/********************************************************************** process.c - $Author$ created at: Tue Aug 10 14:30:50 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/internal/config.h" #include "internal/scheduler.h" #include #include #include #include #include #include #ifdef HAVE_STDLIB_H # include #endif #ifdef HAVE_UNISTD_H # include #endif #ifdef HAVE_FCNTL_H # include #endif #ifdef HAVE_PROCESS_H # include #endif #ifndef EXIT_SUCCESS # define EXIT_SUCCESS 0 #endif #ifndef EXIT_FAILURE # define EXIT_FAILURE 1 #endif #ifdef HAVE_SYS_WAIT_H # include #endif #ifdef HAVE_SYS_RESOURCE_H # include #endif #ifdef HAVE_VFORK_H # include #endif #ifdef HAVE_SYS_PARAM_H # include #endif #ifndef MAXPATHLEN # define MAXPATHLEN 1024 #endif #include #ifdef HAVE_SYS_TIME_H # include #endif #ifdef HAVE_SYS_TIMES_H # include #endif #ifdef HAVE_PWD_H # include #endif #ifdef HAVE_GRP_H # include # ifdef __CYGWIN__ int initgroups(const char *, rb_gid_t); # endif #endif #ifdef HAVE_SYS_ID_H # include #endif #ifdef __APPLE__ # include #endif #include "dln.h" #include "hrtime.h" #include "internal.h" #include "internal/bits.h" #include "internal/dir.h" #include "internal/error.h" #include "internal/eval.h" #include "internal/hash.h" #include "internal/mjit.h" #include "internal/object.h" #include "internal/process.h" #include "internal/thread.h" #include "internal/variable.h" #include "internal/warnings.h" #include "ruby/io.h" #include "ruby/st.h" #include "ruby/thread.h" #include "ruby/util.h" #include "vm_core.h" #include "ractor_pub.h" /* define system APIs */ #ifdef _WIN32 #undef open #define open rb_w32_uopen #endif #if defined(HAVE_TIMES) || defined(_WIN32) static VALUE rb_cProcessTms; #endif #ifndef WIFEXITED #define WIFEXITED(w) (((w) & 0xff) == 0) #endif #ifndef WIFSIGNALED #define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f)) #endif #ifndef WIFSTOPPED #define WIFSTOPPED(w) (((w) & 0xff) == 0x7f) #endif #ifndef WEXITSTATUS #define WEXITSTATUS(w) (((w) >> 8) & 0xff) #endif #ifndef WTERMSIG #define WTERMSIG(w) ((w) & 0x7f) #endif #ifndef WSTOPSIG #define WSTOPSIG WEXITSTATUS #endif #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) #define HAVE_44BSD_SETUID 1 #define HAVE_44BSD_SETGID 1 #endif #ifdef __NetBSD__ #undef HAVE_SETRUID #undef HAVE_SETRGID #endif #ifdef BROKEN_SETREUID #define setreuid ruby_setreuid int setreuid(rb_uid_t ruid, rb_uid_t euid); #endif #ifdef BROKEN_SETREGID #define setregid ruby_setregid int setregid(rb_gid_t rgid, rb_gid_t egid); #endif #if defined(HAVE_44BSD_SETUID) || defined(__APPLE__) #if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID) #define OBSOLETE_SETREUID 1 #endif #if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID) #define OBSOLETE_SETREGID 1 #endif #endif static void check_uid_switch(void); static void check_gid_switch(void); static int exec_async_signal_safe(const struct rb_execarg *, char *, size_t); #if 1 #define p_uid_from_name p_uid_from_name #define p_gid_from_name p_gid_from_name #endif #if defined(HAVE_UNISTD_H) # if defined(HAVE_GETLOGIN_R) # define USE_GETLOGIN_R 1 # define GETLOGIN_R_SIZE_DEFAULT 0x100 # define GETLOGIN_R_SIZE_LIMIT 0x1000 # if defined(_SC_LOGIN_NAME_MAX) # define GETLOGIN_R_SIZE_INIT sysconf(_SC_LOGIN_NAME_MAX) # else # define GETLOGIN_R_SIZE_INIT GETLOGIN_R_SIZE_DEFAULT # endif # elif defined(HAVE_GETLOGIN) # define USE_GETLOGIN 1 # endif #endif #if defined(HAVE_PWD_H) # if defined(HAVE_GETPWUID_R) # define USE_GETPWUID_R 1 # elif defined(HAVE_GETPWUID) # define USE_GETPWUID 1 # endif # if defined(HAVE_GETPWNAM_R) # define USE_GETPWNAM_R 1 # elif defined(HAVE_GETPWNAM) # define USE_GETPWNAM 1 # endif # if defined(HAVE_GETPWNAM_R) || defined(HAVE_GETPWUID_R) # define GETPW_R_SIZE_DEFAULT 0x1000 # define GETPW_R_SIZE_LIMIT 0x10000 # if defined(_SC_GETPW_R_SIZE_MAX) # define GETPW_R_SIZE_INIT sysconf(_SC_GETPW_R_SIZE_MAX) # else # define GETPW_R_SIZE_INIT GETPW_R_SIZE_DEFAULT # endif # endif # ifdef USE_GETPWNAM_R # define PREPARE_GETPWNAM \ VALUE getpw_buf = 0 # define FINISH_GETPWNAM \ (getpw_buf ? (void)rb_str_resize(getpw_buf, 0) : (void)0) # define OBJ2UID1(id) obj2uid((id), &getpw_buf) # define OBJ2UID(id) obj2uid0(id) static rb_uid_t obj2uid(VALUE id, VALUE *getpw_buf); static inline rb_uid_t obj2uid0(VALUE id) { rb_uid_t uid; PREPARE_GETPWNAM; uid = OBJ2UID1(id); FINISH_GETPWNAM; return uid; } # else # define PREPARE_GETPWNAM /* do nothing */ # define FINISH_GETPWNAM /* do nothing */ # define OBJ2UID1(id) obj2uid((id)) # define OBJ2UID(id) obj2uid((id)) static rb_uid_t obj2uid(VALUE id); # endif #else # define PREPARE_GETPWNAM /* do nothing */ # define FINISH_GETPWNAM /* do nothing */ # define OBJ2UID1(id) NUM2UIDT(id) # define OBJ2UID(id) NUM2UIDT(id) # ifdef p_uid_from_name # undef p_uid_from_name # define p_uid_from_name rb_f_notimplement # endif #endif #if defined(HAVE_GRP_H) # if defined(HAVE_GETGRNAM_R) && defined(_SC_GETGR_R_SIZE_MAX) # define USE_GETGRNAM_R # define GETGR_R_SIZE_INIT sysconf(_SC_GETGR_R_SIZE_MAX) # define GETGR_R_SIZE_DEFAULT 0x1000 # define GETGR_R_SIZE_LIMIT 0x10000 # endif # ifdef USE_GETGRNAM_R # define PREPARE_GETGRNAM \ VALUE getgr_buf = 0 # define FINISH_GETGRNAM \ (getgr_buf ? (void)rb_str_resize(getgr_buf, 0) : (void)0) # define OBJ2GID1(id) obj2gid((id), &getgr_buf) # define OBJ2GID(id) obj2gid0(id) static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf); static inline rb_gid_t obj2gid0(VALUE id) { rb_gid_t gid; PREPARE_GETGRNAM; gid = OBJ2GID1(id); FINISH_GETGRNAM; return gid; } static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf); # else # define PREPARE_GETGRNAM /* do nothing */ # define FINISH_GETGRNAM /* do nothing */ # define OBJ2GID1(id) obj2gid((id)) # define OBJ2GID(id) obj2gid((id)) static rb_gid_t obj2gid(VALUE id); # endif #else # define PREPARE_GETGRNAM /* do nothing */ # define FINISH_GETGRNAM /* do nothing */ # define OBJ2GID1(id) NUM2GIDT(id) # define OBJ2GID(id) NUM2GIDT(id) # ifdef p_gid_from_name # undef p_gid_from_name # define p_gid_from_name rb_f_notimplement # endif #endif #if SIZEOF_CLOCK_T == SIZEOF_INT typedef unsigned int unsigned_clock_t; #elif SIZEOF_CLOCK_T == SIZEOF_LONG typedef unsigned long unsigned_clock_t; #elif defined(HAVE_LONG_LONG) && SIZEOF_CLOCK_T == SIZEOF_LONG_LONG typedef unsigned LONG_LONG unsigned_clock_t; #endif #ifndef HAVE_SIG_T typedef void (*sig_t) (int); #endif #define id_exception idException static ID id_in, id_out, id_err, id_pid, id_uid, id_gid; static ID id_close, id_child; #ifdef HAVE_SETPGID static ID id_pgroup; #endif #ifdef _WIN32 static ID id_new_pgroup; #endif static ID id_unsetenv_others, id_chdir, id_umask, id_close_others, id_ENV; static ID id_nanosecond, id_microsecond, id_millisecond, id_second; static ID id_float_microsecond, id_float_millisecond, id_float_second; static ID id_GETTIMEOFDAY_BASED_CLOCK_REALTIME, id_TIME_BASED_CLOCK_REALTIME; #ifdef HAVE_TIMES static ID id_TIMES_BASED_CLOCK_MONOTONIC; static ID id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID; #endif #ifdef RUSAGE_SELF static ID id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID; #endif static ID id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID; #ifdef __APPLE__ static ID id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC; #endif static ID id_hertz; /* execv and execl are async-signal-safe since SUSv4 (POSIX.1-2008, XPG7) */ #if defined(__sun) && !defined(_XPG7) /* Solaris 10, 9, ... */ #define execv(path, argv) (rb_async_bug_errno("unreachable: async-signal-unsafe execv() is called", 0)) #define execl(path, arg0, arg1, arg2, term) do { extern char **environ; execle((path), (arg0), (arg1), (arg2), (term), (environ)); } while (0) #define ALWAYS_NEED_ENVP 1 #else #define ALWAYS_NEED_ENVP 0 #endif static void assert_close_on_exec(int fd) { #if VM_CHECK_MODE > 0 #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(FD_CLOEXEC) int flags = fcntl(fd, F_GETFD); if (flags == -1) { static const char m[] = "reserved FD closed unexpectedly?\n"; (void)!write(2, m, sizeof(m) - 1); return; } if (flags & FD_CLOEXEC) return; rb_bug("reserved FD did not have close-on-exec set"); #else rb_bug("reserved FD without close-on-exec support"); #endif /* FD_CLOEXEC */ #endif /* VM_CHECK_MODE */ } static inline int close_unless_reserved(int fd) { if (rb_reserved_fd_p(fd)) { /* async-signal-safe */ assert_close_on_exec(fd); return 0; } return close(fd); /* async-signal-safe */ } /*#define DEBUG_REDIRECT*/ #if defined(DEBUG_REDIRECT) static void ttyprintf(const char *fmt, ...) { va_list ap; FILE *tty; int save = errno; #ifdef _WIN32 tty = fopen("con", "w"); #else tty = fopen("/dev/tty", "w"); #endif if (!tty) return; va_start(ap, fmt); vfprintf(tty, fmt, ap); va_end(ap); fclose(tty); errno = save; } static int redirect_dup(int oldfd) { int ret; ret = dup(oldfd); ttyprintf("dup(%d) => %d\n", oldfd, ret); return ret; } static int redirect_dup2(int oldfd, int newfd) { int ret; ret = dup2(oldfd, newfd); ttyprintf("dup2(%d, %d) => %d\n", oldfd, newfd, ret); return ret; } static int redirect_cloexec_dup(int oldfd) { int ret; ret = rb_cloexec_dup(oldfd); ttyprintf("cloexec_dup(%d) => %d\n", oldfd, ret); return ret; } static int redirect_cloexec_dup2(int oldfd, int newfd) { int ret; ret = rb_cloexec_dup2(oldfd, newfd); ttyprintf("cloexec_dup2(%d, %d) => %d\n", oldfd, newfd, ret); return ret; } static int redirect_close(int fd) { int ret; ret = close_unless_reserved(fd); ttyprintf("close(%d) => %d\n", fd, ret); return ret; } static int parent_redirect_open(const char *pathname, int flags, mode_t perm) { int ret; ret = rb_cloexec_open(pathname, flags, perm); ttyprintf("parent_open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret); return ret; } static int parent_redirect_close(int fd) { int ret; ret = close_unless_reserved(fd); ttyprintf("parent_close(%d) => %d\n", fd, ret); return ret; } #else #define redirect_dup(oldfd) dup(oldfd) #define redirect_dup2(oldfd, newfd) dup2((oldfd), (newfd)) #define redirect_cloexec_dup(oldfd) rb_cloexec_dup(oldfd) #define redirect_cloexec_dup2(oldfd, newfd) rb_cloexec_dup2((oldfd), (newfd)) #define redirect_close(fd) close_unless_reserved(fd) #define parent_redirect_open(pathname, flags, perm) rb_cloexec_open((pathname), (flags), (perm)) #define parent_redirect_close(fd) close_unless_reserved(fd) #endif /* * Document-module: Process * * The module contains several groups of functionality for handling OS processes: * * * Low-level property introspection and management of the current process, like * Process.argv0, Process.pid; * * Low-level introspection of other processes, like Process.getpgid, Process.getpriority; * * Management of the current process: Process.abort, Process.exit, Process.daemon, etc. * (for convenience, most of those are also available as global functions * and module functions of Kernel); * * Creation and management of child processes: Process.fork, Process.spawn, and * related methods; * * Management of low-level system clock: Process.times and Process.clock_gettime, * which could be important for proper benchmarking and other elapsed * time measurement tasks. */ static VALUE get_pid(void) { return PIDT2NUM(getpid()); } /* * call-seq: * Process.pid -> integer * * Returns the process id of this process. Not available on all * platforms. * * Process.pid #=> 27415 */ static VALUE proc_get_pid(VALUE _) { return get_pid(); } static VALUE get_ppid(void) { return PIDT2NUM(getppid()); } /* * call-seq: * Process.ppid -> integer * * Returns the process id of the parent of this process. Returns * untrustworthy value on Win32/64. Not available on all platforms. * * puts "I am #{Process.pid}" * Process.fork { puts "Dad is #{Process.ppid}" } * * produces: * * I am 27417 * Dad is 27417 */ static VALUE proc_get_ppid(VALUE _) { return get_ppid(); } /********************************************************************* * * Document-class: Process::Status * * Process::Status encapsulates the information on the * status of a running or terminated system process. The built-in * variable $? is either +nil+ or a * Process::Status object. * * fork { exit 99 } #=> 26557 * Process.wait #=> 26557 * $?.class #=> Process::Status * $?.to_i #=> 25344 * $? >> 8 #=> 99 * $?.stopped? #=> false * $?.exited? #=> true * $?.exitstatus #=> 99 * * Posix systems record information on processes using a 16-bit * integer. The lower bits record the process status (stopped, * exited, signaled) and the upper bits possibly contain additional * information (for example the program's return code in the case of * exited processes). Pre Ruby 1.8, these bits were exposed directly * to the Ruby program. Ruby now encapsulates these in a * Process::Status object. To maximize compatibility, * however, these objects retain a bit-oriented interface. In the * descriptions that follow, when we talk about the integer value of * _stat_, we're referring to this 16 bit value. */ static VALUE rb_cProcessStatus; VALUE rb_last_status_get(void) { return GET_THREAD()->last_status; } /* * call-seq: * Process.last_status -> Process::Status or nil * * Returns the status of the last executed child process in the * current thread. * * Process.wait Process.spawn("ruby", "-e", "exit 13") * Process.last_status #=> # * * If no child process has ever been executed in the current * thread, this returns +nil+. * * Process.last_status #=> nil */ static VALUE proc_s_last_status(VALUE mod) { return rb_last_status_get(); } void rb_last_status_set(int status, rb_pid_t pid) { rb_thread_t *th = GET_THREAD(); th->last_status = rb_obj_alloc(rb_cProcessStatus); rb_ivar_set(th->last_status, id_status, INT2FIX(status)); rb_ivar_set(th->last_status, id_pid, PIDT2NUM(pid)); } void rb_last_status_clear(void) { GET_THREAD()->last_status = Qnil; } /* * call-seq: * stat.to_i -> integer * * Returns the bits in _stat_ as a Integer. Poking * around in these bits is platform dependent. * * fork { exit 0xab } #=> 26566 * Process.wait #=> 26566 * sprintf('%04x', $?.to_i) #=> "ab00" */ static VALUE pst_to_i(VALUE st) { return rb_ivar_get(st, id_status); } #define PST2INT(st) NUM2INT(pst_to_i(st)) /* * call-seq: * stat.pid -> integer * * Returns the process ID that this status object represents. * * fork { exit } #=> 26569 * Process.wait #=> 26569 * $?.pid #=> 26569 */ static VALUE pst_pid(VALUE st) { return rb_attr_get(st, id_pid); } static VALUE pst_message_status(VALUE str, int status); static void pst_message(VALUE str, rb_pid_t pid, int status) { rb_str_catf(str, "pid %ld", (long)pid); pst_message_status(str, status); } static VALUE pst_message_status(VALUE str, int status) { if (WIFSTOPPED(status)) { int stopsig = WSTOPSIG(status); const char *signame = ruby_signal_name(stopsig); if (signame) { rb_str_catf(str, " stopped SIG%s (signal %d)", signame, stopsig); } else { rb_str_catf(str, " stopped signal %d", stopsig); } } if (WIFSIGNALED(status)) { int termsig = WTERMSIG(status); const char *signame = ruby_signal_name(termsig); if (signame) { rb_str_catf(str, " SIG%s (signal %d)", signame, termsig); } else { rb_str_catf(str, " signal %d", termsig); } } if (WIFEXITED(status)) { rb_str_catf(str, " exit %d", WEXITSTATUS(status)); } #ifdef WCOREDUMP if (WCOREDUMP(status)) { rb_str_cat2(str, " (core dumped)"); } #endif return str; } /* * call-seq: * stat.to_s -> string * * Show pid and exit status as a string. * * system("false") * p $?.to_s #=> "pid 12766 exit 1" * */ static VALUE pst_to_s(VALUE st) { rb_pid_t pid; int status; VALUE str; pid = NUM2PIDT(pst_pid(st)); status = PST2INT(st); str = rb_str_buf_new(0); pst_message(str, pid, status); return str; } /* * call-seq: * stat.inspect -> string * * Override the inspection method. * * system("false") * p $?.inspect #=> "#" * */ static VALUE pst_inspect(VALUE st) { rb_pid_t pid; int status; VALUE vpid, str; vpid = pst_pid(st); if (NIL_P(vpid)) { return rb_sprintf("#<%s: uninitialized>", rb_class2name(CLASS_OF(st))); } pid = NUM2PIDT(vpid); status = PST2INT(st); str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st))); pst_message(str, pid, status); rb_str_cat2(str, ">"); return str; } /* * call-seq: * stat == other -> true or false * * Returns +true+ if the integer value of _stat_ * equals other. */ static VALUE pst_equal(VALUE st1, VALUE st2) { if (st1 == st2) return Qtrue; return rb_equal(pst_to_i(st1), st2); } /* * call-seq: * stat & num -> integer * * Logical AND of the bits in _stat_ with num. * * fork { exit 0x37 } * Process.wait * sprintf('%04x', $?.to_i) #=> "3700" * sprintf('%04x', $? & 0x1e00) #=> "1600" */ static VALUE pst_bitand(VALUE st1, VALUE st2) { int status = PST2INT(st1) & NUM2INT(st2); return INT2NUM(status); } /* * call-seq: * stat >> num -> integer * * Shift the bits in _stat_ right num places. * * fork { exit 99 } #=> 26563 * Process.wait #=> 26563 * $?.to_i #=> 25344 * $? >> 8 #=> 99 */ static VALUE pst_rshift(VALUE st1, VALUE st2) { int status = PST2INT(st1) >> NUM2INT(st2); return INT2NUM(status); } /* * call-seq: * stat.stopped? -> true or false * * Returns +true+ if this process is stopped. This is only returned * if the corresponding #wait call had the Process::WUNTRACED flag * set. */ static VALUE pst_wifstopped(VALUE st) { int status = PST2INT(st); if (WIFSTOPPED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.stopsig -> integer or nil * * Returns the number of the signal that caused _stat_ to stop * (or +nil+ if self is not stopped). */ static VALUE pst_wstopsig(VALUE st) { int status = PST2INT(st); if (WIFSTOPPED(status)) return INT2NUM(WSTOPSIG(status)); return Qnil; } /* * call-seq: * stat.signaled? -> true or false * * Returns +true+ if _stat_ terminated because of * an uncaught signal. */ static VALUE pst_wifsignaled(VALUE st) { int status = PST2INT(st); if (WIFSIGNALED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.termsig -> integer or nil * * Returns the number of the signal that caused _stat_ to * terminate (or +nil+ if self was not terminated by an * uncaught signal). */ static VALUE pst_wtermsig(VALUE st) { int status = PST2INT(st); if (WIFSIGNALED(status)) return INT2NUM(WTERMSIG(status)); return Qnil; } /* * call-seq: * stat.exited? -> true or false * * Returns +true+ if _stat_ exited normally (for * example using an exit() call or finishing the * program). */ static VALUE pst_wifexited(VALUE st) { int status = PST2INT(st); if (WIFEXITED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.exitstatus -> integer or nil * * Returns the least significant eight bits of the return code of * _stat_. Only available if #exited? is +true+. * * fork { } #=> 26572 * Process.wait #=> 26572 * $?.exited? #=> true * $?.exitstatus #=> 0 * * fork { exit 99 } #=> 26573 * Process.wait #=> 26573 * $?.exited? #=> true * $?.exitstatus #=> 99 */ static VALUE pst_wexitstatus(VALUE st) { int status = PST2INT(st); if (WIFEXITED(status)) return INT2NUM(WEXITSTATUS(status)); return Qnil; } /* * call-seq: * stat.success? -> true, false or nil * * Returns +true+ if _stat_ is successful, +false+ if not. * Returns +nil+ if #exited? is not +true+. */ static VALUE pst_success_p(VALUE st) { int status = PST2INT(st); if (!WIFEXITED(status)) return Qnil; return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse; } /* * call-seq: * stat.coredump? -> true or false * * Returns +true+ if _stat_ generated a coredump * when it terminated. Not available on all platforms. */ static VALUE pst_wcoredump(VALUE st) { #ifdef WCOREDUMP int status = PST2INT(st); if (WCOREDUMP(status)) return Qtrue; else return Qfalse; #else return Qfalse; #endif } static rb_pid_t do_waitpid(rb_pid_t pid, int *st, int flags) { #if defined HAVE_WAITPID return waitpid(pid, st, flags); #elif defined HAVE_WAIT4 return wait4(pid, st, flags, NULL); #else # error waitpid or wait4 is required. #endif } #define WAITPID_LOCK_ONLY ((struct waitpid_state *)-1) struct waitpid_state { struct list_node wnode; rb_execution_context_t *ec; rb_nativethread_cond_t *cond; rb_pid_t ret; rb_pid_t pid; int status; int options; int errnum; }; void rb_native_mutex_lock(rb_nativethread_lock_t *); void rb_native_mutex_unlock(rb_nativethread_lock_t *); void rb_native_cond_signal(rb_nativethread_cond_t *); void rb_native_cond_wait(rb_nativethread_cond_t *, rb_nativethread_lock_t *); int rb_sigwait_fd_get(const rb_thread_t *); void rb_sigwait_sleep(const rb_thread_t *, int fd, const rb_hrtime_t *); void rb_sigwait_fd_put(const rb_thread_t *, int fd); void rb_thread_sleep_interruptible(void); static int waitpid_signal(struct waitpid_state *w) { if (w->ec) { /* rb_waitpid */ rb_threadptr_interrupt(rb_ec_thread_ptr(w->ec)); return TRUE; } else { /* ruby_waitpid_locked */ if (w->cond) { rb_native_cond_signal(w->cond); return TRUE; } } return FALSE; } /* * When a thread is done using sigwait_fd and there are other threads * sleeping on waitpid, we must kick one of the threads out of * rb_native_cond_wait so it can switch to rb_sigwait_sleep */ static void sigwait_fd_migrate_sleeper(rb_vm_t *vm) { struct waitpid_state *w = 0; list_for_each(&vm->waiting_pids, w, wnode) { if (waitpid_signal(w)) return; } list_for_each(&vm->waiting_grps, w, wnode) { if (waitpid_signal(w)) return; } } void rb_sigwait_fd_migrate(rb_vm_t *vm) { rb_native_mutex_lock(&vm->waitpid_lock); sigwait_fd_migrate_sleeper(vm); rb_native_mutex_unlock(&vm->waitpid_lock); } #if RUBY_SIGCHLD extern volatile unsigned int ruby_nocldwait; /* signal.c */ /* called by timer thread or thread which acquired sigwait_fd */ static void waitpid_each(struct list_head *head) { struct waitpid_state *w = 0, *next; list_for_each_safe(head, w, next, wnode) { rb_pid_t ret = do_waitpid(w->pid, &w->status, w->options | WNOHANG); if (!ret) continue; if (ret == -1) w->errnum = errno; w->ret = ret; list_del_init(&w->wnode); waitpid_signal(w); } } #else # define ruby_nocldwait 0 #endif void ruby_waitpid_all(rb_vm_t *vm) { #if RUBY_SIGCHLD rb_native_mutex_lock(&vm->waitpid_lock); waitpid_each(&vm->waiting_pids); if (list_empty(&vm->waiting_pids)) { waitpid_each(&vm->waiting_grps); } /* emulate SA_NOCLDWAIT */ if (list_empty(&vm->waiting_pids) && list_empty(&vm->waiting_grps)) { while (ruby_nocldwait && do_waitpid(-1, 0, WNOHANG) > 0) ; /* keep looping */ } rb_native_mutex_unlock(&vm->waitpid_lock); #endif } static void waitpid_state_init(struct waitpid_state *w, rb_pid_t pid, int options) { w->ret = 0; w->pid = pid; w->options = options; } static const rb_hrtime_t * sigwait_sleep_time(void) { if (SIGCHLD_LOSSY) { static const rb_hrtime_t busy_wait = 100 * RB_HRTIME_PER_MSEC; return &busy_wait; } return 0; } /* * must be called with vm->waitpid_lock held, this is not interruptible */ rb_pid_t ruby_waitpid_locked(rb_vm_t *vm, rb_pid_t pid, int *status, int options, rb_nativethread_cond_t *cond) { struct waitpid_state w; assert(!ruby_thread_has_gvl_p() && "must not have GVL"); waitpid_state_init(&w, pid, options); if (w.pid > 0 || list_empty(&vm->waiting_pids)) w.ret = do_waitpid(w.pid, &w.status, w.options | WNOHANG); if (w.ret) { if (w.ret == -1) w.errnum = errno; } else { int sigwait_fd = -1; w.ec = 0; list_add(w.pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w.wnode); do { if (sigwait_fd < 0) sigwait_fd = rb_sigwait_fd_get(0); if (sigwait_fd >= 0) { w.cond = 0; rb_native_mutex_unlock(&vm->waitpid_lock); rb_sigwait_sleep(0, sigwait_fd, sigwait_sleep_time()); rb_native_mutex_lock(&vm->waitpid_lock); } else { w.cond = cond; rb_native_cond_wait(w.cond, &vm->waitpid_lock); } } while (!w.ret); list_del(&w.wnode); /* we're done, maybe other waitpid callers are not: */ if (sigwait_fd >= 0) { rb_sigwait_fd_put(0, sigwait_fd); sigwait_fd_migrate_sleeper(vm); } } if (status) { *status = w.status; } if (w.ret == -1) errno = w.errnum; return w.ret; } static VALUE waitpid_sleep(VALUE x) { struct waitpid_state *w = (struct waitpid_state *)x; while (!w->ret) { rb_thread_sleep_interruptible(); } return Qfalse; } static VALUE waitpid_cleanup(VALUE x) { struct waitpid_state *w = (struct waitpid_state *)x; /* * XXX w->ret is sometimes set but list_del is still needed, here, * Not sure why, so we unconditionally do list_del here: */ if (TRUE || w->ret == 0) { rb_vm_t *vm = rb_ec_vm_ptr(w->ec); rb_native_mutex_lock(&vm->waitpid_lock); list_del(&w->wnode); rb_native_mutex_unlock(&vm->waitpid_lock); } return Qfalse; } static void waitpid_wait(struct waitpid_state *w) { rb_vm_t *vm = rb_ec_vm_ptr(w->ec); int need_sleep = FALSE; /* * Lock here to prevent do_waitpid from stealing work from the * ruby_waitpid_locked done by mjit workers since mjit works * outside of GVL */ rb_native_mutex_lock(&vm->waitpid_lock); if (w->pid > 0 || list_empty(&vm->waiting_pids)) w->ret = do_waitpid(w->pid, &w->status, w->options | WNOHANG); if (w->ret) { if (w->ret == -1) w->errnum = errno; } else if (w->options & WNOHANG) { } else { need_sleep = TRUE; } if (need_sleep) { w->cond = 0; /* order matters, favor specified PIDs rather than -1 or 0 */ list_add(w->pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w->wnode); } rb_native_mutex_unlock(&vm->waitpid_lock); if (need_sleep) { rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); } } static void * waitpid_blocking_no_SIGCHLD(void *x) { struct waitpid_state *w = x; w->ret = do_waitpid(w->pid, &w->status, w->options); return 0; } static void waitpid_no_SIGCHLD(struct waitpid_state *w) { if (w->options & WNOHANG) { w->ret = do_waitpid(w->pid, &w->status, w->options); } else { do { rb_thread_call_without_gvl(waitpid_blocking_no_SIGCHLD, w, RUBY_UBF_PROCESS, 0); } while (w->ret < 0 && errno == EINTR && (RUBY_VM_CHECK_INTS(w->ec),1)); } if (w->ret == -1) w->errnum = errno; } rb_pid_t rb_waitpid(rb_pid_t pid, int *st, int flags) { struct waitpid_state w; waitpid_state_init(&w, pid, flags); w.ec = GET_EC(); if (WAITPID_USE_SIGCHLD) { waitpid_wait(&w); } else { waitpid_no_SIGCHLD(&w); } if (st) *st = w.status; if (w.ret == -1) { errno = w.errnum; } else if (w.ret > 0) { if (ruby_nocldwait) { w.ret = -1; errno = ECHILD; } else { rb_last_status_set(w.status, w.ret); } } return w.ret; } static VALUE proc_wait(int argc, VALUE *argv) { rb_pid_t pid; int flags, status; flags = 0; if (rb_check_arity(argc, 0, 2) == 0) { pid = -1; } else { VALUE vflags; pid = NUM2PIDT(argv[0]); if (argc == 2 && !NIL_P(vflags = argv[1])) { flags = NUM2UINT(vflags); } } if ((pid = rb_waitpid(pid, &status, flags)) < 0) rb_sys_fail(0); if (pid == 0) { rb_last_status_clear(); return Qnil; } return PIDT2NUM(pid); } /* [MG]:FIXME: I wasn't sure how this should be done, since ::wait() has historically been documented as if it didn't take any arguments despite the fact that it's just an alias for ::waitpid(). The way I have it below is more truthful, but a little confusing. I also took the liberty of putting in the pid values, as they're pretty useful, and it looked as if the original 'ri' output was supposed to contain them after "[...]depending on the value of aPid:". The 'ansi' and 'bs' formats of the ri output don't display the definition list for some reason, but the plain text one does. */ /* * call-seq: * Process.wait() -> integer * Process.wait(pid=-1, flags=0) -> integer * Process.waitpid(pid=-1, flags=0) -> integer * * Waits for a child process to exit, returns its process id, and * sets $? to a Process::Status object * containing information on that process. Which child it waits on * depends on the value of _pid_: * * > 0:: Waits for the child whose process ID equals _pid_. * * 0:: Waits for any child whose process group ID equals that of the * calling process. * * -1:: Waits for any child process (the default if no _pid_ is * given). * * < -1:: Waits for any child whose process group ID equals the absolute * value of _pid_. * * The _flags_ argument may be a logical or of the flag values * Process::WNOHANG (do not block if no child available) * or Process::WUNTRACED (return stopped children that * haven't been reported). Not all flags are available on all * platforms, but a flag value of zero will work on all platforms. * * Calling this method raises a SystemCallError if there are no child * processes. Not available on all platforms. * * include Process * fork { exit 99 } #=> 27429 * wait #=> 27429 * $?.exitstatus #=> 99 * * pid = fork { sleep 3 } #=> 27440 * Time.now #=> 2008-03-08 19:56:16 +0900 * waitpid(pid, Process::WNOHANG) #=> nil * Time.now #=> 2008-03-08 19:56:16 +0900 * waitpid(pid, 0) #=> 27440 * Time.now #=> 2008-03-08 19:56:19 +0900 */ static VALUE proc_m_wait(int c, VALUE *v, VALUE _) { return proc_wait(c, v); } /* * call-seq: * Process.wait2(pid=-1, flags=0) -> [pid, status] * Process.waitpid2(pid=-1, flags=0) -> [pid, status] * * Waits for a child process to exit (see Process::waitpid for exact * semantics) and returns an array containing the process id and the * exit status (a Process::Status object) of that * child. Raises a SystemCallError if there are no child processes. * * Process.fork { exit 99 } #=> 27437 * pid, status = Process.wait2 * pid #=> 27437 * status.exitstatus #=> 99 */ static VALUE proc_wait2(int argc, VALUE *argv, VALUE _) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); } /* * call-seq: * Process.waitall -> [ [pid1,status1], ...] * * Waits for all children, returning an array of * _pid_/_status_ pairs (where _status_ is a * Process::Status object). * * fork { sleep 0.2; exit 2 } #=> 27432 * fork { sleep 0.1; exit 1 } #=> 27433 * fork { exit 0 } #=> 27434 * p Process.waitall * * produces: * * [[30982, #], * [30979, #], * [30976, #]] */ static VALUE proc_waitall(VALUE _) { VALUE result; rb_pid_t pid; int status; result = rb_ary_new(); rb_last_status_clear(); for (pid = -1;;) { pid = rb_waitpid(-1, &status, 0); if (pid == -1) { int e = errno; if (e == ECHILD) break; rb_syserr_fail(e, 0); } rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get())); } return result; } static VALUE rb_cWaiter; static VALUE detach_process_pid(VALUE thread) { return rb_thread_local_aref(thread, id_pid); } static VALUE detach_process_watcher(void *arg) { rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg; int status; while ((cpid = rb_waitpid(pid, &status, 0)) == 0) { /* wait while alive */ } return rb_last_status_get(); } VALUE rb_detach_process(rb_pid_t pid) { VALUE watcher = rb_thread_create(detach_process_watcher, (void*)(VALUE)pid); rb_thread_local_aset(watcher, id_pid, PIDT2NUM(pid)); RBASIC_SET_CLASS(watcher, rb_cWaiter); return watcher; } /* * call-seq: * Process.detach(pid) -> thread * * Some operating systems retain the status of terminated child * processes until the parent collects that status (normally using * some variant of wait()). If the parent never collects * this status, the child stays around as a zombie process. * Process::detach prevents this by setting up a separate Ruby thread * whose sole job is to reap the status of the process _pid_ when it * terminates. Use #detach only when you do not intend to explicitly * wait for the child to terminate. * * The waiting thread returns the exit status of the detached process * when it terminates, so you can use Thread#join to * know the result. If specified _pid_ is not a valid child process * ID, the thread returns +nil+ immediately. * * The waiting thread has #pid method which returns the pid. * * In this first example, we don't reap the first child process, so * it appears as a zombie in the process status display. * * p1 = fork { sleep 0.1 } * p2 = fork { sleep 0.2 } * Process.waitpid(p2) * sleep 2 * system("ps -ho pid,state -p #{p1}") * * produces: * * 27389 Z * * In the next example, Process::detach is used to reap * the child automatically. * * p1 = fork { sleep 0.1 } * p2 = fork { sleep 0.2 } * Process.detach(p1) * Process.waitpid(p2) * sleep 2 * system("ps -ho pid,state -p #{p1}") * * (produces no output) */ static VALUE proc_detach(VALUE obj, VALUE pid) { return rb_detach_process(NUM2PIDT(pid)); } /* This function should be async-signal-safe. Actually it is. */ static void before_exec_async_signal_safe(void) { } static void before_exec_non_async_signal_safe(void) { /* * On Mac OS X 10.5.x (Leopard) or earlier, exec() may return ENOTSUP * if the process have multiple threads. Therefore we have to kill * internal threads temporary. [ruby-core:10583] * This is also true on Haiku. It returns Errno::EPERM against exec() * in multiple threads. * * Nowadays, we always stop the timer thread completely to allow redirects. */ rb_thread_stop_timer_thread(); } #define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0) #ifdef _WIN32 int rb_w32_set_nonblock2(int fd, int nonblock); #endif static int set_blocking(int fd) { #ifdef _WIN32 return rb_w32_set_nonblock2(fd, 0); #elif defined(F_GETFL) && defined(F_SETFL) int fl = fcntl(fd, F_GETFL); /* async-signal-safe */ /* EBADF ought to be possible */ if (fl == -1) return fl; if (fl & O_NONBLOCK) { fl &= ~O_NONBLOCK; return fcntl(fd, F_SETFL, fl); } return 0; #endif } static void stdfd_clear_nonblock(void) { /* many programs cannot deal with non-blocking stdin/stdout/stderr */ int fd; for (fd = 0; fd < 3; fd++) { (void)set_blocking(fd); /* can't do much about errors anyhow */ } } static void before_exec(void) { before_exec_non_async_signal_safe(); before_exec_async_signal_safe(); } /* This function should be async-signal-safe. Actually it is. */ static void after_exec_async_signal_safe(void) { } static void after_exec_non_async_signal_safe(void) { rb_thread_reset_timer_thread(); rb_thread_start_timer_thread(); } static void after_exec(void) { after_exec_async_signal_safe(); after_exec_non_async_signal_safe(); } #if defined HAVE_WORKING_FORK || defined HAVE_DAEMON #define before_fork_ruby() before_exec() static void after_fork_ruby(void) { rb_threadptr_pending_interrupt_clear(GET_THREAD()); after_exec(); } #endif #if defined(HAVE_WORKING_FORK) /* try_with_sh and exec_with_sh should be async-signal-safe. Actually it is.*/ #define try_with_sh(err, prog, argv, envp) ((err == ENOEXEC) ? exec_with_sh((prog), (argv), (envp)) : (void)0) static void exec_with_sh(const char *prog, char **argv, char **envp) { *argv = (char *)prog; *--argv = (char *)"sh"; if (envp) execve("/bin/sh", argv, envp); /* async-signal-safe */ else execv("/bin/sh", argv); /* async-signal-safe (since SUSv4) */ } #else #define try_with_sh(err, prog, argv, envp) (void)0 #endif /* This function should be async-signal-safe. Actually it is. */ static int proc_exec_cmd(const char *prog, VALUE argv_str, VALUE envp_str) { char **argv; #ifndef _WIN32 char **envp; int err; #endif argv = ARGVSTR2ARGV(argv_str); if (!prog) { return ENOENT; } #ifdef _WIN32 rb_w32_uaspawn(P_OVERLAY, prog, argv); return errno; #else envp = envp_str ? RB_IMEMO_TMPBUF_PTR(envp_str) : NULL; if (envp_str) execve(prog, argv, envp); /* async-signal-safe */ else execv(prog, argv); /* async-signal-safe (since SUSv4) */ err = errno; try_with_sh(err, prog, argv, envp); /* try_with_sh() is async-signal-safe. */ return err; #endif } /* This function should be async-signal-safe. Actually it is. */ static int proc_exec_sh(const char *str, VALUE envp_str) { const char *s; s = str; while (*s == ' ' || *s == '\t' || *s == '\n') s++; if (!*s) { return ENOENT; } #ifdef _WIN32 rb_w32_uspawn(P_OVERLAY, (char *)str, 0); #elif defined(__CYGWIN32__) { char fbuf[MAXPATHLEN]; char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf)); int status = -1; if (shell) execl(shell, "sh", "-c", str, (char *) NULL); else status = system(str); if (status != -1) exit(status); } #else if (envp_str) execle("/bin/sh", "sh", "-c", str, (char *)NULL, RB_IMEMO_TMPBUF_PTR(envp_str)); /* async-signal-safe */ else execl("/bin/sh", "sh", "-c", str, (char *)NULL); /* async-signal-safe (since SUSv4) */ #endif /* _WIN32 */ return errno; } int rb_proc_exec(const char *str) { int ret; before_exec(); ret = proc_exec_sh(str, Qfalse); after_exec(); errno = ret; return -1; } static void mark_exec_arg(void *ptr) { struct rb_execarg *eargp = ptr; if (eargp->use_shell) rb_gc_mark(eargp->invoke.sh.shell_script); else { rb_gc_mark(eargp->invoke.cmd.command_name); rb_gc_mark(eargp->invoke.cmd.command_abspath); rb_gc_mark(eargp->invoke.cmd.argv_str); rb_gc_mark(eargp->invoke.cmd.argv_buf); } rb_gc_mark(eargp->redirect_fds); rb_gc_mark(eargp->envp_str); rb_gc_mark(eargp->envp_buf); rb_gc_mark(eargp->dup2_tmpbuf); rb_gc_mark(eargp->rlimit_limits); rb_gc_mark(eargp->fd_dup2); rb_gc_mark(eargp->fd_close); rb_gc_mark(eargp->fd_open); rb_gc_mark(eargp->fd_dup2_child); rb_gc_mark(eargp->env_modification); rb_gc_mark(eargp->path_env); rb_gc_mark(eargp->chdir_dir); } static size_t memsize_exec_arg(const void *ptr) { return sizeof(struct rb_execarg); } static const rb_data_type_t exec_arg_data_type = { "exec_arg", {mark_exec_arg, RUBY_TYPED_DEFAULT_FREE, memsize_exec_arg}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; #ifdef _WIN32 # define DEFAULT_PROCESS_ENCODING rb_utf8_encoding() #endif #ifdef DEFAULT_PROCESS_ENCODING # define EXPORT_STR(str) rb_str_export_to_enc((str), DEFAULT_PROCESS_ENCODING) # define EXPORT_DUP(str) export_dup(str) static VALUE export_dup(VALUE str) { VALUE newstr = EXPORT_STR(str); if (newstr == str) newstr = rb_str_dup(str); return newstr; } #else # define EXPORT_STR(str) (str) # define EXPORT_DUP(str) rb_str_dup(str) #endif #if !defined(HAVE_WORKING_FORK) && defined(HAVE_SPAWNV) # define USE_SPAWNV 1 #else # define USE_SPAWNV 0 #endif #ifndef P_NOWAIT # define P_NOWAIT _P_NOWAIT #endif #if USE_SPAWNV #if defined(_WIN32) #define proc_spawn_cmd_internal(argv, prog) rb_w32_uaspawn(P_NOWAIT, (prog), (argv)) #else static rb_pid_t proc_spawn_cmd_internal(char **argv, char *prog) { char fbuf[MAXPATHLEN]; rb_pid_t status; if (!prog) prog = argv[0]; prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf)); if (!prog) return -1; before_exec(); status = spawnv(P_NOWAIT, prog, (const char **)argv); if (status == -1 && errno == ENOEXEC) { *argv = (char *)prog; *--argv = (char *)"sh"; status = spawnv(P_NOWAIT, "/bin/sh", (const char **)argv); after_exec(); if (status == -1) errno = ENOEXEC; } return status; } #endif static rb_pid_t proc_spawn_cmd(char **argv, VALUE prog, struct rb_execarg *eargp) { rb_pid_t pid = -1; if (argv[0]) { #if defined(_WIN32) DWORD flags = 0; if (eargp->new_pgroup_given && eargp->new_pgroup_flag) { flags = CREATE_NEW_PROCESS_GROUP; } pid = rb_w32_uaspawn_flags(P_NOWAIT, prog ? RSTRING_PTR(prog) : 0, argv, flags); #else pid = proc_spawn_cmd_internal(argv, prog ? RSTRING_PTR(prog) : 0); #endif } return pid; } #if defined(_WIN32) #define proc_spawn_sh(str) rb_w32_uspawn(P_NOWAIT, (str), 0) #else static rb_pid_t proc_spawn_sh(char *str) { char fbuf[MAXPATHLEN]; rb_pid_t status; char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf)); before_exec(); status = spawnl(P_NOWAIT, (shell ? shell : "/bin/sh"), "sh", "-c", str, (char*)NULL); after_exec(); return status; } #endif #endif static VALUE hide_obj(VALUE obj) { RBASIC_CLEAR_CLASS(obj); return obj; } static VALUE check_exec_redirect_fd(VALUE v, int iskey) { VALUE tmp; int fd; if (FIXNUM_P(v)) { fd = FIX2INT(v); } else if (SYMBOL_P(v)) { ID id = rb_check_id(&v); if (id == id_in) fd = 0; else if (id == id_out) fd = 1; else if (id == id_err) fd = 2; else goto wrong; } else if (!NIL_P(tmp = rb_io_check_io(v))) { rb_io_t *fptr; GetOpenFile(tmp, fptr); if (fptr->tied_io_for_writing) rb_raise(rb_eArgError, "duplex IO redirection"); fd = fptr->fd; } else { goto wrong; } if (fd < 0) { rb_raise(rb_eArgError, "negative file descriptor"); } #ifdef _WIN32 else if (fd >= 3 && iskey) { rb_raise(rb_eArgError, "wrong file descriptor (%d)", fd); } #endif return INT2FIX(fd); wrong: rb_raise(rb_eArgError, "wrong exec redirect"); UNREACHABLE_RETURN(Qundef); } static VALUE check_exec_redirect1(VALUE ary, VALUE key, VALUE param) { if (ary == Qfalse) { ary = hide_obj(rb_ary_new()); } if (!RB_TYPE_P(key, T_ARRAY)) { VALUE fd = check_exec_redirect_fd(key, !NIL_P(param)); rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param))); } else { int i, n=0; for (i = 0 ; i < RARRAY_LEN(key); i++) { VALUE v = RARRAY_AREF(key, i); VALUE fd = check_exec_redirect_fd(v, !NIL_P(param)); rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param))); n++; } } return ary; } static void check_exec_redirect(VALUE key, VALUE val, struct rb_execarg *eargp) { VALUE param; VALUE path, flags, perm; VALUE tmp; ID id; switch (TYPE(val)) { case T_SYMBOL: id = rb_check_id(&val); if (id == id_close) { param = Qnil; eargp->fd_close = check_exec_redirect1(eargp->fd_close, key, param); } else if (id == id_in) { param = INT2FIX(0); eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); } else if (id == id_out) { param = INT2FIX(1); eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); } else if (id == id_err) { param = INT2FIX(2); eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); } else { rb_raise(rb_eArgError, "wrong exec redirect symbol: %"PRIsVALUE, val); } break; case T_FILE: io: val = check_exec_redirect_fd(val, 0); /* fall through */ case T_FIXNUM: param = val; eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); break; case T_ARRAY: path = rb_ary_entry(val, 0); if (RARRAY_LEN(val) == 2 && SYMBOL_P(path) && path == ID2SYM(id_child)) { param = check_exec_redirect_fd(rb_ary_entry(val, 1), 0); eargp->fd_dup2_child = check_exec_redirect1(eargp->fd_dup2_child, key, param); } else { FilePathValue(path); flags = rb_ary_entry(val, 1); if (NIL_P(flags)) flags = INT2NUM(O_RDONLY); else if (RB_TYPE_P(flags, T_STRING)) flags = INT2NUM(rb_io_modestr_oflags(StringValueCStr(flags))); else flags = rb_to_int(flags); perm = rb_ary_entry(val, 2); perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm); param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)), flags, perm, Qnil)); eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param); } break; case T_STRING: path = val; FilePathValue(path); if (RB_TYPE_P(key, T_FILE)) key = check_exec_redirect_fd(key, 1); if (FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2)) flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC); else if (RB_TYPE_P(key, T_ARRAY)) { int i; for (i = 0; i < RARRAY_LEN(key); i++) { VALUE v = RARRAY_AREF(key, i); VALUE fd = check_exec_redirect_fd(v, 1); if (FIX2INT(fd) != 1 && FIX2INT(fd) != 2) break; } if (i == RARRAY_LEN(key)) flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC); else flags = INT2NUM(O_RDONLY); } else flags = INT2NUM(O_RDONLY); perm = INT2FIX(0644); param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)), flags, perm, Qnil)); eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param); break; default: tmp = val; val = rb_io_check_io(tmp); if (!NIL_P(val)) goto io; rb_raise(rb_eArgError, "wrong exec redirect action"); } } #if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) static int rlimit_type_by_sym(VALUE key); static void rb_execarg_addopt_rlimit(struct rb_execarg *eargp, int rtype, VALUE val) { VALUE ary = eargp->rlimit_limits; VALUE tmp, softlim, hardlim; if (eargp->rlimit_limits == Qfalse) ary = eargp->rlimit_limits = hide_obj(rb_ary_new()); else ary = eargp->rlimit_limits; tmp = rb_check_array_type(val); if (!NIL_P(tmp)) { if (RARRAY_LEN(tmp) == 1) softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0)); else if (RARRAY_LEN(tmp) == 2) { softlim = rb_to_int(rb_ary_entry(tmp, 0)); hardlim = rb_to_int(rb_ary_entry(tmp, 1)); } else { rb_raise(rb_eArgError, "wrong exec rlimit option"); } } else { softlim = hardlim = rb_to_int(val); } tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim)); rb_ary_push(ary, tmp); } #endif #define TO_BOOL(val, name) NIL_P(val) ? 0 : rb_bool_expected((val), name) int rb_execarg_addopt(VALUE execarg_obj, VALUE key, VALUE val) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); ID id; switch (TYPE(key)) { case T_SYMBOL: #if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) { int rtype = rlimit_type_by_sym(key); if (rtype != -1) { rb_execarg_addopt_rlimit(eargp, rtype, val); RB_GC_GUARD(execarg_obj); return ST_CONTINUE; } } #endif if (!(id = rb_check_id(&key))) return ST_STOP; #ifdef HAVE_SETPGID if (id == id_pgroup) { rb_pid_t pgroup; if (eargp->pgroup_given) { rb_raise(rb_eArgError, "pgroup option specified twice"); } if (!RTEST(val)) pgroup = -1; /* asis(-1) means "don't call setpgid()". */ else if (val == Qtrue) pgroup = 0; /* new process group. */ else { pgroup = NUM2PIDT(val); if (pgroup < 0) { rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup); } } eargp->pgroup_given = 1; eargp->pgroup_pgid = pgroup; } else #endif #ifdef _WIN32 if (id == id_new_pgroup) { if (eargp->new_pgroup_given) { rb_raise(rb_eArgError, "new_pgroup option specified twice"); } eargp->new_pgroup_given = 1; eargp->new_pgroup_flag = TO_BOOL(val, "new_pgroup"); } else #endif if (id == id_unsetenv_others) { if (eargp->unsetenv_others_given) { rb_raise(rb_eArgError, "unsetenv_others option specified twice"); } eargp->unsetenv_others_given = 1; eargp->unsetenv_others_do = TO_BOOL(val, "unsetenv_others"); } else if (id == id_chdir) { if (eargp->chdir_given) { rb_raise(rb_eArgError, "chdir option specified twice"); } FilePathValue(val); val = rb_str_encode_ospath(val); eargp->chdir_given = 1; eargp->chdir_dir = hide_obj(EXPORT_DUP(val)); } else if (id == id_umask) { mode_t cmask = NUM2MODET(val); if (eargp->umask_given) { rb_raise(rb_eArgError, "umask option specified twice"); } eargp->umask_given = 1; eargp->umask_mask = cmask; } else if (id == id_close_others) { if (eargp->close_others_given) { rb_raise(rb_eArgError, "close_others option specified twice"); } eargp->close_others_given = 1; eargp->close_others_do = TO_BOOL(val, "close_others"); } else if (id == id_in) { key = INT2FIX(0); goto redirect; } else if (id == id_out) { key = INT2FIX(1); goto redirect; } else if (id == id_err) { key = INT2FIX(2); goto redirect; } else if (id == id_uid) { #ifdef HAVE_SETUID if (eargp->uid_given) { rb_raise(rb_eArgError, "uid option specified twice"); } check_uid_switch(); { eargp->uid = OBJ2UID(val); eargp->uid_given = 1; } #else rb_raise(rb_eNotImpError, "uid option is unimplemented on this machine"); #endif } else if (id == id_gid) { #ifdef HAVE_SETGID if (eargp->gid_given) { rb_raise(rb_eArgError, "gid option specified twice"); } check_gid_switch(); { eargp->gid = OBJ2GID(val); eargp->gid_given = 1; } #else rb_raise(rb_eNotImpError, "gid option is unimplemented on this machine"); #endif } else if (id == id_exception) { if (eargp->exception_given) { rb_raise(rb_eArgError, "exception option specified twice"); } eargp->exception_given = 1; eargp->exception = TO_BOOL(val, "exception"); } else { return ST_STOP; } break; case T_FIXNUM: case T_FILE: case T_ARRAY: redirect: check_exec_redirect(key, val, eargp); break; default: return ST_STOP; } RB_GC_GUARD(execarg_obj); return ST_CONTINUE; } static int check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg) { VALUE key = (VALUE)st_key; VALUE val = (VALUE)st_val; VALUE execarg_obj = (VALUE)arg; if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) { if (SYMBOL_P(key)) rb_raise(rb_eArgError, "wrong exec option symbol: % "PRIsVALUE, key); rb_raise(rb_eArgError, "wrong exec option"); } return ST_CONTINUE; } static int check_exec_options_i_extract(st_data_t st_key, st_data_t st_val, st_data_t arg) { VALUE key = (VALUE)st_key; VALUE val = (VALUE)st_val; VALUE *args = (VALUE *)arg; VALUE execarg_obj = args[0]; if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) { VALUE nonopts = args[1]; if (NIL_P(nonopts)) args[1] = nonopts = rb_hash_new(); rb_hash_aset(nonopts, key, val); } return ST_CONTINUE; } static int check_exec_fds_1(struct rb_execarg *eargp, VALUE h, int maxhint, VALUE ary) { long i; if (ary != Qfalse) { for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int fd = FIX2INT(RARRAY_AREF(elt, 0)); if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) { rb_raise(rb_eArgError, "fd %d specified twice", fd); } if (ary == eargp->fd_dup2) rb_hash_aset(h, INT2FIX(fd), Qtrue); else if (ary == eargp->fd_dup2_child) rb_hash_aset(h, INT2FIX(fd), RARRAY_AREF(elt, 1)); else /* ary == eargp->fd_close */ rb_hash_aset(h, INT2FIX(fd), INT2FIX(-1)); if (maxhint < fd) maxhint = fd; if (ary == eargp->fd_dup2 || ary == eargp->fd_dup2_child) { fd = FIX2INT(RARRAY_AREF(elt, 1)); if (maxhint < fd) maxhint = fd; } } } return maxhint; } static VALUE check_exec_fds(struct rb_execarg *eargp) { VALUE h = rb_hash_new(); VALUE ary; int maxhint = -1; long i; maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2); maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_close); maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2_child); if (eargp->fd_dup2_child) { ary = eargp->fd_dup2_child; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int newfd = FIX2INT(RARRAY_AREF(elt, 0)); int oldfd = FIX2INT(RARRAY_AREF(elt, 1)); int lastfd = oldfd; VALUE val = rb_hash_lookup(h, INT2FIX(lastfd)); long depth = 0; while (FIXNUM_P(val) && 0 <= FIX2INT(val)) { lastfd = FIX2INT(val); val = rb_hash_lookup(h, val); if (RARRAY_LEN(ary) < depth) rb_raise(rb_eArgError, "cyclic child fd redirection from %d", oldfd); depth++; } if (val != Qtrue) rb_raise(rb_eArgError, "child fd %d is not redirected", oldfd); if (oldfd != lastfd) { VALUE val2; rb_ary_store(elt, 1, INT2FIX(lastfd)); rb_hash_aset(h, INT2FIX(newfd), INT2FIX(lastfd)); val = INT2FIX(oldfd); while (FIXNUM_P(val2 = rb_hash_lookup(h, val))) { rb_hash_aset(h, val, INT2FIX(lastfd)); val = val2; } } } } eargp->close_others_maxhint = maxhint; return h; } static void rb_check_exec_options(VALUE opthash, VALUE execarg_obj) { if (RHASH_EMPTY_P(opthash)) return; rb_hash_stlike_foreach(opthash, check_exec_options_i, (st_data_t)execarg_obj); } VALUE rb_execarg_extract_options(VALUE execarg_obj, VALUE opthash) { VALUE args[2]; if (RHASH_EMPTY_P(opthash)) return Qnil; args[0] = execarg_obj; args[1] = Qnil; rb_hash_stlike_foreach(opthash, check_exec_options_i_extract, (st_data_t)args); return args[1]; } #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0) #else #define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0) #endif static int check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg) { VALUE key = (VALUE)st_key; VALUE val = (VALUE)st_val; VALUE env = ((VALUE *)arg)[0]; VALUE *path = &((VALUE *)arg)[1]; char *k; k = StringValueCStr(key); if (strchr(k, '=')) rb_raise(rb_eArgError, "environment name contains a equal : %"PRIsVALUE, key); if (!NIL_P(val)) StringValueCStr(val); key = EXPORT_STR(key); if (!NIL_P(val)) val = EXPORT_STR(val); if (ENVMATCH(k, PATH_ENV)) { *path = val; } rb_ary_push(env, hide_obj(rb_assoc_new(key, val))); return ST_CONTINUE; } static VALUE rb_check_exec_env(VALUE hash, VALUE *path) { VALUE env[2]; env[0] = hide_obj(rb_ary_new()); env[1] = Qfalse; rb_hash_stlike_foreach(hash, check_exec_env_i, (st_data_t)env); *path = env[1]; return env[0]; } static VALUE rb_check_argv(int argc, VALUE *argv) { VALUE tmp, prog; int i; rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); prog = 0; tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { if (RARRAY_LEN(tmp) != 2) { rb_raise(rb_eArgError, "wrong first argument"); } prog = RARRAY_AREF(tmp, 0); argv[0] = RARRAY_AREF(tmp, 1); SafeStringValue(prog); StringValueCStr(prog); prog = rb_str_new_frozen(prog); } for (i = 0; i < argc; i++) { SafeStringValue(argv[i]); argv[i] = rb_str_new_frozen(argv[i]); StringValueCStr(argv[i]); } return prog; } static VALUE check_hash(VALUE obj) { if (RB_SPECIAL_CONST_P(obj)) return Qnil; switch (RB_BUILTIN_TYPE(obj)) { case T_STRING: case T_ARRAY: return Qnil; default: break; } return rb_check_hash_type(obj); } static VALUE rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *opthash_ret) { VALUE hash, prog; if (0 < *argc_p) { hash = check_hash((*argv_p)[*argc_p-1]); if (!NIL_P(hash)) { *opthash_ret = hash; (*argc_p)--; } } if (0 < *argc_p) { hash = check_hash((*argv_p)[0]); if (!NIL_P(hash)) { *env_ret = hash; (*argc_p)--; (*argv_p)++; } } prog = rb_check_argv(*argc_p, *argv_p); if (!prog) { prog = (*argv_p)[0]; if (accept_shell && *argc_p == 1) { *argc_p = 0; *argv_p = 0; } } return prog; } #ifndef _WIN32 struct string_part { const char *ptr; size_t len; }; static int compare_posix_sh(const void *key, const void *el) { const struct string_part *word = key; int ret = strncmp(word->ptr, el, word->len); if (!ret && ((const char *)el)[word->len]) ret = -1; return ret; } #endif static void rb_exec_fillarg(VALUE prog, int argc, VALUE *argv, VALUE env, VALUE opthash, VALUE execarg_obj) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); char fbuf[MAXPATHLEN]; MEMZERO(eargp, struct rb_execarg, 1); if (!NIL_P(opthash)) { rb_check_exec_options(opthash, execarg_obj); } if (!NIL_P(env)) { env = rb_check_exec_env(env, &eargp->path_env); eargp->env_modification = env; } prog = EXPORT_STR(prog); eargp->use_shell = argc == 0; if (eargp->use_shell) eargp->invoke.sh.shell_script = prog; else eargp->invoke.cmd.command_name = prog; #ifndef _WIN32 if (eargp->use_shell) { static const char posix_sh_cmds[][9] = { "!", /* reserved */ ".", /* special built-in */ ":", /* special built-in */ "break", /* special built-in */ "case", /* reserved */ "continue", /* special built-in */ "do", /* reserved */ "done", /* reserved */ "elif", /* reserved */ "else", /* reserved */ "esac", /* reserved */ "eval", /* special built-in */ "exec", /* special built-in */ "exit", /* special built-in */ "export", /* special built-in */ "fi", /* reserved */ "for", /* reserved */ "if", /* reserved */ "in", /* reserved */ "readonly", /* special built-in */ "return", /* special built-in */ "set", /* special built-in */ "shift", /* special built-in */ "then", /* reserved */ "times", /* special built-in */ "trap", /* special built-in */ "unset", /* special built-in */ "until", /* reserved */ "while", /* reserved */ }; const char *p; struct string_part first = {0, 0}; int has_meta = 0; /* * meta characters: * * * Pathname Expansion * ? Pathname Expansion * {} Grouping Commands * [] Pathname Expansion * <> Redirection * () Grouping Commands * ~ Tilde Expansion * & AND Lists, Asynchronous Lists * | OR Lists, Pipelines * \ Escape Character * $ Parameter Expansion * ; Sequential Lists * ' Single-Quotes * ` Command Substitution * " Double-Quotes * \n Lists * * # Comment * = Assignment preceding command name * % (used in Parameter Expansion) */ for (p = RSTRING_PTR(prog); *p; p++) { if (*p == ' ' || *p == '\t') { if (first.ptr && !first.len) first.len = p - first.ptr; } else { if (!first.ptr) first.ptr = p; } if (!has_meta && strchr("*?{}[]<>()~&|\\$;'`\"\n#", *p)) has_meta = 1; if (!first.len) { if (*p == '=') { has_meta = 1; } else if (*p == '/') { first.len = 0x100; /* longer than any posix_sh_cmds */ } } if (has_meta) break; } if (!has_meta && first.ptr) { if (!first.len) first.len = p - first.ptr; if (first.len > 0 && first.len <= sizeof(posix_sh_cmds[0]) && bsearch(&first, posix_sh_cmds, numberof(posix_sh_cmds), sizeof(posix_sh_cmds[0]), compare_posix_sh)) has_meta = 1; } if (!has_meta) { /* avoid shell since no shell meta character found. */ eargp->use_shell = 0; } if (!eargp->use_shell) { VALUE argv_buf; argv_buf = hide_obj(rb_str_buf_new(0)); p = RSTRING_PTR(prog); while (*p) { while (*p == ' ' || *p == '\t') p++; if (*p) { const char *w = p; while (*p && *p != ' ' && *p != '\t') p++; rb_str_buf_cat(argv_buf, w, p-w); rb_str_buf_cat(argv_buf, "", 1); /* append '\0' */ } } eargp->invoke.cmd.argv_buf = argv_buf; eargp->invoke.cmd.command_name = hide_obj(rb_str_subseq(argv_buf, 0, strlen(RSTRING_PTR(argv_buf)))); rb_enc_copy(eargp->invoke.cmd.command_name, prog); } } #endif if (!eargp->use_shell) { const char *abspath; const char *path_env = 0; if (RTEST(eargp->path_env)) path_env = RSTRING_PTR(eargp->path_env); abspath = dln_find_exe_r(RSTRING_PTR(eargp->invoke.cmd.command_name), path_env, fbuf, sizeof(fbuf)); if (abspath) eargp->invoke.cmd.command_abspath = rb_str_new_cstr(abspath); else eargp->invoke.cmd.command_abspath = Qnil; } if (!eargp->use_shell && !eargp->invoke.cmd.argv_buf) { int i; VALUE argv_buf; argv_buf = rb_str_buf_new(0); hide_obj(argv_buf); for (i = 0; i < argc; i++) { VALUE arg = argv[i]; const char *s = StringValueCStr(arg); #ifdef DEFAULT_PROCESS_ENCODING arg = EXPORT_STR(arg); s = RSTRING_PTR(arg); #endif rb_str_buf_cat(argv_buf, s, RSTRING_LEN(arg) + 1); /* include '\0' */ } eargp->invoke.cmd.argv_buf = argv_buf; } if (!eargp->use_shell) { const char *p, *ep, *null=NULL; VALUE argv_str; argv_str = hide_obj(rb_str_buf_new(sizeof(char*) * (argc + 2))); rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* place holder for /bin/sh of try_with_sh. */ p = RSTRING_PTR(eargp->invoke.cmd.argv_buf); ep = p + RSTRING_LEN(eargp->invoke.cmd.argv_buf); while (p < ep) { rb_str_buf_cat(argv_str, (char *)&p, sizeof(p)); p += strlen(p) + 1; } rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* terminator for execve. */ eargp->invoke.cmd.argv_str = rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(argv_str); } RB_GC_GUARD(execarg_obj); } struct rb_execarg * rb_execarg_get(VALUE execarg_obj) { struct rb_execarg *eargp; TypedData_Get_Struct(execarg_obj, struct rb_execarg, &exec_arg_data_type, eargp); return eargp; } static VALUE rb_execarg_init(int argc, const VALUE *orig_argv, int accept_shell, VALUE execarg_obj) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); VALUE prog, ret; VALUE env = Qnil, opthash = Qnil; VALUE argv_buf; VALUE *argv = ALLOCV_N(VALUE, argv_buf, argc); MEMCPY(argv, orig_argv, VALUE, argc); prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash); rb_exec_fillarg(prog, argc, argv, env, opthash, execarg_obj); ALLOCV_END(argv_buf); ret = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; RB_GC_GUARD(execarg_obj); return ret; } VALUE rb_execarg_new(int argc, const VALUE *argv, int accept_shell, int allow_exc_opt) { VALUE execarg_obj; struct rb_execarg *eargp; execarg_obj = TypedData_Make_Struct(0, struct rb_execarg, &exec_arg_data_type, eargp); rb_execarg_init(argc, argv, accept_shell, execarg_obj); if (!allow_exc_opt && eargp->exception_given) { rb_raise(rb_eArgError, "exception option is not allowed"); } return execarg_obj; } void rb_execarg_setenv(VALUE execarg_obj, VALUE env) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); env = !NIL_P(env) ? rb_check_exec_env(env, &eargp->path_env) : Qfalse; eargp->env_modification = env; } static int fill_envp_buf_i(st_data_t st_key, st_data_t st_val, st_data_t arg) { VALUE key = (VALUE)st_key; VALUE val = (VALUE)st_val; VALUE envp_buf = (VALUE)arg; rb_str_buf_cat2(envp_buf, StringValueCStr(key)); rb_str_buf_cat2(envp_buf, "="); rb_str_buf_cat2(envp_buf, StringValueCStr(val)); rb_str_buf_cat(envp_buf, "", 1); /* append '\0' */ return ST_CONTINUE; } static long run_exec_dup2_tmpbuf_size(long n); struct open_struct { VALUE fname; int oflags; mode_t perm; int ret; int err; }; static void * open_func(void *ptr) { struct open_struct *data = ptr; const char *fname = RSTRING_PTR(data->fname); data->ret = parent_redirect_open(fname, data->oflags, data->perm); data->err = errno; return NULL; } static void rb_execarg_allocate_dup2_tmpbuf(struct rb_execarg *eargp, long len) { VALUE tmpbuf = rb_imemo_tmpbuf_auto_free_pointer(); rb_imemo_tmpbuf_set_ptr(tmpbuf, ruby_xmalloc(run_exec_dup2_tmpbuf_size(len))); eargp->dup2_tmpbuf = tmpbuf; } static VALUE rb_execarg_parent_start1(VALUE execarg_obj) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); int unsetenv_others; VALUE envopts; VALUE ary; ary = eargp->fd_open; if (ary != Qfalse) { long i; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int fd = FIX2INT(RARRAY_AREF(elt, 0)); VALUE param = RARRAY_AREF(elt, 1); VALUE vpath = RARRAY_AREF(param, 0); int flags = NUM2INT(RARRAY_AREF(param, 1)); mode_t perm = NUM2MODET(RARRAY_AREF(param, 2)); VALUE fd2v = RARRAY_AREF(param, 3); int fd2; if (NIL_P(fd2v)) { struct open_struct open_data; again: open_data.fname = vpath; open_data.oflags = flags; open_data.perm = perm; open_data.ret = -1; open_data.err = EINTR; rb_thread_call_without_gvl2(open_func, (void *)&open_data, RUBY_UBF_IO, 0); if (open_data.ret == -1) { if (open_data.err == EINTR) { rb_thread_check_ints(); goto again; } rb_syserr_fail_str(open_data.err, vpath); } fd2 = open_data.ret; rb_update_max_fd(fd2); RARRAY_ASET(param, 3, INT2FIX(fd2)); rb_thread_check_ints(); } else { fd2 = NUM2INT(fd2v); } rb_execarg_addopt(execarg_obj, INT2FIX(fd), INT2FIX(fd2)); } } eargp->redirect_fds = check_exec_fds(eargp); ary = eargp->fd_dup2; if (ary != Qfalse) { rb_execarg_allocate_dup2_tmpbuf(eargp, RARRAY_LEN(ary)); } unsetenv_others = eargp->unsetenv_others_given && eargp->unsetenv_others_do; envopts = eargp->env_modification; if (ALWAYS_NEED_ENVP || unsetenv_others || envopts != Qfalse) { VALUE envtbl, envp_str, envp_buf; char *p, *ep; if (unsetenv_others) { envtbl = rb_hash_new(); } else { envtbl = rb_const_get(rb_cObject, id_ENV); envtbl = rb_to_hash_type(envtbl); } hide_obj(envtbl); if (envopts != Qfalse) { st_table *stenv = RHASH_TBL_RAW(envtbl); long i; for (i = 0; i < RARRAY_LEN(envopts); i++) { VALUE pair = RARRAY_AREF(envopts, i); VALUE key = RARRAY_AREF(pair, 0); VALUE val = RARRAY_AREF(pair, 1); if (NIL_P(val)) { st_data_t stkey = (st_data_t)key; st_delete(stenv, &stkey, NULL); } else { st_insert(stenv, (st_data_t)key, (st_data_t)val); RB_OBJ_WRITTEN(envtbl, Qundef, key); RB_OBJ_WRITTEN(envtbl, Qundef, val); } } } envp_buf = rb_str_buf_new(0); hide_obj(envp_buf); rb_hash_stlike_foreach(envtbl, fill_envp_buf_i, (st_data_t)envp_buf); envp_str = rb_str_buf_new(sizeof(char*) * (RHASH_SIZE(envtbl) + 1)); hide_obj(envp_str); p = RSTRING_PTR(envp_buf); ep = p + RSTRING_LEN(envp_buf); while (p < ep) { rb_str_buf_cat(envp_str, (char *)&p, sizeof(p)); p += strlen(p) + 1; } p = NULL; rb_str_buf_cat(envp_str, (char *)&p, sizeof(p)); eargp->envp_str = rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(envp_str); eargp->envp_buf = envp_buf; /* char **tmp_envp = (char **)RSTRING_PTR(envp_str); while (*tmp_envp) { printf("%s\n", *tmp_envp); tmp_envp++; } */ } RB_GC_GUARD(execarg_obj); return Qnil; } void rb_execarg_parent_start(VALUE execarg_obj) { int state; rb_protect(rb_execarg_parent_start1, execarg_obj, &state); if (state) { rb_execarg_parent_end(execarg_obj); rb_jump_tag(state); } } static VALUE execarg_parent_end(VALUE execarg_obj) { struct rb_execarg *eargp = rb_execarg_get(execarg_obj); int err = errno; VALUE ary; ary = eargp->fd_open; if (ary != Qfalse) { long i; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); VALUE param = RARRAY_AREF(elt, 1); VALUE fd2v; int fd2; fd2v = RARRAY_AREF(param, 3); if (!NIL_P(fd2v)) { fd2 = FIX2INT(fd2v); parent_redirect_close(fd2); RARRAY_ASET(param, 3, Qnil); } } } errno = err; return execarg_obj; } void rb_execarg_parent_end(VALUE execarg_obj) { execarg_parent_end(execarg_obj); RB_GC_GUARD(execarg_obj); } static void rb_exec_fail(struct rb_execarg *eargp, int err, const char *errmsg) { if (!errmsg || !*errmsg) return; if (strcmp(errmsg, "chdir") == 0) { rb_sys_fail_str(eargp->chdir_dir); } rb_sys_fail(errmsg); } #if 0 void rb_execarg_fail(VALUE execarg_obj, int err, const char *errmsg) { if (!errmsg || !*errmsg) return; rb_exec_fail(rb_execarg_get(execarg_obj), err, errmsg); RB_GC_GUARD(execarg_obj); } #endif VALUE rb_f_exec(int argc, const VALUE *argv) { VALUE execarg_obj, fail_str; struct rb_execarg *eargp; #define CHILD_ERRMSG_BUFLEN 80 char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; int err, state; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); eargp = rb_execarg_get(execarg_obj); if (mjit_enabled) mjit_finish(false); // avoid leaking resources, and do not leave files. XXX: JIT-ed handle can leak after exec error is rescued. before_exec(); /* stop timer thread before redirects */ rb_protect(rb_execarg_parent_start1, execarg_obj, &state); if (state) { execarg_parent_end(execarg_obj); after_exec(); /* restart timer thread */ rb_jump_tag(state); } fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; err = exec_async_signal_safe(eargp, errmsg, sizeof(errmsg)); after_exec(); /* restart timer thread */ rb_exec_fail(eargp, err, errmsg); RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, fail_str); UNREACHABLE_RETURN(Qnil); } NORETURN(static VALUE f_exec(int c, const VALUE *a, VALUE _)); /* * call-seq: * exec([env,] command... [,options]) * * Replaces the current process by running the given external _command_, which * can take one of the following forms: * * [exec(commandline)] * command line string which is passed to the standard shell * [exec(cmdname, arg1, ...)] * command name and one or more arguments (no shell) * [exec([cmdname, argv0], arg1, ...)] * command name, argv[0] and zero or more arguments (no shell) * * In the first form, the string is taken as a command line that is subject to * shell expansion before being executed. * * The standard shell always means "/bin/sh" on Unix-like systems, * same as ENV["RUBYSHELL"] * (or ENV["COMSPEC"] on Windows NT series), and similar. * * If the string from the first form (exec("command")) follows * these simple rules: * * * no meta characters * * no shell reserved word and no special built-in * * Ruby invokes the command directly without shell * * You can force shell invocation by adding ";" to the string (because ";" is * a meta character). * * Note that this behavior is observable by pid obtained * (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked * command, not shell. * * In the second form (exec("command1", "arg1", ...)), the first * is taken as a command name and the rest are passed as parameters to command * with no shell expansion. * * In the third form (exec(["command", "argv0"], "arg1", ...)), * starting a two-element array at the beginning of the command, the first * element is the command to be executed, and the second argument is used as * the argv[0] value, which may show up in process listings. * * In order to execute the command, one of the exec(2) system * calls are used, so the running command may inherit some of the environment * of the original program (including open file descriptors). * * This behavior is modified by the given +env+ and +options+ parameters. See * ::spawn for details. * * If the command fails to execute (typically Errno::ENOENT when * it was not found) a SystemCallError exception is raised. * * This method modifies process attributes according to given +options+ before * exec(2) system call. See ::spawn for more details about the * given +options+. * * The modified attributes may be retained when exec(2) system * call fails. * * For example, hard resource limits are not restorable. * * Consider to create a child process using ::spawn or Kernel#system if this * is not acceptable. * * exec "echo *" # echoes list of files in current directory * # never get here * * exec "echo", "*" # echoes an asterisk * # never get here */ static VALUE f_exec(int c, const VALUE *a, VALUE _) { rb_f_exec(c, a); UNREACHABLE_RETURN(Qnil); } #define ERRMSG(str) do { if (errmsg && 0 < errmsg_buflen) strlcpy(errmsg, (str), errmsg_buflen); } while (0) #define ERRMSG1(str, a) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a)); } while (0) #define ERRMSG2(str, a, b) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a), (b)); } while (0) static int fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen); static int fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen); static int fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen); static int save_redirect_fd(int fd, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { if (sargp) { VALUE newary, redirection; int save_fd = redirect_cloexec_dup(fd), cloexec; if (save_fd == -1) { if (errno == EBADF) return 0; ERRMSG("dup"); return -1; } rb_update_max_fd(save_fd); newary = sargp->fd_dup2; if (newary == Qfalse) { newary = hide_obj(rb_ary_new()); sargp->fd_dup2 = newary; } cloexec = fd_get_cloexec(fd, errmsg, errmsg_buflen); redirection = hide_obj(rb_assoc_new(INT2FIX(fd), INT2FIX(save_fd))); if (cloexec) rb_ary_push(redirection, Qtrue); rb_ary_push(newary, redirection); newary = sargp->fd_close; if (newary == Qfalse) { newary = hide_obj(rb_ary_new()); sargp->fd_close = newary; } rb_ary_push(newary, hide_obj(rb_assoc_new(INT2FIX(save_fd), Qnil))); } return 0; } static int intcmp(const void *a, const void *b) { return *(int*)a - *(int*)b; } static int intrcmp(const void *a, const void *b) { return *(int*)b - *(int*)a; } struct run_exec_dup2_fd_pair { int oldfd; int newfd; long older_index; long num_newer; int cloexec; }; static long run_exec_dup2_tmpbuf_size(long n) { return sizeof(struct run_exec_dup2_fd_pair) * n; } /* This function should be async-signal-safe. Actually it is. */ static int fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen) { #ifdef F_GETFD int ret = 0; ret = fcntl(fd, F_GETFD); /* async-signal-safe */ if (ret == -1) { ERRMSG("fcntl(F_GETFD)"); return -1; } if (ret & FD_CLOEXEC) return 1; #endif return 0; } /* This function should be async-signal-safe. Actually it is. */ static int fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen) { #ifdef F_GETFD int ret = 0; ret = fcntl(fd, F_GETFD); /* async-signal-safe */ if (ret == -1) { ERRMSG("fcntl(F_GETFD)"); return -1; } if (!(ret & FD_CLOEXEC)) { ret |= FD_CLOEXEC; ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */ if (ret == -1) { ERRMSG("fcntl(F_SETFD)"); return -1; } } #endif return 0; } /* This function should be async-signal-safe. Actually it is. */ static int fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen) { #ifdef F_GETFD int ret; ret = fcntl(fd, F_GETFD); /* async-signal-safe */ if (ret == -1) { ERRMSG("fcntl(F_GETFD)"); return -1; } if (ret & FD_CLOEXEC) { ret &= ~FD_CLOEXEC; ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */ if (ret == -1) { ERRMSG("fcntl(F_SETFD)"); return -1; } } #endif return 0; } /* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ static int run_exec_dup2(VALUE ary, VALUE tmpbuf, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { long n, i; int ret; int extra_fd = -1; struct rb_imemo_tmpbuf_struct *buf = (void *)tmpbuf; struct run_exec_dup2_fd_pair *pairs = (void *)buf->ptr; n = RARRAY_LEN(ary); /* initialize oldfd and newfd: O(n) */ for (i = 0; i < n; i++) { VALUE elt = RARRAY_AREF(ary, i); pairs[i].oldfd = FIX2INT(RARRAY_AREF(elt, 1)); pairs[i].newfd = FIX2INT(RARRAY_AREF(elt, 0)); /* unique */ pairs[i].cloexec = RARRAY_LEN(elt) > 2 && RTEST(RARRAY_AREF(elt, 2)); pairs[i].older_index = -1; } /* sort the table by oldfd: O(n log n) */ if (!sargp) qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */ else qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intrcmp); /* initialize older_index and num_newer: O(n log n) */ for (i = 0; i < n; i++) { int newfd = pairs[i].newfd; struct run_exec_dup2_fd_pair key, *found; key.oldfd = newfd; found = bsearch(&key, pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */ pairs[i].num_newer = 0; if (found) { while (pairs < found && (found-1)->oldfd == newfd) found--; while (found < pairs+n && found->oldfd == newfd) { pairs[i].num_newer++; found->older_index = i; found++; } } } /* non-cyclic redirection: O(n) */ for (i = 0; i < n; i++) { long j = i; while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) { if (save_redirect_fd(pairs[j].newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */ goto fail; ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */ if (ret == -1) { ERRMSG("dup2"); goto fail; } if (pairs[j].cloexec && fd_set_cloexec(pairs[j].newfd, errmsg, errmsg_buflen)) { goto fail; } rb_update_max_fd(pairs[j].newfd); /* async-signal-safe but don't need to call it in a child process. */ pairs[j].oldfd = -1; j = pairs[j].older_index; if (j != -1) pairs[j].num_newer--; } } /* cyclic redirection: O(n) */ for (i = 0; i < n; i++) { long j; if (pairs[i].oldfd == -1) continue; if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */ if (fd_clear_cloexec(pairs[i].oldfd, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ goto fail; pairs[i].oldfd = -1; continue; } if (extra_fd == -1) { extra_fd = redirect_dup(pairs[i].oldfd); /* async-signal-safe */ if (extra_fd == -1) { ERRMSG("dup"); goto fail; } rb_update_max_fd(extra_fd); } else { ret = redirect_dup2(pairs[i].oldfd, extra_fd); /* async-signal-safe */ if (ret == -1) { ERRMSG("dup2"); goto fail; } rb_update_max_fd(extra_fd); } pairs[i].oldfd = extra_fd; j = pairs[i].older_index; pairs[i].older_index = -1; while (j != -1) { ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */ if (ret == -1) { ERRMSG("dup2"); goto fail; } rb_update_max_fd(ret); pairs[j].oldfd = -1; j = pairs[j].older_index; } } if (extra_fd != -1) { ret = redirect_close(extra_fd); /* async-signal-safe */ if (ret == -1) { ERRMSG("close"); goto fail; } } return 0; fail: return -1; } /* This function should be async-signal-safe. Actually it is. */ static int run_exec_close(VALUE ary, char *errmsg, size_t errmsg_buflen) { long i; int ret; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int fd = FIX2INT(RARRAY_AREF(elt, 0)); ret = redirect_close(fd); /* async-signal-safe */ if (ret == -1) { ERRMSG("close"); return -1; } } return 0; } /* This function should be async-signal-safe when sargp is NULL. Actually it is. */ static int run_exec_dup2_child(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { long i; int ret; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int newfd = FIX2INT(RARRAY_AREF(elt, 0)); int oldfd = FIX2INT(RARRAY_AREF(elt, 1)); if (save_redirect_fd(newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */ return -1; ret = redirect_dup2(oldfd, newfd); /* async-signal-safe */ if (ret == -1) { ERRMSG("dup2"); return -1; } rb_update_max_fd(newfd); } return 0; } #ifdef HAVE_SETPGID /* This function should be async-signal-safe when sargp is NULL. Actually it is. */ static int run_exec_pgroup(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { /* * If FD_CLOEXEC is available, rb_fork_async_signal_safe waits the child's execve. * So setpgid is done in the child when rb_fork_async_signal_safe is returned in * the parent. * No race condition, even without setpgid from the parent. * (Is there an environment which has setpgid but no FD_CLOEXEC?) */ int ret; rb_pid_t pgroup; pgroup = eargp->pgroup_pgid; if (pgroup == -1) return 0; if (sargp) { /* maybe meaningless with no fork environment... */ sargp->pgroup_given = 1; sargp->pgroup_pgid = getpgrp(); } if (pgroup == 0) { pgroup = getpid(); /* async-signal-safe */ } ret = setpgid(getpid(), pgroup); /* async-signal-safe */ if (ret == -1) ERRMSG("setpgid"); return ret; } #endif #if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM) /* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ static int run_exec_rlimit(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { long i; for (i = 0; i < RARRAY_LEN(ary); i++) { VALUE elt = RARRAY_AREF(ary, i); int rtype = NUM2INT(RARRAY_AREF(elt, 0)); struct rlimit rlim; if (sargp) { VALUE tmp, newary; if (getrlimit(rtype, &rlim) == -1) { ERRMSG("getrlimit"); return -1; } tmp = hide_obj(rb_ary_new3(3, RARRAY_AREF(elt, 0), RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max))); if (sargp->rlimit_limits == Qfalse) newary = sargp->rlimit_limits = hide_obj(rb_ary_new()); else newary = sargp->rlimit_limits; rb_ary_push(newary, tmp); } rlim.rlim_cur = NUM2RLIM(RARRAY_AREF(elt, 1)); rlim.rlim_max = NUM2RLIM(RARRAY_AREF(elt, 2)); if (setrlimit(rtype, &rlim) == -1) { /* hopefully async-signal-safe */ ERRMSG("setrlimit"); return -1; } } return 0; } #endif #if !defined(HAVE_WORKING_FORK) static VALUE save_env_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { rb_ary_push(ary, hide_obj(rb_ary_dup(argv[0]))); return Qnil; } static void save_env(struct rb_execarg *sargp) { if (!sargp) return; if (sargp->env_modification == Qfalse) { VALUE env = rb_const_get(rb_cObject, id_ENV); if (RTEST(env)) { VALUE ary = hide_obj(rb_ary_new()); rb_block_call(env, idEach, 0, 0, save_env_i, (VALUE)ary); sargp->env_modification = ary; } sargp->unsetenv_others_given = 1; sargp->unsetenv_others_do = 1; } } #endif #ifdef _WIN32 #undef chdir #define chdir(p) rb_w32_uchdir(p) #endif /* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ int rb_execarg_run_options(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) { VALUE obj; if (sargp) { /* assume that sargp is always NULL on fork-able environments */ MEMZERO(sargp, struct rb_execarg, 1); sargp->redirect_fds = Qnil; } #ifdef HAVE_SETPGID if (eargp->pgroup_given) { if (run_exec_pgroup(eargp, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ return -1; } #endif #if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM) obj = eargp->rlimit_limits; if (obj != Qfalse) { if (run_exec_rlimit(obj, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */ return -1; } #endif #if !defined(HAVE_WORKING_FORK) if (eargp->unsetenv_others_given && eargp->unsetenv_others_do) { save_env(sargp); rb_env_clear(); } obj = eargp->env_modification; if (obj != Qfalse) { long i; save_env(sargp); for (i = 0; i < RARRAY_LEN(obj); i++) { VALUE pair = RARRAY_AREF(obj, i); VALUE key = RARRAY_AREF(pair, 0); VALUE val = RARRAY_AREF(pair, 1); if (NIL_P(val)) ruby_setenv(StringValueCStr(key), 0); else ruby_setenv(StringValueCStr(key), StringValueCStr(val)); } } #endif if (eargp->umask_given) { mode_t mask = eargp->umask_mask; mode_t oldmask = umask(mask); /* never fail */ /* async-signal-safe */ if (sargp) { sargp->umask_given = 1; sargp->umask_mask = oldmask; } } obj = eargp->fd_dup2; if (obj != Qfalse) { if (run_exec_dup2(obj, eargp->dup2_tmpbuf, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */ return -1; } obj = eargp->fd_close; if (obj != Qfalse) { if (sargp) rb_warn("cannot close fd before spawn"); else { if (run_exec_close(obj, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ return -1; } } #ifdef HAVE_WORKING_FORK if (eargp->close_others_do) { rb_close_before_exec(3, eargp->close_others_maxhint, eargp->redirect_fds); /* async-signal-safe */ } #endif obj = eargp->fd_dup2_child; if (obj != Qfalse) { if (run_exec_dup2_child(obj, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ return -1; } if (eargp->chdir_given) { if (sargp) { sargp->chdir_given = 1; sargp->chdir_dir = hide_obj(rb_dir_getwd_ospath()); } if (chdir(RSTRING_PTR(eargp->chdir_dir)) == -1) { /* async-signal-safe */ ERRMSG("chdir"); return -1; } } #ifdef HAVE_SETGID if (eargp->gid_given) { if (setgid(eargp->gid) < 0) { ERRMSG("setgid"); return -1; } } #endif #ifdef HAVE_SETUID if (eargp->uid_given) { if (setuid(eargp->uid) < 0) { ERRMSG("setuid"); return -1; } } #endif if (sargp) { VALUE ary = sargp->fd_dup2; if (ary != Qfalse) { rb_execarg_allocate_dup2_tmpbuf(sargp, RARRAY_LEN(ary)); } } { int preserve = errno; stdfd_clear_nonblock(); errno = preserve; } return 0; } /* This function should be async-signal-safe. Hopefully it is. */ int rb_exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) { errno = exec_async_signal_safe(eargp, errmsg, errmsg_buflen); return -1; } static int exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) { #if !defined(HAVE_WORKING_FORK) struct rb_execarg sarg, *const sargp = &sarg; #else struct rb_execarg *const sargp = NULL; #endif int err; if (rb_execarg_run_options(eargp, sargp, errmsg, errmsg_buflen) < 0) { /* hopefully async-signal-safe */ return errno; } if (eargp->use_shell) { err = proc_exec_sh(RSTRING_PTR(eargp->invoke.sh.shell_script), eargp->envp_str); /* async-signal-safe */ } else { char *abspath = NULL; if (!NIL_P(eargp->invoke.cmd.command_abspath)) abspath = RSTRING_PTR(eargp->invoke.cmd.command_abspath); err = proc_exec_cmd(abspath, eargp->invoke.cmd.argv_str, eargp->envp_str); /* async-signal-safe */ } #if !defined(HAVE_WORKING_FORK) rb_execarg_run_options(sargp, NULL, errmsg, errmsg_buflen); #endif return err; } #ifdef HAVE_WORKING_FORK /* This function should be async-signal-safe. Hopefully it is. */ static int rb_exec_atfork(void* arg, char *errmsg, size_t errmsg_buflen) { return rb_exec_async_signal_safe(arg, errmsg, errmsg_buflen); /* hopefully async-signal-safe */ } #if SIZEOF_INT == SIZEOF_LONG #define proc_syswait (VALUE (*)(VALUE))rb_syswait #else static VALUE proc_syswait(VALUE pid) { rb_syswait((int)pid); return Qnil; } #endif static int move_fds_to_avoid_crash(int *fdp, int n, VALUE fds) { int min = 0; int i; for (i = 0; i < n; i++) { int ret; while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) { if (min <= fdp[i]) min = fdp[i]+1; while (RTEST(rb_hash_lookup(fds, INT2FIX(min)))) min++; ret = rb_cloexec_fcntl_dupfd(fdp[i], min); if (ret == -1) return -1; rb_update_max_fd(ret); close(fdp[i]); fdp[i] = ret; } } return 0; } static int pipe_nocrash(int filedes[2], VALUE fds) { int ret; ret = rb_pipe(filedes); if (ret == -1) return -1; if (RTEST(fds)) { int save = errno; if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) { close(filedes[0]); close(filedes[1]); return -1; } errno = save; } return ret; } #ifndef O_BINARY #define O_BINARY 0 #endif static VALUE rb_thread_sleep_that_takes_VALUE_as_sole_argument(VALUE n) { rb_thread_sleep(NUM2INT(n)); return Qundef; } static int handle_fork_error(int err, int *status, int *ep, volatile int *try_gc_p) { int state = 0; switch (err) { case ENOMEM: if ((*try_gc_p)-- > 0 && !rb_during_gc()) { rb_gc(); return 0; } break; case EAGAIN: #if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif if (!status && !ep) { rb_thread_sleep(1); return 0; } else { rb_protect(rb_thread_sleep_that_takes_VALUE_as_sole_argument, INT2FIX(1), &state); if (status) *status = state; if (!state) return 0; } break; } if (ep) { close(ep[0]); close(ep[1]); errno = err; } if (state && !status) rb_jump_tag(state); return -1; } #define prefork() ( \ rb_io_flush(rb_stdout), \ rb_io_flush(rb_stderr) \ ) /* * Forks child process, and returns the process ID in the parent * process. * * If +status+ is given, protects from any exceptions and sets the * jump status to it, and returns -1. If failed to fork new process * but no exceptions occurred, sets 0 to it. Otherwise, if forked * successfully, the value of +status+ is undetermined. * * In the child process, just returns 0 if +chfunc+ is +NULL+. * Otherwise +chfunc+ will be called with +charg+, and then the child * process exits with +EXIT_SUCCESS+ when it returned zero. * * In the case of the function is called and returns non-zero value, * the child process exits with non-+EXIT_SUCCESS+ value (normally * 127). And, on the platforms where +FD_CLOEXEC+ is available, * +errno+ is propagated to the parent process, and this function * returns -1 in the parent process. On the other platforms, just * returns pid. * * If fds is not Qnil, internal pipe for the errno propagation is * arranged to avoid conflicts of the hash keys in +fds+. * * +chfunc+ must not raise any exceptions. */ static ssize_t write_retry(int fd, const void *buf, size_t len) { ssize_t w; do { w = write(fd, buf, len); } while (w < 0 && errno == EINTR); return w; } static ssize_t read_retry(int fd, void *buf, size_t len) { ssize_t r; if (set_blocking(fd) != 0) { #ifndef _WIN32 rb_async_bug_errno("set_blocking failed reading child error", errno); #endif } do { r = read(fd, buf, len); } while (r < 0 && errno == EINTR); return r; } static void send_child_error(int fd, char *errmsg, size_t errmsg_buflen) { int err; err = errno; if (write_retry(fd, &err, sizeof(err)) < 0) err = errno; if (errmsg && 0 < errmsg_buflen) { errmsg[errmsg_buflen-1] = '\0'; errmsg_buflen = strlen(errmsg); if (errmsg_buflen > 0 && write_retry(fd, errmsg, errmsg_buflen) < 0) err = errno; } } static int recv_child_error(int fd, int *errp, char *errmsg, size_t errmsg_buflen) { int err; ssize_t size; if ((size = read_retry(fd, &err, sizeof(err))) < 0) { err = errno; } *errp = err; if (size == sizeof(err) && errmsg && 0 < errmsg_buflen) { ssize_t ret = read_retry(fd, errmsg, errmsg_buflen-1); if (0 <= ret) { errmsg[ret] = '\0'; } } close(fd); return size != 0; } #ifdef HAVE_WORKING_VFORK #if !defined(HAVE_GETRESUID) && defined(HAVE_GETUIDX) /* AIX 7.1 */ static int getresuid(rb_uid_t *ruid, rb_uid_t *euid, rb_uid_t *suid) { rb_uid_t ret; *ruid = getuid(); *euid = geteuid(); ret = getuidx(ID_SAVED); if (ret == (rb_uid_t)-1) return -1; *suid = ret; return 0; } #define HAVE_GETRESUID #endif #if !defined(HAVE_GETRESGID) && defined(HAVE_GETGIDX) /* AIX 7.1 */ static int getresgid(rb_gid_t *rgid, rb_gid_t *egid, rb_gid_t *sgid) { rb_gid_t ret; *rgid = getgid(); *egid = getegid(); ret = getgidx(ID_SAVED); if (ret == (rb_gid_t)-1) return -1; *sgid = ret; return 0; } #define HAVE_GETRESGID #endif static int has_privilege(void) { /* * has_privilege() is used to choose vfork() or fork(). * * If the process has privilege, the parent process or * the child process can change UID/GID. * If vfork() is used to create the child process and * the parent or child process change effective UID/GID, * different privileged processes shares memory. * It is a bad situation. * So, fork() should be used. */ rb_uid_t ruid, euid; rb_gid_t rgid, egid; #if defined HAVE_ISSETUGID if (issetugid()) return 1; #endif #ifdef HAVE_GETRESUID { int ret; rb_uid_t suid; ret = getresuid(&ruid, &euid, &suid); if (ret == -1) rb_sys_fail("getresuid(2)"); if (euid != suid) return 1; } #else ruid = getuid(); euid = geteuid(); #endif if (euid == 0 || euid != ruid) return 1; #ifdef HAVE_GETRESGID { int ret; rb_gid_t sgid; ret = getresgid(&rgid, &egid, &sgid); if (ret == -1) rb_sys_fail("getresgid(2)"); if (egid != sgid) return 1; } #else rgid = getgid(); egid = getegid(); #endif if (egid != rgid) return 1; return 0; } #endif struct child_handler_disabler_state { sigset_t sigmask; }; static void disable_child_handler_before_fork(struct child_handler_disabler_state *old) { int ret; sigset_t all; #ifdef HAVE_PTHREAD_SIGMASK ret = sigfillset(&all); if (ret == -1) rb_sys_fail("sigfillset"); ret = pthread_sigmask(SIG_SETMASK, &all, &old->sigmask); /* not async-signal-safe */ if (ret != 0) { rb_syserr_fail(ret, "pthread_sigmask"); } #else # pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous" #endif } static void disable_child_handler_fork_parent(struct child_handler_disabler_state *old) { int ret; #ifdef HAVE_PTHREAD_SIGMASK ret = pthread_sigmask(SIG_SETMASK, &old->sigmask, NULL); /* not async-signal-safe */ if (ret != 0) { rb_syserr_fail(ret, "pthread_sigmask"); } #else # pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous" #endif } /* This function should be async-signal-safe. Actually it is. */ static int disable_child_handler_fork_child(struct child_handler_disabler_state *old, char *errmsg, size_t errmsg_buflen) { int sig; int ret; for (sig = 1; sig < NSIG; sig++) { sig_t handler = signal(sig, SIG_DFL); if (handler == SIG_ERR && errno == EINVAL) { continue; /* Ignore invalid signal number */ } if (handler == SIG_ERR) { ERRMSG("signal to obtain old action"); return -1; } #ifdef SIGPIPE if (sig == SIGPIPE) { continue; } #endif /* it will be reset to SIG_DFL at execve time, instead */ if (handler == SIG_IGN) { signal(sig, SIG_IGN); } } /* non-Ruby child process, ensure cmake can see SIGCHLD */ sigemptyset(&old->sigmask); ret = sigprocmask(SIG_SETMASK, &old->sigmask, NULL); /* async-signal-safe */ if (ret != 0) { ERRMSG("sigprocmask"); return -1; } return 0; } static rb_pid_t retry_fork_async_signal_safe(int *status, int *ep, int (*chfunc)(void*, char *, size_t), void *charg, char *errmsg, size_t errmsg_buflen, struct waitpid_state *w) { rb_pid_t pid; volatile int try_gc = 1; struct child_handler_disabler_state old; int err; rb_nativethread_lock_t *const volatile waitpid_lock_init = (w && WAITPID_USE_SIGCHLD) ? &GET_VM()->waitpid_lock : 0; while (1) { rb_nativethread_lock_t *waitpid_lock = waitpid_lock_init; prefork(); disable_child_handler_before_fork(&old); if (waitpid_lock) { rb_native_mutex_lock(waitpid_lock); } #ifdef HAVE_WORKING_VFORK if (!has_privilege()) pid = vfork(); else pid = rb_fork(); #else pid = rb_fork(); #endif if (pid == 0) {/* fork succeed, child process */ int ret; close(ep[0]); ret = disable_child_handler_fork_child(&old, errmsg, errmsg_buflen); /* async-signal-safe */ if (ret == 0) { ret = chfunc(charg, errmsg, errmsg_buflen); if (!ret) _exit(EXIT_SUCCESS); } send_child_error(ep[1], errmsg, errmsg_buflen); #if EXIT_SUCCESS == 127 _exit(EXIT_FAILURE); #else _exit(127); #endif } err = errno; waitpid_lock = waitpid_lock_init; if (waitpid_lock) { if (pid > 0 && w != WAITPID_LOCK_ONLY) { w->pid = pid; list_add(&GET_VM()->waiting_pids, &w->wnode); } rb_native_mutex_unlock(waitpid_lock); } disable_child_handler_fork_parent(&old); if (0 < pid) /* fork succeed, parent process */ return pid; /* fork failed */ if (handle_fork_error(err, status, ep, &try_gc)) return -1; } } static rb_pid_t fork_check_err(int *status, int (*chfunc)(void*, char *, size_t), void *charg, VALUE fds, char *errmsg, size_t errmsg_buflen, struct rb_execarg *eargp) { rb_pid_t pid; int err; int ep[2]; int error_occurred; struct waitpid_state *w; w = eargp && eargp->waitpid_state ? eargp->waitpid_state : 0; if (status) *status = 0; if (pipe_nocrash(ep, fds)) return -1; pid = retry_fork_async_signal_safe(status, ep, chfunc, charg, errmsg, errmsg_buflen, w); if (pid < 0) return pid; close(ep[1]); error_occurred = recv_child_error(ep[0], &err, errmsg, errmsg_buflen); if (error_occurred) { if (status) { VM_ASSERT((w == 0 || w == WAITPID_LOCK_ONLY) && "only used by extensions"); rb_protect(proc_syswait, (VALUE)pid, status); } else if (!w || w == WAITPID_LOCK_ONLY) { rb_syswait(pid); } errno = err; return -1; } return pid; } /* * The "async_signal_safe" name is a lie, but it is used by pty.c and * maybe other exts. fork() is not async-signal-safe due to pthread_atfork * and future POSIX revisions will remove it from a list of signal-safe * functions. rb_waitpid is not async-signal-safe since MJIT, either. * For our purposes, we do not need async-signal-safety, here */ rb_pid_t rb_fork_async_signal_safe(int *status, int (*chfunc)(void*, char *, size_t), void *charg, VALUE fds, char *errmsg, size_t errmsg_buflen) { return fork_check_err(status, chfunc, charg, fds, errmsg, errmsg_buflen, 0); } rb_pid_t rb_fork_ruby(int *status) { rb_pid_t pid; int try_gc = 1, err; struct child_handler_disabler_state old; if (status) *status = 0; while (1) { prefork(); if (mjit_enabled) mjit_pause(false); // Don't leave locked mutex to child. Note: child_handler must be enabled to pause MJIT. disable_child_handler_before_fork(&old); before_fork_ruby(); pid = rb_fork(); err = errno; after_fork_ruby(); disable_child_handler_fork_parent(&old); /* yes, bad name */ if (mjit_enabled && pid > 0) mjit_resume(); /* child (pid == 0) is cared by rb_thread_atfork */ if (pid >= 0) /* fork succeed */ return pid; /* fork failed */ if (handle_fork_error(err, status, NULL, &try_gc)) return -1; } } #endif #if defined(HAVE_WORKING_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD) /* * call-seq: * Kernel.fork [{ block }] -> integer or nil * Process.fork [{ block }] -> integer or nil * * Creates a subprocess. If a block is specified, that block is run * in the subprocess, and the subprocess terminates with a status of * zero. Otherwise, the +fork+ call returns twice, once in the * parent, returning the process ID of the child, and once in the * child, returning _nil_. The child process can exit using * Kernel.exit! to avoid running any at_exit * functions. The parent process should use Process.wait to collect * the termination statuses of its children or use Process.detach to * register disinterest in their status; otherwise, the operating * system may accumulate zombie processes. * * The thread calling fork is the only thread in the created child process. * fork doesn't copy other threads. * * If fork is not usable, Process.respond_to?(:fork) returns false. * * Note that fork(2) is not available on some platforms like Windows and NetBSD 4. * Therefore you should use spawn() instead of fork(). */ static VALUE rb_f_fork(VALUE obj) { rb_pid_t pid; switch (pid = rb_fork_ruby(NULL)) { case 0: rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return PIDT2NUM(pid); } } #else #define rb_f_fork rb_f_notimplement #endif static int exit_status_code(VALUE status) { int istatus; switch (status) { case Qtrue: istatus = EXIT_SUCCESS; break; case Qfalse: istatus = EXIT_FAILURE; break; default: istatus = NUM2INT(status); #if EXIT_SUCCESS != 0 if (istatus == 0) istatus = EXIT_SUCCESS; #endif break; } return istatus; } NORETURN(static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)); /* * call-seq: * Process.exit!(status=false) * * Exits the process immediately. No exit handlers are * run. status is returned to the underlying system as the * exit status. * * Process.exit!(true) */ static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { int istatus; if (rb_check_arity(argc, 0, 1) == 1) { istatus = exit_status_code(argv[0]); } else { istatus = EXIT_FAILURE; } _exit(istatus); UNREACHABLE_RETURN(Qnil); } void rb_exit(int status) { if (GET_EC()->tag) { VALUE args[2]; args[0] = INT2NUM(status); args[1] = rb_str_new2("exit"); rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); } ruby_stop(status); } VALUE rb_f_exit(int argc, const VALUE *argv) { int istatus; if (rb_check_arity(argc, 0, 1) == 1) { istatus = exit_status_code(argv[0]); } else { istatus = EXIT_SUCCESS; } rb_exit(istatus); UNREACHABLE_RETURN(Qnil); } NORETURN(static VALUE f_exit(int c, const VALUE *a, VALUE _)); /* * call-seq: * exit(status=true) * Kernel::exit(status=true) * Process::exit(status=true) * * Initiates the termination of the Ruby script by raising the * SystemExit exception. This exception may be caught. The * optional parameter is used to return a status code to the invoking * environment. * +true+ and +FALSE+ of _status_ means success and failure * respectively. The interpretation of other integer values are * system dependent. * * begin * exit * puts "never get here" * rescue SystemExit * puts "rescued a SystemExit exception" * end * puts "after begin block" * * produces: * * rescued a SystemExit exception * after begin block * * Just prior to termination, Ruby executes any at_exit * functions (see Kernel::at_exit) and runs any object finalizers * (see ObjectSpace::define_finalizer). * * at_exit { puts "at_exit function" } * ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) * exit * * produces: * * at_exit function * in finalizer */ static VALUE f_exit(int c, const VALUE *a, VALUE _) { rb_f_exit(c, a); UNREACHABLE_RETURN(Qnil); } /* * call-seq: * abort * Kernel::abort([msg]) * Process.abort([msg]) * * Terminate execution immediately, effectively by calling * Kernel.exit(false). If _msg_ is given, it is written * to STDERR prior to terminating. */ VALUE rb_f_abort(int argc, const VALUE *argv) { rb_check_arity(argc, 0, 1); if (argc == 0) { rb_execution_context_t *ec = GET_EC(); VALUE errinfo = rb_ec_get_errinfo(ec); if (!NIL_P(errinfo)) { rb_ec_error_print(ec, errinfo); } rb_exit(EXIT_FAILURE); } else { VALUE args[2]; args[1] = args[0] = argv[0]; StringValue(args[0]); rb_io_puts(1, args, rb_ractor_stderr()); args[0] = INT2NUM(EXIT_FAILURE); rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); } UNREACHABLE_RETURN(Qnil); } NORETURN(static VALUE f_abort(int c, const VALUE *a, VALUE _)); static VALUE f_abort(int c, const VALUE *a, VALUE _) { rb_f_abort(c, a); UNREACHABLE_RETURN(Qnil); } void rb_syswait(rb_pid_t pid) { int status; rb_waitpid(pid, &status, 0); } #if !defined HAVE_WORKING_FORK && !defined HAVE_SPAWNV char * rb_execarg_commandline(const struct rb_execarg *eargp, VALUE *prog) { VALUE cmd = *prog; if (eargp && !eargp->use_shell) { VALUE str = eargp->invoke.cmd.argv_str; VALUE buf = eargp->invoke.cmd.argv_buf; char *p, **argv = ARGVSTR2ARGV(str); long i, argc = ARGVSTR2ARGC(str); const char *start = RSTRING_PTR(buf); cmd = rb_str_new(start, RSTRING_LEN(buf)); p = RSTRING_PTR(cmd); for (i = 1; i < argc; ++i) { p[argv[i] - start - 1] = ' '; } *prog = cmd; return p; } return StringValueCStr(*prog); } #endif static rb_pid_t rb_spawn_process(struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) { rb_pid_t pid; #if !defined HAVE_WORKING_FORK || USE_SPAWNV VALUE prog; struct rb_execarg sarg; # if !defined HAVE_SPAWNV int status; # endif #endif #if defined HAVE_WORKING_FORK && !USE_SPAWNV pid = fork_check_err(0, rb_exec_atfork, eargp, eargp->redirect_fds, errmsg, errmsg_buflen, eargp); #else prog = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; if (rb_execarg_run_options(eargp, &sarg, errmsg, errmsg_buflen) < 0) { return -1; } if (prog && !eargp->use_shell) { char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str); argv[0] = RSTRING_PTR(prog); } # if defined HAVE_SPAWNV if (eargp->use_shell) { pid = proc_spawn_sh(RSTRING_PTR(prog)); } else { char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str); pid = proc_spawn_cmd(argv, prog, eargp); } if (pid == -1) rb_last_status_set(0x7f << 8, 0); # else status = system(rb_execarg_commandline(eargp, &prog)); rb_last_status_set((status & 0xff) << 8, 0); pid = 1; /* dummy */ # endif if (eargp->waitpid_state && eargp->waitpid_state != WAITPID_LOCK_ONLY) { eargp->waitpid_state->pid = pid; } rb_execarg_run_options(&sarg, NULL, errmsg, errmsg_buflen); #endif return pid; } struct spawn_args { VALUE execarg; struct { char *ptr; size_t buflen; } errmsg; }; static VALUE do_spawn_process(VALUE arg) { struct spawn_args *argp = (struct spawn_args *)arg; rb_execarg_parent_start1(argp->execarg); return (VALUE)rb_spawn_process(DATA_PTR(argp->execarg), argp->errmsg.ptr, argp->errmsg.buflen); } static rb_pid_t rb_execarg_spawn(VALUE execarg_obj, char *errmsg, size_t errmsg_buflen) { struct spawn_args args; struct rb_execarg *eargp = rb_execarg_get(execarg_obj); /* * Prevent a race with MJIT where the compiler process where * can hold an FD of ours in between vfork + execve */ if (!eargp->waitpid_state && mjit_enabled) { eargp->waitpid_state = WAITPID_LOCK_ONLY; } args.execarg = execarg_obj; args.errmsg.ptr = errmsg; args.errmsg.buflen = errmsg_buflen; return (rb_pid_t)rb_ensure(do_spawn_process, (VALUE)&args, execarg_parent_end, execarg_obj); } static rb_pid_t rb_spawn_internal(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen) { VALUE execarg_obj; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); return rb_execarg_spawn(execarg_obj, errmsg, errmsg_buflen); } rb_pid_t rb_spawn_err(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen) { return rb_spawn_internal(argc, argv, errmsg, errmsg_buflen); } rb_pid_t rb_spawn(int argc, const VALUE *argv) { return rb_spawn_internal(argc, argv, NULL, 0); } /* * call-seq: * system([env,] command... [,options], exception: false) -> true, false or nil * * Executes _command..._ in a subshell. * _command..._ is one of following forms. * * [commandline] * command line string which is passed to the standard shell * [cmdname, arg1, ...] * command name and one or more arguments (no shell) * [[cmdname, argv0], arg1, ...] * command name, argv[0] and zero or more arguments (no shell) * * system returns +true+ if the command gives zero exit status, * +false+ for non zero exit status. * Returns +nil+ if command execution fails. * An error status is available in $?. * * If the exception: true argument is passed, the method * raises an exception instead of returning +false+ or +nil+. * * The arguments are processed in the same way as * for Kernel#spawn. * * The hash arguments, env and options, are same as #exec and #spawn. * See Kernel#spawn for details. * * system("echo *") * system("echo", "*") * * produces: * * config.h main.rb * * * * Error handling: * * system("cat nonexistent.txt") * # => false * system("catt nonexistent.txt") * # => nil * * system("cat nonexistent.txt", exception: true) * # RuntimeError (Command failed with exit 1: cat) * system("catt nonexistent.txt", exception: true) * # Errno::ENOENT (No such file or directory - catt) * * See Kernel#exec for the standard shell. */ static VALUE rb_f_system(int argc, VALUE *argv, VALUE _) { /* * n.b. using alloca for now to simplify future Thread::Light code * when we need to use malloc for non-native Fiber */ struct waitpid_state *w = alloca(sizeof(struct waitpid_state)); rb_pid_t pid; /* may be different from waitpid_state.pid on exec failure */ VALUE execarg_obj; struct rb_execarg *eargp; int exec_errnum; execarg_obj = rb_execarg_new(argc, argv, TRUE, TRUE); eargp = rb_execarg_get(execarg_obj); w->ec = GET_EC(); waitpid_state_init(w, 0, 0); eargp->waitpid_state = w; pid = rb_execarg_spawn(execarg_obj, 0, 0); exec_errnum = pid < 0 ? errno : 0; #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) if (w->pid > 0) { /* `pid' (not w->pid) may be < 0 here if execve failed in child */ if (WAITPID_USE_SIGCHLD) { rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); } else { waitpid_no_SIGCHLD(w); } rb_last_status_set(w->status, w->ret); } #endif if (w->pid < 0 /* fork failure */ || pid < 0 /* exec failure */) { if (eargp->exception) { int err = exec_errnum ? exec_errnum : w->errnum; VALUE command = eargp->invoke.sh.shell_script; RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, command); } else { return Qnil; } } if (w->status == EXIT_SUCCESS) return Qtrue; if (eargp->exception) { VALUE command = eargp->invoke.sh.shell_script; VALUE str = rb_str_new_cstr("Command failed with"); rb_str_cat_cstr(pst_message_status(str, w->status), ": "); rb_str_append(str, command); RB_GC_GUARD(execarg_obj); rb_exc_raise(rb_exc_new_str(rb_eRuntimeError, str)); } else { return Qfalse; } } /* * call-seq: * spawn([env,] command... [,options]) -> pid * Process.spawn([env,] command... [,options]) -> pid * * spawn executes specified command and return its pid. * * pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2") * Process.wait pid * * pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'") * Process.wait pid * * This method is similar to Kernel#system but it doesn't wait for the command * to finish. * * The parent process should * use Process.wait to collect * the termination status of its child or * use Process.detach to register * disinterest in their status; * otherwise, the operating system may accumulate zombie processes. * * spawn has bunch of options to specify process attributes: * * env: hash * name => val : set the environment variable * name => nil : unset the environment variable * * the keys and the values except for +nil+ must be strings. * command...: * commandline : command line string which is passed to the standard shell * cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.) * [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell) * options: hash * clearing environment variables: * :unsetenv_others => true : clear environment variables except specified by env * :unsetenv_others => false : don't clear (default) * process group: * :pgroup => true or 0 : make a new process group * :pgroup => pgid : join the specified process group * :pgroup => nil : don't change the process group (default) * create new process group: Windows only * :new_pgroup => true : the new process is the root process of a new process group * :new_pgroup => false : don't create a new process group (default) * resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit. * :rlimit_resourcename => limit * :rlimit_resourcename => [cur_limit, max_limit] * umask: * :umask => int * redirection: * key: * FD : single file descriptor in child process * [FD, FD, ...] : multiple file descriptor in child process * value: * FD : redirect to the file descriptor in parent process * string : redirect to file with open(string, "r" or "w") * [string] : redirect to file with open(string, File::RDONLY) * [string, open_mode] : redirect to file with open(string, open_mode, 0644) * [string, open_mode, perm] : redirect to file with open(string, open_mode, perm) * [:child, FD] : redirect to the redirected file descriptor * :close : close the file descriptor in child process * FD is one of follows * :in : the file descriptor 0 which is the standard input * :out : the file descriptor 1 which is the standard output * :err : the file descriptor 2 which is the standard error * integer : the file descriptor of specified the integer * io : the file descriptor specified as io.fileno * file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not * :close_others => false : inherit * current directory: * :chdir => str * * The cmdname, arg1, ... form does not use the shell. * However, on different OSes, different things are provided as * built-in commands. An example of this is +'echo'+, which is a * built-in on Windows, but is a normal program on Linux and Mac OS X. * This means that Process.spawn 'echo', '%Path%' will * display the contents of the %Path% environment variable * on Windows, but Process.spawn 'echo', '$PATH' prints * the literal $PATH. * * If a hash is given as +env+, the environment is * updated by +env+ before exec(2) in the child process. * If a pair in +env+ has nil as the value, the variable is deleted. * * # set FOO as BAR and unset BAZ. * pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command) * * If a hash is given as +options+, * it specifies * process group, * create new process group, * resource limit, * current directory, * umask and * redirects for the child process. * Also, it can be specified to clear environment variables. * * The :unsetenv_others key in +options+ specifies * to clear environment variables, other than specified by +env+. * * pid = spawn(command, :unsetenv_others=>true) # no environment variable * pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only * * The :pgroup key in +options+ specifies a process group. * The corresponding value should be true, zero, a positive integer, or nil. * true and zero cause the process to be a process leader of a new process group. * A non-zero positive integer causes the process to join the provided process group. * The default value, nil, causes the process to remain in the same process group. * * pid = spawn(command, :pgroup=>true) # process leader * pid = spawn(command, :pgroup=>10) # belongs to the process group 10 * * The :new_pgroup key in +options+ specifies to pass * +CREATE_NEW_PROCESS_GROUP+ flag to CreateProcessW() that is * Windows API. This option is only for Windows. * true means the new process is the root process of the new process group. * The new process has CTRL+C disabled. This flag is necessary for * Process.kill(:SIGINT, pid) on the subprocess. * :new_pgroup is false by default. * * pid = spawn(command, :new_pgroup=>true) # new process group * pid = spawn(command, :new_pgroup=>false) # same process group * * The :rlimit_foo key specifies a resource limit. * foo should be one of resource types such as core. * The corresponding value should be an integer or an array which have one or * two integers: same as cur_limit and max_limit arguments for * Process.setrlimit. * * cur, max = Process.getrlimit(:CORE) * pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary. * pid = spawn(command, :rlimit_core=>max) # enable core dump * pid = spawn(command, :rlimit_core=>0) # never dump core. * * The :umask key in +options+ specifies the umask. * * pid = spawn(command, :umask=>077) * * The :in, :out, :err, an integer, an IO and an array key specifies a redirection. * The redirection maps a file descriptor in the child process. * * For example, stderr can be merged into stdout as follows: * * pid = spawn(command, :err=>:out) * pid = spawn(command, 2=>1) * pid = spawn(command, STDERR=>:out) * pid = spawn(command, STDERR=>STDOUT) * * The hash keys specifies a file descriptor in the child process * started by #spawn. * :err, 2 and STDERR specifies the standard error stream (stderr). * * The hash values specifies a file descriptor in the parent process * which invokes #spawn. * :out, 1 and STDOUT specifies the standard output stream (stdout). * * In the above example, * the standard output in the child process is not specified. * So it is inherited from the parent process. * * The standard input stream (stdin) can be specified by :in, 0 and STDIN. * * A filename can be specified as a hash value. * * pid = spawn(command, :in=>"/dev/null") # read mode * pid = spawn(command, :out=>"/dev/null") # write mode * pid = spawn(command, :err=>"log") # write mode * pid = spawn(command, [:out, :err]=>"/dev/null") # write mode * pid = spawn(command, 3=>"/dev/null") # read mode * * For stdout and stderr (and combination of them), * it is opened in write mode. * Otherwise read mode is used. * * For specifying flags and permission of file creation explicitly, * an array is used instead. * * pid = spawn(command, :in=>["file"]) # read mode is assumed * pid = spawn(command, :in=>["file", "r"]) * pid = spawn(command, :out=>["log", "w"]) # 0644 assumed * pid = spawn(command, :out=>["log", "w", 0600]) * pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600]) * * The array specifies a filename, flags and permission. * The flags can be a string or an integer. * If the flags is omitted or nil, File::RDONLY is assumed. * The permission should be an integer. * If the permission is omitted or nil, 0644 is assumed. * * If an array of IOs and integers are specified as a hash key, * all the elements are redirected. * * # stdout and stderr is redirected to log file. * # The file "log" is opened just once. * pid = spawn(command, [:out, :err]=>["log", "w"]) * * Another way to merge multiple file descriptors is [:child, fd]. * \[:child, fd] means the file descriptor in the child process. * This is different from fd. * For example, :err=>:out means redirecting child stderr to parent stdout. * But :err=>[:child, :out] means redirecting child stderr to child stdout. * They differ if stdout is redirected in the child process as follows. * * # stdout and stderr is redirected to log file. * # The file "log" is opened just once. * pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out]) * * \[:child, :out] can be used to merge stderr into stdout in IO.popen. * In this case, IO.popen redirects stdout to a pipe in the child process * and [:child, :out] refers the redirected stdout. * * io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]]) * p io.read #=> "out\nerr\n" * * The :chdir key in +options+ specifies the current directory. * * pid = spawn(command, :chdir=>"/var/tmp") * * spawn closes all non-standard unspecified descriptors by default. * The "standard" descriptors are 0, 1 and 2. * This behavior is specified by :close_others option. * :close_others doesn't affect the standard descriptors which are * closed only if :close is specified explicitly. * * pid = spawn(command, :close_others=>true) # close 3,4,5,... (default) * pid = spawn(command, :close_others=>false) # don't close 3,4,5,... * * :close_others is false by default for spawn and IO.popen. * * Note that fds which close-on-exec flag is already set are closed * regardless of :close_others option. * * So IO.pipe and spawn can be used as IO.popen. * * # similar to r = IO.popen(command) * r, w = IO.pipe * pid = spawn(command, :out=>w) # r, w is closed in the child process. * w.close * * :close is specified as a hash value to close a fd individually. * * f = open(foo) * system(command, f=>:close) # don't inherit f. * * If a file descriptor need to be inherited, * io=>io can be used. * * # valgrind has --log-fd option for log destination. * # log_w=>log_w indicates log_w.fileno inherits to child process. * log_r, log_w = IO.pipe * pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w) * log_w.close * p log_r.read * * It is also possible to exchange file descriptors. * * pid = spawn(command, :out=>:err, :err=>:out) * * The hash keys specify file descriptors in the child process. * The hash values specifies file descriptors in the parent process. * So the above specifies exchanging stdout and stderr. * Internally, +spawn+ uses an extra file descriptor to resolve such cyclic * file descriptor mapping. * * See Kernel.exec for the standard shell. */ static VALUE rb_f_spawn(int argc, VALUE *argv, VALUE _) { rb_pid_t pid; char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; VALUE execarg_obj, fail_str; struct rb_execarg *eargp; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); eargp = rb_execarg_get(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg)); if (pid == -1) { int err = errno; rb_exec_fail(eargp, err, errmsg); RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, fail_str); } #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif } /* * call-seq: * sleep([duration]) -> integer * * Suspends the current thread for _duration_ seconds (which may be any number, * including a +Float+ with fractional seconds). Returns the actual number of * seconds slept (rounded), which may be less than that asked for if another * thread calls Thread#run. Called without an argument, sleep() * will sleep forever. * * Time.new #=> 2008-03-08 19:56:19 +0900 * sleep 1.2 #=> 1 * Time.new #=> 2008-03-08 19:56:20 +0900 * sleep 1.9 #=> 2 * Time.new #=> 2008-03-08 19:56:22 +0900 */ static VALUE rb_f_sleep(int argc, VALUE *argv, VALUE _) { time_t beg = time(0); VALUE scheduler = rb_thread_current_scheduler(); if (scheduler != Qnil) { rb_scheduler_kernel_sleepv(scheduler, argc, argv); } else { if (argc == 0) { rb_thread_sleep_forever(); } else { rb_check_arity(argc, 0, 1); rb_thread_wait_for(rb_time_interval(argv[0])); } } time_t end = time(0) - beg; return TIMET2NUM(end); } #if (defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)) || defined(HAVE_GETPGID) /* * call-seq: * Process.getpgrp -> integer * * Returns the process group ID for this process. Not available on * all platforms. * * Process.getpgid(0) #=> 25527 * Process.getpgrp #=> 25527 */ static VALUE proc_getpgrp(VALUE _) { rb_pid_t pgrp; #if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) pgrp = getpgrp(); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #else /* defined(HAVE_GETPGID) */ pgrp = getpgid(0); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #endif } #else #define proc_getpgrp rb_f_notimplement #endif #if defined(HAVE_SETPGID) || (defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)) /* * call-seq: * Process.setpgrp -> 0 * * Equivalent to setpgid(0,0). Not available on all * platforms. */ static VALUE proc_setpgrp(VALUE _) { /* check for posix setpgid() first; this matches the posix */ /* getpgrp() above. It appears that configure will set SETPGRP_VOID */ /* even though setpgrp(0,0) would be preferred. The posix call avoids */ /* this confusion. */ #ifdef HAVE_SETPGID if (setpgid(0,0) < 0) rb_sys_fail(0); #elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID) if (setpgrp() < 0) rb_sys_fail(0); #endif return INT2FIX(0); } #else #define proc_setpgrp rb_f_notimplement #endif #if defined(HAVE_GETPGID) /* * call-seq: * Process.getpgid(pid) -> integer * * Returns the process group ID for the given process id. Not * available on all platforms. * * Process.getpgid(Process.ppid()) #=> 25527 */ static VALUE proc_getpgid(VALUE obj, VALUE pid) { rb_pid_t i; i = getpgid(NUM2PIDT(pid)); if (i < 0) rb_sys_fail(0); return PIDT2NUM(i); } #else #define proc_getpgid rb_f_notimplement #endif #ifdef HAVE_SETPGID /* * call-seq: * Process.setpgid(pid, integer) -> 0 * * Sets the process group ID of _pid_ (0 indicates this * process) to integer. Not available on all platforms. */ static VALUE proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp) { rb_pid_t ipid, ipgrp; ipid = NUM2PIDT(pid); ipgrp = NUM2PIDT(pgrp); if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0); return INT2FIX(0); } #else #define proc_setpgid rb_f_notimplement #endif #ifdef HAVE_GETSID /* * call-seq: * Process.getsid() -> integer * Process.getsid(pid) -> integer * * Returns the session ID for the given process id. If not given, * return current process sid. Not available on all platforms. * * Process.getsid() #=> 27422 * Process.getsid(0) #=> 27422 * Process.getsid(Process.pid()) #=> 27422 */ static VALUE proc_getsid(int argc, VALUE *argv, VALUE _) { rb_pid_t sid; rb_pid_t pid = 0; if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0])) pid = NUM2PIDT(argv[0]); sid = getsid(pid); if (sid < 0) rb_sys_fail(0); return PIDT2NUM(sid); } #else #define proc_getsid rb_f_notimplement #endif #if defined(HAVE_SETSID) || (defined(HAVE_SETPGRP) && defined(TIOCNOTTY)) #if !defined(HAVE_SETSID) static rb_pid_t ruby_setsid(void); #define setsid() ruby_setsid() #endif /* * call-seq: * Process.setsid -> integer * * Establishes this process as a new session and process group * leader, with no controlling tty. Returns the session id. Not * available on all platforms. * * Process.setsid #=> 27422 */ static VALUE proc_setsid(VALUE _) { rb_pid_t pid; pid = setsid(); if (pid < 0) rb_sys_fail(0); return PIDT2NUM(pid); } #if !defined(HAVE_SETSID) #define HAVE_SETSID 1 static rb_pid_t ruby_setsid(void) { rb_pid_t pid; int ret; pid = getpid(); #if defined(SETPGRP_VOID) ret = setpgrp(); /* If `pid_t setpgrp(void)' is equivalent to setsid(), `ret' will be the same value as `pid', and following open() will fail. In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */ #else ret = setpgrp(0, pid); #endif if (ret == -1) return -1; if ((fd = rb_cloexec_open("/dev/tty", O_RDWR, 0)) >= 0) { rb_update_max_fd(fd); ioctl(fd, TIOCNOTTY, NULL); close(fd); } return pid; } #endif #else #define proc_setsid rb_f_notimplement #endif #ifdef HAVE_GETPRIORITY /* * call-seq: * Process.getpriority(kind, integer) -> integer * * Gets the scheduling priority for specified process, process group, * or user. kind indicates the kind of entity to find: one * of Process::PRIO_PGRP, * Process::PRIO_USER, or * Process::PRIO_PROCESS. _integer_ is an id * indicating the particular process, process group, or user (an id * of 0 means _current_). Lower priorities are more favorable * for scheduling. Not available on all platforms. * * Process.getpriority(Process::PRIO_USER, 0) #=> 19 * Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 */ static VALUE proc_getpriority(VALUE obj, VALUE which, VALUE who) { int prio, iwhich, iwho; iwhich = NUM2INT(which); iwho = NUM2INT(who); errno = 0; prio = getpriority(iwhich, iwho); if (errno) rb_sys_fail(0); return INT2FIX(prio); } #else #define proc_getpriority rb_f_notimplement #endif #ifdef HAVE_GETPRIORITY /* * call-seq: * Process.setpriority(kind, integer, priority) -> 0 * * See Process.getpriority. * * Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 * Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 * Process.getpriority(Process::PRIO_USER, 0) #=> 19 * Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 */ static VALUE proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio) { int iwhich, iwho, iprio; iwhich = NUM2INT(which); iwho = NUM2INT(who); iprio = NUM2INT(prio); if (setpriority(iwhich, iwho, iprio) < 0) rb_sys_fail(0); return INT2FIX(0); } #else #define proc_setpriority rb_f_notimplement #endif #if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) static int rlimit_resource_name2int(const char *name, long len, int casetype) { int resource; const char *p; #define RESCHECK(r) \ do { \ if (len == rb_strlen_lit(#r) && STRCASECMP(name, #r) == 0) { \ resource = RLIMIT_##r; \ goto found; \ } \ } while (0) switch (TOUPPER(*name)) { case 'A': #ifdef RLIMIT_AS RESCHECK(AS); #endif break; case 'C': #ifdef RLIMIT_CORE RESCHECK(CORE); #endif #ifdef RLIMIT_CPU RESCHECK(CPU); #endif break; case 'D': #ifdef RLIMIT_DATA RESCHECK(DATA); #endif break; case 'F': #ifdef RLIMIT_FSIZE RESCHECK(FSIZE); #endif break; case 'M': #ifdef RLIMIT_MEMLOCK RESCHECK(MEMLOCK); #endif #ifdef RLIMIT_MSGQUEUE RESCHECK(MSGQUEUE); #endif break; case 'N': #ifdef RLIMIT_NOFILE RESCHECK(NOFILE); #endif #ifdef RLIMIT_NPROC RESCHECK(NPROC); #endif #ifdef RLIMIT_NICE RESCHECK(NICE); #endif break; case 'R': #ifdef RLIMIT_RSS RESCHECK(RSS); #endif #ifdef RLIMIT_RTPRIO RESCHECK(RTPRIO); #endif #ifdef RLIMIT_RTTIME RESCHECK(RTTIME); #endif break; case 'S': #ifdef RLIMIT_STACK RESCHECK(STACK); #endif #ifdef RLIMIT_SBSIZE RESCHECK(SBSIZE); #endif #ifdef RLIMIT_SIGPENDING RESCHECK(SIGPENDING); #endif break; } return -1; found: switch (casetype) { case 0: for (p = name; *p; p++) if (!ISUPPER(*p)) return -1; break; case 1: for (p = name; *p; p++) if (!ISLOWER(*p)) return -1; break; default: rb_bug("unexpected casetype"); } return resource; #undef RESCHECK } static int rlimit_type_by_hname(const char *name, long len) { return rlimit_resource_name2int(name, len, 0); } static int rlimit_type_by_lname(const char *name, long len) { return rlimit_resource_name2int(name, len, 1); } static int rlimit_type_by_sym(VALUE key) { VALUE name = rb_sym2str(key); const char *rname = RSTRING_PTR(name); long len = RSTRING_LEN(name); int rtype = -1; static const char prefix[] = "rlimit_"; enum {prefix_len = sizeof(prefix)-1}; if (len > prefix_len && strncmp(prefix, rname, prefix_len) == 0) { rtype = rlimit_type_by_lname(rname + prefix_len, len - prefix_len); } RB_GC_GUARD(key); return rtype; } static int rlimit_resource_type(VALUE rtype) { const char *name; long len; VALUE v; int r; switch (TYPE(rtype)) { case T_SYMBOL: v = rb_sym2str(rtype); name = RSTRING_PTR(v); len = RSTRING_LEN(v); break; default: v = rb_check_string_type(rtype); if (!NIL_P(v)) { rtype = v; case T_STRING: name = StringValueCStr(rtype); len = RSTRING_LEN(rtype); break; } /* fall through */ case T_FIXNUM: case T_BIGNUM: return NUM2INT(rtype); } r = rlimit_type_by_hname(name, len); if (r != -1) return r; rb_raise(rb_eArgError, "invalid resource name: % "PRIsVALUE, rtype); UNREACHABLE_RETURN(-1); } static rlim_t rlimit_resource_value(VALUE rval) { const char *name; VALUE v; switch (TYPE(rval)) { case T_SYMBOL: v = rb_sym2str(rval); name = RSTRING_PTR(v); break; default: v = rb_check_string_type(rval); if (!NIL_P(v)) { rval = v; case T_STRING: name = StringValueCStr(rval); break; } /* fall through */ case T_FIXNUM: case T_BIGNUM: return NUM2RLIM(rval); } #ifdef RLIM_INFINITY if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY; #endif #ifdef RLIM_SAVED_MAX if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX; #endif #ifdef RLIM_SAVED_CUR if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR; #endif rb_raise(rb_eArgError, "invalid resource value: %"PRIsVALUE, rval); UNREACHABLE_RETURN((rlim_t)-1); } #endif #if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM) /* * call-seq: * Process.getrlimit(resource) -> [cur_limit, max_limit] * * Gets the resource limit of the process. * _cur_limit_ means current (soft) limit and * _max_limit_ means maximum (hard) limit. * * _resource_ indicates the kind of resource to limit. * It is specified as a symbol such as :CORE, * a string such as "CORE" or * a constant such as Process::RLIMIT_CORE. * See Process.setrlimit for details. * * _cur_limit_ and _max_limit_ may be Process::RLIM_INFINITY, * Process::RLIM_SAVED_MAX or * Process::RLIM_SAVED_CUR. * See Process.setrlimit and the system getrlimit(2) manual for details. */ static VALUE proc_getrlimit(VALUE obj, VALUE resource) { struct rlimit rlim; if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("getrlimit"); } return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max)); } #else #define proc_getrlimit rb_f_notimplement #endif #if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) /* * call-seq: * Process.setrlimit(resource, cur_limit, max_limit) -> nil * Process.setrlimit(resource, cur_limit) -> nil * * Sets the resource limit of the process. * _cur_limit_ means current (soft) limit and * _max_limit_ means maximum (hard) limit. * * If _max_limit_ is not given, _cur_limit_ is used. * * _resource_ indicates the kind of resource to limit. * It should be a symbol such as :CORE, * a string such as "CORE" or * a constant such as Process::RLIMIT_CORE. * The available resources are OS dependent. * Ruby may support following resources. * * [AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite) * [CORE] core size (bytes) (SUSv3) * [CPU] CPU time (seconds) (SUSv3) * [DATA] data segment (bytes) (SUSv3) * [FSIZE] file size (bytes) (SUSv3) * [MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux) * [MSGQUEUE] allocation for POSIX message queues (bytes) (GNU/Linux) * [NICE] ceiling on process's nice(2) value (number) (GNU/Linux) * [NOFILE] file descriptors (number) (SUSv3) * [NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux) * [RSS] resident memory size (bytes) (4.2BSD, GNU/Linux) * [RTPRIO] ceiling on the process's real-time priority (number) (GNU/Linux) * [RTTIME] CPU time for real-time process (us) (GNU/Linux) * [SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD) * [SIGPENDING] number of queued signals allowed (signals) (GNU/Linux) * [STACK] stack size (bytes) (SUSv3) * * _cur_limit_ and _max_limit_ may be * :INFINITY, "INFINITY" or * Process::RLIM_INFINITY, * which means that the resource is not limited. * They may be Process::RLIM_SAVED_MAX, * Process::RLIM_SAVED_CUR and * corresponding symbols and strings too. * See system setrlimit(2) manual for details. * * The following example raises the soft limit of core size to * the hard limit to try to make core dump possible. * * Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1]) * */ static VALUE proc_setrlimit(int argc, VALUE *argv, VALUE obj) { VALUE resource, rlim_cur, rlim_max; struct rlimit rlim; rb_check_arity(argc, 2, 3); resource = argv[0]; rlim_cur = argv[1]; if (argc < 3 || NIL_P(rlim_max = argv[2])) rlim_max = rlim_cur; rlim.rlim_cur = rlimit_resource_value(rlim_cur); rlim.rlim_max = rlimit_resource_value(rlim_max); if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("setrlimit"); } return Qnil; } #else #define proc_setrlimit rb_f_notimplement #endif static int under_uid_switch = 0; static void check_uid_switch(void) { if (under_uid_switch) { rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method"); } } static int under_gid_switch = 0; static void check_gid_switch(void) { if (under_gid_switch) { rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method"); } } #if defined(HAVE_PWD_H) /** * Best-effort attempt to obtain the name of the login user, if any, * associated with the process. Processes not descended from login(1) (or * similar) may not have a logged-in user; returns Qnil in that case. */ VALUE rb_getlogin(void) { #if ( !defined(USE_GETLOGIN_R) && !defined(USE_GETLOGIN) ) return Qnil; #else char MAYBE_UNUSED(*login) = NULL; # ifdef USE_GETLOGIN_R #if defined(__FreeBSD__) typedef int getlogin_r_size_t; #else typedef size_t getlogin_r_size_t; #endif long loginsize = GETLOGIN_R_SIZE_INIT; /* maybe -1 */ if (loginsize < 0) loginsize = GETLOGIN_R_SIZE_DEFAULT; VALUE maybe_result = rb_str_buf_new(loginsize); login = RSTRING_PTR(maybe_result); loginsize = rb_str_capacity(maybe_result); rb_str_set_len(maybe_result, loginsize); int gle; errno = 0; while ((gle = getlogin_r(login, (getlogin_r_size_t)loginsize)) != 0) { if (gle == ENOTTY || gle == ENXIO || gle == ENOENT) { rb_str_resize(maybe_result, 0); return Qnil; } if (gle != ERANGE || loginsize >= GETLOGIN_R_SIZE_LIMIT) { rb_str_resize(maybe_result, 0); rb_syserr_fail(gle, "getlogin_r"); } rb_str_modify_expand(maybe_result, loginsize); login = RSTRING_PTR(maybe_result); loginsize = rb_str_capacity(maybe_result); } if (login == NULL) { rb_str_resize(maybe_result, 0); return Qnil; } return maybe_result; # elif USE_GETLOGIN errno = 0; login = getlogin(); if (errno) { if (errno == ENOTTY || errno == ENXIO || errno == ENOENT) { return Qnil; } rb_syserr_fail(errno, "getlogin"); } return login ? rb_str_new_cstr(login) : Qnil; # endif #endif } VALUE rb_getpwdirnam_for_login(VALUE login_name) { #if ( !defined(USE_GETPWNAM_R) && !defined(USE_GETPWNAM) ) return Qnil; #else if (NIL_P(login_name)) { /* nothing to do; no name with which to query the password database */ return Qnil; } char *login = RSTRING_PTR(login_name); struct passwd *pwptr; # ifdef USE_GETPWNAM_R struct passwd pwdnm; char *bufnm; long bufsizenm = GETPW_R_SIZE_INIT; /* maybe -1 */ if (bufsizenm < 0) bufsizenm = GETPW_R_SIZE_DEFAULT; VALUE getpwnm_tmp = rb_str_tmp_new(bufsizenm); bufnm = RSTRING_PTR(getpwnm_tmp); bufsizenm = rb_str_capacity(getpwnm_tmp); rb_str_set_len(getpwnm_tmp, bufsizenm); int enm; errno = 0; while ((enm = getpwnam_r(login, &pwdnm, bufnm, bufsizenm, &pwptr)) != 0) { if (enm == ENOENT || enm== ESRCH || enm == EBADF || enm == EPERM) { /* not found; non-errors */ rb_str_resize(getpwnm_tmp, 0); return Qnil; } if (enm != ERANGE || bufsizenm >= GETPW_R_SIZE_LIMIT) { rb_str_resize(getpwnm_tmp, 0); rb_syserr_fail(enm, "getpwnam_r"); } rb_str_modify_expand(getpwnm_tmp, bufsizenm); bufnm = RSTRING_PTR(getpwnm_tmp); bufsizenm = rb_str_capacity(getpwnm_tmp); } if (pwptr == NULL) { /* no record in the password database for the login name */ rb_str_resize(getpwnm_tmp, 0); return Qnil; } /* found it */ VALUE result = rb_str_new_cstr(pwptr->pw_dir); rb_str_resize(getpwnm_tmp, 0); return result; # elif USE_GETPWNAM errno = 0; pwptr = getpwnam(login); if (pwptr) { /* found it */ return rb_str_new_cstr(pwptr->pw_dir); } if (errno /* avoid treating as errors errno values that indicate "not found" */ && ( errno != ENOENT && errno != ESRCH && errno != EBADF && errno != EPERM)) { rb_syserr_fail(errno, "getpwnam"); } return Qnil; /* not found */ # endif #endif } /** * Look up the user's dflt home dir in the password db, by uid. */ VALUE rb_getpwdiruid(void) { # if !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID) /* Should never happen... */ return Qnil; # else uid_t ruid = getuid(); struct passwd *pwptr; # ifdef USE_GETPWUID_R struct passwd pwdid; char *bufid; long bufsizeid = GETPW_R_SIZE_INIT; /* maybe -1 */ if (bufsizeid < 0) bufsizeid = GETPW_R_SIZE_DEFAULT; VALUE getpwid_tmp = rb_str_tmp_new(bufsizeid); bufid = RSTRING_PTR(getpwid_tmp); bufsizeid = rb_str_capacity(getpwid_tmp); rb_str_set_len(getpwid_tmp, bufsizeid); int eid; errno = 0; while ((eid = getpwuid_r(ruid, &pwdid, bufid, bufsizeid, &pwptr)) != 0) { if (eid == ENOENT || eid== ESRCH || eid == EBADF || eid == EPERM) { /* not found; non-errors */ rb_str_resize(getpwid_tmp, 0); return Qnil; } if (eid != ERANGE || bufsizeid >= GETPW_R_SIZE_LIMIT) { rb_str_resize(getpwid_tmp, 0); rb_syserr_fail(eid, "getpwuid_r"); } rb_str_modify_expand(getpwid_tmp, bufsizeid); bufid = RSTRING_PTR(getpwid_tmp); bufsizeid = rb_str_capacity(getpwid_tmp); } if (pwptr == NULL) { /* no record in the password database for the uid */ rb_str_resize(getpwid_tmp, 0); return Qnil; } /* found it */ VALUE result = rb_str_new_cstr(pwptr->pw_dir); rb_str_resize(getpwid_tmp, 0); return result; # elif defined(USE_GETPWUID) errno = 0; pwptr = getpwuid(ruid); if (pwptr) { /* found it */ return rb_str_new_cstr(pwptr->pw_dir); } if (errno /* avoid treating as errors errno values that indicate "not found" */ && ( errno == ENOENT || errno == ESRCH || errno == EBADF || errno == EPERM)) { rb_syserr_fail(errno, "getpwuid"); } return Qnil; /* not found */ # endif #endif /* !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID) */ } #endif /* HAVE_PWD_H */ /********************************************************************* * Document-class: Process::Sys * * The Process::Sys module contains UID and GID * functions which provide direct bindings to the system calls of the * same names instead of the more-portable versions of the same * functionality found in the Process, * Process::UID, and Process::GID modules. */ #if defined(HAVE_PWD_H) static rb_uid_t obj2uid(VALUE id # ifdef USE_GETPWNAM_R , VALUE *getpw_tmp # endif ) { rb_uid_t uid; VALUE tmp; if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) { uid = NUM2UIDT(id); } else { const char *usrname = StringValueCStr(id); struct passwd *pwptr; #ifdef USE_GETPWNAM_R struct passwd pwbuf; char *getpw_buf; long getpw_buf_len; int e; if (!*getpw_tmp) { getpw_buf_len = GETPW_R_SIZE_INIT; if (getpw_buf_len < 0) getpw_buf_len = GETPW_R_SIZE_DEFAULT; *getpw_tmp = rb_str_tmp_new(getpw_buf_len); } getpw_buf = RSTRING_PTR(*getpw_tmp); getpw_buf_len = rb_str_capacity(*getpw_tmp); rb_str_set_len(*getpw_tmp, getpw_buf_len); errno = 0; while ((e = getpwnam_r(usrname, &pwbuf, getpw_buf, getpw_buf_len, &pwptr)) != 0) { if (e != ERANGE || getpw_buf_len >= GETPW_R_SIZE_LIMIT) { rb_str_resize(*getpw_tmp, 0); rb_syserr_fail(e, "getpwnam_r"); } rb_str_modify_expand(*getpw_tmp, getpw_buf_len); getpw_buf = RSTRING_PTR(*getpw_tmp); getpw_buf_len = rb_str_capacity(*getpw_tmp); } #else pwptr = getpwnam(usrname); #endif if (!pwptr) { #ifndef USE_GETPWNAM_R endpwent(); #endif rb_raise(rb_eArgError, "can't find user for %"PRIsVALUE, id); } uid = pwptr->pw_uid; #ifndef USE_GETPWNAM_R endpwent(); #endif } return uid; } # ifdef p_uid_from_name /* * call-seq: * Process::UID.from_name(name) -> uid * * Get the user ID by the _name_. * If the user is not found, +ArgumentError+ will be raised. * * Process::UID.from_name("root") #=> 0 * Process::UID.from_name("nosuchuser") #=> can't find user for nosuchuser (ArgumentError) */ static VALUE p_uid_from_name(VALUE self, VALUE id) { return UIDT2NUM(OBJ2UID(id)); } # endif #endif #if defined(HAVE_GRP_H) static rb_gid_t obj2gid(VALUE id # ifdef USE_GETGRNAM_R , VALUE *getgr_tmp # endif ) { rb_gid_t gid; VALUE tmp; if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) { gid = NUM2GIDT(id); } else { const char *grpname = StringValueCStr(id); struct group *grptr; #ifdef USE_GETGRNAM_R struct group grbuf; char *getgr_buf; long getgr_buf_len; int e; if (!*getgr_tmp) { getgr_buf_len = GETGR_R_SIZE_INIT; if (getgr_buf_len < 0) getgr_buf_len = GETGR_R_SIZE_DEFAULT; *getgr_tmp = rb_str_tmp_new(getgr_buf_len); } getgr_buf = RSTRING_PTR(*getgr_tmp); getgr_buf_len = rb_str_capacity(*getgr_tmp); rb_str_set_len(*getgr_tmp, getgr_buf_len); errno = 0; while ((e = getgrnam_r(grpname, &grbuf, getgr_buf, getgr_buf_len, &grptr)) != 0) { if (e != ERANGE || getgr_buf_len >= GETGR_R_SIZE_LIMIT) { rb_str_resize(*getgr_tmp, 0); rb_syserr_fail(e, "getgrnam_r"); } rb_str_modify_expand(*getgr_tmp, getgr_buf_len); getgr_buf = RSTRING_PTR(*getgr_tmp); getgr_buf_len = rb_str_capacity(*getgr_tmp); } #elif defined(HAVE_GETGRNAM) grptr = getgrnam(grpname); #else grptr = NULL; #endif if (!grptr) { #if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT) endgrent(); #endif rb_raise(rb_eArgError, "can't find group for %"PRIsVALUE, id); } gid = grptr->gr_gid; #if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT) endgrent(); #endif } return gid; } # ifdef p_gid_from_name /* * call-seq: * Process::GID.from_name(name) -> gid * * Get the group ID by the _name_. * If the group is not found, +ArgumentError+ will be raised. * * Process::GID.from_name("wheel") #=> 0 * Process::GID.from_name("nosuchgroup") #=> can't find group for nosuchgroup (ArgumentError) */ static VALUE p_gid_from_name(VALUE self, VALUE id) { return GIDT2NUM(OBJ2GID(id)); } # endif #endif #if defined HAVE_SETUID /* * call-seq: * Process::Sys.setuid(user) -> nil * * Set the user ID of the current process to _user_. Not * available on all platforms. * */ static VALUE p_sys_setuid(VALUE obj, VALUE id) { check_uid_switch(); if (setuid(OBJ2UID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setuid rb_f_notimplement #endif #if defined HAVE_SETRUID /* * call-seq: * Process::Sys.setruid(user) -> nil * * Set the real user ID of the calling process to _user_. * Not available on all platforms. * */ static VALUE p_sys_setruid(VALUE obj, VALUE id) { check_uid_switch(); if (setruid(OBJ2UID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setruid rb_f_notimplement #endif #if defined HAVE_SETEUID /* * call-seq: * Process::Sys.seteuid(user) -> nil * * Set the effective user ID of the calling process to * _user_. Not available on all platforms. * */ static VALUE p_sys_seteuid(VALUE obj, VALUE id) { check_uid_switch(); if (seteuid(OBJ2UID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_seteuid rb_f_notimplement #endif #if defined HAVE_SETREUID /* * call-seq: * Process::Sys.setreuid(rid, eid) -> nil * * Sets the (user) real and/or effective user IDs of the current * process to _rid_ and _eid_, respectively. A value of * -1 for either means to leave that ID unchanged. Not * available on all platforms. * */ static VALUE p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid) { rb_uid_t ruid, euid; PREPARE_GETPWNAM; check_uid_switch(); ruid = OBJ2UID1(rid); euid = OBJ2UID1(eid); FINISH_GETPWNAM; if (setreuid(ruid, euid) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setreuid rb_f_notimplement #endif #if defined HAVE_SETRESUID /* * call-seq: * Process::Sys.setresuid(rid, eid, sid) -> nil * * Sets the (user) real, effective, and saved user IDs of the * current process to _rid_, _eid_, and _sid_ respectively. A * value of -1 for any value means to * leave that ID unchanged. Not available on all platforms. * */ static VALUE p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) { rb_uid_t ruid, euid, suid; PREPARE_GETPWNAM; check_uid_switch(); ruid = OBJ2UID1(rid); euid = OBJ2UID1(eid); suid = OBJ2UID1(sid); FINISH_GETPWNAM; if (setresuid(ruid, euid, suid) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setresuid rb_f_notimplement #endif /* * call-seq: * Process.uid -> integer * Process::UID.rid -> integer * Process::Sys.getuid -> integer * * Returns the (real) user ID of this process. * * Process.uid #=> 501 */ static VALUE proc_getuid(VALUE obj) { rb_uid_t uid = getuid(); return UIDT2NUM(uid); } #if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETRUID) || defined(HAVE_SETUID) /* * call-seq: * Process.uid= user -> numeric * * Sets the (user) user ID for this process. Not available on all * platforms. */ static VALUE proc_setuid(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = OBJ2UID(id); #if defined(HAVE_SETRESUID) if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRUID if (setruid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID { if (geteuid() == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return id; } #else #define proc_setuid rb_f_notimplement #endif /******************************************************************** * * Document-class: Process::UID * * The Process::UID module contains a collection of * module functions which can be used to portably get, set, and * switch the current process's real, effective, and saved user IDs. * */ static rb_uid_t SAVED_USER_ID = -1; #ifdef BROKEN_SETREUID int setreuid(rb_uid_t ruid, rb_uid_t euid) { if (ruid != (rb_uid_t)-1 && ruid != getuid()) { if (euid == (rb_uid_t)-1) euid = geteuid(); if (setuid(ruid) < 0) return -1; } if (euid != (rb_uid_t)-1 && euid != geteuid()) { if (seteuid(euid) < 0) return -1; } return 0; } #endif /* * call-seq: * Process::UID.change_privilege(user) -> integer * * Change the current process's real and effective user ID to that * specified by _user_. Returns the new user ID. Not * available on all platforms. * * [Process.uid, Process.euid] #=> [0, 0] * Process::UID.change_privilege(31) #=> 31 * [Process.uid, Process.euid] #=> [31, 31] */ static VALUE p_uid_change_privilege(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = OBJ2UID(id); if (geteuid() == 0) { /* root-user */ #if defined(HAVE_SETRESUID) if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETUID) if (setuid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (getuid() == uid) { if (SAVED_USER_ID == uid) { if (setreuid(-1, uid) < 0) rb_sys_fail(0); } else { if (uid == 0) { /* (r,e,s) == (root, root, x) */ if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */ if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { if (setreuid(0, -1) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } } } else { if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } #elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) if (getuid() == uid) { if (SAVED_USER_ID == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); } else { if (uid == 0) { if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (setruid(0) < 0) rb_sys_fail(0); } else { if (setruid(0) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } } } else { if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } #else (void)uid; rb_notimplement(); #endif } else { /* unprivileged user */ #if defined(HAVE_SETRESUID) if (setresuid((getuid() == uid)? (rb_uid_t)-1: uid, (geteuid() == uid)? (rb_uid_t)-1: uid, (SAVED_USER_ID == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (SAVED_USER_ID == uid) { if (setreuid((getuid() == uid)? (rb_uid_t)-1: uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0); } else if (getuid() != uid) { if (setreuid(uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else if (/* getuid() == uid && */ geteuid() != uid) { if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setreuid(uid, -1) < 0) rb_sys_fail(0); } else { /* getuid() == uid && geteuid() == uid */ if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setreuid(uid, -1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) if (SAVED_USER_ID == uid) { if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0); if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0); } else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) { if (getuid() != uid) { if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setruid(uid) < 0) rb_sys_fail(0); } } else if (/* geteuid() != uid && */ getuid() == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setruid(uid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_44BSD_SETUID if (getuid() == uid) { /* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */ if (setuid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_SETEUID if (getuid() == uid && SAVED_USER_ID == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_SETUID if (getuid() == uid && SAVED_USER_ID == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #else rb_notimplement(); #endif } return id; } #if defined HAVE_SETGID /* * call-seq: * Process::Sys.setgid(group) -> nil * * Set the group ID of the current process to _group_. Not * available on all platforms. * */ static VALUE p_sys_setgid(VALUE obj, VALUE id) { check_gid_switch(); if (setgid(OBJ2GID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setgid rb_f_notimplement #endif #if defined HAVE_SETRGID /* * call-seq: * Process::Sys.setrgid(group) -> nil * * Set the real group ID of the calling process to _group_. * Not available on all platforms. * */ static VALUE p_sys_setrgid(VALUE obj, VALUE id) { check_gid_switch(); if (setrgid(OBJ2GID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setrgid rb_f_notimplement #endif #if defined HAVE_SETEGID /* * call-seq: * Process::Sys.setegid(group) -> nil * * Set the effective group ID of the calling process to * _group_. Not available on all platforms. * */ static VALUE p_sys_setegid(VALUE obj, VALUE id) { check_gid_switch(); if (setegid(OBJ2GID(id)) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setegid rb_f_notimplement #endif #if defined HAVE_SETREGID /* * call-seq: * Process::Sys.setregid(rid, eid) -> nil * * Sets the (group) real and/or effective group IDs of the current * process to rid and eid, respectively. A value of * -1 for either means to leave that ID unchanged. Not * available on all platforms. * */ static VALUE p_sys_setregid(VALUE obj, VALUE rid, VALUE eid) { rb_gid_t rgid, egid; check_gid_switch(); rgid = OBJ2GID(rid); egid = OBJ2GID(eid); if (setregid(rgid, egid) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setregid rb_f_notimplement #endif #if defined HAVE_SETRESGID /* * call-seq: * Process::Sys.setresgid(rid, eid, sid) -> nil * * Sets the (group) real, effective, and saved user IDs of the * current process to rid, eid, and sid * respectively. A value of -1 for any value means to * leave that ID unchanged. Not available on all platforms. * */ static VALUE p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) { rb_gid_t rgid, egid, sgid; check_gid_switch(); rgid = OBJ2GID(rid); egid = OBJ2GID(eid); sgid = OBJ2GID(sid); if (setresgid(rgid, egid, sgid) != 0) rb_sys_fail(0); return Qnil; } #else #define p_sys_setresgid rb_f_notimplement #endif #if defined HAVE_ISSETUGID /* * call-seq: * Process::Sys.issetugid -> true or false * * Returns +true+ if the process was created as a result * of an execve(2) system call which had either of the setuid or * setgid bits set (and extra privileges were given as a result) or * if it has changed any of its real, effective or saved user or * group IDs since it began execution. * */ static VALUE p_sys_issetugid(VALUE obj) { if (issetugid()) { return Qtrue; } else { return Qfalse; } } #else #define p_sys_issetugid rb_f_notimplement #endif /* * call-seq: * Process.gid -> integer * Process::GID.rid -> integer * Process::Sys.getgid -> integer * * Returns the (real) group ID for this process. * * Process.gid #=> 500 */ static VALUE proc_getgid(VALUE obj) { rb_gid_t gid = getgid(); return GIDT2NUM(gid); } #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETRGID) || defined(HAVE_SETGID) /* * call-seq: * Process.gid= integer -> integer * * Sets the group ID for this process. */ static VALUE proc_setgid(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = OBJ2GID(id); #if defined(HAVE_SETRESGID) if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRGID if (setrgid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID { if (getegid() == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return GIDT2NUM(gid); } #else #define proc_setgid rb_f_notimplement #endif #if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX) /* * Maximum supplementary groups are platform dependent. * FWIW, 65536 is enough big for our supported OSs. * * OS Name max groups * ----------------------------------------------- * Linux Kernel >= 2.6.3 65536 * Linux Kernel < 2.6.3 32 * IBM AIX 5.2 64 * IBM AIX 5.3 ... 6.1 128 * IBM AIX 7.1 128 (can be configured to be up to 2048) * OpenBSD, NetBSD 16 * FreeBSD < 8.0 16 * FreeBSD >=8.0 1023 * Darwin (Mac OS X) 16 * Sun Solaris 7,8,9,10 16 * Sun Solaris 11 / OpenSolaris 1024 * HP-UX 20 * Windows 1015 */ static int _maxgroups = -1; static int get_sc_ngroups_max(void) { #ifdef _SC_NGROUPS_MAX return (int)sysconf(_SC_NGROUPS_MAX); #elif defined(NGROUPS_MAX) return (int)NGROUPS_MAX; #else return -1; #endif } static int maxgroups(void) { if (_maxgroups < 0) { _maxgroups = get_sc_ngroups_max(); if (_maxgroups < 0) _maxgroups = RB_MAX_GROUPS; } return _maxgroups; } #endif #ifdef HAVE_GETGROUPS /* * call-seq: * Process.groups -> array * * Get an Array of the group IDs in the * supplemental group access list for this process. * * Process.groups #=> [27, 6, 10, 11] * * Note that this method is just a wrapper of getgroups(2). * This means that the following characteristics of * the result completely depend on your system: * * - the result is sorted * - the result includes effective GIDs * - the result does not include duplicated GIDs * * You can make sure to get a sorted unique GID list of * the current process by this expression: * * Process.groups.uniq.sort * */ static VALUE proc_getgroups(VALUE obj) { VALUE ary, tmp; int i, ngroups; rb_gid_t *groups; ngroups = getgroups(0, NULL); if (ngroups == -1) rb_sys_fail(0); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); ngroups = getgroups(ngroups, groups); if (ngroups == -1) rb_sys_fail(0); ary = rb_ary_new(); for (i = 0; i < ngroups; i++) rb_ary_push(ary, GIDT2NUM(groups[i])); ALLOCV_END(tmp); return ary; } #else #define proc_getgroups rb_f_notimplement #endif #ifdef HAVE_SETGROUPS /* * call-seq: * Process.groups= array -> array * * Set the supplemental group access list to the given * Array of group IDs. * * Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] * Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] * Process.groups #=> [27, 6, 10, 11] * */ static VALUE proc_setgroups(VALUE obj, VALUE ary) { int ngroups, i; rb_gid_t *groups; VALUE tmp; PREPARE_GETGRNAM; Check_Type(ary, T_ARRAY); ngroups = RARRAY_LENINT(ary); if (ngroups > maxgroups()) rb_raise(rb_eArgError, "too many groups, %d max", maxgroups()); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); for (i = 0; i < ngroups; i++) { VALUE g = RARRAY_AREF(ary, i); groups[i] = OBJ2GID1(g); } FINISH_GETGRNAM; if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */ rb_sys_fail(0); ALLOCV_END(tmp); return proc_getgroups(obj); } #else #define proc_setgroups rb_f_notimplement #endif #ifdef HAVE_INITGROUPS /* * call-seq: * Process.initgroups(username, gid) -> array * * Initializes the supplemental group access list by reading the * system group database and using all groups of which the given user * is a member. The group with the specified gid is also * added to the list. Returns the resulting Array of the * gids of all the groups in the supplementary group access list. Not * available on all platforms. * * Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] * Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] * Process.groups #=> [30, 6, 10, 11] * */ static VALUE proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp) { if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) { rb_sys_fail(0); } return proc_getgroups(obj); } #else #define proc_initgroups rb_f_notimplement #endif #if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX) /* * call-seq: * Process.maxgroups -> integer * * Returns the maximum number of gids allowed in the supplemental * group access list. * * Process.maxgroups #=> 32 */ static VALUE proc_getmaxgroups(VALUE obj) { return INT2FIX(maxgroups()); } #else #define proc_getmaxgroups rb_f_notimplement #endif #ifdef HAVE_SETGROUPS /* * call-seq: * Process.maxgroups= integer -> integer * * Sets the maximum number of gids allowed in the supplemental group * access list. */ static VALUE proc_setmaxgroups(VALUE obj, VALUE val) { int ngroups = FIX2INT(val); int ngroups_max = get_sc_ngroups_max(); if (ngroups <= 0) rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups); if (ngroups > RB_MAX_GROUPS) ngroups = RB_MAX_GROUPS; if (ngroups_max > 0 && ngroups > ngroups_max) ngroups = ngroups_max; _maxgroups = ngroups; return INT2FIX(_maxgroups); } #else #define proc_setmaxgroups rb_f_notimplement #endif #if defined(HAVE_DAEMON) || (defined(HAVE_WORKING_FORK) && defined(HAVE_SETSID)) static int rb_daemon(int nochdir, int noclose); /* * call-seq: * Process.daemon() -> 0 * Process.daemon(nochdir=nil,noclose=nil) -> 0 * * Detach the process from controlling terminal and run in * the background as system daemon. Unless the argument * nochdir is true (i.e. non false), it changes the current * working directory to the root ("/"). Unless the argument * noclose is true, daemon() will redirect standard input, * standard output and standard error to /dev/null. * Return zero on success, or raise one of Errno::*. */ static VALUE proc_daemon(int argc, VALUE *argv, VALUE _) { int n, nochdir = FALSE, noclose = FALSE; switch (rb_check_arity(argc, 0, 2)) { case 2: noclose = TO_BOOL(argv[1], "noclose"); case 1: nochdir = TO_BOOL(argv[0], "nochdir"); } prefork(); n = rb_daemon(nochdir, noclose); if (n < 0) rb_sys_fail("daemon"); return INT2FIX(n); } static int rb_daemon(int nochdir, int noclose) { int err = 0; #ifdef HAVE_DAEMON if (mjit_enabled) mjit_pause(false); // Don't leave locked mutex to child. before_fork_ruby(); err = daemon(nochdir, noclose); after_fork_ruby(); rb_thread_atfork(); /* calls mjit_resume() */ #else int n; #define fork_daemon() \ switch (rb_fork_ruby(NULL)) { \ case -1: return -1; \ case 0: rb_thread_atfork(); break; \ default: _exit(EXIT_SUCCESS); \ } fork_daemon(); if (setsid() < 0) return -1; /* must not be process-leader */ fork_daemon(); if (!nochdir) err = chdir("/"); if (!noclose && (n = rb_cloexec_open("/dev/null", O_RDWR, 0)) != -1) { rb_update_max_fd(n); (void)dup2(n, 0); (void)dup2(n, 1); (void)dup2(n, 2); if (n > 2) (void)close (n); } #endif return err; } #else #define proc_daemon rb_f_notimplement #endif /******************************************************************** * * Document-class: Process::GID * * The Process::GID module contains a collection of * module functions which can be used to portably get, set, and * switch the current process's real, effective, and saved group IDs. * */ static rb_gid_t SAVED_GROUP_ID = -1; #ifdef BROKEN_SETREGID int setregid(rb_gid_t rgid, rb_gid_t egid) { if (rgid != (rb_gid_t)-1 && rgid != getgid()) { if (egid == (rb_gid_t)-1) egid = getegid(); if (setgid(rgid) < 0) return -1; } if (egid != (rb_gid_t)-1 && egid != getegid()) { if (setegid(egid) < 0) return -1; } return 0; } #endif /* * call-seq: * Process::GID.change_privilege(group) -> integer * * Change the current process's real and effective group ID to that * specified by _group_. Returns the new group ID. Not * available on all platforms. * * [Process.gid, Process.egid] #=> [0, 0] * Process::GID.change_privilege(33) #=> 33 * [Process.gid, Process.egid] #=> [33, 33] */ static VALUE p_gid_change_privilege(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = OBJ2GID(id); if (geteuid() == 0) { /* root-user */ #if defined(HAVE_SETRESGID) if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined HAVE_SETGID if (setgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (getgid() == gid) { if (SAVED_GROUP_ID == gid) { if (setregid(-1, gid) < 0) rb_sys_fail(0); } else { if (gid == 0) { /* (r,e,s) == (root, y, x) */ if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */ if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { /* (r,e,s) == (z, y, x) */ if (setregid(0, 0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } } } else { if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } #elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID) if (getgid() == gid) { if (SAVED_GROUP_ID == gid) { if (setegid(gid) < 0) rb_sys_fail(0); } else { if (gid == 0) { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setrgid(0) < 0) rb_sys_fail(0); } else { if (setrgid(0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } } } else { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } #else rb_notimplement(); #endif } else { /* unprivileged user */ #if defined(HAVE_SETRESGID) if (setresgid((getgid() == gid)? (rb_gid_t)-1: gid, (getegid() == gid)? (rb_gid_t)-1: gid, (SAVED_GROUP_ID == gid)? (rb_gid_t)-1: gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (SAVED_GROUP_ID == gid) { if (setregid((getgid() == gid)? (rb_uid_t)-1: gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0) rb_sys_fail(0); } else if (getgid() != gid) { if (setregid(gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else if (/* getgid() == gid && */ getegid() != gid) { if (setregid(getegid(), gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setregid(gid, -1) < 0) rb_sys_fail(0); } else { /* getgid() == gid && getegid() == gid */ if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setregid(gid, -1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID) if (SAVED_GROUP_ID == gid) { if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0); if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0); } else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) { if (getgid() != gid) { if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setrgid(gid) < 0) rb_sys_fail(0); } } else if (/* getegid() != gid && */ getgid() == gid) { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setrgid(gid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_44BSD_SETGID if (getgid() == gid) { /* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */ if (setgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_SETEGID if (getgid() == gid && SAVED_GROUP_ID == gid) { if (setegid(gid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #elif defined HAVE_SETGID if (getgid() == gid && SAVED_GROUP_ID == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_syserr_fail(EPERM, 0); } #else (void)gid; rb_notimplement(); #endif } return id; } /* * call-seq: * Process.euid -> integer * Process::UID.eid -> integer * Process::Sys.geteuid -> integer * * Returns the effective user ID for this process. * * Process.euid #=> 501 */ static VALUE proc_geteuid(VALUE obj) { rb_uid_t euid = geteuid(); return UIDT2NUM(euid); } #if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) || defined(_POSIX_SAVED_IDS) static void proc_seteuid(rb_uid_t uid) { #if defined(HAVE_SETRESUID) if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(-1, uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEUID if (seteuid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID if (uid == getuid()) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif } #endif #if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) /* * call-seq: * Process.euid= user * * Sets the effective user ID for this process. Not available on all * platforms. */ static VALUE proc_seteuid_m(VALUE mod, VALUE euid) { check_uid_switch(); proc_seteuid(OBJ2UID(euid)); return euid; } #else #define proc_seteuid_m rb_f_notimplement #endif static rb_uid_t rb_seteuid_core(rb_uid_t euid) { #if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) rb_uid_t uid; #endif check_uid_switch(); #if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) uid = getuid(); #endif #if defined(HAVE_SETRESUID) if (uid != euid) { if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0); SAVED_USER_ID = euid; } else { if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (setreuid(-1, euid) < 0) rb_sys_fail(0); if (uid != euid) { if (setreuid(euid,uid) < 0) rb_sys_fail(0); if (setreuid(uid,euid) < 0) rb_sys_fail(0); SAVED_USER_ID = euid; } #elif defined HAVE_SETEUID if (seteuid(euid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID if (geteuid() == 0) rb_sys_fail(0); if (setuid(euid) < 0) rb_sys_fail(0); #else rb_notimplement(); #endif return euid; } /* * call-seq: * Process::UID.grant_privilege(user) -> integer * Process::UID.eid= user -> integer * * Set the effective user ID, and if possible, the saved user ID of * the process to the given _user_. Returns the new * effective user ID. Not available on all platforms. * * [Process.uid, Process.euid] #=> [0, 0] * Process::UID.grant_privilege(31) #=> 31 * [Process.uid, Process.euid] #=> [0, 31] */ static VALUE p_uid_grant_privilege(VALUE obj, VALUE id) { rb_seteuid_core(OBJ2UID(id)); return id; } /* * call-seq: * Process.egid -> integer * Process::GID.eid -> integer * Process::Sys.geteid -> integer * * Returns the effective group ID for this process. Not available on * all platforms. * * Process.egid #=> 500 */ static VALUE proc_getegid(VALUE obj) { rb_gid_t egid = getegid(); return GIDT2NUM(egid); } #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) || defined(_POSIX_SAVED_IDS) /* * call-seq: * Process.egid = integer -> integer * * Sets the effective group ID for this process. Not available on all * platforms. */ static VALUE proc_setegid(VALUE obj, VALUE egid) { #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) rb_gid_t gid; #endif check_gid_switch(); #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) gid = OBJ2GID(egid); #endif #if defined(HAVE_SETRESGID) if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(-1, gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEGID if (setegid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (gid == getgid()) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif return egid; } #endif #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) #define proc_setegid_m proc_setegid #else #define proc_setegid_m rb_f_notimplement #endif static rb_gid_t rb_setegid_core(rb_gid_t egid) { #if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) rb_gid_t gid; #endif check_gid_switch(); #if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) gid = getgid(); #endif #if defined(HAVE_SETRESGID) if (gid != egid) { if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = egid; } else { if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (setregid(-1, egid) < 0) rb_sys_fail(0); if (gid != egid) { if (setregid(egid,gid) < 0) rb_sys_fail(0); if (setregid(gid,egid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = egid; } #elif defined HAVE_SETEGID if (setegid(egid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (geteuid() == 0 /* root user */) rb_sys_fail(0); if (setgid(egid) < 0) rb_sys_fail(0); #else rb_notimplement(); #endif return egid; } /* * call-seq: * Process::GID.grant_privilege(group) -> integer * Process::GID.eid = group -> integer * * Set the effective group ID, and if possible, the saved group ID of * the process to the given _group_. Returns the new * effective group ID. Not available on all platforms. * * [Process.gid, Process.egid] #=> [0, 0] * Process::GID.grant_privilege(31) #=> 33 * [Process.gid, Process.egid] #=> [0, 33] */ static VALUE p_gid_grant_privilege(VALUE obj, VALUE id) { rb_setegid_core(OBJ2GID(id)); return id; } /* * call-seq: * Process::UID.re_exchangeable? -> true or false * * Returns +true+ if the real and effective user IDs of a * process may be exchanged on the current platform. * */ static VALUE p_uid_exchangeable(VALUE _) { #if defined(HAVE_SETRESUID) return Qtrue; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) return Qtrue; #else return Qfalse; #endif } /* * call-seq: * Process::UID.re_exchange -> integer * * Exchange real and effective user IDs and return the new effective * user ID. Not available on all platforms. * * [Process.uid, Process.euid] #=> [0, 31] * Process::UID.re_exchange #=> 0 * [Process.uid, Process.euid] #=> [31, 0] */ static VALUE p_uid_exchange(VALUE obj) { rb_uid_t uid; #if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) rb_uid_t euid; #endif check_uid_switch(); uid = getuid(); #if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) euid = geteuid(); #endif #if defined(HAVE_SETRESUID) if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (setreuid(euid,uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #else rb_notimplement(); #endif return UIDT2NUM(uid); } /* * call-seq: * Process::GID.re_exchangeable? -> true or false * * Returns +true+ if the real and effective group IDs of a * process may be exchanged on the current platform. * */ static VALUE p_gid_exchangeable(VALUE _) { #if defined(HAVE_SETRESGID) return Qtrue; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) return Qtrue; #else return Qfalse; #endif } /* * call-seq: * Process::GID.re_exchange -> integer * * Exchange real and effective group IDs and return the new effective * group ID. Not available on all platforms. * * [Process.gid, Process.egid] #=> [0, 33] * Process::GID.re_exchange #=> 0 * [Process.gid, Process.egid] #=> [33, 0] */ static VALUE p_gid_exchange(VALUE obj) { rb_gid_t gid; #if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) rb_gid_t egid; #endif check_gid_switch(); gid = getgid(); #if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) egid = getegid(); #endif #if defined(HAVE_SETRESGID) if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (setregid(egid,gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #else rb_notimplement(); #endif return GIDT2NUM(gid); } /* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ /* * call-seq: * Process::UID.sid_available? -> true or false * * Returns +true+ if the current platform has saved user * ID functionality. * */ static VALUE p_uid_have_saved_id(VALUE _) { #if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) return Qtrue; #else return Qfalse; #endif } #if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) static VALUE p_uid_sw_ensure(VALUE i) { rb_uid_t id = (rb_uid_t/* narrowing */)i; under_uid_switch = 0; id = rb_seteuid_core(id); return UIDT2NUM(id); } /* * call-seq: * Process::UID.switch -> integer * Process::UID.switch {|| block} -> object * * Switch the effective and real user IDs of the current process. If * a block is given, the user IDs will be switched back * after the block is executed. Returns the new effective user ID if * called without a block, and the return value of the block if one * is given. * */ static VALUE p_uid_switch(VALUE obj) { rb_uid_t uid, euid; check_uid_switch(); uid = getuid(); euid = geteuid(); if (uid != euid) { proc_seteuid(uid); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID); } else { return UIDT2NUM(euid); } } else if (euid != SAVED_USER_ID) { proc_seteuid(SAVED_USER_ID); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid); } else { return UIDT2NUM(uid); } } else { rb_syserr_fail(EPERM, 0); } UNREACHABLE_RETURN(Qnil); } #else static VALUE p_uid_sw_ensure(VALUE obj) { under_uid_switch = 0; return p_uid_exchange(obj); } static VALUE p_uid_switch(VALUE obj) { rb_uid_t uid, euid; check_uid_switch(); uid = getuid(); euid = geteuid(); if (uid == euid) { rb_syserr_fail(EPERM, 0); } p_uid_exchange(obj); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj); } else { return UIDT2NUM(euid); } } #endif /* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ /* * call-seq: * Process::GID.sid_available? -> true or false * * Returns +true+ if the current platform has saved group * ID functionality. * */ static VALUE p_gid_have_saved_id(VALUE _) { #if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) return Qtrue; #else return Qfalse; #endif } #if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) static VALUE p_gid_sw_ensure(VALUE i) { rb_gid_t id = (rb_gid_t/* narrowing */)i; under_gid_switch = 0; id = rb_setegid_core(id); return GIDT2NUM(id); } /* * call-seq: * Process::GID.switch -> integer * Process::GID.switch {|| block} -> object * * Switch the effective and real group IDs of the current process. If * a block is given, the group IDs will be switched back * after the block is executed. Returns the new effective group ID if * called without a block, and the return value of the block if one * is given. * */ static VALUE p_gid_switch(VALUE obj) { rb_gid_t gid, egid; check_gid_switch(); gid = getgid(); egid = getegid(); if (gid != egid) { proc_setegid(obj, GIDT2NUM(gid)); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID); } else { return GIDT2NUM(egid); } } else if (egid != SAVED_GROUP_ID) { proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID)); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid); } else { return GIDT2NUM(gid); } } else { rb_syserr_fail(EPERM, 0); } UNREACHABLE_RETURN(Qnil); } #else static VALUE p_gid_sw_ensure(VALUE obj) { under_gid_switch = 0; return p_gid_exchange(obj); } static VALUE p_gid_switch(VALUE obj) { rb_gid_t gid, egid; check_gid_switch(); gid = getgid(); egid = getegid(); if (gid == egid) { rb_syserr_fail(EPERM, 0); } p_gid_exchange(obj); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj); } else { return GIDT2NUM(egid); } } #endif #if defined(HAVE_TIMES) static long get_clk_tck(void) { #ifdef HAVE__SC_CLK_TCK return sysconf(_SC_CLK_TCK); #elif defined CLK_TCK return CLK_TCK; #elif defined HZ return HZ; #else return 60; #endif } /* * call-seq: * Process.times -> aProcessTms * * Returns a Tms structure (see Process::Tms) * that contains user and system CPU times for this process, * and also for children processes. * * t = Process.times * [ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00] */ VALUE rb_proc_times(VALUE obj) { VALUE utime, stime, cutime, cstime, ret; #if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN) struct rusage usage_s, usage_c; if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0) rb_sys_fail("getrusage"); utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6); stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6); cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6); cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6); #else const double hertz = (double)get_clk_tck(); struct tms buf; times(&buf); utime = DBL2NUM(buf.tms_utime / hertz); stime = DBL2NUM(buf.tms_stime / hertz); cutime = DBL2NUM(buf.tms_cutime / hertz); cstime = DBL2NUM(buf.tms_cstime / hertz); #endif ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime); RB_GC_GUARD(utime); RB_GC_GUARD(stime); RB_GC_GUARD(cutime); RB_GC_GUARD(cstime); return ret; } #else #define rb_proc_times rb_f_notimplement #endif #ifdef HAVE_LONG_LONG typedef LONG_LONG timetick_int_t; #define TIMETICK_INT_MIN LLONG_MIN #define TIMETICK_INT_MAX LLONG_MAX #define TIMETICK_INT2NUM(v) LL2NUM(v) #define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_LONG_P(a, b) #else typedef long timetick_int_t; #define TIMETICK_INT_MIN LONG_MIN #define TIMETICK_INT_MAX LONG_MAX #define TIMETICK_INT2NUM(v) LONG2NUM(v) #define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_P(a, b) #endif CONSTFUNC(static timetick_int_t gcd_timetick_int(timetick_int_t, timetick_int_t)); static timetick_int_t gcd_timetick_int(timetick_int_t a, timetick_int_t b) { timetick_int_t t; if (a < b) { t = a; a = b; b = t; } while (1) { t = a % b; if (t == 0) return b; a = b; b = t; } } static void reduce_fraction(timetick_int_t *np, timetick_int_t *dp) { timetick_int_t gcd = gcd_timetick_int(*np, *dp); if (gcd != 1) { *np /= gcd; *dp /= gcd; } } static void reduce_factors(timetick_int_t *numerators, int num_numerators, timetick_int_t *denominators, int num_denominators) { int i, j; for (i = 0; i < num_numerators; i++) { if (numerators[i] == 1) continue; for (j = 0; j < num_denominators; j++) { if (denominators[j] == 1) continue; reduce_fraction(&numerators[i], &denominators[j]); } } } struct timetick { timetick_int_t giga_count; int32_t count; /* 0 .. 999999999 */ }; static VALUE timetick2dblnum(struct timetick *ttp, timetick_int_t *numerators, int num_numerators, timetick_int_t *denominators, int num_denominators) { double d; int i; reduce_factors(numerators, num_numerators, denominators, num_denominators); d = ttp->giga_count * 1e9 + ttp->count; for (i = 0; i < num_numerators; i++) d *= numerators[i]; for (i = 0; i < num_denominators; i++) d /= denominators[i]; return DBL2NUM(d); } static VALUE timetick2dblnum_reciprocal(struct timetick *ttp, timetick_int_t *numerators, int num_numerators, timetick_int_t *denominators, int num_denominators) { double d; int i; reduce_factors(numerators, num_numerators, denominators, num_denominators); d = 1.0; for (i = 0; i < num_denominators; i++) d *= denominators[i]; for (i = 0; i < num_numerators; i++) d /= numerators[i]; d /= ttp->giga_count * 1e9 + ttp->count; return DBL2NUM(d); } #define NDIV(x,y) (-(-((x)+1)/(y))-1) #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d)) static VALUE timetick2integer(struct timetick *ttp, timetick_int_t *numerators, int num_numerators, timetick_int_t *denominators, int num_denominators) { VALUE v; int i; reduce_factors(numerators, num_numerators, denominators, num_denominators); if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count, TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) { timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count; for (i = 0; i < num_numerators; i++) { timetick_int_t factor = numerators[i]; if (MUL_OVERFLOW_TIMETICK_P(factor, t)) goto generic; t *= factor; } for (i = 0; i < num_denominators; i++) { t = DIV(t, denominators[i]); } return TIMETICK_INT2NUM(t); } generic: v = TIMETICK_INT2NUM(ttp->giga_count); v = rb_funcall(v, '*', 1, LONG2FIX(1000000000)); v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count)); for (i = 0; i < num_numerators; i++) { timetick_int_t factor = numerators[i]; if (factor == 1) continue; v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor)); } for (i = 0; i < num_denominators; i++) { v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominators[i])); /* Ruby's '/' is div. */ } return v; } static VALUE make_clock_result(struct timetick *ttp, timetick_int_t *numerators, int num_numerators, timetick_int_t *denominators, int num_denominators, VALUE unit) { if (unit == ID2SYM(id_nanosecond)) { numerators[num_numerators++] = 1000000000; return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); } else if (unit == ID2SYM(id_microsecond)) { numerators[num_numerators++] = 1000000; return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); } else if (unit == ID2SYM(id_millisecond)) { numerators[num_numerators++] = 1000; return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); } else if (unit == ID2SYM(id_second)) { return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); } else if (unit == ID2SYM(id_float_microsecond)) { numerators[num_numerators++] = 1000000; return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); } else if (unit == ID2SYM(id_float_millisecond)) { numerators[num_numerators++] = 1000; return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); } else if (NIL_P(unit) || unit == ID2SYM(id_float_second)) { return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); } else rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit); } #ifdef __APPLE__ static const mach_timebase_info_data_t * get_mach_timebase_info(void) { static mach_timebase_info_data_t sTimebaseInfo; if ( sTimebaseInfo.denom == 0 ) { (void) mach_timebase_info(&sTimebaseInfo); } return &sTimebaseInfo; } double ruby_real_ms_time(void) { const mach_timebase_info_data_t *info = get_mach_timebase_info(); uint64_t t = mach_absolute_time(); return (double)t * info->numer / info->denom / 1e6; } #endif /* * call-seq: * Process.clock_gettime(clock_id [, unit]) -> number * * Returns a time returned by POSIX clock_gettime() function. * * p Process.clock_gettime(Process::CLOCK_MONOTONIC) * #=> 896053.968060096 * * +clock_id+ specifies a kind of clock. * It is specified as a constant which begins with Process::CLOCK_ * such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC. * * The supported constants depends on OS and version. * Ruby provides following types of +clock_id+ if available. * * [CLOCK_REALTIME] SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12 * [CLOCK_MONOTONIC] SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12 * [CLOCK_PROCESS_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12 * [CLOCK_THREAD_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12 * [CLOCK_VIRTUAL] FreeBSD 3.0, OpenBSD 2.1 * [CLOCK_PROF] FreeBSD 3.0, OpenBSD 2.1 * [CLOCK_REALTIME_FAST] FreeBSD 8.1 * [CLOCK_REALTIME_PRECISE] FreeBSD 8.1 * [CLOCK_REALTIME_COARSE] Linux 2.6.32 * [CLOCK_REALTIME_ALARM] Linux 3.0 * [CLOCK_MONOTONIC_FAST] FreeBSD 8.1 * [CLOCK_MONOTONIC_PRECISE] FreeBSD 8.1 * [CLOCK_MONOTONIC_COARSE] Linux 2.6.32 * [CLOCK_MONOTONIC_RAW] Linux 2.6.28, macOS 10.12 * [CLOCK_MONOTONIC_RAW_APPROX] macOS 10.12 * [CLOCK_BOOTTIME] Linux 2.6.39 * [CLOCK_BOOTTIME_ALARM] Linux 3.0 * [CLOCK_UPTIME] FreeBSD 7.0, OpenBSD 5.5 * [CLOCK_UPTIME_FAST] FreeBSD 8.1 * [CLOCK_UPTIME_RAW] macOS 10.12 * [CLOCK_UPTIME_RAW_APPROX] macOS 10.12 * [CLOCK_UPTIME_PRECISE] FreeBSD 8.1 * [CLOCK_SECOND] FreeBSD 8.1 * [CLOCK_TAI] Linux 3.10 * * Note that SUS stands for Single Unix Specification. * SUS contains POSIX and clock_gettime is defined in the POSIX part. * SUS defines CLOCK_REALTIME mandatory but * CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional. * * Also, several symbols are accepted as +clock_id+. * There are emulations for clock_gettime(). * * For example, Process::CLOCK_REALTIME is defined as * +:GETTIMEOFDAY_BASED_CLOCK_REALTIME+ when clock_gettime() is not available. * * Emulations for +CLOCK_REALTIME+: * [:GETTIMEOFDAY_BASED_CLOCK_REALTIME] * Use gettimeofday() defined by SUS. * (SUSv4 obsoleted it, though.) * The resolution is 1 microsecond. * [:TIME_BASED_CLOCK_REALTIME] * Use time() defined by ISO C. * The resolution is 1 second. * * Emulations for +CLOCK_MONOTONIC+: * [:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC] * Use mach_absolute_time(), available on Darwin. * The resolution is CPU dependent. * [:TIMES_BASED_CLOCK_MONOTONIC] * Use the result value of times() defined by POSIX. * POSIX defines it as "times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)". * For example, GNU/Linux returns a value based on jiffies and it is monotonic. * However, 4.4BSD uses gettimeofday() and it is not monotonic. * (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) * The resolution is the clock tick. * "getconf CLK_TCK" command shows the clock ticks per second. * (The clock ticks per second is defined by HZ macro in older systems.) * If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and * cannot represent over 497 days. * * Emulations for +CLOCK_PROCESS_CPUTIME_ID+: * [:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID] * Use getrusage() defined by SUS. * getrusage() is used with RUSAGE_SELF to obtain the time only for * the calling process (excluding the time for child processes). * The result is addition of user time (ru_utime) and system time (ru_stime). * The resolution is 1 microsecond. * [:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID] * Use times() defined by POSIX. * The result is addition of user time (tms_utime) and system time (tms_stime). * tms_cutime and tms_cstime are ignored to exclude the time for child processes. * The resolution is the clock tick. * "getconf CLK_TCK" command shows the clock ticks per second. * (The clock ticks per second is defined by HZ macro in older systems.) * If it is 100, the resolution is 10 millisecond. * [:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID] * Use clock() defined by ISO C. * The resolution is 1/CLOCKS_PER_SEC. * CLOCKS_PER_SEC is the C-level macro defined by time.h. * SUS defines CLOCKS_PER_SEC is 1000000. * Non-Unix systems may define it a different value, though. * If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. * If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes. * * If the given +clock_id+ is not supported, Errno::EINVAL is raised. * * +unit+ specifies a type of the return value. * * [:float_second] number of seconds as a float (default) * [:float_millisecond] number of milliseconds as a float * [:float_microsecond] number of microseconds as a float * [:second] number of seconds as an integer * [:millisecond] number of milliseconds as an integer * [:microsecond] number of microseconds as an integer * [:nanosecond] number of nanoseconds as an integer * * The underlying function, clock_gettime(), returns a number of nanoseconds. * Float object (IEEE 754 double) is not enough to represent * the return value for CLOCK_REALTIME. * If the exact nanoseconds value is required, use +:nanoseconds+ as the +unit+. * * The origin (zero) of the returned value varies. * For example, system start up time, process start up time, the Epoch, etc. * * The origin in CLOCK_REALTIME is defined as the Epoch * (1970-01-01 00:00:00 UTC). * But some systems count leap seconds and others doesn't. * So the result can be interpreted differently across systems. * Time.now is recommended over CLOCK_REALTIME. */ static VALUE rb_clock_gettime(int argc, VALUE *argv, VALUE _) { int ret; struct timetick tt; timetick_int_t numerators[2]; timetick_int_t denominators[2]; int num_numerators = 0; int num_denominators = 0; VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; VALUE clk_id = argv[0]; if (SYMBOL_P(clk_id)) { /* * Non-clock_gettime clocks are provided by symbol clk_id. */ #ifdef HAVE_GETTIMEOFDAY /* * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for * CLOCK_REALTIME if clock_gettime is not available. */ #define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME) if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { struct timeval tv; ret = gettimeofday(&tv, 0); if (ret != 0) rb_sys_fail("gettimeofday"); tt.giga_count = tv.tv_sec; tt.count = (int32_t)tv.tv_usec * 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME) if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { time_t t; t = time(NULL); if (t == (time_t)-1) rb_sys_fail("time"); tt.giga_count = t; tt.count = 0; denominators[num_denominators++] = 1000000000; goto success; } #ifdef HAVE_TIMES #define RUBY_TIMES_BASED_CLOCK_MONOTONIC \ ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC) if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { struct tms buf; clock_t c; unsigned_clock_t uc; c = times(&buf); if (c == (clock_t)-1) rb_sys_fail("times"); uc = (unsigned_clock_t)c; tt.count = (int32_t)(uc % 1000000000); tt.giga_count = (uc / 1000000000); denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUSAGE_SELF #define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { struct rusage usage; int32_t usec; ret = getrusage(RUSAGE_SELF, &usage); if (ret != 0) rb_sys_fail("getrusage"); tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec; usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec); if (1000000 <= usec) { tt.giga_count++; usec -= 1000000; } tt.count = usec * 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef HAVE_TIMES #define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { struct tms buf; unsigned_clock_t utime, stime; if (times(&buf) == (clock_t)-1) rb_sys_fail("times"); utime = (unsigned_clock_t)buf.tms_utime; stime = (unsigned_clock_t)buf.tms_stime; tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000)); tt.giga_count = (utime / 1000000000) + (stime / 1000000000); if (1000000000 <= tt.count) { tt.count -= 1000000000; tt.giga_count++; } denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { clock_t c; unsigned_clock_t uc; errno = 0; c = clock(); if (c == (clock_t)-1) rb_sys_fail("clock"); uc = (unsigned_clock_t)c; tt.count = (int32_t)(uc % 1000000000); tt.giga_count = uc / 1000000000; denominators[num_denominators++] = CLOCKS_PER_SEC; goto success; } #ifdef __APPLE__ #define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { const mach_timebase_info_data_t *info = get_mach_timebase_info(); uint64_t t = mach_absolute_time(); tt.count = (int32_t)(t % 1000000000); tt.giga_count = t / 1000000000; numerators[num_numerators++] = info->numer; denominators[num_denominators++] = info->denom; denominators[num_denominators++] = 1000000000; goto success; } #endif } else { #if defined(HAVE_CLOCK_GETTIME) struct timespec ts; clockid_t c; c = NUM2CLOCKID(clk_id); ret = clock_gettime(c, &ts); if (ret == -1) rb_sys_fail("clock_gettime"); tt.count = (int32_t)ts.tv_nsec; tt.giga_count = ts.tv_sec; denominators[num_denominators++] = 1000000000; goto success; #endif } /* EINVAL emulates clock_gettime behavior when clock_id is invalid. */ rb_syserr_fail(EINVAL, 0); success: return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); } /* * call-seq: * Process.clock_getres(clock_id [, unit]) -> number * * Returns an estimate of the resolution of a +clock_id+ using the POSIX * clock_getres() function. * * Note the reported resolution is often inaccurate on most platforms due to * underlying bugs for this function and therefore the reported resolution * often differs from the actual resolution of the clock in practice. * Inaccurate reported resolutions have been observed for various clocks including * CLOCK_MONOTONIC and CLOCK_MONOTONIC_RAW when using Linux, macOS, BSD or AIX * platforms, when using ARM processors, or when using virtualization. * * +clock_id+ specifies a kind of clock. * See the document of +Process.clock_gettime+ for details. * +clock_id+ can be a symbol as for +Process.clock_gettime+. * * If the given +clock_id+ is not supported, Errno::EINVAL is raised. * * +unit+ specifies the type of the return value. * +Process.clock_getres+ accepts +unit+ as +Process.clock_gettime+. * The default value, +:float_second+, is also the same as * +Process.clock_gettime+. * * +Process.clock_getres+ also accepts +:hertz+ as +unit+. * +:hertz+ means the reciprocal of +:float_second+. * * +:hertz+ can be used to obtain the exact value of * the clock ticks per second for the times() function and * CLOCKS_PER_SEC for the clock() function. * * Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) * returns the clock ticks per second. * * Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) * returns CLOCKS_PER_SEC. * * p Process.clock_getres(Process::CLOCK_MONOTONIC) * #=> 1.0e-09 * */ static VALUE rb_clock_getres(int argc, VALUE *argv, VALUE _) { struct timetick tt; timetick_int_t numerators[2]; timetick_int_t denominators[2]; int num_numerators = 0; int num_denominators = 0; VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; VALUE clk_id = argv[0]; if (SYMBOL_P(clk_id)) { #ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { tt.giga_count = 0; tt.count = 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIME_BASED_CLOCK_REALTIME if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { tt.giga_count = 1; tt.count = 0; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.giga_count = 0; tt.count = 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = CLOCKS_PER_SEC; goto success; } #endif #ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { const mach_timebase_info_data_t *info = get_mach_timebase_info(); tt.count = 1; tt.giga_count = 0; numerators[num_numerators++] = info->numer; denominators[num_denominators++] = info->denom; denominators[num_denominators++] = 1000000000; goto success; } #endif } else { #if defined(HAVE_CLOCK_GETRES) struct timespec ts; clockid_t c = NUM2CLOCKID(clk_id); int ret = clock_getres(c, &ts); if (ret == -1) rb_sys_fail("clock_getres"); tt.count = (int32_t)ts.tv_nsec; tt.giga_count = ts.tv_sec; denominators[num_denominators++] = 1000000000; goto success; #endif } /* EINVAL emulates clock_getres behavior when clock_id is invalid. */ rb_syserr_fail(EINVAL, 0); success: if (unit == ID2SYM(id_hertz)) { return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators); } else { return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); } } static VALUE get_CHILD_STATUS(ID _x, VALUE *_y) { return rb_last_status_get(); } static VALUE get_PROCESS_ID(ID _x, VALUE *_y) { return get_pid(); } /* * call-seq: * Process.kill(signal, pid, ...) -> integer * * Sends the given signal to the specified process id(s) if _pid_ is positive. * If _pid_ is zero, _signal_ is sent to all processes whose group ID is equal * to the group ID of the process. If _pid_ is negative, results are dependent * on the operating system. _signal_ may be an integer signal number or * a POSIX signal name (either with or without a +SIG+ prefix). If _signal_ is * negative (or starts with a minus sign), kills process groups instead of * processes. Not all signals are available on all platforms. * The keys and values of Signal.list are known signal names and numbers, * respectively. * * pid = fork do * Signal.trap("HUP") { puts "Ouch!"; exit } * # ... do some work ... * end * # ... * Process.kill("HUP", pid) * Process.wait * * produces: * * Ouch! * * If _signal_ is an integer but wrong for signal, Errno::EINVAL or * RangeError will be raised. Otherwise unless _signal_ is a String * or a Symbol, and a known signal name, ArgumentError will be * raised. * * Also, Errno::ESRCH or RangeError for invalid _pid_, Errno::EPERM * when failed because of no privilege, will be raised. In these * cases, signals may have been sent to preceding processes. */ static VALUE proc_rb_f_kill(int c, const VALUE *v, VALUE _) { return rb_f_kill(c, v); } VALUE rb_mProcess; static VALUE rb_mProcUID; static VALUE rb_mProcGID; static VALUE rb_mProcID_Syscall; /* * The Process module is a collection of methods used to * manipulate processes. */ void InitVM_process(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_define_virtual_variable("$?", get_CHILD_STATUS, 0); rb_define_virtual_variable("$$", get_PROCESS_ID, 0); rb_define_global_function("exec", f_exec, -1); rb_define_global_function("fork", rb_f_fork, 0); rb_define_global_function("exit!", rb_f_exit_bang, -1); rb_define_global_function("system", rb_f_system, -1); rb_define_global_function("spawn", rb_f_spawn, -1); rb_define_global_function("sleep", rb_f_sleep, -1); rb_define_global_function("exit", f_exit, -1); rb_define_global_function("abort", f_abort, -1); rb_mProcess = rb_define_module("Process"); #ifdef WNOHANG /* see Process.wait */ rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG)); #else /* see Process.wait */ rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0)); #endif #ifdef WUNTRACED /* see Process.wait */ rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED)); #else /* see Process.wait */ rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0)); #endif rb_define_singleton_method(rb_mProcess, "exec", f_exec, -1); rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0); rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1); rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1); rb_define_singleton_method(rb_mProcess, "exit", f_exit, -1); rb_define_singleton_method(rb_mProcess, "abort", f_abort, -1); rb_define_singleton_method(rb_mProcess, "last_status", proc_s_last_status, 0); rb_define_module_function(rb_mProcess, "kill", proc_rb_f_kill, -1); rb_define_module_function(rb_mProcess, "wait", proc_m_wait, -1); rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1); rb_define_module_function(rb_mProcess, "waitpid", proc_m_wait, -1); rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1); rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0); rb_define_module_function(rb_mProcess, "detach", proc_detach, 1); /* :nodoc: */ rb_cWaiter = rb_define_class_under(rb_mProcess, "Waiter", rb_cThread); rb_undef_alloc_func(rb_cWaiter); rb_undef_method(CLASS_OF(rb_cWaiter), "new"); rb_define_method(rb_cWaiter, "pid", detach_process_pid, 0); rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject); rb_undef_method(CLASS_OF(rb_cProcessStatus), "new"); rb_define_method(rb_cProcessStatus, "==", pst_equal, 1); rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1); rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1); rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0); rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0); rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0); rb_define_method(rb_cProcessStatus, "pid", pst_pid, 0); rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0); rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0); rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0); rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0); rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0); rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0); rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0); rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0); rb_define_module_function(rb_mProcess, "pid", proc_get_pid, 0); rb_define_module_function(rb_mProcess, "ppid", proc_get_ppid, 0); rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0); rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0); rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1); rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2); rb_define_module_function(rb_mProcess, "getsid", proc_getsid, -1); rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0); rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2); rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3); #ifdef HAVE_GETPRIORITY /* see Process.setpriority */ rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS)); /* see Process.setpriority */ rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP)); /* see Process.setpriority */ rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER)); #endif rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1); rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1); #if defined(RLIM2NUM) && defined(RLIM_INFINITY) { VALUE inf = RLIM2NUM(RLIM_INFINITY); #ifdef RLIM_SAVED_MAX { VALUE v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX); /* see Process.setrlimit */ rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v); } #endif /* see Process.setrlimit */ rb_define_const(rb_mProcess, "RLIM_INFINITY", inf); #ifdef RLIM_SAVED_CUR { VALUE v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR); /* see Process.setrlimit */ rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v); } #endif } #ifdef RLIMIT_AS /* Maximum size of the process's virtual memory (address space) in bytes. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS)); #endif #ifdef RLIMIT_CORE /* Maximum size of the core file. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE)); #endif #ifdef RLIMIT_CPU /* CPU time limit in seconds. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU)); #endif #ifdef RLIMIT_DATA /* Maximum size of the process's data segment. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA)); #endif #ifdef RLIMIT_FSIZE /* Maximum size of files that the process may create. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE)); #endif #ifdef RLIMIT_MEMLOCK /* Maximum number of bytes of memory that may be locked into RAM. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK)); #endif #ifdef RLIMIT_MSGQUEUE /* Specifies the limit on the number of bytes that can be allocated * for POSIX message queues for the real user ID of the calling process. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_MSGQUEUE", INT2FIX(RLIMIT_MSGQUEUE)); #endif #ifdef RLIMIT_NICE /* Specifies a ceiling to which the process's nice value can be raised. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_NICE", INT2FIX(RLIMIT_NICE)); #endif #ifdef RLIMIT_NOFILE /* Specifies a value one greater than the maximum file descriptor * number that can be opened by this process. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE)); #endif #ifdef RLIMIT_NPROC /* The maximum number of processes that can be created for the * real user ID of the calling process. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC)); #endif #ifdef RLIMIT_RSS /* Specifies the limit (in pages) of the process's resident set. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS)); #endif #ifdef RLIMIT_RTPRIO /* Specifies a ceiling on the real-time priority that may be set for this process. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_RTPRIO", INT2FIX(RLIMIT_RTPRIO)); #endif #ifdef RLIMIT_RTTIME /* Specifies limit on CPU time this process scheduled under a real-time * scheduling policy can consume. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_RTTIME", INT2FIX(RLIMIT_RTTIME)); #endif #ifdef RLIMIT_SBSIZE /* Maximum size of the socket buffer. */ rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE)); #endif #ifdef RLIMIT_SIGPENDING /* Specifies a limit on the number of signals that may be queued for * the real user ID of the calling process. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_SIGPENDING", INT2FIX(RLIMIT_SIGPENDING)); #endif #ifdef RLIMIT_STACK /* Maximum size of the stack, in bytes. * * see the system getrlimit(2) manual for details. */ rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK)); #endif #endif rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0); rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1); rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0); rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1); rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0); rb_define_module_function(rb_mProcess, "euid=", proc_seteuid_m, 1); rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0); rb_define_module_function(rb_mProcess, "egid=", proc_setegid_m, 1); rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2); rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0); rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1); rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0); rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1); rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1); rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0); #ifdef CLOCK_REALTIME /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME", CLOCKID2NUM(CLOCK_REALTIME)); #elif defined(RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME", RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME); #endif #ifdef CLOCK_MONOTONIC /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", CLOCKID2NUM(CLOCK_MONOTONIC)); #elif defined(RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC); #endif #ifdef CLOCK_PROCESS_CPUTIME_ID /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", CLOCKID2NUM(CLOCK_PROCESS_CPUTIME_ID)); #elif defined(RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID); #endif #ifdef CLOCK_THREAD_CPUTIME_ID /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_THREAD_CPUTIME_ID", CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)); #endif #ifdef CLOCK_VIRTUAL /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_VIRTUAL", CLOCKID2NUM(CLOCK_VIRTUAL)); #endif #ifdef CLOCK_PROF /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_PROF", CLOCKID2NUM(CLOCK_PROF)); #endif #ifdef CLOCK_REALTIME_FAST /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME_FAST", CLOCKID2NUM(CLOCK_REALTIME_FAST)); #endif #ifdef CLOCK_REALTIME_PRECISE /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME_PRECISE", CLOCKID2NUM(CLOCK_REALTIME_PRECISE)); #endif #ifdef CLOCK_REALTIME_COARSE /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME_COARSE", CLOCKID2NUM(CLOCK_REALTIME_COARSE)); #endif #ifdef CLOCK_REALTIME_ALARM /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_REALTIME_ALARM", CLOCKID2NUM(CLOCK_REALTIME_ALARM)); #endif #ifdef CLOCK_MONOTONIC_FAST /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_FAST", CLOCKID2NUM(CLOCK_MONOTONIC_FAST)); #endif #ifdef CLOCK_MONOTONIC_PRECISE /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_PRECISE", CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)); #endif #ifdef CLOCK_MONOTONIC_RAW /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW", CLOCKID2NUM(CLOCK_MONOTONIC_RAW)); #endif #ifdef CLOCK_MONOTONIC_RAW_APPROX /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW_APPROX", CLOCKID2NUM(CLOCK_MONOTONIC_RAW_APPROX)); #endif #ifdef CLOCK_MONOTONIC_COARSE /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_COARSE", CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)); #endif #ifdef CLOCK_BOOTTIME /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_BOOTTIME", CLOCKID2NUM(CLOCK_BOOTTIME)); #endif #ifdef CLOCK_BOOTTIME_ALARM /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_BOOTTIME_ALARM", CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)); #endif #ifdef CLOCK_UPTIME /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_UPTIME", CLOCKID2NUM(CLOCK_UPTIME)); #endif #ifdef CLOCK_UPTIME_FAST /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_UPTIME_FAST", CLOCKID2NUM(CLOCK_UPTIME_FAST)); #endif #ifdef CLOCK_UPTIME_PRECISE /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_UPTIME_PRECISE", CLOCKID2NUM(CLOCK_UPTIME_PRECISE)); #endif #ifdef CLOCK_UPTIME_RAW /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW", CLOCKID2NUM(CLOCK_UPTIME_RAW)); #endif #ifdef CLOCK_UPTIME_RAW_APPROX /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW_APPROX", CLOCKID2NUM(CLOCK_UPTIME_RAW_APPROX)); #endif #ifdef CLOCK_SECOND /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_SECOND", CLOCKID2NUM(CLOCK_SECOND)); #endif #ifdef CLOCK_TAI /* see Process.clock_gettime */ rb_define_const(rb_mProcess, "CLOCK_TAI", CLOCKID2NUM(CLOCK_TAI)); #endif rb_define_module_function(rb_mProcess, "clock_gettime", rb_clock_gettime, -1); rb_define_module_function(rb_mProcess, "clock_getres", rb_clock_getres, -1); #if defined(HAVE_TIMES) || defined(_WIN32) /* Placeholder for rusage */ rb_cProcessTms = rb_struct_define_under(rb_mProcess, "Tms", "utime", "stime", "cutime", "cstime", NULL); /* An obsolete name of Process::Tms for backward compatibility */ rb_define_const(rb_cStruct, "Tms", rb_cProcessTms); rb_deprecate_constant(rb_cStruct, "Tms"); #endif SAVED_USER_ID = geteuid(); SAVED_GROUP_ID = getegid(); rb_mProcUID = rb_define_module_under(rb_mProcess, "UID"); rb_mProcGID = rb_define_module_under(rb_mProcess, "GID"); rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0); rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0); rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0); rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0); rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1); rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1); rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1); rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1); rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege"); rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege"); rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0); rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0); rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0); rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0); rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0); rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0); rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0); rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0); #ifdef p_uid_from_name rb_define_module_function(rb_mProcUID, "from_name", p_uid_from_name, 1); #endif #ifdef p_gid_from_name rb_define_module_function(rb_mProcGID, "from_name", p_gid_from_name, 1); #endif rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys"); rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0); rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0); rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0); rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0); rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1); rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1); rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1); rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1); rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1); rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1); rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2); rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2); rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3); rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3); rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0); } void Init_process(void) { id_in = rb_intern("in"); id_out = rb_intern("out"); id_err = rb_intern("err"); id_pid = rb_intern("pid"); id_uid = rb_intern("uid"); id_gid = rb_intern("gid"); id_close = rb_intern("close"); id_child = rb_intern("child"); #ifdef HAVE_SETPGID id_pgroup = rb_intern("pgroup"); #endif #ifdef _WIN32 id_new_pgroup = rb_intern("new_pgroup"); #endif id_unsetenv_others = rb_intern("unsetenv_others"); id_chdir = rb_intern("chdir"); id_umask = rb_intern("umask"); id_close_others = rb_intern("close_others"); id_ENV = rb_intern("ENV"); id_nanosecond = rb_intern("nanosecond"); id_microsecond = rb_intern("microsecond"); id_millisecond = rb_intern("millisecond"); id_second = rb_intern("second"); id_float_microsecond = rb_intern("float_microsecond"); id_float_millisecond = rb_intern("float_millisecond"); id_float_second = rb_intern("float_second"); id_GETTIMEOFDAY_BASED_CLOCK_REALTIME = rb_intern("GETTIMEOFDAY_BASED_CLOCK_REALTIME"); id_TIME_BASED_CLOCK_REALTIME = rb_intern("TIME_BASED_CLOCK_REALTIME"); #ifdef HAVE_TIMES id_TIMES_BASED_CLOCK_MONOTONIC = rb_intern("TIMES_BASED_CLOCK_MONOTONIC"); id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID"); #endif #ifdef RUSAGE_SELF id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID"); #endif id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID"); #ifdef __APPLE__ id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC = rb_intern("MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC"); #endif id_hertz = rb_intern("hertz"); InitVM(process); }