/********************************************************************** range.c - $Author$ created at: Thu Aug 19 17:46:47 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/internal/config.h" #include #include #ifdef HAVE_FLOAT_H #include #endif #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/compar.h" #include "internal/enum.h" #include "internal/enumerator.h" #include "internal/error.h" #include "internal/numeric.h" #include "internal/range.h" VALUE rb_cRange; static ID id_beg, id_end, id_excl; #define id_cmp idCmp #define id_succ idSucc static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); #define RANGE_SET_BEG(r, v) (RSTRUCT_SET(r, 0, v)) #define RANGE_SET_END(r, v) (RSTRUCT_SET(r, 1, v)) #define RANGE_SET_EXCL(r, v) (RSTRUCT_SET(r, 2, v)) #define RBOOL(v) ((v) ? Qtrue : Qfalse) #define EXCL(r) RTEST(RANGE_EXCL(r)) static void range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end) { if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) { VALUE v; v = rb_funcall(beg, id_cmp, 1, end); if (NIL_P(v)) rb_raise(rb_eArgError, "bad value for range"); } RANGE_SET_EXCL(range, exclude_end); RANGE_SET_BEG(range, beg); RANGE_SET_END(range, end); } VALUE rb_range_new(VALUE beg, VALUE end, int exclude_end) { VALUE range = rb_obj_alloc(rb_cRange); range_init(range, beg, end, RBOOL(exclude_end)); return range; } static void range_modify(VALUE range) { rb_check_frozen(range); /* Ranges are immutable, so that they should be initialized only once. */ if (RANGE_EXCL(range) != Qnil) { rb_name_err_raise("`initialize' called twice", range, ID2SYM(idInitialize)); } } /* * call-seq: * Range.new(begin, end, exclude_end=false) -> rng * * Constructs a range using the given +begin+ and +end+. If the +exclude_end+ * parameter is omitted or is false, the range will include * the end object; otherwise, it will be excluded. */ static VALUE range_initialize(int argc, VALUE *argv, VALUE range) { VALUE beg, end, flags; rb_scan_args(argc, argv, "21", &beg, &end, &flags); range_modify(range); range_init(range, beg, end, RBOOL(RTEST(flags))); return Qnil; } /* :nodoc: */ static VALUE range_initialize_copy(VALUE range, VALUE orig) { range_modify(range); rb_struct_init_copy(range, orig); return range; } /* * call-seq: * rng.exclude_end? -> true or false * * Returns true if the range excludes its end value. * * (1..5).exclude_end? #=> false * (1...5).exclude_end? #=> true */ static VALUE range_exclude_end_p(VALUE range) { return EXCL(range) ? Qtrue : Qfalse; } static VALUE recursive_equal(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj))) return Qfalse; if (!rb_equal(RANGE_END(range), RANGE_END(obj))) return Qfalse; if (EXCL(range) != EXCL(obj)) return Qfalse; return Qtrue; } /* * call-seq: * rng == obj -> true or false * * Returns true only if +obj+ is a Range, has equivalent * begin and end items (by comparing them with ==), and has * the same #exclude_end? setting as the range. * * (0..2) == (0..2) #=> true * (0..2) == Range.new(0,2) #=> true * (0..2) == (0...2) #=> false * */ static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); } /* compares _a_ and _b_ and returns: * < 0: a < b * = 0: a = b * > 0: a > b or non-comparable */ static int r_less(VALUE a, VALUE b) { VALUE r = rb_funcall(a, id_cmp, 1, b); if (NIL_P(r)) return INT_MAX; return rb_cmpint(r, a, b); } static VALUE recursive_eql(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj))) return Qfalse; if (!rb_eql(RANGE_END(range), RANGE_END(obj))) return Qfalse; if (EXCL(range) != EXCL(obj)) return Qfalse; return Qtrue; } /* * call-seq: * rng.eql?(obj) -> true or false * * Returns true only if +obj+ is a Range, has equivalent * begin and end items (by comparing them with eql?), * and has the same #exclude_end? setting as the range. * * (0..2).eql?(0..2) #=> true * (0..2).eql?(Range.new(0,2)) #=> true * (0..2).eql?(0...2) #=> false * */ static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); } /* * call-seq: * rng.hash -> integer * * Compute a hash-code for this range. Two ranges with equal * begin and end points (using eql?), and the same * #exclude_end? value will generate the same hash-code. * * See also Object#hash. */ static VALUE range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v; hash = rb_hash_start(hash); v = rb_hash(RANGE_BEG(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); v = rb_hash(RANGE_END(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); hash = rb_hash_uint(hash, EXCL(range) << 24); hash = rb_hash_end(hash); return ST2FIX(hash); } static void range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg) { int c; VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); VALUE v = b; if (EXCL(range)) { while (r_less(v, e) < 0) { if ((*func)(v, arg)) break; v = rb_funcallv(v, id_succ, 0, 0); } } else { while ((c = r_less(v, e)) <= 0) { if ((*func)(v, arg)) break; if (!c) break; v = rb_funcallv(v, id_succ, 0, 0); } } } static int sym_step_i(VALUE i, VALUE arg) { VALUE *iter = (VALUE *)arg; if (FIXNUM_P(iter[0])) { iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; } else { iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); } if (iter[0] == INT2FIX(0)) { rb_yield(rb_str_intern(i)); iter[0] = iter[1]; } return 0; } static int step_i(VALUE i, VALUE arg) { VALUE *iter = (VALUE *)arg; if (FIXNUM_P(iter[0])) { iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; } else { iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); } if (iter[0] == INT2FIX(0)) { rb_yield(i); iter[0] = iter[1]; } return 0; } static int discrete_object_p(VALUE obj) { if (rb_obj_is_kind_of(obj, rb_cTime)) return FALSE; /* until Time#succ removed */ return rb_respond_to(obj, id_succ); } static int linear_object_p(VALUE obj) { if (FIXNUM_P(obj) || FLONUM_P(obj)) return TRUE; if (SPECIAL_CONST_P(obj)) return FALSE; switch (BUILTIN_TYPE(obj)) { case T_FLOAT: case T_BIGNUM: return TRUE; default: break; } if (rb_obj_is_kind_of(obj, rb_cNumeric)) return TRUE; if (rb_obj_is_kind_of(obj, rb_cTime)) return TRUE; return FALSE; } static VALUE check_step_domain(VALUE step) { VALUE zero = INT2FIX(0); int cmp; if (!rb_obj_is_kind_of(step, rb_cNumeric)) { step = rb_to_int(step); } cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero); if (cmp < 0) { rb_raise(rb_eArgError, "step can't be negative"); } else if (cmp == 0) { rb_raise(rb_eArgError, "step can't be 0"); } return step; } static VALUE range_step_size(VALUE range, VALUE args, VALUE eobj) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); VALUE step = INT2FIX(1); if (args) { step = check_step_domain(RARRAY_AREF(args, 0)); } if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, step, EXCL(range)); } return Qnil; } /* * Document-method: Range#step * Document-method: Range#% * call-seq: * rng.step(n=1) {| obj | block } -> rng * rng.step(n=1) -> an_enumerator * rng.step(n=1) -> an_arithmetic_sequence * rng % n -> an_enumerator * rng % n -> an_arithmetic_sequence * * Iterates over the range, passing each nth element to the block. * If begin and end are numeric, +n+ is added for each iteration. * Otherwise #step invokes #succ to iterate through range elements. * * If no block is given, an enumerator is returned instead. * Especially, the enumerator is an Enumerator::ArithmeticSequence * if begin and end of the range are numeric. * * range = Xs.new(1)..Xs.new(10) * range.step(2) {|x| puts x} * puts * range.step(3) {|x| puts x} * * produces: * * 1 x * 3 xxx * 5 xxxxx * 7 xxxxxxx * 9 xxxxxxxxx * * 1 x * 4 xxxx * 7 xxxxxxx * 10 xxxxxxxxxx * * See Range for the definition of class Xs. */ static VALUE range_step(int argc, VALUE *argv, VALUE range) { VALUE b, e, step, tmp; b = RANGE_BEG(range); e = RANGE_END(range); step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]); if (!rb_block_given_p()) { const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); } step = check_step_domain(step); if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { long i = FIX2LONG(b), unit = FIX2LONG(step); do { rb_yield(LONG2FIX(i)); i += unit; /* FIXABLE+FIXABLE never overflow */ } while (FIXABLE(i)); b = LONG2NUM(i); for (;; b = rb_big_plus(b, step)) rb_yield(b); } else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ long end = FIX2LONG(e); long i, unit = FIX2LONG(step); if (!EXCL(range)) end += 1; i = FIX2LONG(b); while (i < end) { rb_yield(LONG2NUM(i)); if (i + unit < i) break; i += unit; } } else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */ VALUE iter[2]; iter[0] = INT2FIX(1); iter[1] = step; b = rb_sym2str(b); if (NIL_P(e)) { rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter); } else { rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); } } else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) { /* done */ } else if (rb_obj_is_kind_of(b, rb_cNumeric) || !NIL_P(rb_check_to_integer(b, "to_int")) || !NIL_P(rb_check_to_integer(e, "to_int"))) { ID op = EXCL(range) ? '<' : idLE; VALUE v = b; int i = 0; while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) { rb_yield(v); i++; v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); } } else { tmp = rb_check_string_type(b); if (!NIL_P(tmp)) { VALUE iter[2]; b = tmp; iter[0] = INT2FIX(1); iter[1] = step; if (NIL_P(e)) { rb_str_upto_endless_each(b, step_i, (VALUE)iter); } else { rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter); } } else { VALUE args[2]; if (!discrete_object_p(b)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(b)); } args[0] = INT2FIX(1); args[1] = step; range_each_func(range, step_i, (VALUE)args); } } return range; } static VALUE range_percent_step(VALUE range, VALUE step) { return range_step(1, &step, range); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) union int64_double { int64_t i; double d; }; static VALUE int64_as_double_to_num(int64_t i) { union int64_double convert; if (i < 0) { convert.i = -i; return DBL2NUM(-convert.d); } else { convert.i = i; return DBL2NUM(convert.d); } } static int64_t double_as_int64(double d) { union int64_double convert; convert.d = fabs(d); return d < 0 ? -convert.i : convert.i; } #endif static int is_integer_p(VALUE v) { ID id_integer_p; VALUE is_int; CONST_ID(id_integer_p, "integer?"); is_int = rb_check_funcall(v, id_integer_p, 0, 0); return RTEST(is_int) && is_int != Qundef; } static VALUE bsearch_integer_range(VALUE beg, VALUE end, int excl) { VALUE satisfied = Qnil; int smaller; #define BSEARCH_CHECK(expr) \ do { \ VALUE val = (expr); \ VALUE v = rb_yield(val); \ if (FIXNUM_P(v)) { \ if (v == INT2FIX(0)) return val; \ smaller = (SIGNED_VALUE)v < 0; \ } \ else if (v == Qtrue) { \ satisfied = val; \ smaller = 1; \ } \ else if (v == Qfalse || v == Qnil) { \ smaller = 0; \ } \ else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ if (!cmp) return val; \ smaller = cmp < 0; \ } \ else { \ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \ " (must be numeric, true, false or nil)", \ rb_obj_class(v)); \ } \ } while (0) VALUE low = rb_to_int(beg); VALUE high = rb_to_int(end); VALUE mid, org_high; ID id_div; CONST_ID(id_div, "div"); if (excl) high = rb_funcall(high, '-', 1, INT2FIX(1)); org_high = high; while (rb_cmpint(rb_funcall(low, id_cmp, 1, high), low, high) < 0) { mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)); BSEARCH_CHECK(mid); if (smaller) { high = mid; } else { low = rb_funcall(mid, '+', 1, INT2FIX(1)); } } if (rb_equal(low, org_high)) { BSEARCH_CHECK(low); if (!smaller) return Qnil; } return satisfied; } /* * call-seq: * rng.bsearch {|obj| block } -> value * * By using binary search, finds a value in range which meets the given * condition in O(log n) where n is the size of the range. * * You can use this method in two use cases: a find-minimum mode and * a find-any mode. In either case, the elements of the range must be * monotone (or sorted) with respect to the block. * * In find-minimum mode (this is a good choice for typical use case), * the block must return true or false, and there must be a value x * so that: * * - the block returns false for any value which is less than x, and * - the block returns true for any value which is greater than or * equal to x. * * If x is within the range, this method returns the value x. * Otherwise, it returns nil. * * ary = [0, 4, 7, 10, 12] * (0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1 * (0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2 * (0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3 * (0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil * * (0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0 * * In find-any mode (this behaves like libc's bsearch(3)), the block * must return a number, and there must be two values x and y (x <= y) * so that: * * - the block returns a positive number for v if v < x, * - the block returns zero for v if x <= v < y, and * - the block returns a negative number for v if y <= v. * * This method returns any value which is within the intersection of * the given range and x...y (if any). If there is no value that * satisfies the condition, it returns nil. * * ary = [0, 100, 100, 100, 200] * (0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3 * (0..4).bsearch {|i| 300 - ary[i] } #=> nil * (0..4).bsearch {|i| 50 - ary[i] } #=> nil * * You must not mix the two modes at a time; the block must always * return either true/false, or always return a number. It is * undefined which value is actually picked up at each iteration. */ static VALUE range_bsearch(VALUE range) { VALUE beg, end, satisfied = Qnil; int smaller; /* Implementation notes: * Floats are handled by mapping them to 64 bits integers. * Apart from sign issues, floats and their 64 bits integer have the * same order, assuming they are represented as exponent followed * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about * potential overflow (since float to long can use 64 bits) * as well as the fact that -1/2 can be 0 or -1 in C89. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ #define BSEARCH(conv) \ do { \ RETURN_ENUMERATOR(range, 0, 0); \ if (EXCL(range)) high--; \ org_high = high; \ while (low < high) { \ mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \ BSEARCH_CHECK(conv(mid)); \ if (smaller) { \ high = mid; \ } \ else { \ low = mid + 1; \ } \ } \ if (low == org_high) { \ BSEARCH_CHECK(conv(low)); \ if (!smaller) return Qnil; \ } \ return satisfied; \ } while (0) beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { long low = FIX2LONG(beg); long high = FIX2LONG(end); long mid, org_high; BSEARCH(INT2FIX); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) { int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); int64_t mid, org_high; BSEARCH(int64_as_double_to_num); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { RETURN_ENUMERATOR(range, 0, 0); return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { VALUE diff = LONG2FIX(1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(beg, '+', 1, diff); BSEARCH_CHECK(mid); if (smaller) { return bsearch_integer_range(beg, mid, 0); } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); } } else if (NIL_P(beg) && is_integer_p(end)) { VALUE diff = LONG2FIX(-1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(end, '+', 1, diff); BSEARCH_CHECK(mid); if (!smaller) { return bsearch_integer_range(mid, end, 0); } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); } } else { rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; } static int each_i(VALUE v, VALUE arg) { rb_yield(v); return 0; } static int sym_each_i(VALUE v, VALUE arg) { rb_yield(rb_str_intern(v)); return 0; } /* * call-seq: * rng.size -> num * * Returns the number of elements in the range. Both the begin and the end of * the Range must be Numeric, otherwise nil is returned. * * (10..20).size #=> 11 * ('a'..'z').size #=> nil * (-Float::INFINITY..Float::INFINITY).size #=> Infinity */ static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); if (rb_obj_is_kind_of(b, rb_cNumeric)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); } if (NIL_P(e)) { return DBL2NUM(HUGE_VAL); } } else if (NIL_P(b)) { return DBL2NUM(HUGE_VAL); } return Qnil; } /* * call-seq: * rng.to_a -> array * rng.entries -> array * * Returns an array containing the items in the range. * * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7] * (1..).to_a #=> RangeError: cannot convert endless range to an array */ static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); } static VALUE range_enum_size(VALUE range, VALUE args, VALUE eobj) { return range_size(range); } /* * call-seq: * rng.each {| i | block } -> rng * rng.each -> an_enumerator * * Iterates over the elements of range, passing each in turn to the * block. * * The +each+ method can only be used if the begin object of the range * supports the +succ+ method. A TypeError is raised if the object * does not have +succ+ method defined (like Float). * * If no block is given, an enumerator is returned instead. * * (10..15).each {|n| print n, ' ' } * # prints: 10 11 12 13 14 15 * * (2.5..5).each {|n| print n, ' ' } * # raises: TypeError: can't iterate from Float */ static VALUE range_each(VALUE range) { VALUE beg, end; long i, lim; RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && NIL_P(end)) { fixnum_endless: i = FIX2LONG(beg); while (FIXABLE(i)) { rb_yield(LONG2FIX(i++)); } beg = LONG2NUM(i); bignum_endless: for (;; beg = rb_big_plus(beg, INT2FIX(1))) rb_yield(beg); } else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ fixnum_loop: lim = FIX2LONG(end); if (!EXCL(range)) lim += 1; for (i = FIX2LONG(beg); i < lim; i++) { rb_yield(LONG2FIX(i)); } } else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ if (!FIXNUM_P(beg)) { if (RBIGNUM_NEGATIVE_P(beg)) { do { rb_yield(beg); } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); if (NIL_P(end)) goto fixnum_endless; if (FIXNUM_P(end)) goto fixnum_loop; } else { if (NIL_P(end)) goto bignum_endless; if (FIXNUM_P(end)) return range; } } if (FIXNUM_P(beg)) { i = FIX2LONG(beg); do { rb_yield(LONG2FIX(i)); } while (POSFIXABLE(++i)); beg = LONG2NUM(i); } ASSUME(!FIXNUM_P(beg)); ASSUME(!SPECIAL_CONST_P(end)); } if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { if (EXCL(range)) { while (rb_big_cmp(beg, end) == INT2FIX(-1)) { rb_yield(beg); beg = rb_big_plus(beg, INT2FIX(1)); } } else { VALUE c; while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { rb_yield(beg); if (c == INT2FIX(0)) break; beg = rb_big_plus(beg, INT2FIX(1)); } } } } else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ beg = rb_sym2str(beg); if (NIL_P(end)) { rb_str_upto_endless_each(beg, sym_each_i, 0); } else { rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); } } else { VALUE tmp = rb_check_string_type(beg); if (!NIL_P(tmp)) { if (!NIL_P(end)) { rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); } else { rb_str_upto_endless_each(tmp, each_i, 0); } } else { if (!discrete_object_p(beg)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(beg)); } if (!NIL_P(end)) range_each_func(range, each_i, 0); else for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) rb_yield(beg); } } return range; } /* * call-seq: * rng.begin -> obj * * Returns the object that defines the beginning of the range. * * (1..10).begin #=> 1 */ static VALUE range_begin(VALUE range) { return RANGE_BEG(range); } /* * call-seq: * rng.end -> obj * * Returns the object that defines the end of the range. * * (1..10).end #=> 10 * (1...10).end #=> 10 */ static VALUE range_end(VALUE range) { return RANGE_END(range); } static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg)) { VALUE *ary = (VALUE *)cbarg; long n = NUM2LONG(ary[0]); if (n <= 0) { rb_iter_break(); } rb_ary_push(ary[1], i); n--; ary[0] = LONG2NUM(n); return Qnil; } /* * call-seq: * rng.first -> obj * rng.first(n) -> an_array * * Returns the first object in the range, or an array of the first +n+ * elements. * * (10..20).first #=> 10 * (10..20).first(3) #=> [10, 11, 12] */ static VALUE range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2]; if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the first element of beginless range"); } if (argc == 0) return RANGE_BEG(range); rb_scan_args(argc, argv, "1", &n); ary[0] = n; ary[1] = rb_ary_new2(NUM2LONG(n)); rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary); return ary[1]; } static VALUE rb_int_range_last(int argc, VALUE *argv, VALUE range) { static const VALUE ONE = INT2FIX(1); VALUE b, e, len_1, len, nv, ary; int x; long n; assert(argc > 0); b = RANGE_BEG(range); e = RANGE_END(range); assert(RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e)); x = EXCL(range); len_1 = rb_int_minus(e, b); if (FIXNUM_ZERO_P(len_1) || rb_num_negative_p(len_1)) { return rb_ary_new_capa(0); } if (x) { e = rb_int_minus(e, ONE); len = len_1; } else { len = rb_int_plus(len_1, ONE); } rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n < 0) { rb_raise(rb_eArgError, "negative array size"); } nv = LONG2NUM(n); if (RTEST(rb_int_gt(nv, len))) { nv = len; n = NUM2LONG(nv); } ary = rb_ary_new_capa(n); b = rb_int_minus(e, nv); while (n) { b = rb_int_plus(b, ONE); rb_ary_push(ary, b); --n; } return ary; } /* * call-seq: * rng.last -> obj * rng.last(n) -> an_array * * Returns the last object in the range, * or an array of the last +n+ elements. * * Note that with no arguments +last+ will return the object that defines * the end of the range even if #exclude_end? is +true+. * * (10..20).last #=> 20 * (10...20).last #=> 20 * (10..20).last(3) #=> [18, 19, 20] * (10...20).last(3) #=> [17, 18, 19] */ static VALUE range_last(int argc, VALUE *argv, VALUE range) { VALUE b, e; if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); b = RANGE_BEG(range); e = RANGE_END(range); if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); } /* * call-seq: * rng.min -> obj * rng.min {| a,b | block } -> obj * rng.min(n) -> array * rng.min(n) {| a,b | block } -> array * * Returns the minimum value in the range. Returns +nil+ if the begin * value of the range is larger than the end value. Returns +nil+ if * the begin value of an exclusive range is equal to the end value. * * Can be given an optional block to override the default comparison * method a <=> b. * * (10..20).min #=> 10 */ static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); } if (rb_block_given_p()) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); } return rb_call_super(argc, argv); } else if (argc != 0) { return range_first(argc, argv, range); } else { struct cmp_opt_data cmp_opt = { 0, 0 }; VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt); if (c > 0 || (c == 0 && EXCL(range))) return Qnil; return b; } } /* * call-seq: * rng.max -> obj * rng.max {| a,b | block } -> obj * rng.max(n) -> obj * rng.max(n) {| a,b | block } -> obj * * Returns the maximum value in the range. Returns +nil+ if the begin * value of the range larger than the end value. Returns +nil+ if * the begin value of an exclusive range is equal to the end value. * * Can be given an optional block to override the default comparison * method a <=> b. * * (10..20).max #=> 20 */ static VALUE range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); } if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } else { struct cmp_opt_data cmp_opt = { 0, 0 }; VALUE b = RANGE_BEG(range); int c = OPTIMIZED_CMP(b, e, cmp_opt); if (c > 0) return Qnil; if (EXCL(range)) { if (!RB_INTEGER_TYPE_P(e)) { rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; if (!RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } return rb_funcall(e, '-', 1, INT2FIX(1)); } return e; } } /* * call-seq: * rng.minmax -> [obj, obj] * rng.minmax {| a,b | block } -> [obj, obj] * * Returns a two element array which contains the minimum and the * maximum value in the range. * * Can be given an optional block to override the default comparison * method a <=> b. */ static VALUE range_minmax(VALUE range) { if (rb_block_given_p()) { return rb_call_super(0, NULL); } return rb_assoc_new(range_min(0, NULL, range), range_max(0, NULL, range)); } int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) { VALUE b, e; int excl; if (rb_obj_is_kind_of(range, rb_cRange)) { b = RANGE_BEG(range); e = RANGE_END(range); excl = EXCL(range); } else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) { return (int)Qfalse; } else { VALUE x; b = rb_check_funcall(range, id_beg, 0, 0); if (b == Qundef) return (int)Qfalse; e = rb_check_funcall(range, id_end, 0, 0); if (e == Qundef) return (int)Qfalse; x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0); if (x == Qundef) return (int)Qfalse; excl = RTEST(x); } *begp = b; *endp = e; *exclp = excl; return (int)Qtrue; } VALUE rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err) { long beg, end, origbeg, origend; VALUE b, e; int excl; if (!rb_range_values(range, &b, &e, &excl)) return Qfalse; beg = NIL_P(b) ? 0 : NUM2LONG(b); end = NIL_P(e) ? -1 : NUM2LONG(e); if (NIL_P(e)) excl = 0; origbeg = beg; origend = end; if (beg < 0) { beg += len; if (beg < 0) goto out_of_range; } if (end < 0) end += len; if (!excl) end++; /* include end point */ if (err == 0 || err == 2) { if (beg > len) goto out_of_range; if (end > len) end = len; } len = end - beg; if (len < 0) len = 0; *begp = beg; *lenp = len; return Qtrue; out_of_range: if (err) { rb_raise(rb_eRangeError, "%ld..%s%ld out of range", origbeg, excl ? "." : "", origend); } return Qnil; } /* * call-seq: * rng.to_s -> string * * Convert this range object to a printable form (using #to_s to convert the * begin and end objects). */ static VALUE range_to_s(VALUE range) { VALUE str, str2; str = rb_obj_as_string(RANGE_BEG(range)); str2 = rb_obj_as_string(RANGE_END(range)); str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); rb_str_append(str, str2); return str; } static VALUE inspect_range(VALUE range, VALUE dummy, int recur) { VALUE str, str2 = Qundef; if (recur) { return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); } if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) { str = rb_str_dup(rb_inspect(RANGE_BEG(range))); } else { str = rb_str_new(0, 0); } rb_str_cat(str, "...", EXCL(range) ? 3 : 2); if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) { str2 = rb_inspect(RANGE_END(range)); } if (str2 != Qundef) rb_str_append(str, str2); return str; } /* * call-seq: * rng.inspect -> string * * Convert this range object to a printable form (using #inspect to * convert the begin and end objects). */ static VALUE range_inspect(VALUE range) { return rb_exec_recursive(inspect_range, range, 0); } static VALUE range_include_internal(VALUE range, VALUE val, int string_use_cover); /* * call-seq: * rng === obj -> true or false * * Returns true if +obj+ is between begin and end of range, * false otherwise (same as #cover?). Conveniently, * === is the comparison operator used by case * statements. * * case 79 * when 1..50 then puts "low" * when 51..75 then puts "medium" * when 76..100 then puts "high" * end * # Prints "high" * * case "2.6.5" * when ..."2.4" then puts "EOL" * when "2.4"..."2.5" then puts "maintenance" * when "2.5"..."2.7" then puts "stable" * when "2.7".. then puts "upcoming" * end * # Prints "stable" * */ static VALUE range_eqq(VALUE range, VALUE val) { VALUE ret = range_include_internal(range, val, 1); if (ret != Qundef) return ret; return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); } /* * call-seq: * rng.member?(obj) -> true or false * rng.include?(obj) -> true or false * * Returns true if +obj+ is an element of * the range, false otherwise. * * ("a".."z").include?("g") #=> true * ("a".."z").include?("A") #=> false * ("a".."z").include?("cc") #=> false * * If you need to ensure +obj+ is between +begin+ and +end+, use #cover? * * ("a".."z").cover?("cc") #=> true * * If begin and end are numeric, #include? behaves like #cover? * * (1..3).include?(1.5) # => true */ static VALUE range_include(VALUE range, VALUE val) { VALUE ret = range_include_internal(range, val, 0); if (ret != Qundef) return ret; return rb_call_super(1, &val); } static VALUE range_include_internal(VALUE range, VALUE val, int string_use_cover) { VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int nv = FIXNUM_P(beg) || FIXNUM_P(end) || linear_object_p(beg) || linear_object_p(end); if (nv || !NIL_P(rb_check_to_integer(beg, "to_int")) || !NIL_P(rb_check_to_integer(end, "to_int"))) { return r_cover_p(range, beg, end, val); } else if (RB_TYPE_P(beg, T_STRING) || RB_TYPE_P(end, T_STRING)) { if (RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING)) { if (string_use_cover) { return r_cover_p(range, beg, end, val); } else { VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range)); } } else if (NIL_P(beg)) { VALUE r = rb_funcall(val, id_cmp, 1, end); if (NIL_P(r)) return Qfalse; if (rb_cmpint(r, val, end) <= 0) return Qtrue; return Qfalse; } else if (NIL_P(end)) { VALUE r = rb_funcall(beg, id_cmp, 1, val); if (NIL_P(r)) return Qfalse; if (rb_cmpint(r, beg, val) <= 0) return Qtrue; return Qfalse; } } return Qundef; } static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); /* * call-seq: * rng.cover?(obj) -> true or false * rng.cover?(range) -> true or false * * Returns true if +obj+ is between the begin and end of * the range. * * This tests begin <= obj <= end when #exclude_end? is +false+ * and begin <= obj < end when #exclude_end? is +true+. * * If called with a Range argument, returns true when the * given range is covered by the receiver, * by comparing the begin and end values. If the argument can be treated as * a sequence, this method treats it that way. In the specific case of * (a..b).cover?(c...d) with a <= c && b < d, * the end of the sequence must be calculated, which may exhibit poor * performance if c is non-numeric. * Returns false if the begin value of the * range is larger than the end value. Also returns +false+ if one of the * internal calls to <=> returns +nil+ (indicating the objects * are not comparable). * * ("a".."z").cover?("c") #=> true * ("a".."z").cover?("5") #=> false * ("a".."z").cover?("cc") #=> true * ("a".."z").cover?(1) #=> false * (1..5).cover?(2..3) #=> true * (1..5).cover?(0..6) #=> false * (1..5).cover?(1...6) #=> true */ static VALUE range_cover(VALUE range, VALUE val) { VALUE beg, end; beg = RANGE_BEG(range); end = RANGE_END(range); if (rb_obj_is_kind_of(val, rb_cRange)) { return RBOOL(r_cover_range_p(range, beg, end, val)); } return r_cover_p(range, beg, end, val); } static VALUE r_call_max(VALUE r) { return rb_funcallv(r, rb_intern("max"), 0, 0); } static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val) { VALUE val_beg, val_end, val_max; int cmp_end; val_beg = RANGE_BEG(val); val_end = RANGE_END(val); if (!NIL_P(end) && NIL_P(val_end)) return FALSE; if (!NIL_P(beg) && NIL_P(val_beg)) return FALSE; if (!NIL_P(val_beg) && !NIL_P(val_end) && r_less(val_beg, val_end) > (EXCL(val) ? -1 : 0)) return FALSE; if (!NIL_P(val_beg) && !r_cover_p(range, beg, end, val_beg)) return FALSE; cmp_end = r_less(end, val_end); if (EXCL(range) == EXCL(val)) { return cmp_end >= 0; } else if (EXCL(range)) { return cmp_end > 0; } else if (cmp_end >= 0) { return TRUE; } val_max = rb_rescue2(r_call_max, val, 0, Qnil, rb_eTypeError, (VALUE)0); if (val_max == Qnil) return FALSE; return r_less(end, val_max) >= 0; } static VALUE r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val) { if (NIL_P(beg) || r_less(beg, val) <= 0) { int excl = EXCL(range); if (NIL_P(end) || r_less(val, end) <= -excl) return Qtrue; } return Qfalse; } static VALUE range_dumper(VALUE range) { VALUE v; NEWOBJ_OF(m, struct RObject, rb_cObject, T_OBJECT | (RGENGC_WB_PROTECTED_OBJECT ? FL_WB_PROTECTED : 1)); v = (VALUE)m; rb_ivar_set(v, id_excl, RANGE_EXCL(range)); rb_ivar_set(v, id_beg, RANGE_BEG(range)); rb_ivar_set(v, id_end, RANGE_END(range)); return v; } static VALUE range_loader(VALUE range, VALUE obj) { VALUE beg, end, excl; if (!RB_TYPE_P(obj, T_OBJECT) || RBASIC(obj)->klass != rb_cObject) { rb_raise(rb_eTypeError, "not a dumped range object"); } range_modify(range); beg = rb_ivar_get(obj, id_beg); end = rb_ivar_get(obj, id_end); excl = rb_ivar_get(obj, id_excl); if (!NIL_P(excl)) { range_init(range, beg, end, RBOOL(RTEST(excl))); } return range; } static VALUE range_alloc(VALUE klass) { /* rb_struct_alloc_noinit itself should not be used because * rb_marshal_define_compat uses equality of allocation function */ return rb_struct_alloc_noinit(klass); } /* * call-seq: * range.count -> int * range.count(item) -> int * range.count { |obj| block } -> int * * Identical to Enumerable#count, except it returns Infinity for endless * ranges. * */ static VALUE range_count(int argc, VALUE *argv, VALUE range) { if (argc != 0) { /* It is odd for instance (1...).count(0) to return Infinity. Just let * it loop. */ return rb_call_super(argc, argv); } else if (rb_block_given_p()) { /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return * Infinity. Just let it loop. */ return rb_call_super(argc, argv); } else if (NIL_P(RANGE_END(range))) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } else if (NIL_P(RANGE_BEG(range))) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } else { return rb_call_super(argc, argv); } } /* A Range represents an interval---a set of values with a * beginning and an end. Ranges may be constructed using the * s..e and * s...e literals, or with * Range::new. Ranges constructed using .. * run from the beginning to the end inclusively. Those created using * ... exclude the end value. When used as an iterator, * ranges return each value in the sequence. * * (-1..-5).to_a #=> [] * (-5..-1).to_a #=> [-5, -4, -3, -2, -1] * ('a'..'e').to_a #=> ["a", "b", "c", "d", "e"] * ('a'...'e').to_a #=> ["a", "b", "c", "d"] * * == Beginless/Endless Ranges * * A "beginless range" and "endless range" represents a semi-infinite * range. Literal notation for a beginless range is: * * (..1) * # or * (...1) * * Literal notation for an endless range is: * * (1..) * # or similarly * (1...) * * Which is equivalent to * * (1..nil) # or similarly (1...nil) * Range.new(1, nil) # or Range.new(1, nil, true) * * Beginless/endless ranges are useful, for example, for idiomatic * slicing of arrays: * * [1, 2, 3, 4, 5][...2] # => [1, 2] * [1, 2, 3, 4, 5][2...] # => [3, 4, 5] * * Some implementation details: * * * +begin+ of beginless range and +end+ of endless range are +nil+; * * +each+ of beginless range raises an exception; * * +each+ of endless range enumerates infinite sequence (may be * useful in combination with Enumerable#take_while or similar * methods); * * (1..) and (1...) are not equal, * although technically representing the same sequence. * * == Custom Objects in Ranges * * Ranges can be constructed using any objects that can be compared * using the <=> operator. * Methods that treat the range as a sequence (#each and methods inherited * from Enumerable) expect the begin object to implement a * succ method to return the next object in sequence. * The #step and #include? methods require the begin * object to implement succ or to be numeric. * * In the Xs class below both <=> and * succ are implemented so Xs can be used * to construct ranges. Note that the Comparable module is included * so the == method is defined in terms of <=>. * * class Xs # represent a string of 'x's * include Comparable * attr :length * def initialize(n) * @length = n * end * def succ * Xs.new(@length + 1) * end * def <=>(other) * @length <=> other.length * end * def to_s * sprintf "%2d #{inspect}", @length * end * def inspect * 'x' * @length * end * end * * An example of using Xs to construct a range: * * r = Xs.new(3)..Xs.new(6) #=> xxx..xxxxxx * r.to_a #=> [xxx, xxxx, xxxxx, xxxxxx] * r.member?(Xs.new(5)) #=> true * */ void Init_Range(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_beg = rb_intern("begin"); id_end = rb_intern("end"); id_excl = rb_intern("excl"); rb_cRange = rb_struct_define_without_accessor( "Range", rb_cObject, range_alloc, "begin", "end", "excl", NULL); rb_include_module(rb_cRange, rb_mEnumerable); rb_marshal_define_compat(rb_cRange, rb_cObject, range_dumper, range_loader); rb_define_method(rb_cRange, "initialize", range_initialize, -1); rb_define_method(rb_cRange, "initialize_copy", range_initialize_copy, 1); rb_define_method(rb_cRange, "==", range_eq, 1); rb_define_method(rb_cRange, "===", range_eqq, 1); rb_define_method(rb_cRange, "eql?", range_eql, 1); rb_define_method(rb_cRange, "hash", range_hash, 0); rb_define_method(rb_cRange, "each", range_each, 0); rb_define_method(rb_cRange, "step", range_step, -1); rb_define_method(rb_cRange, "%", range_percent_step, 1); rb_define_method(rb_cRange, "bsearch", range_bsearch, 0); rb_define_method(rb_cRange, "begin", range_begin, 0); rb_define_method(rb_cRange, "end", range_end, 0); rb_define_method(rb_cRange, "first", range_first, -1); rb_define_method(rb_cRange, "last", range_last, -1); rb_define_method(rb_cRange, "min", range_min, -1); rb_define_method(rb_cRange, "max", range_max, -1); rb_define_method(rb_cRange, "minmax", range_minmax, 0); rb_define_method(rb_cRange, "size", range_size, 0); rb_define_method(rb_cRange, "to_a", range_to_a, 0); rb_define_method(rb_cRange, "entries", range_to_a, 0); rb_define_method(rb_cRange, "to_s", range_to_s, 0); rb_define_method(rb_cRange, "inspect", range_inspect, 0); rb_define_method(rb_cRange, "exclude_end?", range_exclude_end_p, 0); rb_define_method(rb_cRange, "member?", range_include, 1); rb_define_method(rb_cRange, "include?", range_include, 1); rb_define_method(rb_cRange, "cover?", range_cover, 1); rb_define_method(rb_cRange, "count", range_count, -1); }