RETURN(stackb,(-1)); /* Failure to match. */ } static int memcmp_translate(s1, s2, len, translate) unsigned char *s1, *s2; register int len; unsigned char *translate; { register unsigned char *p1 = s1, *p2 = s2, c; while (len) { c = *p1++; if (ismbchar(c)) { if (c != *p2++ || !--len || *p1++ != *p2++) return 1; } else if (translate[c] != translate[*p2++]) return 1; len--; } return 0; } void re_copy_registers(regs1, regs2) struct re_registers *regs1, *regs2; { int i; if (regs1 == regs2) return; if (regs1->allocated == 0) { regs1->beg = TMALLOC(regs2->num_regs, int); regs1->end = TMALLOC(regs2->num_regs, int); regs1->allocated = regs2->num_regs; } else if (regs1->allocated < regs2->num_regs) { TREALLOC(regs1->beg, regs2->num_regs, int); TREALLOC(regs1->end, regs2->num_regs, int); regs1->allocated = regs2->num_regs; } for (i=0; inum_regs; i++) { regs1->beg[i] = regs2->beg[i]; regs1->end[i] = regs2->end[i]; } regs1->num_regs = regs2->num_regs; } void re_free_registers(regs) struct re_registers *regs; { if (regs->allocated == 0) return; if (regs->beg) free(regs->beg); if (regs->end) free(regs->end); } /* Functions for multi-byte support. Created for grep multi-byte extension Jul., 1993 by t^2 (Takahiro Tanimoto) Last change: Jul. 9, 1993 by t^2 */ static const unsigned char mbctab_ascii[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const unsigned char mbctab_euc[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static const unsigned char mbctab_sjis[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; #ifdef EUC const unsigned char *mbctab = mbctab_euc; int current_mbctype = MBCTYPE_EUC; #else #ifdef SJIS const unsigned char *mbctab = mbctab_sjis; int current_mbctype = MBCTYPE_SJIS; #else const unsigned char *mbctab = mbctab_ascii; int current_mbctype = MBCTYPE_ASCII; #endif #endif void mbcinit(mbctype) int mbctype; { switch (mbctype) { case MBCTYPE_ASCII: mbctab = mbctab_ascii; current_mbctype = MBCTYPE_ASCII; break; case MBCTYPE_EUC: mbctab = mbctab_euc; current_mbctype = MBCTYPE_EUC; break; case MBCTYPE_SJIS: mbctab = mbctab_sjis; current_mbctype = MBCTYPE_SJIS; break; } }