/********************************************************************** proc.c - Proc, Binding, Env $Author$ created at: Wed Jan 17 12:13:14 2007 Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #include "eval_intern.h" #include "internal.h" #include "gc.h" #include "iseq.h" struct METHOD { VALUE recv; VALUE rclass; ID id; rb_method_entry_t *me; struct unlinked_method_entry_list_entry *ume; }; VALUE rb_cUnboundMethod; VALUE rb_cMethod; VALUE rb_cBinding; VALUE rb_cProc; static VALUE bmcall(VALUE, VALUE); static int method_arity(VALUE); static ID attached; /* Proc */ #define IS_METHOD_PROC_NODE(node) (nd_type(node) == NODE_IFUNC && (node)->nd_cfnc == bmcall) static void proc_free(void *ptr) { RUBY_FREE_ENTER("proc"); if (ptr) { ruby_xfree(ptr); } RUBY_FREE_LEAVE("proc"); } static void proc_mark(void *ptr) { rb_proc_t *proc; RUBY_MARK_ENTER("proc"); if (ptr) { proc = ptr; RUBY_MARK_UNLESS_NULL(proc->envval); RUBY_MARK_UNLESS_NULL(proc->blockprocval); RUBY_MARK_UNLESS_NULL(proc->block.proc); RUBY_MARK_UNLESS_NULL(proc->block.self); if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) { RUBY_MARK_UNLESS_NULL((VALUE)(proc->block.iseq)); } } RUBY_MARK_LEAVE("proc"); } static size_t proc_memsize(const void *ptr) { return ptr ? sizeof(rb_proc_t) : 0; } static const rb_data_type_t proc_data_type = { "proc", { proc_mark, proc_free, proc_memsize, }, }; VALUE rb_proc_alloc(VALUE klass) { rb_proc_t *proc; return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc); } VALUE rb_obj_is_proc(VALUE proc) { if (rb_typeddata_is_kind_of(proc, &proc_data_type)) { return Qtrue; } else { return Qfalse; } } /* :nodoc: */ static VALUE proc_dup(VALUE self) { VALUE procval = rb_proc_alloc(rb_cProc); rb_proc_t *src, *dst; GetProcPtr(self, src); GetProcPtr(procval, dst); dst->block = src->block; dst->block.proc = procval; dst->blockprocval = src->blockprocval; dst->envval = src->envval; dst->safe_level = src->safe_level; dst->is_lambda = src->is_lambda; return procval; } /* :nodoc: */ static VALUE proc_clone(VALUE self) { VALUE procval = proc_dup(self); CLONESETUP(procval, self); return procval; } /* * call-seq: * prc.lambda? -> true or false * * Returns +true+ for a Proc object for which argument handling is rigid. * Such procs are typically generated by +lambda+. * * A Proc object generated by +proc+ ignores extra arguments. * * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2] * * It provides +nil+ for missing arguments. * * proc {|a,b| [a,b] }.call(1) #=> [1,nil] * * It expands a single array argument. * * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2] * * A Proc object generated by +lambda+ doesn't have such tricks. * * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError * * Proc#lambda? is a predicate for the tricks. * It returns +true+ if no tricks apply. * * lambda {}.lambda? #=> true * proc {}.lambda? #=> false * * Proc.new is the same as +proc+. * * Proc.new {}.lambda? #=> false * * +lambda+, +proc+ and Proc.new preserve the tricks of * a Proc object given by & argument. * * lambda(&lambda {}).lambda? #=> true * proc(&lambda {}).lambda? #=> true * Proc.new(&lambda {}).lambda? #=> true * * lambda(&proc {}).lambda? #=> false * proc(&proc {}).lambda? #=> false * Proc.new(&proc {}).lambda? #=> false * * A Proc object generated by & argument has the tricks * * def n(&b) b.lambda? end * n {} #=> false * * The & argument preserves the tricks if a Proc object * is given by & argument. * * n(&lambda {}) #=> true * n(&proc {}) #=> false * n(&Proc.new {}) #=> false * * A Proc object converted from a method has no tricks. * * def m() end * method(:m).to_proc.lambda? #=> true * * n(&method(:m)) #=> true * n(&method(:m).to_proc) #=> true * * +define_method+ is treated the same as method definition. * The defined method has no tricks. * * class C * define_method(:d) {} * end * C.new.d(1,2) #=> ArgumentError * C.new.method(:d).to_proc.lambda? #=> true * * +define_method+ always defines a method without the tricks, * even if a non-lambda Proc object is given. * This is the only exception for which the tricks are not preserved. * * class C * define_method(:e, &proc {}) * end * C.new.e(1,2) #=> ArgumentError * C.new.method(:e).to_proc.lambda? #=> true * * This exception insures that methods never have tricks * and makes it easy to have wrappers to define methods that behave as usual. * * class C * def self.def2(name, &body) * define_method(name, &body) * end * * def2(:f) {} * end * C.new.f(1,2) #=> ArgumentError * * The wrapper def2 defines a method which has no tricks. * */ VALUE rb_proc_lambda_p(VALUE procval) { rb_proc_t *proc; GetProcPtr(procval, proc); return proc->is_lambda ? Qtrue : Qfalse; } /* Binding */ static void binding_free(void *ptr) { rb_binding_t *bind; RUBY_FREE_ENTER("binding"); if (ptr) { bind = ptr; ruby_xfree(ptr); } RUBY_FREE_LEAVE("binding"); } static void binding_mark(void *ptr) { rb_binding_t *bind; RUBY_MARK_ENTER("binding"); if (ptr) { bind = ptr; RUBY_MARK_UNLESS_NULL(bind->env); RUBY_MARK_UNLESS_NULL(bind->filename); } RUBY_MARK_LEAVE("binding"); } static size_t binding_memsize(const void *ptr) { return ptr ? sizeof(rb_binding_t) : 0; } static const rb_data_type_t binding_data_type = { "binding", { binding_mark, binding_free, binding_memsize, }, }; static VALUE binding_alloc(VALUE klass) { VALUE obj; rb_binding_t *bind; obj = TypedData_Make_Struct(klass, rb_binding_t, &binding_data_type, bind); return obj; } /* :nodoc: */ static VALUE binding_dup(VALUE self) { VALUE bindval = binding_alloc(rb_cBinding); rb_binding_t *src, *dst; GetBindingPtr(self, src); GetBindingPtr(bindval, dst); dst->env = src->env; dst->filename = src->filename; dst->line_no = src->line_no; return bindval; } /* :nodoc: */ static VALUE binding_clone(VALUE self) { VALUE bindval = binding_dup(self); CLONESETUP(bindval, self); return bindval; } VALUE rb_binding_new(void) { rb_thread_t *th = GET_THREAD(); rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp); VALUE bindval = binding_alloc(rb_cBinding); rb_binding_t *bind; if (cfp == 0) { rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber."); } GetBindingPtr(bindval, bind); bind->env = rb_vm_make_env_object(th, cfp); bind->filename = cfp->iseq->filename; bind->line_no = rb_vm_get_sourceline(cfp); return bindval; } /* * call-seq: * binding -> a_binding * * Returns a +Binding+ object, describing the variable and * method bindings at the point of call. This object can be used when * calling +eval+ to execute the evaluated command in this * environment. See also the description of class +Binding+. * * def get_binding(param) * return binding * end * b = get_binding("hello") * eval("param", b) #=> "hello" */ static VALUE rb_f_binding(VALUE self) { return rb_binding_new(); } /* * call-seq: * binding.eval(string [, filename [,lineno]]) -> obj * * Evaluates the Ruby expression(s) in string, in the * binding's context. If the optional filename and * lineno parameters are present, they will be used when * reporting syntax errors. * * def get_binding(param) * return binding * end * b = get_binding("hello") * b.eval("param") #=> "hello" */ static VALUE bind_eval(int argc, VALUE *argv, VALUE bindval) { VALUE args[4]; rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]); args[1] = bindval; return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */); } static VALUE proc_new(VALUE klass, int is_lambda) { VALUE procval = Qnil; rb_thread_t *th = GET_THREAD(); rb_control_frame_t *cfp = th->cfp; rb_block_t *block; if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0) { block = GC_GUARDED_PTR_REF(cfp->lfp[0]); } else { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0) { block = GC_GUARDED_PTR_REF(cfp->lfp[0]); if (is_lambda) { rb_warn("tried to create Proc object without a block"); } } else { rb_raise(rb_eArgError, "tried to create Proc object without a block"); } } procval = block->proc; if (procval) { if (RBASIC(procval)->klass == klass) { return procval; } else { VALUE newprocval = proc_dup(procval); RBASIC(newprocval)->klass = klass; return newprocval; } } procval = rb_vm_make_proc(th, block, klass); rb_vm_rewrite_dfp_in_errinfo(th, cfp); if (is_lambda) { rb_proc_t *proc; GetProcPtr(procval, proc); proc->is_lambda = TRUE; } return procval; } /* * call-seq: * Proc.new {|...| block } -> a_proc * Proc.new -> a_proc * * Creates a new Proc object, bound to the current * context. Proc::new may be called without a block only * within a method with an attached block, in which case that block is * converted to the Proc object. * * def proc_from * Proc.new * end * proc = proc_from { "hello" } * proc.call #=> "hello" */ static VALUE rb_proc_s_new(int argc, VALUE *argv, VALUE klass) { VALUE block = proc_new(klass, FALSE); rb_obj_call_init(block, argc, argv); return block; } /* * call-seq: * proc { |...| block } -> a_proc * * Equivalent to Proc.new. */ VALUE rb_block_proc(void) { return proc_new(rb_cProc, FALSE); } VALUE rb_block_lambda(void) { return proc_new(rb_cProc, TRUE); } VALUE rb_f_lambda(void) { rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead"); return rb_block_lambda(); } /* * call-seq: * lambda { |...| block } -> a_proc * * Equivalent to Proc.new, except the resulting Proc objects * check the number of parameters passed when called. */ static VALUE proc_lambda(void) { return rb_block_lambda(); } /* CHECKME: are the argument checking semantics correct? */ /* * call-seq: * prc.call(params,...) -> obj * prc[params,...] -> obj * prc.(params,...) -> obj * * Invokes the block, setting the block's parameters to the values in * params using something close to method calling semantics. * Generates a warning if multiple values are passed to a proc that * expects just one (previously this silently converted the parameters * to an array). Note that prc.() invokes prc.call() with the parameters * given. It's a syntax sugar to hide "call". * * For procs created using Kernel.proc, generates an * error if the wrong number of parameters * are passed to a proc with multiple parameters. For procs created using * Proc.new, extra parameters are silently discarded. * * Returns the value of the last expression evaluated in the block. See * also Proc#yield. * * a_proc = Proc.new {|a, *b| b.collect {|i| i*a }} * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] * a_proc[9, 1, 2, 3] #=> [9, 18, 27] * a_proc = Proc.new {|a,b| a} * a_proc.call(1,2,3) * * produces: * * prog.rb:5: wrong number of arguments (3 for 2) (ArgumentError) * from prog.rb:4:in `call' * from prog.rb:5 */ /* * call-seq: * prc === obj -> result_of_proc * * Invokes the block, with obj as the block's parameter. It is * to allow a proc object to be a target of +when+ clause in the case statement. */ static VALUE proc_call(int argc, VALUE *argv, VALUE procval) { rb_proc_t *proc; rb_block_t *blockptr = 0; rb_iseq_t *iseq; VALUE passed_procval; GetProcPtr(procval, proc); iseq = proc->block.iseq; if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) { if (rb_block_given_p()) { rb_proc_t *passed_proc; RB_GC_GUARD(passed_procval) = rb_block_proc(); GetProcPtr(passed_procval, passed_proc); blockptr = &passed_proc->block; } } return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self, argc, argv, blockptr); } #if SIZEOF_LONG > SIZEOF_INT static inline int check_argc(long argc) { if (argc > INT_MAX || argc < 0) { rb_raise(rb_eArgError, "too many arguments (%lu)", (unsigned long)argc); } return (int)argc; } #else #define check_argc(argc) (argc) #endif VALUE rb_proc_call(VALUE self, VALUE args) { rb_proc_t *proc; GetProcPtr(self, proc); return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self, check_argc(RARRAY_LEN(args)), RARRAY_PTR(args), 0); } VALUE rb_proc_call_with_block(VALUE self, int argc, VALUE *argv, VALUE pass_procval) { rb_proc_t *proc; rb_block_t *block = 0; GetProcPtr(self, proc); if (!NIL_P(pass_procval)) { rb_proc_t *pass_proc; GetProcPtr(pass_procval, pass_proc); block = &pass_proc->block; } return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self, argc, argv, block); } /* * call-seq: * prc.arity -> fixnum * * Returns the number of arguments that would not be ignored. If the block * is declared to take no arguments, returns 0. If the block is known * to take exactly n arguments, returns n. If the block has optional * arguments, return -n-1, where n is the number of mandatory * arguments. A proc with no argument declarations * is the same a block declaring || as its arguments. * * Proc.new {}.arity #=> 0 * Proc.new {||}.arity #=> 0 * Proc.new {|a|}.arity #=> 1 * Proc.new {|a,b|}.arity #=> 2 * Proc.new {|a,b,c|}.arity #=> 3 * Proc.new {|*a|}.arity #=> -1 * Proc.new {|a,*b|}.arity #=> -2 * Proc.new {|a,*b, c|}.arity #=> -3 */ static VALUE proc_arity(VALUE self) { int arity = rb_proc_arity(self); return INT2FIX(arity); } int rb_proc_arity(VALUE self) { rb_proc_t *proc; rb_iseq_t *iseq; GetProcPtr(self, proc); iseq = proc->block.iseq; if (iseq) { if (BUILTIN_TYPE(iseq) != T_NODE) { if (iseq->arg_rest < 0) { return iseq->argc; } else { return -(iseq->argc + 1 + iseq->arg_post_len); } } else { NODE *node = (NODE *)iseq; if (IS_METHOD_PROC_NODE(node)) { /* method(:foo).to_proc.arity */ return method_arity(node->nd_tval); } } } return -1; } #define get_proc_iseq rb_proc_get_iseq rb_iseq_t * rb_proc_get_iseq(VALUE self, int *is_proc) { rb_proc_t *proc; rb_iseq_t *iseq; GetProcPtr(self, proc); iseq = proc->block.iseq; if (is_proc) *is_proc = !proc->is_lambda; if (!RUBY_VM_NORMAL_ISEQ_P(iseq)) { NODE *node = (NODE *)iseq; iseq = 0; if (IS_METHOD_PROC_NODE(node)) { /* method(:foo).to_proc */ iseq = rb_method_get_iseq(node->nd_tval); if (is_proc) *is_proc = 0; } } return iseq; } static VALUE iseq_location(rb_iseq_t *iseq) { VALUE loc[2]; if (!iseq) return Qnil; loc[0] = iseq->filename; if (iseq->line_info_table) { loc[1] = INT2FIX(rb_iseq_first_lineno(iseq)); } else { loc[1] = Qnil; } return rb_ary_new4(2, loc); } /* * call-seq: * prc.source_location -> [String, Fixnum] * * Returns the Ruby source filename and line number containing this proc * or +nil+ if this proc was not defined in Ruby (i.e. native) */ VALUE rb_proc_location(VALUE self) { return iseq_location(get_proc_iseq(self, 0)); } static VALUE unnamed_parameters(int arity) { VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity); int n = (arity < 0) ? ~arity : arity; ID req, rest; CONST_ID(req, "req"); a = rb_ary_new3(1, ID2SYM(req)); OBJ_FREEZE(a); for (; n; --n) { rb_ary_push(param, a); } if (arity < 0) { CONST_ID(rest, "rest"); rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest))); } return param; } /* * call-seq: * prc.parameters -> array * * Returns the parameter information of this proc. * * prc = lambda{|x, y=42, *other|} * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] */ static VALUE rb_proc_parameters(VALUE self) { int is_proc; rb_iseq_t *iseq = get_proc_iseq(self, &is_proc); if (!iseq) { return unnamed_parameters(rb_proc_arity(self)); } return rb_iseq_parameters(iseq, is_proc); } /* * call-seq: * prc == other_proc -> true or false * * Returns true if prc is the same object as * other_proc, or if they are both procs with the same body. */ static VALUE proc_eq(VALUE self, VALUE other) { if (self == other) { return Qtrue; } else { if (rb_obj_is_proc(other)) { rb_proc_t *p1, *p2; GetProcPtr(self, p1); GetProcPtr(other, p2); if (p1->envval == p2->envval && p1->block.iseq->iseq_size == p2->block.iseq->iseq_size && p1->block.iseq->local_size == p2->block.iseq->local_size && MEMCMP(p1->block.iseq->iseq, p2->block.iseq->iseq, VALUE, p1->block.iseq->iseq_size) == 0) { return Qtrue; } } } return Qfalse; } /* * call-seq: * prc.hash -> integer * * Returns a hash value corresponding to proc body. */ static VALUE proc_hash(VALUE self) { st_index_t hash; rb_proc_t *proc; GetProcPtr(self, proc); hash = rb_hash_start((st_index_t)proc->block.iseq); hash = rb_hash_uint(hash, (st_index_t)proc->envval); hash = rb_hash_uint(hash, (st_index_t)proc->block.lfp >> 16); hash = rb_hash_end(hash); return LONG2FIX(hash); } /* * call-seq: * prc.to_s -> string * * Returns the unique identifier for this proc, along with * an indication of where the proc was defined. */ static VALUE proc_to_s(VALUE self) { VALUE str = 0; rb_proc_t *proc; const char *cname = rb_obj_classname(self); rb_iseq_t *iseq; const char *is_lambda; GetProcPtr(self, proc); iseq = proc->block.iseq; is_lambda = proc->is_lambda ? " (lambda)" : ""; if (RUBY_VM_NORMAL_ISEQ_P(iseq)) { int line_no = 0; if (iseq->line_info_table) { line_no = rb_iseq_first_lineno(iseq); } str = rb_sprintf("#<%s:%p@%s:%d%s>", cname, (void *)self, RSTRING_PTR(iseq->filename), line_no, is_lambda); } else { str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq, is_lambda); } if (OBJ_TAINTED(self)) { OBJ_TAINT(str); } return str; } /* * call-seq: * prc.to_proc -> prc * * Part of the protocol for converting objects to Proc * objects. Instances of class Proc simply return * themselves. */ static VALUE proc_to_proc(VALUE self) { return self; } static void bm_mark(void *ptr) { struct METHOD *data = ptr; rb_gc_mark(data->rclass); rb_gc_mark(data->recv); if (data->me) rb_mark_method_entry(data->me); } static void bm_free(void *ptr) { struct METHOD *data = ptr; struct unlinked_method_entry_list_entry *ume = data->ume; ume->me = data->me; ume->next = GET_VM()->unlinked_method_entry_list; GET_VM()->unlinked_method_entry_list = ume; xfree(ptr); } static size_t bm_memsize(const void *ptr) { return ptr ? sizeof(struct METHOD) : 0; } static const rb_data_type_t method_data_type = { "method", { bm_mark, bm_free, bm_memsize, }, }; VALUE rb_obj_is_method(VALUE m) { if (rb_typeddata_is_kind_of(m, &method_data_type)) { return Qtrue; } else { return Qfalse; } } static VALUE mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) { VALUE method; VALUE rclass = klass; ID rid = id; struct METHOD *data; rb_method_entry_t *me, meb; rb_method_definition_t *def = 0; rb_method_flag_t flag = NOEX_UNDEF; again: me = rb_method_entry(klass, id); if (UNDEFINED_METHOD_ENTRY_P(me)) { ID rmiss = rb_intern("respond_to_missing?"); VALUE sym = ID2SYM(id); if (obj != Qundef && !rb_method_basic_definition_p(klass, rmiss)) { if (RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue))) { def = ALLOC(rb_method_definition_t); def->type = VM_METHOD_TYPE_MISSING; def->original_id = id; def->alias_count = 0; meb.flag = 0; meb.mark = 0; meb.called_id = id; meb.klass = klass; meb.def = def; me = &meb; def = 0; goto gen_method; } } rb_print_undef(klass, id, 0); } def = me->def; if (flag == NOEX_UNDEF) { flag = me->flag; if (scope && (flag & NOEX_MASK) != NOEX_PUBLIC) { const char *v = ""; switch (flag & NOEX_MASK) { case NOEX_PRIVATE: v = "private"; break; case NOEX_PROTECTED: v = "protected"; break; } rb_name_error(id, "method `%s' for %s `%s' is %s", rb_id2name(id), (RB_TYPE_P(klass, T_MODULE)) ? "module" : "class", rb_class2name(klass), v); } } if (def && def->type == VM_METHOD_TYPE_ZSUPER) { klass = RCLASS_SUPER(me->klass); id = def->original_id; goto again; } klass = me->klass; while (rclass != klass && (FL_TEST(rclass, FL_SINGLETON) || RB_TYPE_P(rclass, T_ICLASS))) { rclass = RCLASS_SUPER(rclass); } if (RB_TYPE_P(klass, T_ICLASS)) { klass = RBASIC(klass)->klass; } gen_method: method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); data->recv = obj; data->rclass = rclass; data->id = rid; data->me = ALLOC(rb_method_entry_t); *data->me = *me; data->me->def->alias_count++; data->ume = ALLOC(struct unlinked_method_entry_list_entry); OBJ_INFECT(method, klass); return method; } /********************************************************************** * * Document-class : Method * * Method objects are created by Object#method, and are * associated with a particular object (not just with a class). They * may be used to invoke the method within the object, and as a block * associated with an iterator. They may also be unbound from one * object (creating an UnboundMethod) and bound to * another. * * class Thing * def square(n) * n*n * end * end * thing = Thing.new * meth = thing.method(:square) * * meth.call(9) #=> 81 * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] * */ /* * call-seq: * meth == other_meth -> true or false * * Two method objects are equal if they are bound to the same * object and refer to the same method definition. */ static VALUE method_eq(VALUE method, VALUE other) { struct METHOD *m1, *m2; if (!rb_obj_is_method(other)) return Qfalse; if (CLASS_OF(method) != CLASS_OF(other)) return Qfalse; Check_TypedStruct(method, &method_data_type); m1 = (struct METHOD *)DATA_PTR(method); m2 = (struct METHOD *)DATA_PTR(other); if (!rb_method_entry_eq(m1->me, m2->me) || m1->rclass != m2->rclass || m1->recv != m2->recv) { return Qfalse; } return Qtrue; } /* * call-seq: * meth.hash -> integer * * Returns a hash value corresponding to the method object. */ static VALUE method_hash(VALUE method) { struct METHOD *m; st_index_t hash; TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); hash = rb_hash_start((st_index_t)m->rclass); hash = rb_hash_uint(hash, (st_index_t)m->recv); hash = rb_hash_uint(hash, (st_index_t)m->me->def); hash = rb_hash_end(hash); return INT2FIX(hash); } /* * call-seq: * meth.unbind -> unbound_method * * Dissociates meth from its current receiver. The resulting * UnboundMethod can subsequently be bound to a new object * of the same class (see UnboundMethod). */ static VALUE method_unbind(VALUE obj) { VALUE method; struct METHOD *orig, *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig); method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD, &method_data_type, data); data->recv = Qundef; data->id = orig->id; data->me = ALLOC(rb_method_entry_t); *data->me = *orig->me; if (orig->me->def) orig->me->def->alias_count++; data->rclass = orig->rclass; data->ume = ALLOC(struct unlinked_method_entry_list_entry); OBJ_INFECT(method, obj); return method; } /* * call-seq: * meth.receiver -> object * * Returns the bound receiver of the method object. */ static VALUE method_receiver(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->recv; } /* * call-seq: * meth.name -> symbol * * Returns the name of the method. */ static VALUE method_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->id); } /* * call-seq: * meth.owner -> class_or_module * * Returns the class or module that defines the method. */ static VALUE method_owner(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->me->klass; } void rb_method_name_error(VALUE klass, VALUE str) { const char *s0 = " class"; VALUE c = klass; if (FL_TEST(c, FL_SINGLETON)) { VALUE obj = rb_ivar_get(klass, attached); switch (TYPE(obj)) { case T_MODULE: case T_CLASS: c = obj; s0 = ""; } } else if (RB_TYPE_P(c, T_MODULE)) { s0 = " module"; } rb_name_error_str(str, "undefined method `%s' for%s `%s'", RSTRING_PTR(str), s0, rb_class2name(c)); } /* * call-seq: * obj.method(sym) -> method * * Looks up the named method as a receiver in obj, returning a * Method object (or raising NameError). The * Method object acts as a closure in obj's object * instance, so instance variables and the value of self * remain available. * * class Demo * def initialize(n) * @iv = n * end * def hello() * "Hello, @iv = #{@iv}" * end * end * * k = Demo.new(99) * m = k.method(:hello) * m.call #=> "Hello, @iv = 99" * * l = Demo.new('Fred') * m = l.method("hello") * m.call #=> "Hello, @iv = Fred" */ VALUE rb_obj_method(VALUE obj, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(CLASS_OF(obj), vid); } return mnew(CLASS_OF(obj), obj, id, rb_cMethod, FALSE); } /* * call-seq: * obj.public_method(sym) -> method * * Similar to _method_, searches public method only. */ VALUE rb_obj_public_method(VALUE obj, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(CLASS_OF(obj), vid); } return mnew(CLASS_OF(obj), obj, id, rb_cMethod, TRUE); } /* * call-seq: * mod.instance_method(symbol) -> unbound_method * * Returns an +UnboundMethod+ representing the given * instance method in _mod_. * * class Interpreter * def do_a() print "there, "; end * def do_d() print "Hello "; end * def do_e() print "!\n"; end * def do_v() print "Dave"; end * Dispatcher = { * "a" => instance_method(:do_a), * "d" => instance_method(:do_d), * "e" => instance_method(:do_e), * "v" => instance_method(:do_v) * } * def interpret(string) * string.each_char {|b| Dispatcher[b].bind(self).call } * end * end * * interpreter = Interpreter.new * interpreter.interpret('dave') * * produces: * * Hello there, Dave! */ static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE); } /* * call-seq: * mod.public_instance_method(symbol) -> unbound_method * * Similar to _instance_method_, searches public method only. */ static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE); } /* * call-seq: * define_method(symbol, method) -> new_method * define_method(symbol) { block } -> proc * * Defines an instance method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. This block * is evaluated using instance_eval, a point that is * tricky to demonstrate because define_method is private. * (This is why we resort to the +send+ hack in this example.) * * class A * def fred * puts "In Fred" * end * def create_method(name, &block) * self.class.send(:define_method, name, &block) * end * define_method(:wilma) { puts "Charge it!" } * end * class B < A * define_method(:barney, instance_method(:fred)) * end * a = B.new * a.barney * a.wilma * a.create_method(:betty) { p self } * a.betty * * produces: * * In Fred * Charge it! * # */ static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { ID id; VALUE body; int noex = NOEX_PUBLIC; if (argc == 1) { id = rb_to_id(argv[0]); body = rb_block_lambda(); } else if (argc == 2) { id = rb_to_id(argv[0]); body = argv[1]; if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) { rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)", rb_obj_classname(body)); } } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc); } if (rb_obj_is_method(body)) { struct METHOD *method = (struct METHOD *)DATA_PTR(body); VALUE rclass = method->rclass; if (rclass != mod && !RTEST(rb_class_inherited_p(mod, rclass))) { if (FL_TEST(rclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't bind singleton method to a different class"); } else { rb_raise(rb_eTypeError, "bind argument must be a subclass of %s", rb_class2name(rclass)); } } rb_method_entry_set(mod, id, method->me, noex); } else if (rb_obj_is_proc(body)) { rb_proc_t *proc; body = proc_dup(body); GetProcPtr(body, proc); if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) { proc->block.iseq->defined_method_id = id; proc->block.iseq->klass = mod; proc->is_lambda = TRUE; proc->is_from_method = TRUE; } rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex); } else { /* type error */ rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)"); } return body; } /* * call-seq: * define_singleton_method(symbol, method) -> new_method * define_singleton_method(symbol) { block } -> proc * * Defines a singleton method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. * * class A * class << self * def class_name * to_s * end * end * end * A.define_singleton_method(:who_am_i) do * "I am: #{class_name}" * end * A.who_am_i # ==> "I am: A" * * guy = "Bob" * guy.define_singleton_method(:hello) { "#{self}: Hello there!" } * guy.hello #=> "Bob: Hello there!" */ static VALUE rb_obj_define_method(int argc, VALUE *argv, VALUE obj) { VALUE klass = rb_singleton_class(obj); return rb_mod_define_method(argc, argv, klass); } /* * MISSING: documentation */ static VALUE method_clone(VALUE self) { VALUE clone; struct METHOD *orig, *data; TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); CLONESETUP(clone, self); *data = *orig; data->me = ALLOC(rb_method_entry_t); *data->me = *orig->me; if (data->me->def) data->me->def->alias_count++; data->ume = ALLOC(struct unlinked_method_entry_list_entry); return clone; } /* * call-seq: * meth.call(args, ...) -> obj * meth[args, ...] -> obj * * Invokes the meth with the specified arguments, returning the * method's return value. * * m = 12.method("+") * m.call(3) #=> 15 * m.call(20) #=> 32 */ VALUE rb_method_call(int argc, VALUE *argv, VALUE method) { VALUE result = Qnil; /* OK */ struct METHOD *data; int state; volatile int safe = -1; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); if (data->recv == Qundef) { rb_raise(rb_eTypeError, "can't call unbound method; bind first"); } PUSH_TAG(); if (OBJ_TAINTED(method)) { safe = rb_safe_level(); if (rb_safe_level() < 4) { rb_set_safe_level_force(4); } } if ((state = EXEC_TAG()) == 0) { rb_thread_t *th = GET_THREAD(); PASS_PASSED_BLOCK_TH(th); result = rb_vm_call(th, data->recv, data->id, argc, argv, data->me); } POP_TAG(); if (safe >= 0) rb_set_safe_level_force(safe); if (state) JUMP_TAG(state); return result; } /********************************************************************** * * Document-class: UnboundMethod * * Ruby supports two forms of objectified methods. Class * Method is used to represent methods that are associated * with a particular object: these method objects are bound to that * object. Bound method objects for an object can be created using * Object#method. * * Ruby also supports unbound methods; methods objects that are not * associated with a particular object. These can be created either by * calling Module#instance_method or by calling * unbind on a bound method object. The result of both of * these is an UnboundMethod object. * * Unbound methods can only be called after they are bound to an * object. That object must be be a kind_of? the method's original * class. * * class Square * def area * @side * @side * end * def initialize(side) * @side = side * end * end * * area_un = Square.instance_method(:area) * * s = Square.new(12) * area = area_un.bind(s) * area.call #=> 144 * * Unbound methods are a reference to the method at the time it was * objectified: subsequent changes to the underlying class will not * affect the unbound method. * * class Test * def test * :original * end * end * um = Test.instance_method(:test) * class Test * def test * :modified * end * end * t = Test.new * t.test #=> :modified * um.bind(t).call #=> :original * */ /* * call-seq: * umeth.bind(obj) -> method * * Bind umeth to obj. If Klass was the class * from which umeth was obtained, * obj.kind_of?(Klass) must be true. * * class A * def test * puts "In test, class = #{self.class}" * end * end * class B < A * end * class C < B * end * * * um = B.instance_method(:test) * bm = um.bind(C.new) * bm.call * bm = um.bind(B.new) * bm.call * bm = um.bind(A.new) * bm.call * * produces: * * In test, class = C * In test, class = B * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) * from prog.rb:16 */ static VALUE umethod_bind(VALUE method, VALUE recv) { struct METHOD *data, *bound; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); if (data->rclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, data->rclass)) { if (FL_TEST(data->rclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton method called for a different object"); } else { rb_raise(rb_eTypeError, "bind argument must be an instance of %s", rb_class2name(data->rclass)); } } method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); *bound = *data; bound->me = ALLOC(rb_method_entry_t); *bound->me = *data->me; if (bound->me->def) bound->me->def->alias_count++; bound->recv = recv; bound->rclass = CLASS_OF(recv); data->ume = ALLOC(struct unlinked_method_entry_list_entry); return method; } int rb_method_entry_arity(const rb_method_entry_t *me) { const rb_method_definition_t *def = me->def; if (!def) return 0; switch (def->type) { case VM_METHOD_TYPE_CFUNC: if (def->body.cfunc.argc < 0) return -1; return check_argc(def->body.cfunc.argc); case VM_METHOD_TYPE_ZSUPER: return -1; case VM_METHOD_TYPE_ATTRSET: return 1; case VM_METHOD_TYPE_IVAR: return 0; case VM_METHOD_TYPE_BMETHOD: return rb_proc_arity(def->body.proc); case VM_METHOD_TYPE_ISEQ: { rb_iseq_t *iseq = def->body.iseq; if (iseq->arg_rest == -1 && iseq->arg_opts == 0) { return iseq->argc; } else { return -(iseq->argc + 1 + iseq->arg_post_len); } } case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: return 0; case VM_METHOD_TYPE_MISSING: return -1; case VM_METHOD_TYPE_OPTIMIZED: { switch (def->body.optimize_type) { case OPTIMIZED_METHOD_TYPE_SEND: return -1; default: break; } } } rb_bug("rb_method_entry_arity: invalid method entry type (%d)", def->type); } /* * call-seq: * meth.arity -> fixnum * * Returns an indication of the number of arguments accepted by a * method. Returns a nonnegative integer for methods that take a fixed * number of arguments. For Ruby methods that take a variable number of * arguments, returns -n-1, where n is the number of required * arguments. For methods written in C, returns -1 if the call takes a * variable number of arguments. * * class C * def one; end * def two(a); end * def three(*a); end * def four(a, b); end * def five(a, b, *c); end * def six(a, b, *c, &d); end * end * c = C.new * c.method(:one).arity #=> 0 * c.method(:two).arity #=> 1 * c.method(:three).arity #=> -1 * c.method(:four).arity #=> 2 * c.method(:five).arity #=> -3 * c.method(:six).arity #=> -3 * * "cat".method(:size).arity #=> 0 * "cat".method(:replace).arity #=> 1 * "cat".method(:squeeze).arity #=> -1 * "cat".method(:count).arity #=> -1 */ static VALUE method_arity_m(VALUE method) { int n = method_arity(method); return INT2FIX(n); } static int method_arity(VALUE method) { struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return rb_method_entry_arity(data->me); } int rb_mod_method_arity(VALUE mod, ID id) { rb_method_entry_t *me = rb_method_entry(mod, id); return rb_method_entry_arity(me); } int rb_obj_method_arity(VALUE obj, ID id) { return rb_mod_method_arity(CLASS_OF(obj), id); } static inline rb_method_definition_t * method_get_def(VALUE method) { struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return data->me->def; } static rb_iseq_t * method_get_iseq(rb_method_definition_t *def) { switch (def->type) { case VM_METHOD_TYPE_BMETHOD: return get_proc_iseq(def->body.proc, 0); case VM_METHOD_TYPE_ISEQ: return def->body.iseq; default: return 0; } } rb_iseq_t * rb_method_get_iseq(VALUE method) { return method_get_iseq(method_get_def(method)); } /* * call-seq: * meth.source_location -> [String, Fixnum] * * Returns the Ruby source filename and line number containing this method * or nil if this method was not defined in Ruby (i.e. native) */ VALUE rb_method_location(VALUE method) { rb_method_definition_t *def = method_get_def(method); if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) { if (!def->body.attr.location) return Qnil; return rb_ary_dup(def->body.attr.location); } return iseq_location(method_get_iseq(def)); } /* * call-seq: * meth.parameters -> array * * Returns the parameter information of this method. */ static VALUE rb_method_parameters(VALUE method) { rb_iseq_t *iseq = rb_method_get_iseq(method); if (!iseq) { return unnamed_parameters(method_arity(method)); } return rb_iseq_parameters(iseq, 0); } /* * call-seq: * meth.to_s -> string * meth.inspect -> string * * Returns the name of the underlying method. * * "cat".method(:count).inspect #=> "#" */ static VALUE method_inspect(VALUE method) { struct METHOD *data; VALUE str; const char *s; const char *sharp = "#"; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); str = rb_str_buf_new2("#<"); s = rb_obj_classname(method); rb_str_buf_cat2(str, s); rb_str_buf_cat2(str, ": "); if (FL_TEST(data->me->klass, FL_SINGLETON)) { VALUE v = rb_ivar_get(data->me->klass, attached); if (data->recv == Qundef) { rb_str_buf_append(str, rb_inspect(data->me->klass)); } else if (data->recv == v) { rb_str_buf_append(str, rb_inspect(v)); sharp = "."; } else { rb_str_buf_append(str, rb_inspect(data->recv)); rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_inspect(v)); rb_str_buf_cat2(str, ")"); sharp = "."; } } else { rb_str_buf_cat2(str, rb_class2name(data->rclass)); if (data->rclass != data->me->klass) { rb_str_buf_cat2(str, "("); rb_str_buf_cat2(str, rb_class2name(data->me->klass)); rb_str_buf_cat2(str, ")"); } } rb_str_buf_cat2(str, sharp); rb_str_append(str, rb_id2str(data->me->def->original_id)); if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { rb_str_buf_cat2(str, " (not-implemented)"); } rb_str_buf_cat2(str, ">"); return str; } static VALUE mproc(VALUE method) { return rb_funcall(Qnil, rb_intern("proc"), 0); } static VALUE mlambda(VALUE method) { return rb_funcall(Qnil, rb_intern("lambda"), 0); } static VALUE bmcall(VALUE args, VALUE method) { volatile VALUE a; VALUE ret; int argc; if (CLASS_OF(args) != rb_cArray) { args = rb_ary_new3(1, args); argc = 1; } else { argc = check_argc(RARRAY_LEN(args)); } ret = rb_method_call(argc, RARRAY_PTR(args), method); RB_GC_GUARD(a) = args; return ret; } VALUE rb_proc_new( VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */ VALUE val) { VALUE procval = rb_iterate(mproc, 0, func, val); return procval; } /* * call-seq: * meth.to_proc -> prc * * Returns a Proc object corresponding to this method. */ static VALUE method_proc(VALUE method) { VALUE procval; rb_proc_t *proc; /* * class Method * def to_proc * proc{|*args| * self.call(*args) * } * end * end */ procval = rb_iterate(mlambda, 0, bmcall, method); GetProcPtr(procval, proc); proc->is_from_method = 1; return procval; } /* * call_seq: * local_jump_error.exit_value -> obj * * Returns the exit value associated with this +LocalJumpError+. */ static VALUE localjump_xvalue(VALUE exc) { return rb_iv_get(exc, "@exit_value"); } /* * call-seq: * local_jump_error.reason -> symbol * * The reason this block was terminated: * :break, :redo, :retry, :next, :return, or :noreason. */ static VALUE localjump_reason(VALUE exc) { return rb_iv_get(exc, "@reason"); } /* * call-seq: * prc.binding -> binding * * Returns the binding associated with prc. Note that * Kernel#eval accepts either a Proc or a * Binding object as its second parameter. * * def fred(param) * proc {} * end * * b = fred(99) * eval("param", b.binding) #=> 99 */ static VALUE proc_binding(VALUE self) { rb_proc_t *proc; VALUE bindval; rb_binding_t *bind; GetProcPtr(self, proc); if (TYPE(proc->block.iseq) == T_NODE) { if (!IS_METHOD_PROC_NODE((NODE *)proc->block.iseq)) { rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); } } bindval = binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); bind->env = proc->envval; if (RUBY_VM_NORMAL_ISEQ_P(proc->block.iseq)) { bind->filename = proc->block.iseq->filename; bind->line_no = rb_iseq_first_lineno(proc->block.iseq); } else { bind->filename = Qnil; bind->line_no = 0; } return bindval; } static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc); static VALUE make_curry_proc(VALUE proc, VALUE passed, VALUE arity) { VALUE args = rb_ary_new3(3, proc, passed, arity); rb_proc_t *procp; int is_lambda; GetProcPtr(proc, procp); is_lambda = procp->is_lambda; rb_ary_freeze(passed); rb_ary_freeze(args); proc = rb_proc_new(curry, args); GetProcPtr(proc, procp); procp->is_lambda = is_lambda; return proc; } static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc) { VALUE proc, passed, arity; proc = RARRAY_PTR(args)[0]; passed = RARRAY_PTR(args)[1]; arity = RARRAY_PTR(args)[2]; passed = rb_ary_plus(passed, rb_ary_new4(argc, argv)); rb_ary_freeze(passed); if (RARRAY_LEN(passed) < FIX2INT(arity)) { if (!NIL_P(passed_proc)) { rb_warn("given block not used"); } arity = make_curry_proc(proc, passed, arity); return arity; } else { return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_PTR(passed), passed_proc); } } /* * call-seq: * prc.curry -> a_proc * prc.curry(arity) -> a_proc * * Returns a curried proc. If the optional arity argument is given, * it determines the number of arguments. * A curried proc receives some arguments. If a sufficient number of * arguments are supplied, it passes the supplied arguments to the original * proc and returns the result. Otherwise, returns another curried proc that * takes the rest of arguments. * * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 6 * p b.curry(5)[1][2][3][4][5] #=> 6 * p b.curry(5)[1, 2][3, 4][5] #=> 6 * p b.curry(1)[1] #=> 1 * * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1)[1] #=> 1 * * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> wrong number of arguments (4 for 3) * p b.curry(5) #=> wrong number of arguments (5 for 3) * p b.curry(1) #=> wrong number of arguments (1 for 3) * * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1) #=> wrong number of arguments (1 for 3) * * b = proc { :foo } * p b.curry[] #=> :foo */ static VALUE proc_curry(int argc, VALUE *argv, VALUE self) { int sarity, marity = rb_proc_arity(self); VALUE arity, opt = Qfalse; if (marity < 0) { marity = -marity - 1; opt = Qtrue; } rb_scan_args(argc, argv, "01", &arity); if (NIL_P(arity)) { arity = INT2FIX(marity); } else { sarity = FIX2INT(arity); if (rb_proc_lambda_p(self) && (sarity < marity || (sarity > marity && !opt))) { rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", sarity, marity); } } return make_curry_proc(self, rb_ary_new(), arity); } /* * Document-class: LocalJumpError * * Raised when Ruby can't yield as requested. * * A typical scenario is attempting to yield when no block is given: * * def call_block * yield 42 * end * call_block * * raises the exception: * * LocalJumpError: no block given (yield) * * A more subtle example: * * def get_me_a_return * Proc.new { return 42 } * end * get_me_a_return.call * * raises the exception: * * LocalJumpError: unexpected return */ /* * Document-class: SystemStackError * * Raised in case of a stack overflow. * * def me_myself_and_i * me_myself_and_i * end * me_myself_and_i * * raises the exception: * * SystemStackError: stack level too deep */ /* * Proc objects are blocks of code that have been bound to * a set of local variables. Once bound, the code may be called in * different contexts and still access those variables. * * def gen_times(factor) * return Proc.new {|n| n*factor } * end * * times3 = gen_times(3) * times5 = gen_times(5) * * times3.call(12) #=> 36 * times5.call(5) #=> 25 * times3.call(times5.call(4)) #=> 60 * */ void Init_Proc(void) { /* Proc */ rb_cProc = rb_define_class("Proc", rb_cObject); rb_undef_alloc_func(rb_cProc); rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1); #if 0 /* incomplete. */ rb_add_method(rb_cProc, rb_intern("call"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, 0); rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, 0); rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, 0); rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, 0); #else rb_define_method(rb_cProc, "call", proc_call, -1); rb_define_method(rb_cProc, "[]", proc_call, -1); rb_define_method(rb_cProc, "===", proc_call, -1); rb_define_method(rb_cProc, "yield", proc_call, -1); #endif rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0); rb_define_method(rb_cProc, "arity", proc_arity, 0); rb_define_method(rb_cProc, "clone", proc_clone, 0); rb_define_method(rb_cProc, "dup", proc_dup, 0); rb_define_method(rb_cProc, "==", proc_eq, 1); rb_define_method(rb_cProc, "eql?", proc_eq, 1); rb_define_method(rb_cProc, "hash", proc_hash, 0); rb_define_method(rb_cProc, "to_s", proc_to_s, 0); rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0); rb_define_method(rb_cProc, "binding", proc_binding, 0); rb_define_method(rb_cProc, "curry", proc_curry, -1); rb_define_method(rb_cProc, "source_location", rb_proc_location, 0); rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0); /* Exceptions */ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError); rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0); rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0); rb_eSysStackError = rb_define_class("SystemStackError", rb_eException); sysstack_error = rb_exc_new3(rb_eSysStackError, rb_obj_freeze(rb_str_new2("stack level too deep"))); OBJ_TAINT(sysstack_error); /* utility functions */ rb_define_global_function("proc", rb_block_proc, 0); rb_define_global_function("lambda", proc_lambda, 0); /* Method */ rb_cMethod = rb_define_class("Method", rb_cObject); rb_undef_alloc_func(rb_cMethod); rb_undef_method(CLASS_OF(rb_cMethod), "new"); rb_define_method(rb_cMethod, "==", method_eq, 1); rb_define_method(rb_cMethod, "eql?", method_eq, 1); rb_define_method(rb_cMethod, "hash", method_hash, 0); rb_define_method(rb_cMethod, "clone", method_clone, 0); rb_define_method(rb_cMethod, "call", rb_method_call, -1); rb_define_method(rb_cMethod, "[]", rb_method_call, -1); rb_define_method(rb_cMethod, "arity", method_arity_m, 0); rb_define_method(rb_cMethod, "inspect", method_inspect, 0); rb_define_method(rb_cMethod, "to_s", method_inspect, 0); rb_define_method(rb_cMethod, "to_proc", method_proc, 0); rb_define_method(rb_cMethod, "receiver", method_receiver, 0); rb_define_method(rb_cMethod, "name", method_name, 0); rb_define_method(rb_cMethod, "owner", method_owner, 0); rb_define_method(rb_cMethod, "unbind", method_unbind, 0); rb_define_method(rb_cMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0); rb_define_method(rb_mKernel, "method", rb_obj_method, 1); rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1); /* UnboundMethod */ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject); rb_undef_alloc_func(rb_cUnboundMethod); rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new"); rb_define_method(rb_cUnboundMethod, "==", method_eq, 1); rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1); rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0); rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0); rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0); rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "name", method_name, 0); rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0); rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1); rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0); /* Module#*_method */ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1); rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1); rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1); /* Kernel */ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1); } /* * Objects of class Binding encapsulate the execution * context at some particular place in the code and retain this context * for future use. The variables, methods, value of self, * and possibly an iterator block that can be accessed in this context * are all retained. Binding objects can be created using * Kernel#binding, and are made available to the callback * of Kernel#set_trace_func. * * These binding objects can be passed as the second argument of the * Kernel#eval method, establishing an environment for the * evaluation. * * class Demo * def initialize(n) * @secret = n * end * def get_binding * return binding() * end * end * * k1 = Demo.new(99) * b1 = k1.get_binding * k2 = Demo.new(-3) * b2 = k2.get_binding * * eval("@secret", b1) #=> 99 * eval("@secret", b2) #=> -3 * eval("@secret") #=> nil * * Binding objects have no class-specific methods. * */ void Init_Binding(void) { rb_cBinding = rb_define_class("Binding", rb_cObject); rb_undef_alloc_func(rb_cBinding); rb_undef_method(CLASS_OF(rb_cBinding), "new"); rb_define_method(rb_cBinding, "clone", binding_clone, 0); rb_define_method(rb_cBinding, "dup", binding_dup, 0); rb_define_method(rb_cBinding, "eval", bind_eval, -1); rb_define_global_function("binding", rb_f_binding, 0); attached = rb_intern("__attached__"); }