#include "prism.h" /******************************************************************************/ /* These macros operate on pm_line_column_t structs as opposed to NODE*s. */ /******************************************************************************/ #define PUSH_INSN(seq, location, insn) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).column, BIN(insn), 0)) #define PUSH_INSN1(seq, location, insn, op1) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).column, BIN(insn), 1, (VALUE)(op1))) #define PUSH_INSNL(seq, location, insn, label) \ (PUSH_INSN1(seq, location, insn, label), LABEL_REF(label)) #define PUSH_LABEL(seq, label) \ ADD_ELEM((seq), (LINK_ELEMENT *) (label)) #define PUSH_SEND_R(seq, location, id, argc, block, flag, keywords) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_send(iseq, (int) (location).line, (int) (location).column, (id), (VALUE)(argc), (block), (VALUE)(flag), (keywords))) #define PUSH_SEND(seq, location, id, argc) \ PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(0), NULL) #define PUSH_TRACE(seq, event) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_trace_body(iseq, (event), 0)) /******************************************************************************/ /* These are helper macros for the compiler. */ /******************************************************************************/ #define OLD_ISEQ NEW_ISEQ #undef NEW_ISEQ #define NEW_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), rb_fstring(name), 0, (type), (line_no)) #define OLD_CHILD_ISEQ NEW_CHILD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), rb_fstring(name), iseq, (type), (line_no)) #define PM_COMPILE(node) \ pm_compile_node(iseq, (node), ret, popped, scope_node) #define PM_COMPILE_INTO_ANCHOR(_ret, node) \ pm_compile_node(iseq, (node), _ret, popped, scope_node) #define PM_COMPILE_POPPED(node) \ pm_compile_node(iseq, (node), ret, true, scope_node) #define PM_COMPILE_NOT_POPPED(node) \ pm_compile_node(iseq, (node), ret, false, scope_node) #define PM_POP \ ADD_INSN(ret, &dummy_line_node, pop) #define PM_POP_IF_POPPED \ if (popped) PM_POP #define PM_POP_UNLESS_POPPED \ if (!popped) PM_POP #define PM_DUP \ ADD_INSN(ret, &dummy_line_node, dup) #define PM_DUP_UNLESS_POPPED \ if (!popped) PM_DUP #define PM_PUTSELF \ ADD_INSN(ret, &dummy_line_node, putself) #define PM_PUTNIL \ ADD_INSN(ret, &dummy_line_node, putnil) #define PM_PUTNIL_UNLESS_POPPED \ if (!popped) PM_PUTNIL #define PM_SWAP \ ADD_INSN(ret, &dummy_line_node, swap) #define PM_SWAP_UNLESS_POPPED \ if (!popped) PM_SWAP #define PM_NOP \ ADD_INSN(ret, &dummy_line_node, nop) #define PM_SPECIAL_CONSTANT_FLAG ((pm_constant_id_t)(1 << 31)) #define PM_CONSTANT_AND ((pm_constant_id_t)(idAnd | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_DOT3 ((pm_constant_id_t)(idDot3 | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_MULT ((pm_constant_id_t)(idMULT | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_POW ((pm_constant_id_t)(idPow | PM_SPECIAL_CONSTANT_FLAG)) static int pm_location_line_number(const pm_parser_t *parser, const pm_location_t *location) { return (int) pm_newline_list_line_column(&parser->newline_list, location->start, parser->start_line).line; } static int pm_node_line_number(const pm_parser_t *parser, const pm_node_t *node) { return (int) pm_newline_list_line_column(&parser->newline_list, node->location.start, parser->start_line).line; } static VALUE parse_integer(const pm_integer_node_t *node) { char *start = (char *) node->base.location.start; char *end = (char *) node->base.location.end; size_t length = end - start; int base = -10; switch (node->base.flags & (PM_INTEGER_BASE_FLAGS_BINARY | PM_INTEGER_BASE_FLAGS_DECIMAL | PM_INTEGER_BASE_FLAGS_OCTAL | PM_INTEGER_BASE_FLAGS_HEXADECIMAL)) { case PM_INTEGER_BASE_FLAGS_BINARY: base = 2; break; case PM_INTEGER_BASE_FLAGS_DECIMAL: base = 10; break; case PM_INTEGER_BASE_FLAGS_OCTAL: base = 8; break; case PM_INTEGER_BASE_FLAGS_HEXADECIMAL: base = 16; break; default: rb_bug("Unreachable"); } return rb_int_parse_cstr(start, length, &end, NULL, base, RB_INT_PARSE_DEFAULT); } static VALUE parse_float(const pm_node_t *node) { const uint8_t *start = node->location.start; const uint8_t *end = node->location.end; size_t length = end - start; char *buffer = malloc(length + 1); memcpy(buffer, start, length); buffer[length] = '\0'; VALUE number = DBL2NUM(rb_cstr_to_dbl(buffer, 0)); free(buffer); return number; } static VALUE parse_rational(const pm_node_t *node) { const uint8_t *start = node->location.start; const uint8_t *end = node->location.end - 1; size_t length = end - start; VALUE res; if (PM_NODE_TYPE_P(((pm_rational_node_t *)node)->numeric, PM_FLOAT_NODE)) { char *buffer = malloc(length + 1); memcpy(buffer, start, length); buffer[length] = '\0'; char *decimal = memchr(buffer, '.', length); RUBY_ASSERT(decimal); size_t seen_decimal = decimal - buffer; size_t fraclen = length - seen_decimal - 1; memmove(decimal, decimal + 1, fraclen + 1); VALUE v = rb_cstr_to_inum(buffer, 10, false); res = rb_rational_new(v, rb_int_positive_pow(10, fraclen)); free(buffer); } else { RUBY_ASSERT(PM_NODE_TYPE_P(((pm_rational_node_t *)node)->numeric, PM_INTEGER_NODE)); VALUE number = rb_int_parse_cstr((const char *)start, length, NULL, NULL, -10, RB_INT_PARSE_DEFAULT); res = rb_rational_raw(number, INT2FIX(1)); } return res; } static VALUE parse_imaginary(pm_imaginary_node_t *node) { VALUE imaginary_part; switch (PM_NODE_TYPE(node->numeric)) { case PM_FLOAT_NODE: { imaginary_part = parse_float(node->numeric); break; } case PM_INTEGER_NODE: { imaginary_part = parse_integer((pm_integer_node_t *) node->numeric); break; } case PM_RATIONAL_NODE: { imaginary_part = parse_rational(node->numeric); break; } default: rb_bug("Unexpected numeric type on imaginary number %s\n", pm_node_type_to_str(PM_NODE_TYPE(node->numeric))); } return rb_complex_raw(INT2FIX(0), imaginary_part); } static inline VALUE parse_string(pm_string_t *string, const pm_parser_t *parser) { rb_encoding *enc = rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), enc); } /** * Certain strings can have their encoding differ from the parser's encoding due * to bytes or escape sequences that have the top bit set. This function handles * creating those strings based on the flags set on the owning node. */ static inline VALUE parse_string_encoded(const pm_node_t *node, const pm_string_t *string, const pm_parser_t *parser) { rb_encoding *encoding; if (node->flags & PM_ENCODING_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (node->flags & PM_ENCODING_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else { encoding = rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); } return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), encoding); } static inline ID parse_symbol(const uint8_t *start, const uint8_t *end, const char *encoding) { rb_encoding *enc = rb_enc_from_index(rb_enc_find_index(encoding)); return rb_intern3((const char *) start, end - start, enc); } static inline ID parse_string_symbol(const pm_symbol_node_t *symbol, const pm_parser_t *parser) { const char *encoding = parser->encoding->name; if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_UTF8_ENCODING) { encoding = "UTF-8"; } else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_BINARY_ENCODING) { encoding = "ASCII-8BIT"; } else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_US_ASCII_ENCODING) { encoding = "US-ASCII"; } const uint8_t *start = pm_string_source(&symbol->unescaped); return parse_symbol(start, start + pm_string_length(&symbol->unescaped), encoding); } static inline ID parse_location_symbol(const pm_location_t *location, const pm_parser_t *parser) { return parse_symbol(location->start, location->end, parser->encoding->name); } static int pm_optimizable_range_item_p(pm_node_t *node) { return (!node || PM_NODE_TYPE_P(node, PM_INTEGER_NODE) || PM_NODE_TYPE_P(node, PM_NIL_NODE)); } #define RE_OPTION_ENCODING_SHIFT 8 /** * Check the prism flags of a regular expression-like node and return the flags * that are expected by the CRuby VM. */ static int pm_reg_flags(const pm_node_t *node) { int flags = 0; int dummy = 0; // Check "no encoding" first so that flags don't get clobbered // We're calling `rb_char_to_option_kcode` in this case so that // we don't need to have access to `ARG_ENCODING_NONE` if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT) { rb_char_to_option_kcode('n', &flags, &dummy); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_EUC_JP) { rb_char_to_option_kcode('e', &flags, &dummy); flags |= ('e' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J) { rb_char_to_option_kcode('s', &flags, &dummy); flags |= ('s' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_UTF_8) { rb_char_to_option_kcode('u', &flags, &dummy); flags |= ('u' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE) { flags |= ONIG_OPTION_IGNORECASE; } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE) { flags |= ONIG_OPTION_MULTILINE; } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_EXTENDED) { flags |= ONIG_OPTION_EXTEND; } return flags; } static rb_encoding * pm_reg_enc(const pm_regular_expression_node_t *node, const pm_parser_t *parser) { if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT) { return rb_ascii8bit_encoding(); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_EUC_JP) { return rb_enc_get_from_index(ENCINDEX_EUC_JP); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J) { return rb_enc_get_from_index(ENCINDEX_Windows_31J); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_UTF_8) { return rb_utf8_encoding(); } return rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); } /** * Certain nodes can be compiled literally, which can lead to further * optimizations. These nodes will all have the PM_NODE_FLAG_STATIC_LITERAL flag * set. */ static inline bool pm_static_literal_p(const pm_node_t *node) { return node->flags & PM_NODE_FLAG_STATIC_LITERAL; } static VALUE pm_new_regex(pm_regular_expression_node_t * cast, const pm_parser_t * parser) { VALUE regex_str = parse_string(&cast->unescaped, parser); rb_encoding * enc = pm_reg_enc(cast, parser); VALUE regex = rb_enc_reg_new(RSTRING_PTR(regex_str), RSTRING_LEN(regex_str), enc, pm_reg_flags((const pm_node_t *)cast)); RB_GC_GUARD(regex_str); rb_obj_freeze(regex); return regex; } /** * Certain nodes can be compiled literally. This function returns the literal * value described by the given node. For example, an array node with all static * literal values can be compiled into a literal array. */ static inline VALUE pm_static_literal_value(const pm_node_t *node, const pm_scope_node_t *scope_node) { // Every node that comes into this function should already be marked as // static literal. If it's not, then we have a bug somewhere. RUBY_ASSERT(pm_static_literal_p(node)); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_NODE: { pm_array_node_t *cast = (pm_array_node_t *) node; pm_node_list_t *elements = &cast->elements; VALUE value = rb_ary_hidden_new(elements->size); for (size_t index = 0; index < elements->size; index++) { rb_ary_push(value, pm_static_literal_value(elements->nodes[index], scope_node)); } OBJ_FREEZE(value); return value; } case PM_FALSE_NODE: return Qfalse; case PM_FLOAT_NODE: return parse_float(node); case PM_HASH_NODE: { pm_hash_node_t *cast = (pm_hash_node_t *) node; pm_node_list_t *elements = &cast->elements; VALUE array = rb_ary_hidden_new(elements->size * 2); for (size_t index = 0; index < elements->size; index++) { RUBY_ASSERT(PM_NODE_TYPE_P(elements->nodes[index], PM_ASSOC_NODE)); pm_assoc_node_t *cast = (pm_assoc_node_t *) elements->nodes[index]; VALUE pair[2] = { pm_static_literal_value(cast->key, scope_node), pm_static_literal_value(cast->value, scope_node) }; rb_ary_cat(array, pair, 2); } VALUE value = rb_hash_new_with_size(elements->size); rb_hash_bulk_insert(RARRAY_LEN(array), RARRAY_CONST_PTR(array), value); value = rb_obj_hide(value); OBJ_FREEZE(value); return value; } case PM_IMAGINARY_NODE: return parse_imaginary((pm_imaginary_node_t *) node); case PM_INTEGER_NODE: return parse_integer((pm_integer_node_t *) node); case PM_NIL_NODE: return Qnil; case PM_RATIONAL_NODE: return parse_rational(node); case PM_REGULAR_EXPRESSION_NODE: { pm_regular_expression_node_t *cast = (pm_regular_expression_node_t *) node; return pm_new_regex(cast, scope_node->parser); } case PM_SOURCE_ENCODING_NODE: { const char *name = scope_node->parser->encoding->name; rb_encoding *encoding = rb_find_encoding(rb_str_new_cstr(name)); if (!encoding) rb_bug("Encoding not found %s!", name); return rb_enc_from_encoding(encoding); } case PM_SOURCE_FILE_NODE: { pm_source_file_node_t *cast = (pm_source_file_node_t *)node; return cast->filepath.length ? parse_string(&cast->filepath, scope_node->parser) : rb_fstring_lit(""); } case PM_SOURCE_LINE_NODE: return INT2FIX(pm_node_line_number(scope_node->parser, node)); case PM_STRING_NODE: return parse_string_encoded(node, &((pm_string_node_t *)node)->unescaped, scope_node->parser); case PM_SYMBOL_NODE: return ID2SYM(parse_string_symbol((pm_symbol_node_t *)node, scope_node->parser)); case PM_TRUE_NODE: return Qtrue; default: rb_bug("Don't have a literal value for node type %s", pm_node_type_to_str(PM_NODE_TYPE(node))); return Qfalse; } } /** * Currently, the ADD_INSN family of macros expects a NODE as the second * parameter. It uses this node to determine the line number and the node ID for * the instruction. * * Because prism does not use the NODE struct (or have node IDs for that matter) * we need to generate a dummy node to pass to these macros. We also need to use * the line number from the node to generate labels. * * We use this struct to store the dummy node and the line number together so * that we can use it while we're compiling code. * * In the future, we'll need to eventually remove this dependency and figure out * a more permanent solution. For the line numbers, this shouldn't be too much * of a problem, we can redefine the ADD_INSN family of macros. For the node ID, * we can probably replace it directly with the column information since we have * that at the time that we're generating instructions. In theory this could * make node ID unnecessary. */ typedef struct { NODE node; int lineno; } pm_line_node_t; /** * The function generates a dummy node and stores the line number after it looks * it up for the given scope and node. (The scope in this case is just used * because it holds a reference to the parser, which holds a reference to the * newline list that we need to look up the line numbers.) */ static void pm_line_node(pm_line_node_t *line_node, const pm_scope_node_t *scope_node, const pm_node_t *node) { // First, clear out the pointer. memset(line_node, 0, sizeof(pm_line_node_t)); // Next, use the line number for the dummy node. int lineno = pm_node_line_number(scope_node->parser, node); nd_set_line(&line_node->node, lineno); nd_set_node_id(&line_node->node, lineno); line_node->lineno = lineno; } static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node); static void pm_compile_logical(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, cond); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); DECL_ANCHOR(seq); INIT_ANCHOR(seq); LABEL *label = NEW_LABEL(lineno); if (!then_label) then_label = label; else if (!else_label) else_label = label; pm_compile_branch_condition(iseq, seq, cond, then_label, else_label, popped, scope_node); if (LIST_INSN_SIZE_ONE(seq)) { INSN *insn = (INSN *)ELEM_FIRST_INSN(FIRST_ELEMENT(seq)); if (insn->insn_id == BIN(jump) && (LABEL *)(insn->operands[0]) == label) return; } if (!label->refcnt) { if (popped) { PM_PUTNIL; } } else { ADD_LABEL(seq, label); } ADD_SEQ(ret, seq); return; } static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node); static void pm_compile_flip_flop(pm_flip_flop_node_t *flip_flop_node, LABEL *else_label, LABEL *then_label, rb_iseq_t *iseq, const int lineno, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(ISEQ_BODY(iseq)->location.first_lineno, -1); LABEL *lend = NEW_LABEL(lineno); int again = !(flip_flop_node->base.flags & PM_RANGE_FLAGS_EXCLUDE_END); rb_num_t count = ISEQ_FLIP_CNT_INCREMENT(ISEQ_BODY(iseq)->local_iseq) + VM_SVAR_FLIPFLOP_START; VALUE key = INT2FIX(count); ADD_INSN2(ret, &dummy_line_node, getspecial, key, INT2FIX(0)); ADD_INSNL(ret, &dummy_line_node, branchif, lend); if (flip_flop_node->left) { PM_COMPILE(flip_flop_node->left); } else { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, branchunless, else_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, setspecial, key); if (!again) { ADD_INSNL(ret, &dummy_line_node, jump, then_label); } ADD_LABEL(ret, lend); if (flip_flop_node->right) { PM_COMPILE(flip_flop_node->right); } else { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, branchunless, then_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_INSN1(ret, &dummy_line_node, setspecial, key); ADD_INSNL(ret, &dummy_line_node, jump, then_label); } void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *defined_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition); static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, cond); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); again: switch (PM_NODE_TYPE(cond)) { case PM_AND_NODE: { pm_and_node_t *and_node = (pm_and_node_t *)cond; pm_compile_logical(iseq, ret, and_node->left, NULL, else_label, popped, scope_node); cond = and_node->right; goto again; } case PM_OR_NODE: { pm_or_node_t *or_node = (pm_or_node_t *)cond; pm_compile_logical(iseq, ret, or_node->left, then_label, NULL, popped, scope_node); cond = or_node->right; goto again; } case PM_FALSE_NODE: case PM_NIL_NODE: ADD_INSNL(ret, &dummy_line_node, jump, else_label); return; case PM_FLOAT_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_LAMBDA_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: ADD_INSNL(ret, &dummy_line_node, jump, then_label); return; case PM_FLIP_FLOP_NODE: pm_compile_flip_flop((pm_flip_flop_node_t *)cond, else_label, then_label, iseq, lineno, ret, popped, scope_node); return; // TODO: Several more nodes in this case statement case PM_DEFINED_NODE: { pm_defined_node_t *defined_node = (pm_defined_node_t *)cond; pm_compile_defined_expr(iseq, defined_node->value, ret, popped, scope_node, dummy_line_node, lineno, true); break; } default: { pm_compile_node(iseq, cond, ret, false, scope_node); break; } } ADD_INSNL(ret, &dummy_line_node, branchunless, else_label); ADD_INSNL(ret, &dummy_line_node, jump, then_label); return; } static void pm_compile_if(rb_iseq_t *iseq, const int line, pm_statements_node_t *node_body, pm_node_t *node_else, pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(line, line); LABEL *then_label, *else_label, *end_label; then_label = NEW_LABEL(line); else_label = NEW_LABEL(line); end_label = 0; pm_compile_branch_condition(iseq, ret, predicate, then_label, else_label, false, scope_node); if (then_label->refcnt) { ADD_LABEL(ret, then_label); DECL_ANCHOR(then_seq); INIT_ANCHOR(then_seq); if (node_body) { pm_compile_node(iseq, (pm_node_t *)node_body, then_seq, popped, scope_node); } else { PM_PUTNIL_UNLESS_POPPED; } if (else_label->refcnt) { end_label = NEW_LABEL(line); ADD_INSNL(then_seq, &dummy_line_node, jump, end_label); if (!popped) { ADD_INSN(then_seq, &dummy_line_node, pop); } } ADD_SEQ(ret, then_seq); } if (else_label->refcnt) { ADD_LABEL(ret, else_label); DECL_ANCHOR(else_seq); INIT_ANCHOR(else_seq); if (node_else) { pm_compile_node(iseq, (pm_node_t *)node_else, else_seq, popped, scope_node); } else { PM_PUTNIL_UNLESS_POPPED; } ADD_SEQ(ret, else_seq); } if (end_label) { ADD_LABEL(ret, end_label); } return; } static void pm_compile_while(rb_iseq_t *iseq, int lineno, pm_node_flags_t flags, enum pm_node_type type, pm_statements_node_t *statements, pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); LABEL *prev_start_label = ISEQ_COMPILE_DATA(iseq)->start_label; LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label; LABEL *prev_redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label; // TODO: Deal with ensures in here LABEL *next_label = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(lineno); /* next */ LABEL *redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label = NEW_LABEL(lineno); /* redo */ LABEL *break_label = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(lineno); /* break */ LABEL *end_label = NEW_LABEL(lineno); LABEL *adjust_label = NEW_LABEL(lineno); LABEL *next_catch_label = NEW_LABEL(lineno); LABEL *tmp_label = NULL; // begin; end while true if (flags & PM_LOOP_FLAGS_BEGIN_MODIFIER) { tmp_label = NEW_LABEL(lineno); ADD_INSNL(ret, &dummy_line_node, jump, tmp_label); } else { // while true; end ADD_INSNL(ret, &dummy_line_node, jump, next_label); } ADD_LABEL(ret, adjust_label); PM_PUTNIL; ADD_LABEL(ret, next_catch_label); PM_POP; ADD_INSNL(ret, &dummy_line_node, jump, next_label); if (tmp_label) ADD_LABEL(ret, tmp_label); ADD_LABEL(ret, redo_label); if (statements) { PM_COMPILE_POPPED((pm_node_t *)statements); } ADD_LABEL(ret, next_label); if (type == PM_WHILE_NODE) { pm_compile_branch_condition(iseq, ret, predicate, redo_label, end_label, popped, scope_node); } else if (type == PM_UNTIL_NODE) { pm_compile_branch_condition(iseq, ret, predicate, end_label, redo_label, popped, scope_node); } ADD_LABEL(ret, end_label); ADD_ADJUST_RESTORE(ret, adjust_label); PM_PUTNIL; ADD_LABEL(ret, break_label); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, redo_label, break_label, NULL, break_label); ADD_CATCH_ENTRY(CATCH_TYPE_NEXT, redo_label, break_label, NULL, next_catch_label); ADD_CATCH_ENTRY(CATCH_TYPE_REDO, redo_label, break_label, NULL, ISEQ_COMPILE_DATA(iseq)->redo_label); ISEQ_COMPILE_DATA(iseq)->start_label = prev_start_label; ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label; ISEQ_COMPILE_DATA(iseq)->redo_label = prev_redo_label; return; } static int pm_interpolated_node_compile(pm_node_list_t *parts, rb_iseq_t *iseq, NODE dummy_line_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { int number_of_items_pushed = 0; size_t parts_size = parts->size; if (parts_size > 0) { VALUE current_string = Qnil; for (size_t index = 0; index < parts_size; index++) { const pm_node_t *part = parts->nodes[index]; if (PM_NODE_TYPE_P(part, PM_STRING_NODE)) { const pm_string_node_t *string_node = (const pm_string_node_t *)part; VALUE string_value = parse_string_encoded((pm_node_t *)string_node, &string_node->unescaped, scope_node->parser); if (RTEST(current_string)) { current_string = rb_str_concat(current_string, string_value); } else { current_string = string_value; } } else if (PM_NODE_TYPE_P(part, PM_EMBEDDED_STATEMENTS_NODE) && ((const pm_embedded_statements_node_t *) part)->statements != NULL && ((const pm_embedded_statements_node_t *) part)->statements->body.size == 1 && PM_NODE_TYPE_P(((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0], PM_STRING_NODE)) { const pm_string_node_t *string_node = (const pm_string_node_t *) ((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0]; VALUE string_value = parse_string_encoded((pm_node_t *)string_node, &string_node->unescaped, scope_node->parser); if (RTEST(current_string)) { current_string = rb_str_concat(current_string, string_value); } else { current_string = string_value; } } else { if (!RTEST(current_string)) { rb_encoding *enc = rb_enc_from_index(rb_enc_find_index(scope_node->parser->encoding->name)); current_string = rb_enc_str_new(NULL, 0, enc); } if (ISEQ_COMPILE_DATA(iseq)->option->frozen_string_literal) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_freeze(current_string)); } else { ADD_INSN1(ret, &dummy_line_node, putstring, rb_str_freeze(current_string)); } current_string = Qnil; number_of_items_pushed++; PM_COMPILE_NOT_POPPED(part); PM_DUP; ADD_INSN1(ret, &dummy_line_node, objtostring, new_callinfo(iseq, idTo_s, 0, VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE , NULL, FALSE)); ADD_INSN(ret, &dummy_line_node, anytostring); number_of_items_pushed++; } } if (RTEST(current_string)) { current_string = rb_fstring(current_string); if (ISEQ_COMPILE_DATA(iseq)->option->frozen_string_literal) { ADD_INSN1(ret, &dummy_line_node, putobject, current_string); } else { ADD_INSN1(ret, &dummy_line_node, putstring, current_string); } current_string = Qnil; number_of_items_pushed++; } } else { PM_PUTNIL; } return number_of_items_pushed; } // This recurses through scopes and finds the local index at any scope level // It also takes a pointer to depth, and increments depth appropriately // according to the depth of the local. static pm_local_index_t pm_lookup_local_index(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, pm_constant_id_t constant_id, int start_depth) { pm_local_index_t lindex = { 0 }; st_data_t local_index; int level; for (level = 0; level < start_depth; level++) { scope_node = scope_node->previous; } while (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) { level++; if (scope_node->previous) { scope_node = scope_node->previous; } else { // We have recursed up all scope nodes // and have not found the local yet rb_bug("Local with constant_id %u does not exist", (unsigned int) constant_id); } } lindex.level = level; lindex.index = scope_node->local_table_for_iseq_size - (int) local_index; return lindex; } // This returns the CRuby ID which maps to the pm_constant_id_t // // Constant_ids in prism are indexes of the constants in prism's constant pool. // We add a constants mapping on the scope_node which is a mapping from // these constant_id indexes to the CRuby IDs that they represent. // This helper method allows easy access to those IDs static ID pm_constant_id_lookup(const pm_scope_node_t *scope_node, pm_constant_id_t constant_id) { if (constant_id < 1 || constant_id > scope_node->parser->constant_pool.size) { rb_bug("constant_id out of range: %u", (unsigned int)constant_id); } return scope_node->constants[constant_id - 1]; } static rb_iseq_t * pm_new_child_iseq(rb_iseq_t *iseq, pm_scope_node_t *node, VALUE name, const rb_iseq_t *parent, enum rb_iseq_type type, int line_no) { debugs("[new_child_iseq]> ---------------------------------------\n"); int isolated_depth = ISEQ_COMPILE_DATA(iseq)->isolated_depth; rb_iseq_t *ret_iseq = pm_iseq_new_with_opt(node, name, rb_iseq_path(iseq), rb_iseq_realpath(iseq), line_no, parent, isolated_depth ? isolated_depth + 1 : 0, type, ISEQ_COMPILE_DATA(iseq)->option); debugs("[new_child_iseq]< ---------------------------------------\n"); return ret_iseq; } static int pm_compile_class_path(LINK_ANCHOR *const ret, rb_iseq_t *iseq, const pm_node_t *constant_path_node, const NODE *line_node, bool popped, pm_scope_node_t *scope_node) { if (PM_NODE_TYPE_P(constant_path_node, PM_CONSTANT_PATH_NODE)) { pm_node_t *parent = ((pm_constant_path_node_t *)constant_path_node)->parent; if (parent) { /* Bar::Foo */ PM_COMPILE(parent); return VM_DEFINECLASS_FLAG_SCOPED; } else { /* toplevel class ::Foo */ ADD_INSN1(ret, line_node, putobject, rb_cObject); return VM_DEFINECLASS_FLAG_SCOPED; } } else { /* class at cbase Foo */ ADD_INSN1(ret, line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); return 0; } } /** * Compile either a call and write node or a call or write node. These look like * method calls that are followed by a ||= or &&= operator. */ static void pm_compile_call_and_or_write_node(bool and_node, pm_node_t *receiver, pm_node_t *value, pm_constant_id_t write_name, pm_constant_id_t read_name, bool safe_nav, LINK_ANCHOR *const ret, rb_iseq_t *iseq, int lineno, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); LABEL *lfin = NEW_LABEL(lineno); LABEL *lcfin = NEW_LABEL(lineno); LABEL *lskip = NULL; int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; ID id_read_name = pm_constant_id_lookup(scope_node, read_name); PM_COMPILE_NOT_POPPED(receiver); if (safe_nav) { lskip = NEW_LABEL(lineno); PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchnil, lskip); } PM_DUP; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, id_read_name, INT2FIX(0), INT2FIX(flag)); PM_DUP_UNLESS_POPPED; if (and_node) { ADD_INSNL(ret, &dummy_line_node, branchunless, lcfin); } else { ADD_INSNL(ret, &dummy_line_node, branchif, lcfin); } PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(value); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } ID id_write_name = pm_constant_id_lookup(scope_node, write_name); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, id_write_name, INT2FIX(1), INT2FIX(flag)); ADD_INSNL(ret, &dummy_line_node, jump, lfin); ADD_LABEL(ret, lcfin); if (!popped) PM_SWAP; ADD_LABEL(ret, lfin); if (lskip && popped) ADD_LABEL(ret, lskip); PM_POP; if (lskip && !popped) ADD_LABEL(ret, lskip); } /** * This function compiles a hash onto the stack. It is used to compile hash * literals and keyword arguments. It is assumed that if we get here that the * contents of the hash are not popped. */ static void pm_compile_hash_elements(const pm_node_list_t *elements, int lineno, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); // If this element is not popped, then we need to create the // hash on the stack. Neighboring plain assoc nodes should be // grouped together (either by newhash or hash merge). Double // splat nodes should be merged using the mege_kwd method call. int assoc_length = 0; bool made_hash = false; for (size_t index = 0; index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; switch (PM_NODE_TYPE(element)) { case PM_ASSOC_NODE: { // If this is a plain assoc node, then we can compile it directly // and then add to the number of assoc nodes we've seen so far. PM_COMPILE_NOT_POPPED(element); assoc_length++; break; } case PM_ASSOC_SPLAT_NODE: { // If we are at a splat and we have already compiled some elements // of the hash, then we need to either create the first hash or // merge the current elements into the existing hash. if (assoc_length > 0) { if (!made_hash) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(assoc_length * 2)); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PM_SWAP; made_hash = true; } else { // Here we are merging plain assoc nodes into the hash on // the stack. ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(assoc_length * 2 + 1)); // Since we already have a hash on the stack, we need to set // up the method call for the next merge that will occur. ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PM_SWAP; } assoc_length = 0; } // If this is the first time we've seen a splat, then we need to // create a hash that we can merge into. if (!made_hash) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(0)); made_hash = true; } // Now compile the splat node itself and merge it into the hash. PM_COMPILE_NOT_POPPED(element); ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_kwd, INT2FIX(2)); // We know that any subsequent elements will need to be merged in // using one of the special core methods. So here we will put the // receiver of the merge and then swap it with the hash that is // going to be the first argument. if (index != elements->size - 1) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PM_SWAP; } break; } default: RUBY_ASSERT("Invalid node type for hash" && false); break; } } if (!made_hash) { // If we haven't already made the hash, then this means we only saw // plain assoc nodes. In this case, we can just create the hash // directly. ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(assoc_length * 2)); } else if (assoc_length > 0) { // If we have already made the hash, then we need to merge the remaining // assoc nodes into the hash on the stack. ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(assoc_length * 2 + 1)); } } // This is details. Users should call pm_setup_args() instead. static int pm_setup_args_core(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, const bool has_regular_blockarg, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, NODE dummy_line_node) { int orig_argc = 0; bool has_splat = false; bool has_keyword_splat = false; if (arguments_node == NULL) { if (*flags & VM_CALL_FCALL) { *flags |= VM_CALL_VCALL; } } else { pm_node_list_t arguments_node_list = arguments_node->arguments; has_keyword_splat = (arguments_node->base.flags & PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT); // We count the number of elements post the splat node that are not keyword elements to // eventually pass as an argument to newarray int post_splat_counter = 0; for (size_t index = 0; index < arguments_node_list.size; index++) { pm_node_t *argument = arguments_node_list.nodes[index]; switch (PM_NODE_TYPE(argument)) { // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes case PM_KEYWORD_HASH_NODE: { pm_keyword_hash_node_t *keyword_arg = (pm_keyword_hash_node_t *)argument; if (has_keyword_splat || has_splat) { *flags |= VM_CALL_KW_SPLAT; has_keyword_splat = true; pm_compile_hash_elements(&keyword_arg->elements, nd_line(&dummy_line_node), iseq, ret, scope_node); } else { size_t len = keyword_arg->elements.size; // We need to first figure out if all elements of the KeywordHashNode are AssocNodes // with symbol keys. if (PM_NODE_FLAG_P(keyword_arg, PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS)) { // If they are all symbol keys then we can pass them as keyword arguments. *kw_arg = rb_xmalloc_mul_add(len, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); *flags |= VM_CALL_KWARG; VALUE *keywords = (*kw_arg)->keywords; (*kw_arg)->references = 0; (*kw_arg)->keyword_len = (int)len; for (size_t i = 0; i < len; i++) { pm_assoc_node_t *assoc = (pm_assoc_node_t *)keyword_arg->elements.nodes[i]; pm_node_t *key = assoc->key; keywords[i] = pm_static_literal_value(key, scope_node); PM_COMPILE_NOT_POPPED(assoc->value); } } else { // If they aren't all symbol keys then we need to construct a new hash // and pass that as an argument. orig_argc++; *flags |= VM_CALL_KW_SPLAT; if (len > 1) { // A new hash will be created for the keyword arguments in this case, // so mark the method as passing mutable keyword splat. *flags |= VM_CALL_KW_SPLAT_MUT; } for (size_t i = 0; i < len; i++) { pm_assoc_node_t *assoc = (pm_assoc_node_t *)keyword_arg->elements.nodes[i]; PM_COMPILE_NOT_POPPED(assoc->key); PM_COMPILE_NOT_POPPED(assoc->value); } ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(len * 2)); } } break; } case PM_SPLAT_NODE: { *flags |= VM_CALL_ARGS_SPLAT; pm_splat_node_t *splat_node = (pm_splat_node_t *)argument; if (splat_node->expression) { PM_COMPILE_NOT_POPPED(splat_node->expression); } else { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); ADD_GETLOCAL(ret, &dummy_line_node, index.index, index.level); } bool first_splat = !has_splat; if (first_splat) { // If this is the first splat array seen and it's not the // last parameter, we want splatarray to dup it. // // foo(a, *b, c) // ^^ if (index + 1 < arguments_node_list.size || has_regular_blockarg) { ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); *flags |= VM_CALL_ARGS_SPLAT_MUT; } // If this is the first spalt array seen and it's the last // parameter, we don't want splatarray to dup it. // // foo(a, *b) // ^^ else { ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); } } else { // If this is not the first splat array seen and it is also // the last parameter, we don't want splatarray to dup it // and we need to concat the array. // // foo(a, *b, *c) // ^^ ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); ADD_INSN(ret, &dummy_line_node, concatarray); } has_splat = true; post_splat_counter = 0; break; } case PM_FORWARDING_ARGUMENTS_NODE: { orig_argc += 2; *flags |= VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_SPLAT_MUT | VM_CALL_ARGS_BLOCKARG | VM_CALL_KW_SPLAT; // Forwarding arguments nodes are treated as foo(*, **, &) // So foo(...) equals foo(*, **, &) and as such the local // table for this method is known in advance // // Push the * pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); ADD_GETLOCAL(ret, &dummy_line_node, mult_local.index, mult_local.level); ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); // Push the ** pm_local_index_t pow_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0); ADD_GETLOCAL(ret, &dummy_line_node, pow_local.index, pow_local.level); // Push the & pm_local_index_t and_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0); ADD_INSN2(ret, &dummy_line_node, getblockparamproxy, INT2FIX(and_local.index + VM_ENV_DATA_SIZE - 1), INT2FIX(and_local.level)); ADD_INSN(ret, &dummy_line_node, splatkw); break; } default: { post_splat_counter++; PM_COMPILE_NOT_POPPED(argument); // If we have a splat and we've seen a splat, we need to process // everything after the splat. if (has_splat) { // Stack items are turned into an array and concatenated in // the following cases: // // If the next node is a splat: // // foo(*a, b, *c) // // If the next node is a kwarg or kwarg splat: // // foo(*a, b, c: :d) // foo(*a, b, **c) // // If the next node is NULL (we have hit the end): // // foo(*a, b) if (index == arguments_node_list.size - 1) { RUBY_ASSERT(post_splat_counter > 0); ADD_INSN1(ret, &dummy_line_node, pushtoarray, INT2FIX(post_splat_counter)); } else { pm_node_t *next_arg = arguments_node_list.nodes[index + 1]; switch (PM_NODE_TYPE(next_arg)) { // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes case PM_KEYWORD_HASH_NODE: { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(post_splat_counter)); ADD_INSN(ret, &dummy_line_node, concatarray); break; } case PM_SPLAT_NODE: { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(post_splat_counter)); ADD_INSN(ret, &dummy_line_node, concatarray); break; } default: break; } } } else { orig_argc++; } } } } } if (has_splat) { orig_argc++; } if (has_keyword_splat) { orig_argc++; } return orig_argc; } // Compile the argument parts of a call static int pm_setup_args(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, NODE dummy_line_node) { if (block && PM_NODE_TYPE_P(block, PM_BLOCK_ARGUMENT_NODE)) { // We compile the `&block_arg` expression first and stitch it later // since the nature of the expression influences whether splat should // duplicate the array. bool regular_block_arg = true; DECL_ANCHOR(block_arg); INIT_ANCHOR(block_arg); pm_compile_node(iseq, block, block_arg, false, scope_node); *flags |= VM_CALL_ARGS_BLOCKARG; if (LIST_INSN_SIZE_ONE(block_arg)) { LINK_ELEMENT *elem = FIRST_ELEMENT(block_arg); if (IS_INSN(elem)) { INSN *iobj = (INSN *)elem; if (iobj->insn_id == BIN(getblockparam)) { iobj->insn_id = BIN(getblockparamproxy); } // Allow splat without duplication for simple one-instruction // block arguments like `&arg`. It is known that this optimization // can be too aggressive in some cases. See [Bug #16504]. regular_block_arg = false; } } int argc = pm_setup_args_core(arguments_node, block, flags, regular_block_arg, kw_arg, iseq, ret, scope_node, dummy_line_node); ADD_SEQ(ret, block_arg); return argc; } return pm_setup_args_core(arguments_node, block, flags, false, kw_arg, iseq, ret, scope_node, dummy_line_node); } /** * Compile an index operator write node, which is a node that is writing a value * using the [] and []= methods. It looks like: * * foo[bar] += baz * * This breaks down to caching the receiver and arguments on the stack, calling * the [] method, calling the operator method with the result of the [] method, * and then calling the []= method with the result of the operator method. */ static void pm_compile_index_operator_write_node(pm_scope_node_t *scope_node, const pm_index_operator_write_node_t *node, rb_iseq_t *iseq, LINK_ANCHOR *const ret, bool popped) { int lineno = pm_node_line_number(scope_node->parser, (const pm_node_t *) node); const NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); if (!popped) { PM_PUTNIL; } PM_COMPILE_NOT_POPPED(node->receiver); int boff = (node->block == NULL ? 0 : 1); int flag = PM_NODE_TYPE_P(node->receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(node->arguments, node->block, &flag, &keywords, iseq, ret, scope_node, dummy_line_node); if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) { if (boff) { ADD_INSN(ret, &dummy_line_node, splatkw); } else { ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN(ret, &dummy_line_node, splatkw); ADD_INSN(ret, &dummy_line_node, pop); } } int dup_argn = argc + 1 + boff; int keyword_len = 0; if (keywords) { keyword_len = keywords->keyword_len; dup_argn += keyword_len; } ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(dup_argn)); ADD_SEND_R(ret, &dummy_line_node, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords); PM_COMPILE_NOT_POPPED(node->value); ID id_operator = pm_constant_id_lookup(scope_node, node->operator); ADD_SEND(ret, &dummy_line_node, id_operator, INT2FIX(1)); if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(dup_argn + 1)); } if (flag & VM_CALL_ARGS_SPLAT) { if (flag & VM_CALL_KW_SPLAT) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(2 + boff)); if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); flag |= VM_CALL_ARGS_SPLAT_MUT; } ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, pushtoarray, INT2FIX(1)); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(2 + boff)); ADD_INSN(ret, &dummy_line_node, pop); } else { if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(3)); ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN(ret, &dummy_line_node, pop); } if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); ADD_INSN(ret, &dummy_line_node, swap); flag |= VM_CALL_ARGS_SPLAT_MUT; } ADD_INSN1(ret, &dummy_line_node, pushtoarray, INT2FIX(1)); if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(3)); PM_POP; PM_POP; } } ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords); } else if (flag & VM_CALL_KW_SPLAT) { if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(2)); ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(3)); PM_POP; } ADD_INSN(ret, &dummy_line_node, swap); ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else if (keyword_len) { ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN1(ret, &dummy_line_node, opt_reverse, INT2FIX(keyword_len + boff + 2)); ADD_INSN1(ret, &dummy_line_node, opt_reverse, INT2FIX(keyword_len + boff + 1)); ADD_INSN(ret, &dummy_line_node, pop); ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else { if (boff > 0) { PM_SWAP; } ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } PM_POP; } /** * Compile an index control flow write node, which is a node that is writing a * value using the [] and []= methods and the &&= and ||= operators. It looks * like: * * foo[bar] ||= baz * * This breaks down to caching the receiver and arguments on the stack, calling * the [] method, checking the result and then changing control flow based on * it. If the value would result in a write, then the value is written using the * []= method. */ static void pm_compile_index_control_flow_write_node(pm_scope_node_t *scope_node, const pm_node_t *node, const pm_node_t *receiver, const pm_arguments_node_t *arguments, const pm_node_t *block, const pm_node_t *value, rb_iseq_t *iseq, LINK_ANCHOR *const ret, bool popped) { int lineno = pm_node_line_number(scope_node->parser, node); const NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); if (!popped) { PM_PUTNIL; } PM_COMPILE_NOT_POPPED(receiver); int boff = (block == NULL ? 0 : 1); int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(arguments, block, &flag, &keywords, iseq, ret, scope_node, dummy_line_node); if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) { if (boff) { ADD_INSN(ret, &dummy_line_node, splatkw); } else { ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN(ret, &dummy_line_node, splatkw); ADD_INSN(ret, &dummy_line_node, pop); } } int dup_argn = argc + 1 + boff; int keyword_len = 0; if (keywords) { keyword_len = keywords->keyword_len; dup_argn += keyword_len; } ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(dup_argn)); ADD_SEND_R(ret, &dummy_line_node, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords); LABEL *label = NEW_LABEL(lineno); LABEL *lfin = NEW_LABEL(lineno); ADD_INSN(ret, &dummy_line_node, dup); if (PM_NODE_TYPE_P(node, PM_INDEX_AND_WRITE_NODE)) { ADD_INSNL(ret, &dummy_line_node, branchunless, label); } else { ADD_INSNL(ret, &dummy_line_node, branchif, label); } PM_POP; PM_COMPILE_NOT_POPPED(value); if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(dup_argn + 1)); } if (flag & VM_CALL_ARGS_SPLAT) { if (flag & VM_CALL_KW_SPLAT) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(2 + boff)); if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); flag |= VM_CALL_ARGS_SPLAT_MUT; } ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, pushtoarray, INT2FIX(1)); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(2 + boff)); ADD_INSN(ret, &dummy_line_node, pop); } else { if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(3)); ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN(ret, &dummy_line_node, pop); } if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); ADD_INSN(ret, &dummy_line_node, swap); flag |= VM_CALL_ARGS_SPLAT_MUT; } ADD_INSN1(ret, &dummy_line_node, pushtoarray, INT2FIX(1)); if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(3)); PM_POP; PM_POP; } } ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords); } else if (flag & VM_CALL_KW_SPLAT) { if (boff > 0) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(2)); ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(3)); PM_POP; } ADD_INSN(ret, &dummy_line_node, swap); ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else if (keyword_len) { ADD_INSN1(ret, &dummy_line_node, opt_reverse, INT2FIX(keyword_len + boff + 1)); ADD_INSN1(ret, &dummy_line_node, opt_reverse, INT2FIX(keyword_len + boff + 0)); ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else { if (boff > 0) { PM_SWAP; } ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } PM_POP; ADD_INSNL(ret, &dummy_line_node, jump, lfin); ADD_LABEL(ret, label); if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(dup_argn + 1)); } ADD_INSN1(ret, &dummy_line_node, adjuststack, INT2FIX(dup_argn + 1)); ADD_LABEL(ret, lfin); } // When we compile a pattern matching expression, we use the stack as a scratch // space to store lots of different values (consider it like we have a pattern // matching function and we need space for a bunch of different local // variables). The "base index" refers to the index on the stack where we // started compiling the pattern matching expression. These offsets from that // base index indicate the location of the various locals we need. #define PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE 0 #define PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING 1 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P 2 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE 3 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY 4 // A forward declaration because this is the recursive function that handles // compiling a pattern. It can be reentered by nesting patterns, as in the case // of arrays or hashes. static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index); /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched. */ static int pm_compile_pattern_generic_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, message); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(2)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to match a specific deconstructed length. */ static int pm_compile_pattern_length_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, VALUE length, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, message); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, length); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(4)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to pass a specific #=== method call. */ static int pm_compile_pattern_eqq_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p === %p does not return true")); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(5)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); ADD_INSN1(ret, &line.node, setn, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); return COMPILE_OK; } /** * This is a variation on compiling a pattern matching expression that is used * to have the pattern matching instructions fall through to immediately after * the pattern if it passes. Otherwise it jumps to the given unmatched_label * label. */ static int pm_compile_pattern_match(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { LABEL *matched_label = NEW_LABEL(nd_line(node)); CHECK(pm_compile_pattern(iseq, scope_node, node, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); ADD_LABEL(ret, matched_label); return COMPILE_OK; } /** * This function compiles in the code necessary to call #deconstruct on the * value to match against. It raises appropriate errors if the method does not * exist or if it returns the wrong type. */ static int pm_compile_pattern_deconstruct(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *deconstruct_label, LABEL *match_failed_label, LABEL *deconstructed_label, LABEL *type_error_label, bool in_single_pattern, bool use_deconstructed_cache, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); ADD_INSNL(ret, &line.node, branchnil, deconstruct_label); ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE - 1)); ADD_INSNL(ret, &line.node, jump, deconstructed_label); } else { ADD_INSNL(ret, &line.node, jump, deconstruct_label); } ADD_LABEL(ret, deconstruct_label); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, ID2SYM(rb_intern("deconstruct"))); ADD_SEND(ret, &line.node, idRespond_to, INT2FIX(1)); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE + 1)); } if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_SEND(ret, &line.node, rb_intern("deconstruct"), INT2FIX(0)); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); } ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, checktype, INT2FIX(T_ARRAY)); ADD_INSNL(ret, &line.node, branchunless, type_error_label); ADD_LABEL(ret, deconstructed_label); return COMPILE_OK; } /** * This function compiles in the code necessary to match against the optional * constant path that is attached to an array, find, or hash pattern. */ static int pm_compile_pattern_constant(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *match_failed_label, bool in_single_pattern, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); ADD_INSN(ret, &line.node, dup); PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { ADD_INSN1(ret, &line.node, dupn, INT2FIX(2)); } ADD_INSN1(ret, &line.node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { CHECK(pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 3)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); return COMPILE_OK; } /** * When matching fails, an appropriate error must be raised. This function is * responsible for compiling in those error raising instructions. */ static void pm_compile_pattern_error_handler(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *done_label, bool popped) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *key_error_label = NEW_LABEL(line.lineno); LABEL *cleanup_label = NEW_LABEL(line.lineno); struct rb_callinfo_kwarg *kw_arg = rb_xmalloc_mul_add(2, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); kw_arg->references = 0; kw_arg->keyword_len = 2; kw_arg->keywords[0] = ID2SYM(rb_intern("matchee")); kw_arg->keywords[1] = ID2SYM(rb_intern("key")); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSNL(ret, &line.node, branchif, key_error_label); ADD_INSN1(ret, &line.node, putobject, rb_eNoMatchingPatternError); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p: %s")); ADD_INSN1(ret, &line.node, topn, INT2FIX(4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSNL(ret, &line.node, jump, cleanup_label); ADD_LABEL(ret, key_error_label); ADD_INSN1(ret, &line.node, putobject, rb_eNoMatchingPatternKeyError); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p: %s")); ADD_INSN1(ret, &line.node, topn, INT2FIX(4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); ADD_SEND_R(ret, &line.node, rb_intern("new"), INT2FIX(1), NULL, INT2FIX(VM_CALL_KWARG), kw_arg); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(1)); ADD_LABEL(ret, cleanup_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(7)); if (!popped) ADD_INSN(ret, &line.node, putnil); ADD_INSNL(ret, &line.node, jump, done_label); ADD_INSN1(ret, &line.node, dupn, INT2FIX(5)); if (popped) ADD_INSN(ret, &line.node, putnil); } /** * Compile a pattern matching expression. */ static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_PATTERN_NODE: { // Array patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces. They are represented by a // ArrayPatternNode. This looks like: // // foo => [1, 2, 3] // // It can optionally have a splat in the middle of it, which can // optionally have a name attached. const pm_array_pattern_node_t *cast = (const pm_array_pattern_node_t *) node; const size_t requireds_size = cast->requireds.size; const size_t posts_size = cast->posts.size; const size_t minimum_size = requireds_size + posts_size; bool rest_named = false; bool use_rest_size = false; if (cast->rest != NULL) { rest_named = (PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) cast->rest)->expression != NULL); use_rest_size = (rest_named || (!rest_named && posts_size > 0)); } LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); LABEL *deconstruct_label = NEW_LABEL(line.lineno); LABEL *deconstructed_label = NEW_LABEL(line.lineno); if (use_rest_size) { ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_INSN(ret, &line.node, swap); base_index++; } if (cast->constant != NULL) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, cast->rest == NULL ? idEq : idGE, INT2FIX(1)); if (in_single_pattern) { VALUE message = cast->rest == NULL ? rb_fstring_lit("%p length mismatch (given %p, expected %p)") : rb_fstring_lit("%p length mismatch (given %p, expected %p+)"); CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, message, INT2FIX(minimum_size), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); for (size_t index = 0; index < requireds_size; index++) { const pm_node_t *required = cast->requireds.nodes[index]; ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(index)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, required, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } if (cast->rest != NULL) { if (rest_named) { ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(requireds_size)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, setn, INT2FIX(4)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, ((const pm_splat_node_t *) cast->rest)->expression, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } else if (posts_size > 0) { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, setn, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); } } for (size_t index = 0; index < posts_size; index++) { const pm_node_t *post = cast->posts.nodes[index]; ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(requireds_size + index)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, post, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } ADD_INSN(ret, &line.node, pop); if (use_rest_size) { ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); if (use_rest_size) { ADD_INSN(ret, &line.node, putnil); } ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct must return Array")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); if (use_rest_size) { ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_FIND_PATTERN_NODE: { // Find patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces and using a splat on both the left // and right side of the pattern. This looks like: // // foo => [*, 1, 2, 3, *] // // There can be any number of requireds in the middle. The splats on // both sides can optionally have names attached. const pm_find_pattern_node_t *cast = (const pm_find_pattern_node_t *) node; const size_t size = cast->requireds.size; LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); LABEL *deconstruct_label = NEW_LABEL(line.lineno); LABEL *deconstructed_label = NEW_LABEL(line.lineno); if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idGE, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, rb_fstring_lit("%p length mismatch (given %p, expected %p+)"), INT2FIX(size), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); { LABEL *while_begin_label = NEW_LABEL(line.lineno); LABEL *next_loop_label = NEW_LABEL(line.lineno); LABEL *find_succeeded_label = NEW_LABEL(line.lineno); LABEL *find_failed_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_LABEL(ret, while_begin_label); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, idLE, INT2FIX(1)); ADD_INSNL(ret, &line.node, branchunless, find_failed_label); for (size_t index = 0; index < size; index++) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); if (index != 0) { ADD_INSN1(ret, &line.node, putobject, INT2FIX(index)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); } ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->requireds.nodes[index], ret, next_loop_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } RUBY_ASSERT(PM_NODE_TYPE_P(cast->left, PM_SPLAT_NODE)); const pm_splat_node_t *left = (const pm_splat_node_t *) cast->left; if (left->expression != NULL) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, left->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } RUBY_ASSERT(PM_NODE_TYPE_P(cast->right, PM_SPLAT_NODE)); const pm_splat_node_t *right = (const pm_splat_node_t *) cast->right; if (right->expression != NULL) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); pm_compile_pattern_match(iseq, scope_node, right->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4); } ADD_INSNL(ret, &line.node, jump, find_succeeded_label); ADD_LABEL(ret, next_loop_label); ADD_INSN1(ret, &line.node, putobject, INT2FIX(1)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_INSNL(ret, &line.node, jump, while_begin_label); ADD_LABEL(ret, find_failed_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(3)); if (in_single_pattern) { ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p does not match to find pattern")); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(2)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, match_failed_label); ADD_INSN1(ret, &line.node, dupn, INT2FIX(3)); ADD_LABEL(ret, find_succeeded_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(3)); } ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct must return Array")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_HASH_PATTERN_NODE: { // Hash patterns in pattern matching are triggered by using labels and // values in a pattern or by using the ** operator. They are represented // by the HashPatternNode. This looks like: // // foo => { a: 1, b: 2, **bar } // // It can optionally have an assoc splat in the middle of it, which can // optionally have a name. const pm_hash_pattern_node_t *cast = (const pm_hash_pattern_node_t *) node; // We don't consider it a "rest" parameter if it's a ** that is unnamed. bool has_rest = cast->rest != NULL && !(PM_NODE_TYPE_P(cast->rest, PM_ASSOC_SPLAT_NODE) && ((const pm_assoc_splat_node_t *) cast->rest)->value == NULL); bool has_keys = cast->elements.size > 0 || cast->rest != NULL; LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); VALUE keys = Qnil; if (has_keys && !has_rest) { keys = rb_ary_new_capa(cast->elements.size); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_node_t *key = ((const pm_assoc_node_t *) element)->key; RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol((const pm_symbol_node_t *)key, scope_node->parser)); rb_ary_push(keys, symbol); } } if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, ID2SYM(rb_intern("deconstruct_keys"))); ADD_SEND(ret, &line.node, idRespond_to, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct_keys"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); if (NIL_P(keys)) { ADD_INSN(ret, &line.node, putnil); } else { ADD_INSN1(ret, &line.node, duparray, keys); RB_OBJ_WRITTEN(iseq, Qundef, rb_obj_hide(keys)); } ADD_SEND(ret, &line.node, rb_intern("deconstruct_keys"), INT2FIX(1)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, checktype, INT2FIX(T_HASH)); ADD_INSNL(ret, &line.node, branchunless, type_error_label); if (has_rest) { ADD_SEND(ret, &line.node, rb_intern("dup"), INT2FIX(0)); } if (has_keys) { DECL_ANCHOR(match_values); INIT_ANCHOR(match_values); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; const pm_node_t *key = assoc->key; RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol((const pm_symbol_node_t *)key, scope_node->parser)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, symbol); ADD_SEND(ret, &line.node, rb_intern("key?"), INT2FIX(1)); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putobject, rb_str_freeze(rb_sprintf("key not found: %+"PRIsVALUE, symbol))); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 2)); ADD_INSN1(ret, &line.node, putobject, Qtrue); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); ADD_INSN1(ret, &line.node, putobject, symbol); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(4)); ADD_LABEL(ret, match_succeeded_label); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_INSN(match_values, &line.node, dup); ADD_INSN1(match_values, &line.node, putobject, symbol); ADD_SEND(match_values, &line.node, has_rest ? rb_intern("delete") : idAREF, INT2FIX(1)); const pm_node_t *value = assoc->value; if (PM_NODE_TYPE_P(value, PM_IMPLICIT_NODE)) { value = ((const pm_implicit_node_t *) value)->value; } CHECK(pm_compile_pattern_match(iseq, scope_node, value, match_values, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } ADD_SEQ(ret, match_values); } else { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idEmptyP, INT2FIX(0)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p is not empty"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); } if (has_rest) { switch (PM_NODE_TYPE(cast->rest)) { case PM_NO_KEYWORDS_PARAMETER_NODE: { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idEmptyP, INT2FIX(0)); if (in_single_pattern) { pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("rest of %p is not empty"), base_index + 1); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); break; } case PM_ASSOC_SPLAT_NODE: { const pm_assoc_splat_node_t *splat = (const pm_assoc_splat_node_t *) cast->rest; ADD_INSN(ret, &line.node, dup); pm_compile_pattern_match(iseq, scope_node, splat->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1); break; } default: rb_bug("unreachable"); break; } } ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct_keys must return Hash")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_CAPTURE_PATTERN_NODE: { // Capture patterns allow you to pattern match against an element in a // pattern and also capture the value into a local variable. This looks // like: // // [1] => [Integer => foo] // // In this case the `Integer => foo` will be represented by a // CapturePatternNode, which has both a value (the pattern to match // against) and a target (the place to write the variable into). const pm_capture_pattern_node_t *cast = (const pm_capture_pattern_node_t *) node; LABEL *match_failed_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index + 1)); CHECK(pm_compile_pattern(iseq, scope_node, cast->target, ret, matched_label, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index)); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_LOCAL_VARIABLE_TARGET_NODE: { // Local variables can be targetted by placing identifiers in the place // of a pattern. For example, foo in bar. This results in the value // being matched being written to that local variable. pm_local_variable_target_node_t *cast = (pm_local_variable_target_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); // If this local variable is being written from within an alternation // pattern, then it cannot actually be added to the local table since // it's ambiguous which value should be used. So instead we indicate // this with a compile error. if (in_alternation_pattern) { ID id = pm_constant_id_lookup(scope_node, cast->name); const char *name = rb_id2name(id); if (name && strlen(name) > 0 && name[0] != '_') { COMPILE_ERROR(ERROR_ARGS "illegal variable in alternative pattern (%"PRIsVALUE")", rb_id2str(id)); return COMPILE_NG; } } ADD_SETLOCAL(ret, &line.node, index.index, index.level); ADD_INSNL(ret, &line.node, jump, matched_label); break; } case PM_ALTERNATION_PATTERN_NODE: { // Alternation patterns allow you to specify multiple patterns in a // single expression using the | operator. pm_alternation_pattern_node_t *cast = (pm_alternation_pattern_node_t *) node; LABEL *matched_left_label = NEW_LABEL(line.lineno); LABEL *unmatched_left_label = NEW_LABEL(line.lineno); // First, we're going to attempt to match against the left pattern. If // that pattern matches, then we'll skip matching the right pattern. ADD_INSN(ret, &line.node, dup); CHECK(pm_compile_pattern(iseq, scope_node, cast->left, ret, matched_left_label, unmatched_left_label, in_single_pattern, true, true, base_index + 1)); // If we get here, then we matched on the left pattern. In this case we // should pop out the duplicate value that we preemptively added to // match against the right pattern and then jump to the match label. ADD_LABEL(ret, matched_left_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); // If we get here, then we didn't match on the left pattern. In this // case we attempt to match against the right pattern. ADD_LABEL(ret, unmatched_left_label); CHECK(pm_compile_pattern(iseq, scope_node, cast->right, ret, matched_label, unmatched_label, in_single_pattern, true, true, base_index)); break; } case PM_PINNED_EXPRESSION_NODE: // Pinned expressions are a way to match against the value of an // expression that should be evaluated at runtime. This looks like: // foo in ^(bar). To compile these, we compile the expression as if it // were a literal value by falling through to the literal case. node = ((pm_pinned_expression_node_t *) node)->expression; /* fallthrough */ case PM_ARRAY_NODE: case PM_CLASS_VARIABLE_READ_NODE: case PM_CONSTANT_PATH_NODE: case PM_CONSTANT_READ_NODE: case PM_FALSE_NODE: case PM_FLOAT_NODE: case PM_GLOBAL_VARIABLE_READ_NODE: case PM_IMAGINARY_NODE: case PM_INSTANCE_VARIABLE_READ_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_INTERPOLATED_SYMBOL_NODE: case PM_INTERPOLATED_X_STRING_NODE: case PM_LAMBDA_NODE: case PM_LOCAL_VARIABLE_READ_NODE: case PM_NIL_NODE: case PM_SOURCE_ENCODING_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_RANGE_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SELF_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: case PM_X_STRING_NODE: { // These nodes are all simple patterns, which means we'll use the // checkmatch instruction to match against them, which is effectively a // VM-level === operator. PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { ADD_INSN1(ret, &line.node, dupn, INT2FIX(2)); } ADD_INSN1(ret, &line.node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 2); } ADD_INSNL(ret, &line.node, branchif, matched_label); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_PINNED_VARIABLE_NODE: { // Pinned variables are a way to match against the value of a variable // without it looking like you're trying to write to the variable. This // looks like: foo in ^@bar. To compile these, we compile the variable // that they hold. pm_pinned_variable_node_t *cast = (pm_pinned_variable_node_t *) node; CHECK(pm_compile_pattern(iseq, scope_node, cast->variable, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index)); break; } case PM_IF_NODE: case PM_UNLESS_NODE: { // If and unless nodes can show up here as guards on `in` clauses. This // looks like: // // case foo // in bar if baz? // qux // end // // Because we know they're in the modifier form and they can't have any // variation on this pattern, we compile them differently (more simply) // here than we would in the normal compilation path. const pm_node_t *predicate; const pm_node_t *statement; if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { const pm_if_node_t *cast = (const pm_if_node_t *) node; predicate = cast->predicate; RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } else { const pm_unless_node_t *cast = (const pm_unless_node_t *) node; predicate = cast->predicate; RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } CHECK(pm_compile_pattern_match(iseq, scope_node, statement, ret, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); PM_COMPILE_NOT_POPPED(predicate); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); } else { ADD_INSNL(ret, &line.node, branchunless, match_succeeded_label); } ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("guard clause does not return true")); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); } if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { ADD_INSNL(ret, &line.node, branchunless, unmatched_label); } else { ADD_INSNL(ret, &line.node, branchif, unmatched_label); } ADD_INSNL(ret, &line.node, jump, matched_label); break; } default: // If we get here, then we have a node type that should not be in this // position. This would be a bug in the parser, because a different node // type should never have been created in this position in the tree. rb_bug("Unexpected node type in pattern matching expression: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } return COMPILE_OK; } #undef PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE #undef PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY // Generate a scope node from the given node. void pm_scope_node_init(const pm_node_t *node, pm_scope_node_t *scope, pm_scope_node_t *previous, const pm_parser_t *parser) { // This is very important, otherwise the scope node could be seen as having // certain flags set that _should not_ be set. memset(scope, 0, sizeof(pm_scope_node_t)); scope->base.type = PM_SCOPE_NODE; scope->base.location.start = node->location.start; scope->base.location.end = node->location.end; scope->previous = previous; scope->parser = parser; scope->ast_node = (pm_node_t *)node; if (previous) { scope->constants = previous->constants; } switch (PM_NODE_TYPE(node)) { case PM_BLOCK_NODE: { pm_block_node_t *cast = (pm_block_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; scope->parameters = cast->parameters; break; } case PM_CLASS_NODE: { pm_class_node_t *cast = (pm_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_DEF_NODE: { pm_def_node_t *cast = (pm_def_node_t *) node; scope->parameters = (pm_node_t *)cast->parameters; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_ENSURE_NODE: { scope->body = (pm_node_t *)node; break; } case PM_FOR_NODE: { pm_for_node_t *cast = (pm_for_node_t *)node; scope->body = (pm_node_t *)cast->statements; break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { RUBY_ASSERT(node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE); scope->body = (pm_node_t *)node; break; } case PM_LAMBDA_NODE: { pm_lambda_node_t *cast = (pm_lambda_node_t *) node; scope->parameters = cast->parameters; scope->body = cast->body; scope->locals = cast->locals; if (cast->parameters != NULL) { scope->base.location.start = cast->parameters->location.start; } else { scope->base.location.start = cast->operator_loc.end; } break; } case PM_MODULE_NODE: { pm_module_node_t *cast = (pm_module_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_POST_EXECUTION_NODE: { pm_post_execution_node_t *cast = (pm_post_execution_node_t *) node; scope->body = (pm_node_t *) cast->statements; break; } case PM_PROGRAM_NODE: { pm_program_node_t *cast = (pm_program_node_t *) node; scope->body = (pm_node_t *) cast->statements; scope->locals = cast->locals; break; } case PM_RESCUE_NODE: { pm_rescue_node_t *cast = (pm_rescue_node_t *)node; scope->body = (pm_node_t *)cast->statements; break; } case PM_RESCUE_MODIFIER_NODE: { pm_rescue_modifier_node_t *cast = (pm_rescue_modifier_node_t *)node; scope->body = (pm_node_t *)cast->rescue_expression; break; } case PM_SINGLETON_CLASS_NODE: { pm_singleton_class_node_t *cast = (pm_singleton_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_STATEMENTS_NODE: { pm_statements_node_t *cast = (pm_statements_node_t *) node; scope->body = (pm_node_t *)cast; break; } default: rb_bug("unreachable"); break; } } void pm_scope_node_destroy(pm_scope_node_t *scope_node) { if (scope_node->index_lookup_table) { st_free_table(scope_node->index_lookup_table); } } static void pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start); void pm_compile_defined_expr0(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition, LABEL **lfinish, bool explicit_receiver) { // in_condition is the same as compile.c's needstr enum defined_type dtype = DEFINED_NOT_DEFINED; switch (PM_NODE_TYPE(node)) { case PM_ARGUMENTS_NODE: { const pm_arguments_node_t *cast = (pm_arguments_node_t *) node; const pm_node_list_t *arguments = &cast->arguments; for (size_t idx = 0; idx < arguments->size; idx++) { const pm_node_t *argument = arguments->nodes[idx]; pm_compile_defined_expr0(iseq, argument, ret, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, explicit_receiver); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } dtype = DEFINED_TRUE; break; } case PM_NIL_NODE: dtype = DEFINED_NIL; break; case PM_PARENTHESES_NODE: { const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node; if (cast->body == NULL) { // If we have empty parentheses, then we want to return "nil". dtype = DEFINED_NIL; } else if (PM_NODE_TYPE_P(cast->body, PM_STATEMENTS_NODE) && ((const pm_statements_node_t *) cast->body)->body.size == 1) { // If we have a parentheses node that is wrapping a single statement // then we want to recurse down to that statement and compile it. pm_compile_defined_expr0(iseq, ((const pm_statements_node_t *) cast->body)->body.nodes[0], ret, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, explicit_receiver); return; } else { // Otherwise, we have parentheses wrapping multiple statements, in // which case this is defined as "expression". dtype = DEFINED_EXPR; } break; } case PM_SELF_NODE: dtype = DEFINED_SELF; break; case PM_TRUE_NODE: dtype = DEFINED_TRUE; break; case PM_FALSE_NODE: dtype = DEFINED_FALSE; break; case PM_ARRAY_NODE: { pm_array_node_t *cast = (pm_array_node_t *) node; if (!PM_NODE_FLAG_P(cast, PM_ARRAY_NODE_FLAGS_CONTAINS_SPLAT)) { for (size_t index = 0; index < cast->elements.size; index++) { pm_compile_defined_expr0(iseq, cast->elements.nodes[index], ret, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } } } case PM_AND_NODE: case PM_BEGIN_NODE: case PM_BREAK_NODE: case PM_CASE_NODE: case PM_CASE_MATCH_NODE: case PM_CLASS_NODE: case PM_DEF_NODE: case PM_DEFINED_NODE: case PM_FLOAT_NODE: case PM_FOR_NODE: case PM_HASH_NODE: case PM_IF_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_INTERPOLATED_SYMBOL_NODE: case PM_INTERPOLATED_X_STRING_NODE: case PM_KEYWORD_HASH_NODE: case PM_LAMBDA_NODE: case PM_MATCH_PREDICATE_NODE: case PM_MATCH_REQUIRED_NODE: case PM_MATCH_WRITE_NODE: case PM_MODULE_NODE: case PM_NEXT_NODE: case PM_OR_NODE: case PM_RANGE_NODE: case PM_RATIONAL_NODE: case PM_REDO_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_RETRY_NODE: case PM_RETURN_NODE: case PM_SINGLETON_CLASS_NODE: case PM_SOURCE_ENCODING_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_UNLESS_NODE: case PM_UNTIL_NODE: case PM_WHILE_NODE: case PM_X_STRING_NODE: dtype = DEFINED_EXPR; break; case PM_LOCAL_VARIABLE_READ_NODE: dtype = DEFINED_LVAR; break; #define PUSH_VAL(type) (in_condition ? Qtrue : rb_iseq_defined_string(type)) case PM_INSTANCE_VARIABLE_READ_NODE: { pm_instance_variable_read_node_t *instance_variable_read_node = (pm_instance_variable_read_node_t *)node; ID id = pm_constant_id_lookup(scope_node, instance_variable_read_node->name); ADD_INSN3(ret, &dummy_line_node, definedivar, ID2SYM(id), get_ivar_ic_value(iseq, id), PUSH_VAL(DEFINED_IVAR)); return; } case PM_BACK_REFERENCE_READ_NODE: { char *char_ptr = (char *)(node->location.start) + 1; ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_REF), backref_val, PUSH_VAL(DEFINED_GVAR)); return; } case PM_NUMBERED_REFERENCE_READ_NODE: { uint32_t reference_number = ((pm_numbered_reference_read_node_t *)node)->number; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_REF), INT2FIX(reference_number << 1), PUSH_VAL(DEFINED_GVAR)); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { pm_global_variable_read_node_t *glabal_variable_read_node = (pm_global_variable_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_GVAR), ID2SYM(pm_constant_id_lookup(scope_node, glabal_variable_read_node->name)), PUSH_VAL(DEFINED_GVAR)); return; } case PM_CLASS_VARIABLE_READ_NODE: { pm_class_variable_read_node_t *class_variable_read_node = (pm_class_variable_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CVAR), ID2SYM(pm_constant_id_lookup(scope_node, class_variable_read_node->name)), PUSH_VAL(DEFINED_CVAR)); return; } case PM_CONSTANT_READ_NODE: { pm_constant_read_node_t *constant_node = (pm_constant_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST), ID2SYM(pm_constant_id_lookup(scope_node, constant_node->name)), PUSH_VAL(DEFINED_CONST)); return; } case PM_CONSTANT_PATH_NODE: { pm_constant_path_node_t *constant_path_node = ((pm_constant_path_node_t *)node); if (constant_path_node->parent) { if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } pm_compile_defined_expr0(iseq, constant_path_node->parent, ret, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); PM_COMPILE(constant_path_node->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST_FROM), ID2SYM(pm_constant_id_lookup(scope_node, ((pm_constant_read_node_t *)constant_path_node->child)->name)), PUSH_VAL(DEFINED_CONST)); return; } case PM_CALL_NODE: { pm_call_node_t *call_node = ((pm_call_node_t *)node); ID method_id = pm_constant_id_lookup(scope_node, call_node->name); if (call_node->receiver || call_node->arguments) { if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } if (!lfinish[2]) { lfinish[2] = NEW_LABEL(lineno); } } if (call_node->arguments) { pm_compile_defined_expr0(iseq, (const pm_node_t *)call_node->arguments, ret, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } if (call_node->receiver) { pm_compile_defined_expr0(iseq, call_node->receiver, ret, popped, scope_node, dummy_line_node, lineno, true, lfinish, true); if (PM_NODE_TYPE_P(call_node->receiver, PM_CALL_NODE)) { ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[2]); const pm_call_node_t *receiver = (const pm_call_node_t *)call_node->receiver; ID method_id = pm_constant_id_lookup(scope_node, receiver->name); pm_compile_call(iseq, receiver, ret, popped, scope_node, method_id, NULL); } else { ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); PM_COMPILE(call_node->receiver); } if (explicit_receiver) { PM_DUP; } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_METHOD), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } else { PM_PUTSELF; if (explicit_receiver) { PM_DUP; } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_FUNC), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } return; } case PM_YIELD_NODE: PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_YIELD), 0, PUSH_VAL(DEFINED_YIELD)); return; case PM_SUPER_NODE: case PM_FORWARDING_SUPER_NODE: PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER)); return; case PM_CALL_AND_WRITE_NODE: case PM_CALL_OPERATOR_WRITE_NODE: case PM_CALL_OR_WRITE_NODE: case PM_CONSTANT_WRITE_NODE: case PM_CONSTANT_OPERATOR_WRITE_NODE: case PM_CONSTANT_AND_WRITE_NODE: case PM_CONSTANT_OR_WRITE_NODE: case PM_CONSTANT_PATH_AND_WRITE_NODE: case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: case PM_CONSTANT_PATH_OR_WRITE_NODE: case PM_CONSTANT_PATH_WRITE_NODE: case PM_GLOBAL_VARIABLE_WRITE_NODE: case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: case PM_CLASS_VARIABLE_WRITE_NODE: case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: case PM_CLASS_VARIABLE_AND_WRITE_NODE: case PM_CLASS_VARIABLE_OR_WRITE_NODE: case PM_INDEX_AND_WRITE_NODE: case PM_INDEX_OPERATOR_WRITE_NODE: case PM_INDEX_OR_WRITE_NODE: case PM_INSTANCE_VARIABLE_WRITE_NODE: case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: case PM_LOCAL_VARIABLE_WRITE_NODE: case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_LOCAL_VARIABLE_AND_WRITE_NODE: case PM_LOCAL_VARIABLE_OR_WRITE_NODE: case PM_MULTI_WRITE_NODE: dtype = DEFINED_ASGN; break; default: rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } RUBY_ASSERT(dtype != DEFINED_NOT_DEFINED); ADD_INSN1(ret, &dummy_line_node, putobject, PUSH_VAL(dtype)); #undef PUSH_VAL } static void pm_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition, LABEL **lfinish, bool explicit_receiver) { LINK_ELEMENT *lcur = ret->last; pm_compile_defined_expr0(iseq, node, ret, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, false); if (lfinish[1]) { LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); struct rb_iseq_new_with_callback_callback_func *ifunc = rb_iseq_new_with_callback_new_callback(build_defined_rescue_iseq, NULL); const rb_iseq_t *rescue = new_child_iseq_with_callback(iseq, ifunc, rb_str_concat(rb_str_new2("defined guard in "), ISEQ_BODY(iseq)->location.label), iseq, ISEQ_TYPE_RESCUE, 0); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; APPEND_LABEL(ret, lcur, lstart); ADD_LABEL(ret, lend); ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue, lfinish[1]); } } void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition) { LABEL *lfinish[3]; LINK_ELEMENT *last = ret->last; lfinish[0] = NEW_LABEL(lineno); lfinish[1] = 0; lfinish[2] = 0; if (!popped) { pm_defined_expr(iseq, node, ret, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, false); } if (lfinish[1]) { ELEM_INSERT_NEXT(last, &new_insn_body(iseq, nd_line(&dummy_line_node), nd_node_id(&dummy_line_node), BIN(putnil), 0)->link); PM_SWAP; if (lfinish[2]) { ADD_LABEL(ret, lfinish[2]); } PM_POP; ADD_LABEL(ret, lfinish[1]); } ADD_LABEL(ret, lfinish[0]); } static void pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start) { const pm_location_t *message_loc = &call_node->message_loc; if (message_loc->start == NULL) message_loc = &call_node->base.location; int lineno = pm_location_line_number(scope_node->parser, message_loc); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); LABEL *else_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchnil, else_label); } int flags = 0; struct rb_callinfo_kwarg *kw_arg = NULL; int orig_argc = pm_setup_args(call_node->arguments, call_node->block, &flags, &kw_arg, iseq, ret, scope_node, dummy_line_node); const rb_iseq_t *block_iseq = NULL; if (call_node->block != NULL && PM_NODE_TYPE_P(call_node->block, PM_BLOCK_NODE)) { // Scope associated with the block pm_scope_node_t next_scope_node; pm_scope_node_init(call_node->block, &next_scope_node, scope_node, scope_node->parser); block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, pm_node_line_number(scope_node->parser, call_node->block)); pm_scope_node_destroy(&next_scope_node); if (ISEQ_BODY(block_iseq)->catch_table) { ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, start, end_label, block_iseq, end_label); } ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; } else { if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_VARIABLE_CALL)) { flags |= VM_CALL_VCALL; } if (!flags) { flags |= VM_CALL_ARGS_SIMPLE; } } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) { flags |= VM_CALL_FCALL; } if (!popped && PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE)) { if (flags & VM_CALL_ARGS_BLOCKARG) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); if (flags & VM_CALL_ARGS_SPLAT) { ADD_INSN1(ret, &dummy_line_node, putobject, INT2FIX(-1)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idAREF, INT2FIX(1), INT2FIX(0)); } ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(orig_argc + 3)); PM_POP; } else if (flags & VM_CALL_ARGS_SPLAT) { ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN1(ret, &dummy_line_node, putobject, INT2FIX(-1)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idAREF, INT2FIX(1), INT2FIX(0)); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(orig_argc + 2)); PM_POP; } else { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(orig_argc + 1)); } } if ((flags & VM_CALL_KW_SPLAT) && (flags & VM_CALL_ARGS_BLOCKARG) && !(flags & VM_CALL_KW_SPLAT_MUT)) { ADD_INSN(ret, &dummy_line_node, splatkw); } ADD_SEND_R(ret, &dummy_line_node, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg); if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { ADD_INSNL(ret, &dummy_line_node, jump, end_label); ADD_LABEL(ret, else_label); } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) || (block_iseq && ISEQ_BODY(block_iseq)->catch_table)) { ADD_LABEL(ret, end_label); } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE)) { PM_POP_UNLESS_POPPED; } PM_POP_IF_POPPED; } // This is exactly the same as add_ensure_iseq, except it compiled // the node as a Prism node, and not a CRuby node static void pm_add_ensure_iseq(LINK_ANCHOR *const ret, rb_iseq_t *iseq, int is_return, pm_scope_node_t *scope_node) { RUBY_ASSERT(can_add_ensure_iseq(iseq)); struct iseq_compile_data_ensure_node_stack *enlp = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack; struct iseq_compile_data_ensure_node_stack *prev_enlp = enlp; DECL_ANCHOR(ensure); INIT_ANCHOR(ensure); while (enlp) { if (enlp->erange != NULL) { DECL_ANCHOR(ensure_part); LABEL *lstart = NEW_LABEL(0); LABEL *lend = NEW_LABEL(0); INIT_ANCHOR(ensure_part); add_ensure_range(iseq, enlp->erange, lstart, lend); ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enlp->prev; ADD_LABEL(ensure_part, lstart); bool popped = true; PM_COMPILE_INTO_ANCHOR(ensure_part, (pm_node_t *)enlp->ensure_node); ADD_LABEL(ensure_part, lend); ADD_SEQ(ensure, ensure_part); } else { if (!is_return) { break; } } enlp = enlp->prev; } ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = prev_enlp; ADD_SEQ(ret, ensure); } struct pm_local_table_insert_ctx { pm_scope_node_t *scope_node; rb_ast_id_table_t *local_table_for_iseq; int local_index; }; static int pm_local_table_insert_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) { if (!existing) { pm_constant_id_t constant_id = (pm_constant_id_t)*key; struct pm_local_table_insert_ctx * ctx = (struct pm_local_table_insert_ctx *)arg; pm_scope_node_t *scope_node = ctx->scope_node; rb_ast_id_table_t *local_table_for_iseq = ctx->local_table_for_iseq; int local_index = ctx->local_index; ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; *value = (st_data_t)local_index; ctx->local_index++; } return ST_CONTINUE; } /** * Insert a local into the local table for the iseq. This is used to create the * local table in the correct order while compiling the scope. The locals being * inserted are regular named locals, as opposed to special forwarding locals. */ static void pm_insert_local_index(pm_constant_id_t constant_id, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node) { RUBY_ASSERT((constant_id & PM_SPECIAL_CONSTANT_FLAG) == 0); ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; st_insert(index_lookup_table, (st_data_t) constant_id, (st_data_t) local_index); } /** * Insert a local into the local table for the iseq that is a special forwarding * local variable. */ static void pm_insert_local_special(ID local_name, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq) { local_table_for_iseq->ids[local_index] = local_name; st_insert(index_lookup_table, (st_data_t) (local_name | PM_SPECIAL_CONSTANT_FLAG), (st_data_t) local_index); } /** * Compile the locals of a multi target node that is used as a positional * parameter in a method, block, or lambda definition. Note that this doesn't * actually add any instructions to the iseq. Instead, it adds locals to the * local and index lookup tables and increments the local index as necessary. */ static int pm_compile_destructured_param_locals(const pm_multi_target_node_t *node, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node, int local_index) { for (size_t index = 0; index < node->lefts.size; index++) { const pm_node_t *left = node->lefts.nodes[index]; if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) { if (!PM_NODE_FLAG_P(left, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { pm_insert_local_index(((const pm_required_parameter_node_t *) left)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } else { RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE)); local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) left, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } if (node->rest != NULL && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE)) { const pm_splat_node_t *rest = (const pm_splat_node_t *) node->rest; if (rest->expression != NULL) { RUBY_ASSERT(PM_NODE_TYPE_P(rest->expression, PM_REQUIRED_PARAMETER_NODE)); pm_insert_local_index(((const pm_required_parameter_node_t *) rest->expression)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } for (size_t index = 0; index < node->rights.size; index++) { const pm_node_t *right = node->rights.nodes[index]; if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) { pm_insert_local_index(((const pm_required_parameter_node_t *) right)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } else { RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE)); local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) right, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } return local_index; } /** * Compile a required parameter node that is part of a destructure that is used * as a positional parameter in a method, block, or lambda definition. */ static inline void pm_compile_destructured_param_write(rb_iseq_t *iseq, const pm_required_parameter_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, (const pm_node_t *) node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, node->name, 0); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); } /** * Compile a multi target node that is used as a positional parameter in a * method, block, or lambda definition. Note that this is effectively the same * as a multi write, but with the added context that all of the targets * contained in the write are required parameter nodes. With this context, we * know they won't have any parent expressions so we build a separate code path * for this simplified case. */ static void pm_compile_destructured_param_writes(rb_iseq_t *iseq, const pm_multi_target_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, (const pm_node_t *) node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); bool has_rest = (node->rest && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE) && (((pm_splat_node_t *) node->rest)->expression) != NULL); bool has_rights = node->rights.size > 0; int flag = (has_rest || has_rights) ? 1 : 0; ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(node->lefts.size), INT2FIX(flag)); for (size_t index = 0; index < node->lefts.size; index++) { const pm_node_t *left = node->lefts.nodes[index]; if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) { pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) left, ret, scope_node); } else { RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE)); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) left, ret, scope_node); } } if (has_rest) { if (has_rights) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(node->rights.size), INT2FIX(3)); } const pm_node_t *rest = ((pm_splat_node_t *) node->rest)->expression; RUBY_ASSERT(PM_NODE_TYPE_P(rest, PM_REQUIRED_PARAMETER_NODE)); pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) rest, ret, scope_node); } if (has_rights) { if (!has_rest) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(node->rights.size), INT2FIX(2)); } for (size_t index = 0; index < node->rights.size; index++) { const pm_node_t *right = node->rights.nodes[index]; if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) { pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) right, ret, scope_node); } else { RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE)); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) right, ret, scope_node); } } } } /** * This is a node in the multi target state linked list. It tracks the * information for a particular target that necessarily has a parent expression. */ typedef struct pm_multi_target_state_node { // The pointer to the topn instruction that will need to be modified after // we know the total stack size of all of the targets. INSN *topn; // The index of the stack from the base of the entire multi target at which // the parent expression is located. size_t stack_index; // The number of slots in the stack that this node occupies. size_t stack_size; // The position of the node in the list of targets. size_t position; // A pointer to the next node in this linked list. struct pm_multi_target_state_node *next; } pm_multi_target_state_node_t; /** * As we're compiling a multi target, we need to track additional information * whenever there is a parent expression on the left hand side of the target. * This is because we need to go back and tell the expression where to fetch its * parent expression from the stack. We use a linked list of nodes to track this * information. */ typedef struct { // The total number of slots in the stack that this multi target occupies. size_t stack_size; // The position of the current node being compiled. This is forwarded to // nodes when they are allocated. size_t position; // A pointer to the head of this linked list. pm_multi_target_state_node_t *head; // A pointer to the tail of this linked list. pm_multi_target_state_node_t *tail; } pm_multi_target_state_t; /** * Push a new state node onto the multi target state. */ static void pm_multi_target_state_push(pm_multi_target_state_t *state, INSN *topn, size_t stack_size) { pm_multi_target_state_node_t *node = ALLOC(pm_multi_target_state_node_t); node->topn = topn; node->stack_index = state->stack_size + 1; node->stack_size = stack_size; node->position = state->position; node->next = NULL; if (state->head == NULL) { state->head = node; state->tail = node; } else { state->tail->next = node; state->tail = node; } state->stack_size += stack_size; } /** * Walk through a multi target state's linked list and update the topn * instructions that were inserted into the write sequence to make sure they can * correctly retrieve their parent expressions. */ static void pm_multi_target_state_update(pm_multi_target_state_t *state) { // If nothing was ever pushed onto the stack, then we don't need to do any // kind of updates. if (state->stack_size == 0) return; pm_multi_target_state_node_t *current = state->head; pm_multi_target_state_node_t *previous; while (current != NULL) { VALUE offset = INT2FIX(state->stack_size - current->stack_index + current->position); current->topn->operands[0] = offset; // stack_size will be > 1 in the case that we compiled an index target // and it had arguments. In this case, we use multiple topn instructions // to grab up all of the arguments as well, so those offsets need to be // updated as well. if (current->stack_size > 1) { INSN *insn = current->topn; for (size_t index = 1; index < current->stack_size; index += 1) { LINK_ELEMENT *element = get_next_insn(insn); RUBY_ASSERT(IS_INSN(element)); insn = (INSN *) element; RUBY_ASSERT(insn->insn_id == BIN(topn)); insn->operands[0] = offset; } } previous = current; current = current->next; free(previous); } } static size_t pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state); /** * A target node represents an indirect write to a variable or a method call to * a method ending in =. Compiling one of these nodes requires three sequences: * * * The first is to compile retrieving the parent expression if there is one. * This could be the object that owns a constant or the receiver of a method * call. * * The second is to compile the writes to the targets. This could be writing * to variables, or it could be performing method calls. * * The third is to compile any cleanup that needs to happen, i.e., popping the * appropriate number of values off the stack. * * When there is a parent expression and this target is part of a multi write, a * topn instruction will be inserted into the write sequence. This is to move * the parent expression to the top of the stack so that it can be used as the * receiver of the method call or the owner of the constant. To facilitate this, * we return a pointer to the topn instruction that was used to be later * modified with the correct offset. * * These nodes can appear in a couple of places, but most commonly: * * * For loops - the index variable is a target node * * Rescue clauses - the exception reference variable is a target node * * Multi writes - the left hand side contains a list of target nodes * * For the comments with examples within this function, we'll use for loops as * the containing node. */ static void pm_compile_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state) { int lineno = pm_node_line_number(scope_node->parser, node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); switch (PM_NODE_TYPE(node)) { case PM_LOCAL_VARIABLE_TARGET_NODE: { // Local variable targets have no parent expression, so they only need // to compile the write. // // for i in []; end // pm_local_variable_target_node_t *cast = (pm_local_variable_target_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); ADD_SETLOCAL(writes, &dummy_line_node, index.index, index.level); break; } case PM_CLASS_VARIABLE_TARGET_NODE: { // Class variable targets have no parent expression, so they only need // to compile the write. // // for @@i in []; end // pm_class_variable_target_node_t *cast = (pm_class_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); ADD_INSN2(writes, &dummy_line_node, setclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name)); break; } case PM_CONSTANT_TARGET_NODE: { // Constant targets have no parent expression, so they only need to // compile the write. // // for I in []; end // pm_constant_target_node_t *cast = (pm_constant_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); ADD_INSN1(writes, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(writes, &dummy_line_node, setconstant, ID2SYM(name)); break; } case PM_GLOBAL_VARIABLE_TARGET_NODE: { // Global variable targets have no parent expression, so they only need // to compile the write. // // for $i in []; end // pm_global_variable_target_node_t *cast = (pm_global_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); ADD_INSN1(writes, &dummy_line_node, setglobal, ID2SYM(name)); break; } case PM_INSTANCE_VARIABLE_TARGET_NODE: { // Instance variable targets have no parent expression, so they only // need to compile the write. // // for @i in []; end // pm_instance_variable_target_node_t *cast = (pm_instance_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); ADD_INSN2(writes, &dummy_line_node, setinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name)); break; } case PM_CONSTANT_PATH_TARGET_NODE: { // Constant path targets have a parent expression that is the object // that owns the constant. This needs to be compiled first into the // parents sequence. If no parent is found, then it represents using the // unary :: operator to indicate a top-level constant. In that case we // need to push Object onto the stack. // // for I::J in []; end // const pm_constant_path_target_node_t *cast = (const pm_constant_path_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) cast->child)->name); if (cast->parent != NULL) { pm_compile_node(iseq, cast->parent, parents, false, scope_node); } else { ADD_INSN1(parents, &dummy_line_node, putobject, rb_cObject); } if (state == NULL) { ADD_INSN(writes, &dummy_line_node, swap); } else { ADD_INSN1(writes, &dummy_line_node, topn, INT2FIX(1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1); } ADD_INSN1(writes, &dummy_line_node, setconstant, ID2SYM(name)); if (state != NULL) { ADD_INSN(cleanup, &dummy_line_node, pop); } break; } case PM_CALL_TARGET_NODE: { // Call targets have a parent expression that is the receiver of the // method being called. This needs to be compiled first into the parents // sequence. These nodes cannot have arguments, so the method call is // compiled with a single argument which represents the value being // written. // // for i.j in []; end // const pm_call_target_node_t *cast = (const pm_call_target_node_t *) node; ID method_id = pm_constant_id_lookup(scope_node, cast->name); pm_compile_node(iseq, cast->receiver, parents, false, scope_node); if (state != NULL) { ADD_INSN1(writes, &dummy_line_node, topn, INT2FIX(1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1); ADD_INSN(writes, &dummy_line_node, swap); } int flags = VM_CALL_ARGS_SIMPLE; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) flags |= VM_CALL_FCALL; ADD_SEND_WITH_FLAG(writes, &dummy_line_node, method_id, INT2FIX(1), INT2FIX(flags)); ADD_INSN(writes, &dummy_line_node, pop); if (state != NULL) { ADD_INSN(cleanup, &dummy_line_node, pop); } break; } case PM_INDEX_TARGET_NODE: { // Index targets have a parent expression that is the receiver of the // method being called and any additional arguments that are being // passed along with the value being written. The receiver and arguments // both need to be on the stack. Note that this is even more complicated // by the fact that these nodes can hold a block using the unary & // operator. // // for i[:j] in []; end // const pm_index_target_node_t *cast = (const pm_index_target_node_t *) node; pm_compile_node(iseq, cast->receiver, parents, false, scope_node); int flags = 0; struct rb_callinfo_kwarg *kwargs = NULL; int argc = pm_setup_args(cast->arguments, cast->block, &flags, &kwargs, iseq, parents, scope_node, dummy_line_node); if (state != NULL) { ADD_INSN1(writes, &dummy_line_node, topn, INT2FIX(argc + 1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), argc + 1); if (argc == 0) { ADD_INSN(writes, &dummy_line_node, swap); } else { for (int index = 0; index < argc; index++) { ADD_INSN1(writes, &dummy_line_node, topn, INT2FIX(argc + 1)); } ADD_INSN1(writes, &dummy_line_node, topn, INT2FIX(argc + 1)); } } // The argc that we're going to pass to the send instruction is the // number of arguments + 1 for the value being written. If there's a // splat, then we need to insert newarray and concatarray instructions // after the arguments have been written. int ci_argc = argc + 1; if (flags & VM_CALL_ARGS_SPLAT) { ci_argc--; ADD_INSN1(writes, &dummy_line_node, newarray, INT2FIX(1)); ADD_INSN(writes, &dummy_line_node, concatarray); } ADD_SEND_R(writes, &dummy_line_node, idASET, INT2NUM(ci_argc), NULL, INT2FIX(flags), kwargs); ADD_INSN(writes, &dummy_line_node, pop); if (state != NULL) { if (argc != 0) { ADD_INSN(writes, &dummy_line_node, pop); } for (int index = 0; index < argc + 1; index++) { ADD_INSN(cleanup, &dummy_line_node, pop); } } break; } case PM_MULTI_TARGET_NODE: { // Multi target nodes represent a set of writes to multiple variables. // The parent expressions are the combined set of the parent expressions // of its inner target nodes. // // for i, j in []; end // if (state != NULL) state->position--; pm_compile_multi_target_node(iseq, node, parents, writes, cleanup, scope_node, state); if (state != NULL) state->position++; break; } default: rb_bug("Unexpected node type: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } } /** * Compile a multi target or multi write node. It returns the number of values * on the stack that correspond to the parent expressions of the various * targets. */ static size_t pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state) { int lineno = pm_node_line_number(scope_node->parser, node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); const pm_node_list_t *lefts; const pm_node_t *rest; const pm_node_list_t *rights; switch (PM_NODE_TYPE(node)) { case PM_MULTI_TARGET_NODE: { pm_multi_target_node_t *cast = (pm_multi_target_node_t *) node; lefts = &cast->lefts; rest = cast->rest; rights = &cast->rights; break; } case PM_MULTI_WRITE_NODE: { pm_multi_write_node_t *cast = (pm_multi_write_node_t *) node; lefts = &cast->lefts; rest = cast->rest; rights = &cast->rights; break; } default: rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } bool has_rest = (rest != NULL) && PM_NODE_TYPE_P(rest, PM_SPLAT_NODE) && ((pm_splat_node_t *) rest)->expression != NULL; bool has_posts = rights->size > 0; // The first instruction in the writes sequence is going to spread the // top value of the stack onto the number of values that we're going to // write. ADD_INSN2(writes, &dummy_line_node, expandarray, INT2FIX(lefts->size), INT2FIX((has_rest || has_posts) ? 1 : 0)); // We need to keep track of some additional state information as we're // going through the targets because we will need to revisit them once // we know how many values are being pushed onto the stack. pm_multi_target_state_t target_state = { 0 }; size_t base_position = state == NULL ? 0 : state->position; size_t splat_position = has_rest ? 1 : 0; // Next, we'll iterate through all of the leading targets. for (size_t index = 0; index < lefts->size; index++) { const pm_node_t *target = lefts->nodes[index]; target_state.position = lefts->size - index + splat_position + base_position; pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, &target_state); } // Next, we'll compile the rest target if there is one. if (has_rest) { const pm_node_t *target = ((pm_splat_node_t *) rest)->expression; target_state.position = 1 + rights->size + base_position; if (has_posts) { ADD_INSN2(writes, &dummy_line_node, expandarray, INT2FIX(rights->size), INT2FIX(3)); } pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, &target_state); } // Finally, we'll compile the trailing targets. if (has_posts) { if (!has_rest && rest != NULL) { ADD_INSN2(writes, &dummy_line_node, expandarray, INT2FIX(rights->size), INT2FIX(2)); } for (size_t index = 0; index < rights->size; index++) { const pm_node_t *target = rights->nodes[index]; target_state.position = rights->size - index + base_position; pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, &target_state); } } // Now, we need to go back and modify the topn instructions in order to // ensure they can correctly retrieve the parent expressions. pm_multi_target_state_update(&target_state); if (state != NULL) state->stack_size += target_state.stack_size; return target_state.stack_size; } /** * When compiling a for loop, we need to write the iteration variable to * whatever expression exists in the index slot. This function performs that * compilation. */ static void pm_compile_for_node_index(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); switch (PM_NODE_TYPE(node)) { case PM_LOCAL_VARIABLE_TARGET_NODE: { // For local variables, all we have to do is retrieve the value and then // compile the index node. ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); pm_compile_target_node(iseq, node, ret, ret, ret, scope_node, NULL); break; } case PM_CLASS_VARIABLE_TARGET_NODE: case PM_CONSTANT_TARGET_NODE: case PM_GLOBAL_VARIABLE_TARGET_NODE: case PM_INSTANCE_VARIABLE_TARGET_NODE: case PM_CONSTANT_PATH_TARGET_NODE: case PM_CALL_TARGET_NODE: case PM_INDEX_TARGET_NODE: { // For other targets, we need to potentially compile the parent or // owning expression of this target, then retrieve the value, expand it, // and then compile the necessary writes. DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_multi_target_state_t state = { 0 }; state.position = 1; pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, &state); ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(1), INT2FIX(0)); ADD_SEQ(ret, writes); ADD_SEQ(ret, cleanup); pm_multi_target_state_update(&state); break; } case PM_MULTI_TARGET_NODE: { DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, NULL); LABEL *not_single = NEW_LABEL(lineno); LABEL *not_ary = NEW_LABEL(lineno); // When there are multiple targets, we'll do a bunch of work to convert // the value into an array before we expand it. Effectively we're trying // to accomplish: // // (args.length == 1 && Array.try_convert(args[0])) || args // ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); ADD_INSN(ret, &dummy_line_node, dup); ADD_CALL(ret, &dummy_line_node, idLength, INT2FIX(0)); ADD_INSN1(ret, &dummy_line_node, putobject, INT2FIX(1)); ADD_CALL(ret, &dummy_line_node, idEq, INT2FIX(1)); ADD_INSNL(ret, &dummy_line_node, branchunless, not_single); ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN1(ret, &dummy_line_node, putobject, INT2FIX(0)); ADD_CALL(ret, &dummy_line_node, idAREF, INT2FIX(1)); ADD_INSN1(ret, &dummy_line_node, putobject, rb_cArray); PM_SWAP; ADD_CALL(ret, &dummy_line_node, rb_intern("try_convert"), INT2FIX(1)); ADD_INSN(ret, &dummy_line_node, dup); ADD_INSNL(ret, &dummy_line_node, branchunless, not_ary); PM_SWAP; ADD_LABEL(ret, not_ary); PM_POP; ADD_LABEL(ret, not_single); ADD_SEQ(ret, writes); ADD_SEQ(ret, cleanup); break; } default: rb_bug("Unexpected node type for index in for node: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } } static void pm_compile_rescue(rb_iseq_t *iseq, pm_begin_node_t *begin_node, LINK_ANCHOR *const ret, int lineno, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); const pm_parser_t *parser = scope_node->parser; LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); LABEL *lcont = NEW_LABEL(lineno); pm_scope_node_t rescue_scope_node; pm_scope_node_init((pm_node_t *) begin_node->rescue_clause, &rescue_scope_node, scope_node, parser); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ( &rescue_scope_node, rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, pm_node_line_number(parser, (const pm_node_t *) begin_node->rescue_clause) ); pm_scope_node_destroy(&rescue_scope_node); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; ADD_LABEL(ret, lstart); bool prev_in_rescue = ISEQ_COMPILE_DATA(iseq)->in_rescue; ISEQ_COMPILE_DATA(iseq)->in_rescue = true; if (begin_node->statements) { PM_COMPILE_NOT_POPPED((pm_node_t *)begin_node->statements); } else { PM_PUTNIL; } ISEQ_COMPILE_DATA(iseq)->in_rescue = prev_in_rescue; ADD_LABEL(ret, lend); if (begin_node->else_clause) { PM_POP_UNLESS_POPPED; PM_COMPILE((pm_node_t *)begin_node->else_clause); } PM_NOP; ADD_LABEL(ret, lcont); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); ADD_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); } static void pm_compile_ensure(rb_iseq_t *iseq, pm_begin_node_t *begin_node, LINK_ANCHOR *const ret, int lineno, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); const pm_parser_t *parser = scope_node->parser; LABEL *estart = NEW_LABEL(lineno); LABEL *eend = NEW_LABEL(lineno); LABEL *econt = NEW_LABEL(lineno); struct ensure_range er; struct iseq_compile_data_ensure_node_stack enl; struct ensure_range *erange; er.begin = estart; er.end = eend; er.next = 0; push_ensure_entry(iseq, &enl, &er, (void *)begin_node->ensure_clause); ADD_LABEL(ret, estart); if (begin_node->rescue_clause) { pm_compile_rescue(iseq, begin_node, ret, lineno, popped, scope_node); } else { if (begin_node->statements) { PM_COMPILE((pm_node_t *)begin_node->statements); } else { PM_PUTNIL_UNLESS_POPPED; } } ADD_LABEL(ret, eend); ADD_LABEL(ret, econt); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)begin_node->ensure_clause, &next_scope_node, scope_node, parser); rb_iseq_t *child_iseq = NEW_CHILD_ISEQ( &next_scope_node, rb_str_concat(rb_str_new2("ensure in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_ENSURE, pm_node_line_number(parser, (const pm_node_t *) begin_node->ensure_clause) ); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; erange = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->erange; if (estart->link.next != &eend->link) { while (erange) { ADD_CATCH_ENTRY(CATCH_TYPE_ENSURE, erange->begin, erange->end, child_iseq, econt); erange = erange->next; } } ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enl.prev; // Compile the ensure entry pm_statements_node_t *statements = begin_node->ensure_clause->statements; if (statements) { PM_COMPILE((pm_node_t *)statements); PM_POP_UNLESS_POPPED; } } /** * Returns true if the given call node can use the opt_str_uminus or * opt_str_freeze instructions as an optimization with the current iseq options. */ static inline bool pm_opt_str_freeze_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->receiver != NULL && PM_NODE_TYPE_P(node->receiver, PM_STRING_NODE) && node->arguments == NULL && node->block == NULL && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Returns true if the given call node can use the opt_aref_with optimization * with the current iseq options. */ static inline bool pm_opt_aref_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->arguments != NULL && PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) && ((const pm_arguments_node_t *) node->arguments)->arguments.size == 1 && PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) && node->block == NULL && !ISEQ_COMPILE_DATA(iseq)->option->frozen_string_literal && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Returns true if the given call node can use the opt_aset_with optimization * with the current iseq options. */ static inline bool pm_opt_aset_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->arguments != NULL && PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) && ((const pm_arguments_node_t *) node->arguments)->arguments.size == 2 && PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) && node->block == NULL && !ISEQ_COMPILE_DATA(iseq)->option->frozen_string_literal && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Compile the instructions necessary to read a constant, based on the options * of the current iseq. */ static void pm_compile_constant_read(rb_iseq_t *iseq, VALUE name, const pm_location_t *name_loc, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { int lineno = pm_location_line_number(scope_node->parser, name_loc); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache) { ISEQ_BODY(iseq)->ic_size++; VALUE segments = rb_ary_new_from_args(1, name); ADD_INSN1(ret, &dummy_line_node, opt_getconstant_path, segments); } else { PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, name); } } /** * Returns a Ruby array of the parts of the constant path node if it is constant * reads all of the way down. If it isn't, then Qnil is returned. */ static VALUE pm_constant_path_parts(const pm_node_t *node, const pm_scope_node_t *scope_node) { VALUE parts = rb_ary_new(); while (true) { switch (PM_NODE_TYPE(node)) { case PM_CONSTANT_READ_NODE: { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); rb_ary_unshift(parts, name); return parts; } case PM_CONSTANT_PATH_NODE: { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) cast->child)->name)); rb_ary_unshift(parts, name); if (cast->parent == NULL) { rb_ary_unshift(parts, ID2SYM(idNULL)); return parts; } node = cast->parent; break; } default: return Qnil; } } } /** * Compile a constant path into two sequences of instructions, one for the * owning expression if there is one (prefix) and one for the constant reads * (body). */ static void pm_compile_constant_path(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const prefix, LINK_ANCHOR *const body, bool popped, pm_scope_node_t *scope_node) { int lineno = pm_node_line_number(scope_node->parser, node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); switch (PM_NODE_TYPE(node)) { case PM_CONSTANT_READ_NODE: { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); ADD_INSN1(body, &dummy_line_node, putobject, Qtrue); ADD_INSN1(body, &dummy_line_node, getconstant, name); break; } case PM_CONSTANT_PATH_NODE: { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) cast->child)->name)); if (cast->parent == NULL) { ADD_INSN(body, &dummy_line_node, pop); ADD_INSN1(body, &dummy_line_node, putobject, rb_cObject); ADD_INSN1(body, &dummy_line_node, putobject, Qtrue); ADD_INSN1(body, &dummy_line_node, getconstant, name); } else { pm_compile_constant_path(iseq, cast->parent, prefix, body, popped, scope_node); ADD_INSN1(body, &dummy_line_node, putobject, Qfalse); ADD_INSN1(body, &dummy_line_node, getconstant, name); } break; } default: PM_COMPILE_INTO_ANCHOR(prefix, node); break; } } /** * When we're compiling a case node, it's possible that we can speed it up using * a dispatch hash, which will allow us to jump directly to the correct when * clause body based on a hash lookup of the value. This can only happen when * the conditions are literals that can be compiled into a hash key. * * This function accepts a dispatch hash and the condition of a when clause. It * is responsible for compiling the condition into a hash key and then adding it * to the dispatch hash. * * If the value can be successfully compiled into the hash, then this function * returns the dispatch hash with the new key added. If the value cannot be * compiled into the hash, then this function returns Qundef. In the case of * Qundef, this function is signaling that the caller should abandon the * optimization entirely. */ static VALUE pm_compile_case_node_dispatch(VALUE dispatch, const pm_node_t *node, LABEL *label, const pm_scope_node_t *scope_node) { VALUE key = Qundef; switch (PM_NODE_TYPE(node)) { case PM_FALSE_NODE: case PM_FLOAT_NODE: case PM_INTEGER_NODE: case PM_NIL_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: key = pm_static_literal_value(node, scope_node); break; case PM_STRING_NODE: { const pm_string_node_t *cast = (const pm_string_node_t *) node; key = rb_fstring(parse_string_encoded(node, &cast->unescaped, scope_node->parser)); break; } default: return Qundef; } if (NIL_P(rb_hash_lookup(dispatch, key))) { rb_hash_aset(dispatch, key, ((VALUE) label) | 1); } return dispatch; } /* * Compiles a prism node into instruction sequences. * * iseq - The current instruction sequence object (used for locals) * node - The prism node to compile * ret - The linked list of instructions to append instructions onto * popped - True if compiling something with no side effects, so instructions don't * need to be added * scope_node - Stores parser and local information */ static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_parser_t *parser = scope_node->parser; const pm_line_column_t location = pm_newline_list_line_column(&parser->newline_list, node->location.start, parser->start_line); int lineno = (int) location.line; if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_NEWLINE) && ISEQ_COMPILE_DATA(iseq)->last_line != lineno) { int event = RUBY_EVENT_LINE; ISEQ_COMPILE_DATA(iseq)->last_line = lineno; if (ISEQ_COVERAGE(iseq) && ISEQ_LINE_COVERAGE(iseq)) { event |= RUBY_EVENT_COVERAGE_LINE; } PUSH_TRACE(ret, event); } NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); switch (PM_NODE_TYPE(node)) { case PM_ALIAS_GLOBAL_VARIABLE_NODE: { // alias $foo $bar // ^^^^^^^^^^^^^^^ const pm_alias_global_variable_node_t *cast = (const pm_alias_global_variable_node_t *) node; PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, ID2SYM(parse_location_symbol(&cast->new_name->location, parser))); PUSH_INSN1(ret, location, putobject, ID2SYM(parse_location_symbol(&cast->old_name->location, parser))); PUSH_SEND(ret, location, id_core_set_variable_alias, INT2FIX(2)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_ALIAS_METHOD_NODE: { // alias foo bar // ^^^^^^^^^^^^^ const pm_alias_method_node_t *cast = (const pm_alias_method_node_t *) node; PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(cast->new_name); PM_COMPILE_NOT_POPPED(cast->old_name); PUSH_SEND(ret, location, id_core_set_method_alias, INT2FIX(3)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_AND_NODE: { // a and b // ^^^^^^^ const pm_and_node_t *cast = (const pm_and_node_t *) node; LABEL *end_label = NEW_LABEL(lineno); PM_COMPILE_NOT_POPPED(cast->left); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE(cast->right); PUSH_LABEL(ret, end_label); return; } case PM_ARGUMENTS_NODE: // These are ArgumentsNodes that are not compiled directly by their // parent call nodes, used in the cases of NextNodes, ReturnNodes, and // BreakNodes. They can create an array like ArrayNode. case PM_ARRAY_NODE: { const pm_node_list_t *elements; if (PM_NODE_TYPE(node) == PM_ARGUMENTS_NODE) { // break foo // ^^^ const pm_arguments_node_t *cast = (const pm_arguments_node_t *)node; elements = &cast->arguments; // If we are only returning a single element through one of the jump // nodes, then we will only compile that node directly. if (elements->size == 1) { PM_COMPILE(elements->nodes[0]); return; } } else { // [foo, bar, baz] // ^^^^^^^^^^^^^^^ const pm_array_node_t *cast = (const pm_array_node_t *) node; elements = &cast->elements; } // If every node in the array is static, then we can compile the entire // array now instead of later. if (pm_static_literal_p(node)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { if (elements->size) { VALUE value = pm_static_literal_value(node, scope_node); PUSH_INSN1(ret, location, duparray, value); } else { PUSH_INSN1(ret, location, newarray, INT2FIX(0)); } } } else { // Here since we know there are possible side-effects inside the // array contents, we're going to build it entirely at runtime. // We'll do this by pushing all of the elements onto the stack and // then combining them with newarray. // // If this array is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the array contents. // // We treat all sequences of non-splat elements as their // own arrays, followed by a newarray, and then continually // concat the arrays with the SplatNode nodes. int new_array_size = 0; bool need_to_concat_array = false; bool has_kw_splat = false; for (size_t index = 0; index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; if (PM_NODE_TYPE_P(element, PM_SPLAT_NODE)) { const pm_splat_node_t *splat_element = (const pm_splat_node_t *) element; // If we already have non-splat elements, we need to emit a // newarray instruction. if (new_array_size > 0) { PUSH_INSN1(ret, location, newarray, INT2FIX(new_array_size)); new_array_size = 0; // We don't want to emit a concat array in the case // where we're seeing our first splat, and already have // elements. if (need_to_concat_array) PUSH_INSN(ret, location, concatarray); } if (splat_element->expression) { PM_COMPILE_NOT_POPPED(splat_element->expression); } else { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); ADD_GETLOCAL(ret, &dummy_line_node, index.index, index.level); } if (index > 0) { PUSH_INSN(ret, location, concatarray); } else { // If this is the first element of the array then we // need to splatarray the elements into the list. PUSH_INSN1(ret, location, splatarray, Qtrue); } // Since we have now seen a splat and are concat-ing arrays, // all subsequent splats will need to concat as well. need_to_concat_array = true; } else if (PM_NODE_TYPE_P(element, PM_KEYWORD_HASH_NODE)) { new_array_size++; has_kw_splat = true; pm_compile_hash_elements(&((const pm_keyword_hash_node_t *) element)->elements, lineno, iseq, ret, scope_node); } else { new_array_size++; PM_COMPILE_NOT_POPPED(element); } } if (new_array_size) { if (has_kw_splat) { PUSH_INSN1(ret, location, newarraykwsplat, INT2FIX(new_array_size)); } else { PUSH_INSN1(ret, location, newarray, INT2FIX(new_array_size)); } if (need_to_concat_array) PUSH_INSN(ret, location, concatarray); } if (popped) PUSH_INSN(ret, location, pop); } return; } case PM_ASSOC_NODE: { // { foo: 1 } // ^^^^^^ // // foo(bar: 1) // ^^^^^^ const pm_assoc_node_t *cast = (const pm_assoc_node_t *) node; PM_COMPILE(cast->key); PM_COMPILE(cast->value); return; } case PM_ASSOC_SPLAT_NODE: { // { **foo } // ^^^^^ // // def foo(**); bar(**); end // ^^ const pm_assoc_splat_node_t *cast = (const pm_assoc_splat_node_t *) node; if (cast->value != NULL) { PM_COMPILE(cast->value); } else if (!popped) { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0); ADD_GETLOCAL(ret, &dummy_line_node, index.index, index.level); } return; } case PM_BACK_REFERENCE_READ_NODE: { if (!popped) { // Since a back reference is `$`, ruby represents the ID as the // an rb_intern on the value after the `$`. char *char_ptr = (char *)(node->location.start) + 1; ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(1), backref_val); } return; } case PM_BEGIN_NODE: { pm_begin_node_t *begin_node = (pm_begin_node_t *) node; if (begin_node->ensure_clause) { // Compiling the ensure clause will compile the rescue clause (if // there is one), which will compile the begin statements pm_compile_ensure(iseq, begin_node, ret, lineno, popped, scope_node); } else if (begin_node->rescue_clause) { // Compiling rescue will compile begin statements (if applicable) pm_compile_rescue(iseq, begin_node, ret, lineno, popped, scope_node); } else { // If there is neither ensure or rescue, the just compile statements if (begin_node->statements) { PM_COMPILE((pm_node_t *)begin_node->statements); } else { PM_PUTNIL_UNLESS_POPPED; } } return; } case PM_BLOCK_ARGUMENT_NODE: { pm_block_argument_node_t *cast = (pm_block_argument_node_t *) node; if (cast->expression) { PM_COMPILE(cast->expression); } else { // If there's no expression, this must be block forwarding. pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0); ADD_INSN2(ret, &dummy_line_node, getblockparamproxy, INT2FIX(local_index.index + VM_ENV_DATA_SIZE - 1), INT2FIX(local_index.level)); } return; } case PM_BREAK_NODE: { pm_break_node_t *break_node = (pm_break_node_t *) node; unsigned long throw_flag = 0; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { /* while/until */ LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); if (break_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)break_node->arguments); } else { PM_PUTNIL; } pm_add_ensure_iseq(ret, iseq, 0, scope_node); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->end_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { throw_flag = VM_THROW_NO_ESCAPE_FLAG; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { throw_flag = 0; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(ERROR_ARGS "Can't escape from eval with break"); return; } else { ip = ISEQ_BODY(ip)->parent_iseq; continue; } /* escape from block */ if (break_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)break_node->arguments); } else { PM_PUTNIL; } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(throw_flag | TAG_BREAK)); PM_POP_IF_POPPED; return; } COMPILE_ERROR(ERROR_ARGS "Invalid break"); rb_bug("Invalid break"); } return; } case PM_CALL_NODE: { const pm_call_node_t *call_node = (const pm_call_node_t *) node; LABEL *start = NEW_LABEL(lineno); if (call_node->block) { ADD_LABEL(ret, start); } ID method_id = pm_constant_id_lookup(scope_node, call_node->name); switch (method_id) { case idUMinus: { if (pm_opt_str_freeze_p(iseq, call_node)) { VALUE value = rb_fstring(parse_string_encoded(call_node->receiver, &((const pm_string_node_t * )call_node->receiver)->unescaped, parser)); ADD_INSN2(ret, &dummy_line_node, opt_str_uminus, value, new_callinfo(iseq, idUMinus, 0, 0, NULL, FALSE)); return; } break; } case idFreeze: { if (pm_opt_str_freeze_p(iseq, call_node)) { VALUE value = rb_fstring(parse_string_encoded(call_node->receiver, &((const pm_string_node_t * )call_node->receiver)->unescaped, parser)); ADD_INSN2(ret, &dummy_line_node, opt_str_freeze, value, new_callinfo(iseq, idFreeze, 0, 0, NULL, FALSE)); return; } break; } case idAREF: { if (pm_opt_aref_with_p(iseq, call_node)) { const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) call_node->arguments)->arguments.nodes[0]; VALUE value = rb_fstring(parse_string_encoded((const pm_node_t *) string, &string->unescaped, parser)); PM_COMPILE_NOT_POPPED(call_node->receiver); ADD_INSN2(ret, &dummy_line_node, opt_aref_with, value, new_callinfo(iseq, idAREF, 1, 0, NULL, FALSE)); if (popped) { ADD_INSN(ret, &dummy_line_node, pop); } return; } break; } case idASET: { if (pm_opt_aset_with_p(iseq, call_node)) { const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) call_node->arguments)->arguments.nodes[0]; VALUE value = rb_fstring(parse_string_encoded((const pm_node_t *) string, &string->unescaped, parser)); PM_COMPILE_NOT_POPPED(call_node->receiver); PM_COMPILE_NOT_POPPED(((const pm_arguments_node_t *) call_node->arguments)->arguments.nodes[1]); if (!popped) { ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } ADD_INSN2(ret, &dummy_line_node, opt_aset_with, value, new_callinfo(iseq, idASET, 2, 0, NULL, FALSE)); ADD_INSN(ret, &dummy_line_node, pop); return; } break; } } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) { PM_PUTNIL; } if (call_node->receiver == NULL) { PM_PUTSELF; } else { PM_COMPILE_NOT_POPPED(call_node->receiver); } pm_compile_call(iseq, call_node, ret, popped, scope_node, method_id, start); return; } case PM_CALL_AND_WRITE_NODE: { pm_call_and_write_node_t *cast = (pm_call_and_write_node_t*) node; pm_compile_call_and_or_write_node(true, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), ret, iseq, lineno, popped, scope_node); return; } case PM_CALL_OR_WRITE_NODE: { pm_call_or_write_node_t *cast = (pm_call_or_write_node_t*) node; pm_compile_call_and_or_write_node(false, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), ret, iseq, lineno, popped, scope_node); return; } case PM_CALL_OPERATOR_WRITE_NODE: { // Call operator writes occur when you have a call node on the left-hand // side of a write operator that is not `=`. As an example, // `foo.bar *= 1`. This breaks down to caching the receiver on the // stack and then performing three method calls, one to read the value, // one to compute the result, and one to write the result back to the // receiver. const pm_call_operator_write_node_t *cast = (const pm_call_operator_write_node_t *) node; int flag = 0; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) { flag = VM_CALL_FCALL; } PM_COMPILE_NOT_POPPED(cast->receiver); LABEL *safe_label = NULL; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { safe_label = NEW_LABEL(lineno); PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchnil, safe_label); } PM_DUP; ID id_read_name = pm_constant_id_lookup(scope_node, cast->read_name); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, id_read_name, INT2FIX(0), INT2FIX(flag)); PM_COMPILE_NOT_POPPED(cast->value); ID id_operator = pm_constant_id_lookup(scope_node, cast->operator); ADD_SEND(ret, &dummy_line_node, id_operator, INT2FIX(1)); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } ID id_write_name = pm_constant_id_lookup(scope_node, cast->write_name); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, id_write_name, INT2FIX(1), INT2FIX(flag)); if (safe_label != NULL && popped) ADD_LABEL(ret, safe_label); PM_POP; if (safe_label != NULL && !popped) ADD_LABEL(ret, safe_label); return; } case PM_CASE_NODE: { // case foo; when bar; end // ^^^^^^^^^^^^^^^^^^^^^^^ const pm_case_node_t *cast = (const pm_case_node_t *) node; const pm_node_list_t *conditions = &cast->conditions; // This is the anchor that we will compile the conditions of the various // `when` nodes into. If a match is found, they will need to jump into // the body_seq anchor to the correct spot. DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); // This is the anchor that we will compile the bodies of the various // `when` nodes into. We'll make sure that the clauses that are compiled // jump into the correct spots within this anchor. DECL_ANCHOR(body_seq); INIT_ANCHOR(body_seq); // This is the label where all of the when clauses will jump to if they // have matched and are done executing their bodies. LABEL *end_label = NEW_LABEL(lineno); // If we have a predicate on this case statement, then it's going to // compare all of the various when clauses to the predicate. If we // don't, then it's basically an if-elsif-else chain. if (cast->predicate == NULL) { // Loop through each clauses in the case node and compile each of // the conditions within them into cond_seq. If they match, they // should jump into their respective bodies in body_seq. for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) { const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index]; const pm_node_list_t *conditions = &clause->conditions; int clause_lineno = pm_node_line_number(parser, (const pm_node_t *) clause); LABEL *label = NEW_LABEL(clause_lineno); ADD_LABEL(body_seq, label); if (clause->statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node); } else if (!popped) { ADD_INSN(body_seq, &dummy_line_node, putnil); } ADD_INSNL(body_seq, &dummy_line_node, jump, end_label); // Compile each of the conditions for the when clause into the // cond_seq. Each one should have a unique condition and should // jump to the subsequent one if it doesn't match. for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) { const pm_node_t *condition = conditions->nodes[condition_index]; if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) { ADD_INSN(cond_seq, &dummy_line_node, putnil); pm_compile_node(iseq, condition, cond_seq, false, scope_node); ADD_INSN1(cond_seq, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_WHEN | VM_CHECKMATCH_ARRAY)); ADD_INSNL(cond_seq, &dummy_line_node, branchif, label); } else { LABEL *next_label = NEW_LABEL(pm_node_line_number(parser, condition)); pm_compile_branch_condition(iseq, cond_seq, condition, label, next_label, false, scope_node); ADD_LABEL(cond_seq, next_label); } } } // Compile the consequent else clause if there is one. if (cast->consequent) { pm_compile_node(iseq, (const pm_node_t *) cast->consequent, cond_seq, popped, scope_node); } else if (!popped) { ADD_INSN(cond_seq, &dummy_line_node, putnil); } // Finally, jump to the end label if none of the other conditions // have matched. ADD_INSNL(cond_seq, &dummy_line_node, jump, end_label); ADD_SEQ(ret, cond_seq); } else { // This is the label where everything will fall into if none of the // conditions matched. LABEL *else_label = NEW_LABEL(lineno); // It's possible for us to speed up the case node by using a // dispatch hash. This is a hash that maps the conditions of the // various when clauses to the labels of their bodies. If we can // compile the conditions into a hash key, then we can use a hash // lookup to jump directly to the correct when clause body. VALUE dispatch = Qundef; if (ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction) { dispatch = rb_hash_new(); RHASH_TBL_RAW(dispatch)->type = &cdhash_type; } // We're going to loop through each of the conditions in the case // node and compile each of their contents into both the cond_seq // and the body_seq. Each condition will use its own label to jump // from its conditions into its body. // // Note that none of the code in the loop below should be adding // anything to ret, as we're going to be laying out the entire case // node instructions later. for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) { const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index]; const pm_node_list_t *conditions = &clause->conditions; LABEL *label = NEW_LABEL(lineno); // Compile each of the conditions for the when clause into the // cond_seq. Each one should have a unique comparison that then // jumps into the body if it matches. for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) { const pm_node_t *condition = conditions->nodes[condition_index]; // If we haven't already abandoned the optimization, then // we're going to try to compile the condition into the // dispatch hash. if (dispatch != Qundef) { dispatch = pm_compile_case_node_dispatch(dispatch, condition, label, scope_node); } if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) { ADD_INSN(cond_seq, &dummy_line_node, dup); pm_compile_node(iseq, condition, cond_seq, false, scope_node); ADD_INSN1(cond_seq, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE | VM_CHECKMATCH_ARRAY)); } else { if (PM_NODE_TYPE_P(condition, PM_STRING_NODE)) { const pm_string_node_t *string = (const pm_string_node_t *) condition; VALUE value = rb_fstring(parse_string_encoded((const pm_node_t *) string, &string->unescaped, parser)); ADD_INSN1(cond_seq, &dummy_line_node, putobject, value); } else { pm_compile_node(iseq, condition, cond_seq, false, scope_node); } ADD_INSN1(cond_seq, &dummy_line_node, topn, INT2FIX(1)); ADD_SEND_WITH_FLAG(cond_seq, &dummy_line_node, idEqq, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); } ADD_INSNL(cond_seq, &dummy_line_node, branchif, label); } // Now, add the label to the body and compile the body of the // when clause. This involves popping the predicate, compiling // the statements to be executed, and then compiling a jump to // the end of the case node. ADD_LABEL(body_seq, label); ADD_INSN(body_seq, &dummy_line_node, pop); if (clause->statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node); } else if (!popped) { ADD_INSN(body_seq, &dummy_line_node, putnil); } ADD_INSNL(body_seq, &dummy_line_node, jump, end_label); } // Now that we have compiled the conditions and the bodies of the // various when clauses, we can compile the predicate, lay out the // conditions, compile the fallback consequent if there is one, and // finally put in the bodies of the when clauses. PM_COMPILE_NOT_POPPED(cast->predicate); // If we have a dispatch hash, then we'll use it here to create the // optimization. if (dispatch != Qundef) { PM_DUP; ADD_INSN2(ret, &dummy_line_node, opt_case_dispatch, dispatch, else_label); LABEL_REF(else_label); } ADD_SEQ(ret, cond_seq); // Compile either the explicit else clause or an implicit else // clause. ADD_LABEL(ret, else_label); PM_POP; if (cast->consequent != NULL) { PM_COMPILE((const pm_node_t *) cast->consequent); } else if (!popped) { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, jump, end_label); } ADD_SEQ(ret, body_seq); ADD_LABEL(ret, end_label); return; } case PM_CASE_MATCH_NODE: { // If you use the `case` keyword to create a case match node, it will // match against all of the `in` clauses until it finds one that // matches. If it doesn't find one, it can optionally fall back to an // `else` clause. If none is present and a match wasn't found, it will // raise an appropriate error. const pm_case_match_node_t *cast = (const pm_case_match_node_t *) node; // This is the anchor that we will compile the bodies of the various // `in` nodes into. We'll make sure that the patterns that are compiled // jump into the correct spots within this anchor. DECL_ANCHOR(body_seq); INIT_ANCHOR(body_seq); // This is the anchor that we will compile the patterns of the various // `in` nodes into. If a match is found, they will need to jump into the // body_seq anchor to the correct spot. DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); // This label is used to indicate the end of the entire node. It is // jumped to after the entire stack is cleaned up. LABEL *end_label = NEW_LABEL(lineno); // This label is used as the fallback for the case match. If no match is // found, then we jump to this label. This is either an `else` clause or // an error handler. LABEL *else_label = NEW_LABEL(lineno); // We're going to use this to uniquely identify each branch so that we // can track coverage information. int branch_id = 0; // VALUE branches = 0; // If there is only one pattern, then the behavior changes a bit. It // effectively gets treated as a match required node (this is how it is // represented in the other parser). bool in_single_pattern = cast->consequent == NULL && cast->conditions.size == 1; // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. if (in_single_pattern) { ADD_INSN(ret, &dummy_line_node, putnil); // key error key ADD_INSN(ret, &dummy_line_node, putnil); // key error matchee ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); // key error? ADD_INSN(ret, &dummy_line_node, putnil); // error string } // Now we're going to compile the value to match against. ADD_INSN(ret, &dummy_line_node, putnil); // deconstruct cache PM_COMPILE_NOT_POPPED(cast->predicate); // Next, we'll loop through every in clause and compile its body into // the body_seq anchor and its pattern into the cond_seq anchor. We'll // make sure the pattern knows how to jump correctly into the body if it // finds a match. for (size_t index = 0; index < cast->conditions.size; index++) { const pm_node_t *condition = cast->conditions.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(condition, PM_IN_NODE)); const pm_in_node_t *in_node = (const pm_in_node_t *) condition; pm_line_node_t in_line; pm_line_node(&in_line, scope_node, (const pm_node_t *) in_node); pm_line_node_t pattern_line; pm_line_node(&pattern_line, scope_node, (const pm_node_t *) in_node->pattern); if (branch_id) { ADD_INSN(body_seq, &in_line.node, putnil); } LABEL *body_label = NEW_LABEL(in_line.lineno); ADD_LABEL(body_seq, body_label); ADD_INSN1(body_seq, &in_line.node, adjuststack, INT2FIX(in_single_pattern ? 6 : 2)); // TODO: We need to come back to this and enable trace branch // coverage. At the moment we can't call this function because it // accepts a NODE* and not a pm_node_t*. // add_trace_branch_coverage(iseq, body_seq, in_node->statements || in, branch_id++, "in", branches); branch_id++; if (in_node->statements != NULL) { PM_COMPILE_INTO_ANCHOR(body_seq, (const pm_node_t *) in_node->statements); } else if (!popped) { ADD_INSN(body_seq, &in_line.node, putnil); } ADD_INSNL(body_seq, &in_line.node, jump, end_label); LABEL *next_pattern_label = NEW_LABEL(pattern_line.lineno); ADD_INSN(cond_seq, &pattern_line.node, dup); pm_compile_pattern(iseq, scope_node, in_node->pattern, cond_seq, body_label, next_pattern_label, in_single_pattern, false, true, 2); ADD_LABEL(cond_seq, next_pattern_label); LABEL_UNREMOVABLE(next_pattern_label); } if (cast->consequent != NULL) { // If we have an `else` clause, then this becomes our fallback (and // there is no need to compile in code to potentially raise an // error). const pm_else_node_t *else_node = (const pm_else_node_t *) cast->consequent; ADD_LABEL(cond_seq, else_label); ADD_INSN(cond_seq, &dummy_line_node, pop); ADD_INSN(cond_seq, &dummy_line_node, pop); // TODO: trace branch coverage // add_trace_branch_coverage(iseq, cond_seq, cast->consequent, branch_id, "else", branches); if (else_node->statements != NULL) { PM_COMPILE_INTO_ANCHOR(cond_seq, (const pm_node_t *) else_node->statements); } else if (!popped) { ADD_INSN(cond_seq, &dummy_line_node, putnil); } ADD_INSNL(cond_seq, &dummy_line_node, jump, end_label); ADD_INSN(cond_seq, &dummy_line_node, putnil); if (popped) { ADD_INSN(cond_seq, &dummy_line_node, putnil); } } else { // Otherwise, if we do not have an `else` clause, we will compile in // the code to handle raising an appropriate error. ADD_LABEL(cond_seq, else_label); // TODO: trace branch coverage // add_trace_branch_coverage(iseq, cond_seq, orig_node, branch_id, "else", branches); if (in_single_pattern) { pm_compile_pattern_error_handler(iseq, scope_node, node, cond_seq, end_label, popped); } else { ADD_INSN1(cond_seq, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(cond_seq, &dummy_line_node, putobject, rb_eNoMatchingPatternError); ADD_INSN1(cond_seq, &dummy_line_node, topn, INT2FIX(2)); ADD_SEND(cond_seq, &dummy_line_node, id_core_raise, INT2FIX(2)); ADD_INSN1(cond_seq, &dummy_line_node, adjuststack, INT2FIX(3)); if (!popped) ADD_INSN(cond_seq, &dummy_line_node, putnil); ADD_INSNL(cond_seq, &dummy_line_node, jump, end_label); ADD_INSN1(cond_seq, &dummy_line_node, dupn, INT2FIX(1)); if (popped) ADD_INSN(cond_seq, &dummy_line_node, putnil); } } // At the end of all of this compilation, we will add the code for the // conditions first, then the various bodies, then mark the end of the // entire sequence with the end label. ADD_SEQ(ret, cond_seq); ADD_SEQ(ret, body_seq); ADD_LABEL(ret, end_label); return; } case PM_CLASS_NODE: { pm_class_node_t *class_node = (pm_class_node_t *)node; ID class_id = pm_constant_id_lookup(scope_node, class_node->name); VALUE class_name = rb_str_freeze(rb_sprintf("", rb_id2str(class_id))); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)class_node, &next_scope_node, scope_node, parser); const rb_iseq_t *class_iseq = NEW_CHILD_ISEQ(&next_scope_node, class_name, ISEQ_TYPE_CLASS, lineno); pm_scope_node_destroy(&next_scope_node); // TODO: Once we merge constant path nodes correctly, fix this flag const int flags = VM_DEFINECLASS_TYPE_CLASS | (class_node->superclass ? VM_DEFINECLASS_FLAG_HAS_SUPERCLASS : 0) | pm_compile_class_path(ret, iseq, class_node->constant_path, &dummy_line_node, false, scope_node); if (class_node->superclass) { PM_COMPILE_NOT_POPPED(class_node->superclass); } else { PM_PUTNIL; } ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(class_id), class_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)class_iseq); PM_POP_IF_POPPED; return; } case PM_CLASS_VARIABLE_AND_WRITE_NODE: { pm_class_variable_and_write_node_t *class_variable_and_write_node = (pm_class_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_and_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(class_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: { pm_class_variable_operator_write_node_t *class_variable_operator_write_node = (pm_class_variable_operator_write_node_t*) node; ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_operator_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_COMPILE_NOT_POPPED(class_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, class_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); return; } case PM_CLASS_VARIABLE_OR_WRITE_NODE: { pm_class_variable_or_write_node_t *class_variable_or_write_node = (pm_class_variable_or_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); LABEL *start_label = NEW_LABEL(lineno); ADD_INSN(ret, &dummy_line_node, putnil); ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CVAR), ID2SYM(pm_constant_id_lookup(scope_node, class_variable_or_write_node->name)), Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, start_label); ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_or_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, start_label); PM_COMPILE_NOT_POPPED(class_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_READ_NODE: { if (!popped) { pm_class_variable_read_node_t *class_variable_read_node = (pm_class_variable_read_node_t *) node; ID cvar_name = pm_constant_id_lookup(scope_node, class_variable_read_node->name); ADD_INSN2(ret, &dummy_line_node, getclassvariable, ID2SYM(cvar_name), get_cvar_ic_value(iseq, cvar_name)); } return; } case PM_CLASS_VARIABLE_WRITE_NODE: { pm_class_variable_write_node_t *write_node = (pm_class_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID cvar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setclassvariable, ID2SYM(cvar_name), get_cvar_ic_value(iseq, cvar_name)); return; } case PM_CONSTANT_PATH_NODE: { // Foo::Bar // ^^^^^^^^ VALUE parts; if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache && ((parts = pm_constant_path_parts(node, scope_node)) != Qnil)) { ISEQ_BODY(iseq)->ic_size++; ADD_INSN1(ret, &dummy_line_node, opt_getconstant_path, parts); } else { int lineno = pm_node_line_number(parser, node); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); DECL_ANCHOR(prefix); INIT_ANCHOR(prefix); DECL_ANCHOR(body); INIT_ANCHOR(body); pm_compile_constant_path(iseq, node, prefix, body, popped, scope_node); if (LIST_INSN_SIZE_ZERO(prefix)) { ADD_INSN(ret, &dummy_line_node, putnil); } else { ADD_SEQ(ret, prefix); } ADD_SEQ(ret, body); } PM_POP_IF_POPPED; return; } case PM_CONSTANT_PATH_AND_WRITE_NODE: { // Foo::Bar &&= baz // ^^^^^^^^^^^^^^^^ const pm_constant_path_and_write_node_t *cast = (const pm_constant_path_and_write_node_t*) node; const pm_constant_path_node_t *target = cast->target; const pm_constant_read_node_t *child = (const pm_constant_read_node_t *) target->child; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); LABEL *lfin = NEW_LABEL(lineno); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, lfin); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(cast->value); if (popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } else { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(2)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, name); ADD_LABEL(ret, lfin); PM_SWAP_UNLESS_POPPED; PM_POP; return; } case PM_CONSTANT_PATH_OR_WRITE_NODE: { // Foo::Bar ||= baz // ^^^^^^^^^^^^^^^^ const pm_constant_path_or_write_node_t *cast = (const pm_constant_path_or_write_node_t *) node; const pm_constant_path_node_t *target = cast->target; const pm_constant_read_node_t *child = (const pm_constant_read_node_t *) target->child; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); LABEL *lassign = NEW_LABEL(lineno); LABEL *lfin = NEW_LABEL(lineno); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_DUP; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST_FROM), name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, lassign); PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, lfin); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, lassign); PM_COMPILE_NOT_POPPED(cast->value); if (popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } else { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(2)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, name); ADD_LABEL(ret, lfin); PM_SWAP_UNLESS_POPPED; PM_POP; return; } case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: { // Foo::Bar += baz // ^^^^^^^^^^^^^^^ const pm_constant_path_operator_write_node_t *cast = (const pm_constant_path_operator_write_node_t *) node; const pm_constant_path_node_t *target = cast->target; ID method_id = pm_constant_id_lookup(scope_node, cast->operator); const pm_constant_read_node_t *child = (const pm_constant_read_node_t *) target->child; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, name); PM_COMPILE_NOT_POPPED(cast->value); ADD_CALL(ret, &dummy_line_node, method_id, INT2FIX(1)); PM_SWAP; if (!popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, name); return; } case PM_CONSTANT_PATH_WRITE_NODE: { // Foo::Bar = 1 // ^^^^^^^^^^^^ const pm_constant_path_write_node_t *cast = (const pm_constant_path_write_node_t *) node; const pm_constant_path_node_t *target = cast->target; const pm_constant_read_node_t *child = (const pm_constant_read_node_t *) target->child; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); if (target->parent) { PM_COMPILE_NOT_POPPED((pm_node_t *) target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_COMPILE_NOT_POPPED(cast->value); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } PM_SWAP; ADD_INSN1(ret, &dummy_line_node, setconstant, name); return; } case PM_CONSTANT_READ_NODE: { // Foo // ^^^ const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); pm_compile_constant_read(iseq, name, &cast->base.location, ret, scope_node); PM_POP_IF_POPPED; return; } case PM_CONSTANT_AND_WRITE_NODE: { // Foo &&= bar // ^^^^^^^^^^^ const pm_constant_and_write_node_t *cast = (const pm_constant_and_write_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); LABEL *end_label = NEW_LABEL(lineno); pm_compile_constant_read(iseq, name, &cast->name_loc, ret, scope_node); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(cast->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, name); ADD_LABEL(ret, end_label); return; } case PM_CONSTANT_OR_WRITE_NODE: { // Foo ||= bar // ^^^^^^^^^^^ const pm_constant_or_write_node_t *cast = (const pm_constant_or_write_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); LABEL *set_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST), name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); pm_compile_constant_read(iseq, name, &cast->name_loc, ret, scope_node); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(cast->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, name); ADD_LABEL(ret, end_label); return; } case PM_CONSTANT_OPERATOR_WRITE_NODE: { // Foo += bar // ^^^^^^^^^^ const pm_constant_operator_write_node_t *cast = (const pm_constant_operator_write_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); ID method_id = pm_constant_id_lookup(scope_node, cast->operator); pm_compile_constant_read(iseq, name, &cast->name_loc, ret, scope_node); PM_COMPILE_NOT_POPPED(cast->value); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, name); return; } case PM_CONSTANT_WRITE_NODE: { // Foo = 1 // ^^^^^^^ const pm_constant_write_node_t *cast = (const pm_constant_write_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PM_COMPILE_NOT_POPPED(cast->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, name); return; } case PM_DEF_NODE: { pm_def_node_t *def_node = (pm_def_node_t *) node; ID method_name = pm_constant_id_lookup(scope_node, def_node->name); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)def_node, &next_scope_node, scope_node, parser); rb_iseq_t *method_iseq = NEW_ISEQ(&next_scope_node, rb_id2str(method_name), ISEQ_TYPE_METHOD, lineno); pm_scope_node_destroy(&next_scope_node); if (def_node->receiver) { PM_COMPILE_NOT_POPPED(def_node->receiver); ADD_INSN2(ret, &dummy_line_node, definesmethod, ID2SYM(method_name), method_iseq); } else { ADD_INSN2(ret, &dummy_line_node, definemethod, ID2SYM(method_name), method_iseq); } RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)method_iseq); if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, ID2SYM(method_name)); } return; } case PM_DEFINED_NODE: { pm_defined_node_t *defined_node = (pm_defined_node_t *)node; pm_compile_defined_expr(iseq, defined_node->value, ret, popped, scope_node, dummy_line_node, lineno, false); return; } case PM_EMBEDDED_STATEMENTS_NODE: { pm_embedded_statements_node_t *embedded_statements_node = (pm_embedded_statements_node_t *)node; if (embedded_statements_node->statements) { PM_COMPILE((pm_node_t *) (embedded_statements_node->statements)); } else { PM_PUTNIL; } PM_POP_IF_POPPED; // TODO: Concatenate the strings that exist here return; } case PM_EMBEDDED_VARIABLE_NODE: { pm_embedded_variable_node_t *embedded_node = (pm_embedded_variable_node_t *)node; PM_COMPILE(embedded_node->variable); return; } case PM_FALSE_NODE: if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); } return; case PM_ENSURE_NODE: { pm_ensure_node_t *ensure_node = (pm_ensure_node_t *)node; LABEL *start = NEW_LABEL(lineno); LABEL *end = NEW_LABEL(lineno); ADD_LABEL(ret, start); if (ensure_node->statements) { LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label; ISEQ_COMPILE_DATA(iseq)->end_label = end; PM_COMPILE((pm_node_t *)ensure_node->statements); ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label; } ADD_LABEL(ret, end); return; } case PM_ELSE_NODE: { pm_else_node_t *cast = (pm_else_node_t *)node; if (cast->statements) { PM_COMPILE((pm_node_t *)cast->statements); } else { PM_PUTNIL_UNLESS_POPPED; } return; } case PM_FLIP_FLOP_NODE: { pm_flip_flop_node_t *flip_flop_node = (pm_flip_flop_node_t *)node; LABEL *final_label = NEW_LABEL(lineno); LABEL *then_label = NEW_LABEL(lineno); LABEL *else_label = NEW_LABEL(lineno); pm_compile_flip_flop(flip_flop_node, else_label, then_label, iseq, lineno, ret, popped, scope_node); ADD_LABEL(ret, then_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, jump, final_label); ADD_LABEL(ret, else_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_LABEL(ret, final_label); return; } case PM_FLOAT_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_float(node)); } return; } case PM_FOR_NODE: { pm_for_node_t *cast = (pm_for_node_t *) node; LABEL *retry_label = NEW_LABEL(lineno); LABEL *retry_end_l = NEW_LABEL(lineno); // First, compile the collection that we're going to be iterating over. ADD_LABEL(ret, retry_label); PM_COMPILE_NOT_POPPED(cast->collection); // Next, create the new scope that is going to contain the block that // will be passed to the each method. pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *) cast, &next_scope_node, scope_node, parser); const rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); const rb_iseq_t *prev_block = ISEQ_COMPILE_DATA(iseq)->current_block; ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; // Now, create the method call to each that will be used to iterate over // the collection, and pass the newly created iseq as the block. ADD_SEND_WITH_BLOCK(ret, &dummy_line_node, idEach, INT2FIX(0), child_iseq); // We need to put the label "retry_end_l" immediately after the last // "send" instruction. This because vm_throw checks if the break cont is // equal to the index of next insn of the "send". (Otherwise, it is // considered "break from proc-closure". See "TAG_BREAK" handling in // "vm_throw_start".) // // Normally, "send" instruction is at the last. However, qcall under // branch coverage measurement adds some instructions after the "send". // // Note that "invokesuper" appears instead of "send". { INSN *iobj; LINK_ELEMENT *last_elem = LAST_ELEMENT(ret); iobj = IS_INSN(last_elem) ? (INSN*) last_elem : (INSN*) get_prev_insn((INSN*) last_elem); while (INSN_OF(iobj) != BIN(send) && INSN_OF(iobj) != BIN(invokesuper)) { iobj = (INSN*) get_prev_insn(iobj); } ELEM_INSERT_NEXT(&iobj->link, (LINK_ELEMENT*) retry_end_l); // LINK_ANCHOR has a pointer to the last element, but // ELEM_INSERT_NEXT does not update it even if we add an insn to the // last of LINK_ANCHOR. So this updates it manually. if (&iobj->link == LAST_ELEMENT(ret)) { ret->last = (LINK_ELEMENT*) retry_end_l; } } PM_POP_IF_POPPED; ISEQ_COMPILE_DATA(iseq)->current_block = prev_block; ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, child_iseq, retry_end_l); return; } case PM_FORWARDING_ARGUMENTS_NODE: { rb_bug("Cannot compile a ForwardingArgumentsNode directly\n"); return; } case PM_FORWARDING_SUPER_NODE: { pm_forwarding_super_node_t *forwarding_super_node = (pm_forwarding_super_node_t *) node; const rb_iseq_t *block = NULL; PM_PUTSELF; int flag = VM_CALL_ZSUPER | VM_CALL_SUPER | VM_CALL_FCALL; if (forwarding_super_node->block) { pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)forwarding_super_node->block, &next_scope_node, scope_node, parser); block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)block); } DECL_ANCHOR(args); INIT_ANCHOR(args); struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const rb_iseq_t *local_iseq = body->local_iseq; const struct rb_iseq_constant_body *const local_body = ISEQ_BODY(local_iseq); int argc = 0; int depth = get_lvar_level(iseq); if (local_body->param.flags.has_lead) { /* required arguments */ for (int i = 0; i < local_body->param.lead_num; i++) { int idx = local_body->local_table_size - i; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } argc += local_body->param.lead_num; } if (local_body->param.flags.has_opt) { /* optional arguments */ for (int j = 0; j < local_body->param.opt_num; j++) { int idx = local_body->local_table_size - (argc + j); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } argc += local_body->param.opt_num; } if (local_body->param.flags.has_rest) { /* rest argument */ int idx = local_body->local_table_size - local_body->param.rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); ADD_INSN1(args, &dummy_line_node, splatarray, Qfalse); argc = local_body->param.rest_start + 1; flag |= VM_CALL_ARGS_SPLAT; } if (local_body->param.flags.has_post) { /* post arguments */ int post_len = local_body->param.post_num; int post_start = local_body->param.post_start; int j = 0; for (; j < post_len; j++) { int idx = local_body->local_table_size - (post_start + j); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } if (local_body->param.flags.has_rest) { // argc remains unchanged from rest branch ADD_INSN1(args, &dummy_line_node, newarray, INT2FIX(j)); ADD_INSN (args, &dummy_line_node, concatarray); } else { argc = post_len + post_start; } } const struct rb_iseq_param_keyword *const local_keyword = local_body->param.keyword; if (local_body->param.flags.has_kw) { int local_size = local_body->local_table_size; argc++; ADD_INSN1(args, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); RUBY_ASSERT(local_keyword->num > 0); ADD_SEND(args, &dummy_line_node, rb_intern("dup"), INT2FIX(0)); } else { ADD_INSN1(args, &dummy_line_node, newhash, INT2FIX(0)); } int i = 0; for (; i < local_keyword->num; ++i) { ID id = local_keyword->table[i]; int idx = local_size - get_local_var_idx(local_iseq, id); ADD_INSN1(args, &dummy_line_node, putobject, ID2SYM(id)); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } ADD_SEND(args, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(i * 2 + 1)); flag |= VM_CALL_KW_SPLAT| VM_CALL_KW_SPLAT_MUT; } else if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); argc++; flag |= VM_CALL_KW_SPLAT; } ADD_SEQ(ret, args); ADD_INSN2(ret, &dummy_line_node, invokesuper, new_callinfo(iseq, 0, argc, flag, NULL, block != NULL), block); PM_POP_IF_POPPED; return; } case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: { pm_global_variable_and_write_node_t *global_variable_and_write_node = (pm_global_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_and_write_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(global_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); ADD_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: { pm_global_variable_operator_write_node_t *global_variable_operator_write_node = (pm_global_variable_operator_write_node_t*) node; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_operator_write_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_COMPILE_NOT_POPPED(global_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, global_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); return; } case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: { pm_global_variable_or_write_node_t *global_variable_or_write_node = (pm_global_variable_or_write_node_t*) node; LABEL *set_label= NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); PM_PUTNIL; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_or_write_node->name)); ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_GVAR), global_variable_name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(global_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); ADD_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { pm_global_variable_read_node_t *global_variable_read_node = (pm_global_variable_read_node_t *)node; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_read_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_POP_IF_POPPED; return; } case PM_GLOBAL_VARIABLE_WRITE_NODE: { pm_global_variable_write_node_t *write_node = (pm_global_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN1(ret, &dummy_line_node, setglobal, ID2SYM(ivar_name)); return; } case PM_HASH_NODE: { // If every node in the hash is static, then we can compile the entire // hash now instead of later. if (pm_static_literal_p(node)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node); ADD_INSN1(ret, &dummy_line_node, duphash, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } } else { // Here since we know there are possible side-effects inside the // hash contents, we're going to build it entirely at runtime. We'll // do this by pushing all of the key-value pairs onto the stack and // then combining them with newhash. // // If this hash is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the hash contents. const pm_hash_node_t *cast = (const pm_hash_node_t *) node; const pm_node_list_t *elements = &cast->elements; if (popped) { // If this hash is popped, then we can iterate through each // element and compile it. The result of each compilation will // only include the side effects of the element itself. for (size_t index = 0; index < elements->size; index++) { PM_COMPILE_POPPED(elements->nodes[index]); } } else { pm_compile_hash_elements(elements, lineno, iseq, ret, scope_node); } } return; } case PM_IF_NODE: { const int line = pm_node_line_number(parser, node); pm_if_node_t *if_node = (pm_if_node_t *)node; pm_statements_node_t *node_body = if_node->statements; pm_node_t *node_else = if_node->consequent; pm_node_t *predicate = if_node->predicate; pm_compile_if(iseq, line, node_body, node_else, predicate, ret, popped, scope_node); return; } case PM_IMAGINARY_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_imaginary((pm_imaginary_node_t *)node)); } return; } case PM_IMPLICIT_NODE: { // Implicit nodes mark places in the syntax tree where explicit syntax // was omitted, but implied. For example, // // { foo: } // // In this case a method call/local variable read is implied by virtue // of the missing value. To compile these nodes, we simply compile the // value that is implied, which is helpfully supplied by the parser. pm_implicit_node_t *cast = (pm_implicit_node_t *)node; PM_COMPILE(cast->value); return; } case PM_IN_NODE: { // In nodes are handled by the case match node directly, so we should // never end up hitting them through this path. rb_bug("Should not ever enter an in node directly"); return; } case PM_INDEX_OPERATOR_WRITE_NODE: pm_compile_index_operator_write_node(scope_node, (const pm_index_operator_write_node_t *) node, iseq, ret, popped); return; case PM_INDEX_AND_WRITE_NODE: { const pm_index_and_write_node_t *cast = (const pm_index_and_write_node_t *) node; pm_compile_index_control_flow_write_node(scope_node, node, cast->receiver, cast->arguments, cast->block, cast->value, iseq, ret, popped); return; } case PM_INDEX_OR_WRITE_NODE: { const pm_index_or_write_node_t *cast = (const pm_index_or_write_node_t *) node; pm_compile_index_control_flow_write_node(scope_node, node, cast->receiver, cast->arguments, cast->block, cast->value, iseq, ret, popped); return; } case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: { pm_instance_variable_and_write_node_t *instance_variable_and_write_node = (pm_instance_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_and_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(instance_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: { pm_instance_variable_operator_write_node_t *instance_variable_operator_write_node = (pm_instance_variable_operator_write_node_t*) node; ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_operator_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_COMPILE_NOT_POPPED(instance_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, instance_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); return; } case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: { pm_instance_variable_or_write_node_t *instance_variable_or_write_node = (pm_instance_variable_or_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_or_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(instance_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_READ_NODE: { if (!popped) { pm_instance_variable_read_node_t *instance_variable_read_node = (pm_instance_variable_read_node_t *) node; ID ivar_name = pm_constant_id_lookup(scope_node, instance_variable_read_node->name); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, ID2SYM(ivar_name), get_ivar_ic_value(iseq, ivar_name)); } return; } case PM_INSTANCE_VARIABLE_WRITE_NODE: { pm_instance_variable_write_node_t *write_node = (pm_instance_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setinstancevariable, ID2SYM(ivar_name), get_ivar_ic_value(iseq, ivar_name)); return; } case PM_INTEGER_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_integer((pm_integer_node_t *) node)); } return; } case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: { pm_interpolated_match_last_line_node_t *cast = (pm_interpolated_match_last_line_node_t *) node; int parts_size = (int)cast->parts.size; pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, popped, scope_node); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags(node)), INT2FIX(parts_size)); ADD_INSN1(ret, &dummy_line_node, getglobal, rb_id2sym(idLASTLINE)); ADD_SEND(ret, &dummy_line_node, idEqTilde, INT2NUM(1)); PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE) { const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; const rb_iseq_t *block_iseq = NULL; int ic_index = ISEQ_BODY(iseq)->ise_size++; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t*)node, &next_scope_node, scope_node, parser); block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; ADD_INSN2(ret, &dummy_line_node, once, block_iseq, INT2FIX(ic_index)); ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; return; } pm_interpolated_regular_expression_node_t *cast = (pm_interpolated_regular_expression_node_t *) node; int parts_size = pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, popped, scope_node); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags(node)), INT2FIX(parts_size)); PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_STRING_NODE: { pm_interpolated_string_node_t *interp_string_node = (pm_interpolated_string_node_t *) node; int number_of_items_pushed = pm_interpolated_node_compile(&interp_string_node->parts, iseq, dummy_line_node, ret, popped, scope_node); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_SYMBOL_NODE: { pm_interpolated_symbol_node_t *interp_symbol_node = (pm_interpolated_symbol_node_t *) node; int number_of_items_pushed = pm_interpolated_node_compile(&interp_symbol_node->parts, iseq, dummy_line_node, ret, popped, scope_node); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } if (!popped) { ADD_INSN(ret, &dummy_line_node, intern); } else { PM_POP; } return; } case PM_INTERPOLATED_X_STRING_NODE: { pm_interpolated_x_string_node_t *interp_x_string_node = (pm_interpolated_x_string_node_t *) node; PM_PUTSELF; int number_of_items_pushed = pm_interpolated_node_compile(&interp_x_string_node->parts, iseq, dummy_line_node, ret, false, scope_node); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); PM_POP_IF_POPPED; return; } case PM_KEYWORD_HASH_NODE: { pm_keyword_hash_node_t *keyword_hash_node = (pm_keyword_hash_node_t *) node; pm_node_list_t elements = keyword_hash_node->elements; for (size_t index = 0; index < elements.size; index++) { PM_COMPILE(elements.nodes[index]); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(elements.size * 2)); } return; } case PM_LAMBDA_NODE: { const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node, parser); int opening_lineno = pm_location_line_number(parser, &cast->opening_loc); const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, opening_lineno); pm_scope_node_destroy(&next_scope_node); VALUE argc = INT2FIX(0); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_CALL_WITH_BLOCK(ret, &dummy_line_node, idLambda, argc, block); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)block); PM_POP_IF_POPPED; return; } case PM_LOCAL_VARIABLE_AND_WRITE_NODE: { pm_local_variable_and_write_node_t *local_variable_and_write_node = (pm_local_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); pm_constant_id_t constant_id = local_variable_and_write_node->name; pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, constant_id, local_variable_and_write_node->depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(local_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); ADD_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: { pm_local_variable_operator_write_node_t *local_variable_operator_write_node = (pm_local_variable_operator_write_node_t*) node; pm_constant_id_t constant_id = local_variable_operator_write_node->name; pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, constant_id, local_variable_operator_write_node->depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); PM_COMPILE_NOT_POPPED(local_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, local_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE | VM_CALL_FCALL | VM_CALL_VCALL; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); return; } case PM_LOCAL_VARIABLE_OR_WRITE_NODE: { pm_local_variable_or_write_node_t *local_variable_or_write_node = (pm_local_variable_or_write_node_t*) node; LABEL *set_label= NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); pm_constant_id_t constant_id = local_variable_or_write_node->name; pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, constant_id, local_variable_or_write_node->depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(local_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index.index, local_index.level); ADD_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_READ_NODE: { pm_local_variable_read_node_t *local_read_node = (pm_local_variable_read_node_t *) node; if (!popped) { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_read_node->name, local_read_node->depth); ADD_GETLOCAL(ret, &dummy_line_node, index.index, index.level); } return; } case PM_LOCAL_VARIABLE_WRITE_NODE: { pm_local_variable_write_node_t *local_write_node = (pm_local_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(local_write_node->value); PM_DUP_UNLESS_POPPED; pm_constant_id_t constant_id = local_write_node->name; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, constant_id, local_write_node->depth); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); return; } case PM_MATCH_LAST_LINE_NODE: { if (!popped) { pm_match_last_line_node_t *cast = (pm_match_last_line_node_t *) node; VALUE regex_str = parse_string(&cast->unescaped, parser); VALUE regex = rb_reg_new(RSTRING_PTR(regex_str), RSTRING_LEN(regex_str), pm_reg_flags(node)); RB_GC_GUARD(regex_str); ADD_INSN1(ret, &dummy_line_node, putobject, regex); ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(0), INT2FIX(0)); ADD_SEND(ret, &dummy_line_node, idEqTilde, INT2NUM(1)); } return; } case PM_MATCH_PREDICATE_NODE: { pm_match_predicate_node_t *cast = (pm_match_predicate_node_t *) node; // First, allocate some stack space for the cached return value of any // calls to #deconstruct. PM_PUTNIL; // Next, compile the expression that we're going to match against. PM_COMPILE_NOT_POPPED(cast->value); PM_DUP; // Now compile the pattern that is going to be used to match against the // expression. LABEL *matched_label = NEW_LABEL(lineno); LABEL *unmatched_label = NEW_LABEL(lineno); LABEL *done_label = NEW_LABEL(lineno); pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, false, false, true, 2); // If the pattern did not match, then compile the necessary instructions // to handle pushing false onto the stack, then jump to the end. ADD_LABEL(ret, unmatched_label); PM_POP; PM_POP; if (!popped) ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_INSNL(ret, &dummy_line_node, jump, done_label); PM_PUTNIL; // If the pattern did match, then compile the necessary instructions to // handle pushing true onto the stack, then jump to the end. ADD_LABEL(ret, matched_label); ADD_INSN1(ret, &dummy_line_node, adjuststack, INT2FIX(2)); if (!popped) ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, jump, done_label); ADD_LABEL(ret, done_label); return; } case PM_MATCH_REQUIRED_NODE: { // A match required node represents pattern matching against a single // pattern using the => operator. For example, // // foo => bar // // This is somewhat analogous to compiling a case match statement with a // single pattern. In both cases, if the pattern fails it should // immediately raise an error. const pm_match_required_node_t *cast = (const pm_match_required_node_t *) node; LABEL *matched_label = NEW_LABEL(lineno); LABEL *unmatched_label = NEW_LABEL(lineno); LABEL *done_label = NEW_LABEL(lineno); // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. ADD_INSN(ret, &dummy_line_node, putnil); // key error key ADD_INSN(ret, &dummy_line_node, putnil); // key error matchee ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); // key error? ADD_INSN(ret, &dummy_line_node, putnil); // error string ADD_INSN(ret, &dummy_line_node, putnil); // deconstruct cache // Next we're going to compile the value expression such that it's on // the stack. PM_COMPILE_NOT_POPPED(cast->value); // Here we'll dup it so that it can be used for comparison, but also be // used for error handling. ADD_INSN(ret, &dummy_line_node, dup); // Next we'll compile the pattern. We indicate to the pm_compile_pattern // function that this is the only pattern that will be matched against // through the in_single_pattern parameter. We also indicate that the // value to compare against is 2 slots from the top of the stack (the // base_index parameter). pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, true, false, true, 2); // If the pattern did not match the value, then we're going to compile // in our error handler code. This will determine which error to raise // and raise it. ADD_LABEL(ret, unmatched_label); pm_compile_pattern_error_handler(iseq, scope_node, node, ret, done_label, popped); // If the pattern did match, we'll clean up the values we've pushed onto // the stack and then push nil onto the stack if it's not popped. ADD_LABEL(ret, matched_label); ADD_INSN1(ret, &dummy_line_node, adjuststack, INT2FIX(6)); if (!popped) ADD_INSN(ret, &dummy_line_node, putnil); ADD_INSNL(ret, &dummy_line_node, jump, done_label); ADD_LABEL(ret, done_label); return; } case PM_MATCH_WRITE_NODE: { // Match write nodes are specialized call nodes that have a regular // expression with valid named capture groups on the left, the =~ // operator, and some value on the right. The nodes themselves simply // wrap the call with the local variable targets that will be written // when the call is executed. pm_match_write_node_t *cast = (pm_match_write_node_t *) node; LABEL *fail_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); // First, we'll compile the call so that all of its instructions are // present. Then we'll compile all of the local variable targets. PM_COMPILE_NOT_POPPED((pm_node_t *) cast->call); // Now, check if the match was successful. If it was, then we'll // continue on and assign local variables. Otherwise we'll skip over the // assignment code. ADD_INSN1(ret, &dummy_line_node, getglobal, rb_id2sym(idBACKREF)); PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchunless, fail_label); // If there's only a single local variable target, we can skip some of // the bookkeeping, so we'll put a special branch here. size_t targets_count = cast->targets.size; if (targets_count == 1) { pm_node_t *target = cast->targets.nodes[0]; RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth); ADD_INSN1(ret, &dummy_line_node, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); ADD_SEND(ret, &dummy_line_node, idAREF, INT2FIX(1)); ADD_LABEL(ret, fail_label); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); PM_POP_IF_POPPED; return; } // Otherwise there is more than one local variable target, so we'll need // to do some bookkeeping. for (size_t targets_index = 0; targets_index < targets_count; targets_index++) { pm_node_t *target = cast->targets.nodes[targets_index]; RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth); if (((size_t) targets_index) < (targets_count - 1)) { PM_DUP; } ADD_INSN1(ret, &dummy_line_node, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); ADD_SEND(ret, &dummy_line_node, idAREF, INT2FIX(1)); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); } // Since we matched successfully, now we'll jump to the end. ADD_INSNL(ret, &dummy_line_node, jump, end_label); // In the case that the match failed, we'll loop through each local // variable target and set all of them to `nil`. ADD_LABEL(ret, fail_label); PM_POP; for (size_t targets_index = 0; targets_index < targets_count; targets_index++) { pm_node_t *target = cast->targets.nodes[targets_index]; RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth); PM_PUTNIL; ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); } // Finally, we can push the end label for either case. ADD_LABEL(ret, end_label); PM_POP_IF_POPPED; return; } case PM_MISSING_NODE: { rb_bug("A pm_missing_node_t should not exist in prism's AST."); return; } case PM_MODULE_NODE: { pm_module_node_t *module_node = (pm_module_node_t *)node; ID module_id = pm_constant_id_lookup(scope_node, module_node->name); VALUE module_name = rb_str_freeze(rb_sprintf("", rb_id2str(module_id))); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)module_node, &next_scope_node, scope_node, parser); const rb_iseq_t *module_iseq = NEW_CHILD_ISEQ(&next_scope_node, module_name, ISEQ_TYPE_CLASS, lineno); pm_scope_node_destroy(&next_scope_node); const int flags = VM_DEFINECLASS_TYPE_MODULE | pm_compile_class_path(ret, iseq, module_node->constant_path, &dummy_line_node, false, scope_node); PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(module_id), module_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)module_iseq); PM_POP_IF_POPPED; return; } case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t *required_parameter_node = (pm_required_parameter_node_t *)node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, required_parameter_node->name, 0); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); return; } case PM_MULTI_WRITE_NODE: { // A multi write node represents writing to multiple values using an = // operator. Importantly these nodes are only parsed when the left-hand // side of the operator has multiple targets. The right-hand side of the // operator having multiple targets represents an implicit array // instead. const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node; DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_multi_target_state_t state = { 0 }; state.position = popped ? 0 : 1; size_t stack_size = pm_compile_multi_target_node(iseq, node, ret, writes, cleanup, scope_node, &state); PM_COMPILE_NOT_POPPED(cast->value); PM_DUP_UNLESS_POPPED; ADD_SEQ(ret, writes); if (!popped && stack_size >= 1) { // Make sure the value on the right-hand side of the = operator is // being returned before we pop the parent expressions. ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(stack_size)); } ADD_SEQ(ret, cleanup); return; } case PM_NEXT_NODE: { pm_next_node_t *next_node = (pm_next_node_t *) node; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } pm_add_ensure_iseq(ret, iseq, 0, scope_node); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else if (ISEQ_COMPILE_DATA(iseq)->end_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->start_label); if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } pm_add_ensure_iseq(ret, iseq, 0, scope_node); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->end_label); ADD_ADJUST_RESTORE(ret, splabel); splabel->unremovable = FALSE; PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; unsigned long throw_flag = 0; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } throw_flag = VM_THROW_NO_ESCAPE_FLAG; if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { /* while loop */ break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(ERROR_ARGS "Can't escape from eval with next"); return; } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(throw_flag | TAG_NEXT)); PM_POP_IF_POPPED; } else { rb_raise(rb_eArgError, "Invalid next"); return; } } return; } case PM_NIL_NODE: PM_PUTNIL_UNLESS_POPPED; return; case PM_NO_KEYWORDS_PARAMETER_NODE: { ISEQ_BODY(iseq)->param.flags.accepts_no_kwarg = TRUE; return; } case PM_NUMBERED_REFERENCE_READ_NODE: { if (!popped) { uint32_t reference_number = ((pm_numbered_reference_read_node_t *)node)->number; ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(1), INT2FIX(reference_number << 1)); } return; } case PM_OR_NODE: { pm_or_node_t *or_node = (pm_or_node_t *) node; LABEL *end_label = NEW_LABEL(lineno); PM_COMPILE_NOT_POPPED(or_node->left); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE(or_node->right); ADD_LABEL(ret, end_label); return; } case PM_OPTIONAL_PARAMETER_NODE: { pm_optional_parameter_node_t *optional_parameter_node = (pm_optional_parameter_node_t *)node; PM_COMPILE_NOT_POPPED(optional_parameter_node->value); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, optional_parameter_node->name, 0); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); return; } case PM_PARAMETERS_NODE: { rb_bug("Cannot compile a ParametersNode directly\n"); return; } case PM_PARENTHESES_NODE: { pm_parentheses_node_t *parentheses_node = (pm_parentheses_node_t *) node; if (parentheses_node->body == NULL) { PM_PUTNIL_UNLESS_POPPED; } else { PM_COMPILE(parentheses_node->body); } return; } case PM_PRE_EXECUTION_NODE: { pm_pre_execution_node_t *pre_execution_node = (pm_pre_execution_node_t *) node; DECL_ANCHOR(pre_ex); INIT_ANCHOR(pre_ex); if (pre_execution_node->statements) { pm_node_list_t node_list = pre_execution_node->statements->body; for (size_t index = 0; index < node_list.size; index++) { pm_compile_node(iseq, node_list.nodes[index], pre_ex, true, scope_node); } } if (!popped) { ADD_INSN(pre_ex, &dummy_line_node, putnil); } pre_ex->last->next = ret->anchor.next; ret->anchor.next = pre_ex->anchor.next; ret->anchor.next->prev = pre_ex->anchor.next; if (ret->last == (LINK_ELEMENT *)ret) { ret->last = pre_ex->last; } return; } case PM_POST_EXECUTION_NODE: { const rb_iseq_t *child_iseq; const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node, parser); child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; int is_index = ISEQ_BODY(iseq)->ise_size++; ADD_INSN2(ret, &dummy_line_node, once, child_iseq, INT2FIX(is_index)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)child_iseq); PM_POP_IF_POPPED; ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; return; } case PM_PROGRAM_NODE: { rb_bug("Cannot compile a ProgramNode directly\n"); return; } case PM_RANGE_NODE: { pm_range_node_t *range_node = (pm_range_node_t *) node; bool exclusive = (range_node->operator_loc.end - range_node->operator_loc.start) == 3; if (pm_optimizable_range_item_p(range_node->left) && pm_optimizable_range_item_p(range_node->right)) { if (!popped) { pm_node_t *left = range_node->left; pm_node_t *right = range_node->right; VALUE val = rb_range_new( left && PM_NODE_TYPE_P(left, PM_INTEGER_NODE) ? parse_integer((pm_integer_node_t *) left) : Qnil, right && PM_NODE_TYPE_P(right, PM_INTEGER_NODE) ? parse_integer((pm_integer_node_t *) right) : Qnil, exclusive ); ADD_INSN1(ret, &dummy_line_node, putobject, val); RB_OBJ_WRITTEN(iseq, Qundef, val); } } else { if (range_node->left == NULL) { PM_PUTNIL; } else { PM_COMPILE(range_node->left); } if (range_node->right == NULL) { PM_PUTNIL; } else { PM_COMPILE(range_node->right); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, newrange, INT2FIX(exclusive)); } } return; } case PM_RATIONAL_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_rational(node)); } return; } case PM_REDO_NODE: { if (ISEQ_COMPILE_DATA(iseq)->redo_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); pm_add_ensure_iseq(ret, iseq, 0, scope_node); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->redo_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_EVAL && ISEQ_COMPILE_DATA(iseq)->start_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); pm_add_ensure_iseq(ret, iseq, 0, scope_node); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(ERROR_ARGS "Can't escape from eval with redo"); return; } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(VM_THROW_NO_ESCAPE_FLAG | TAG_REDO)); PM_POP_IF_POPPED; } else { COMPILE_ERROR(ERROR_ARGS "Invalid redo"); return; } } return; } case PM_REGULAR_EXPRESSION_NODE: { if (!popped) { pm_regular_expression_node_t *cast = (pm_regular_expression_node_t *) node; VALUE regex = pm_new_regex(cast, parser); ADD_INSN1(ret, &dummy_line_node, putobject, regex); } return; } case PM_RESCUE_NODE: { pm_rescue_node_t *cast = (pm_rescue_node_t *) node; iseq_set_exception_local_table(iseq); // First, establish the labels that we need to be able to jump to within // this compilation block. LABEL *exception_match_label = NEW_LABEL(lineno); LABEL *rescue_end_label = NEW_LABEL(lineno); // Next, compile each of the exceptions that we're going to be // handling. For each one, we'll add instructions to check if the // exception matches the raised one, and if it does then jump to the // exception_match_label label. Otherwise it will fall through to the // subsequent check. If there are no exceptions, we'll only check // StandardError. pm_node_list_t *exceptions = &cast->exceptions; if (exceptions->size > 0) { for (size_t index = 0; index < exceptions->size; index++) { ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); PM_COMPILE(exceptions->nodes[index]); int checkmatch_flags = VM_CHECKMATCH_TYPE_RESCUE; if (PM_NODE_TYPE_P(exceptions->nodes[index], PM_SPLAT_NODE)) { checkmatch_flags |= VM_CHECKMATCH_ARRAY; } ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(checkmatch_flags)); ADD_INSNL(ret, &dummy_line_node, branchif, exception_match_label); } } else { ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_INSN1(ret, &dummy_line_node, putobject, rb_eStandardError); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); ADD_INSNL(ret, &dummy_line_node, branchif, exception_match_label); } // If none of the exceptions that we are matching against matched, then // we'll jump straight to the rescue_end_label label. ADD_INSNL(ret, &dummy_line_node, jump, rescue_end_label); // Here we have the exception_match_label, which is where the // control-flow goes in the case that one of the exceptions matched. // Here we will compile the instructions to handle the exception. ADD_LABEL(ret, exception_match_label); ADD_TRACE(ret, RUBY_EVENT_RESCUE); // If we have a reference to the exception, then we'll compile the write // into the instruction sequence. This can look quite different // depending on the kind of write being performed. if (cast->reference) { DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_compile_target_node(iseq, cast->reference, ret, writes, cleanup, scope_node, NULL); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_SEQ(ret, writes); ADD_SEQ(ret, cleanup); } // If we have statements to execute, we'll compile them here. Otherwise // we'll push nil onto the stack. if (cast->statements) { // We'll temporarily remove the end_label location from the iseq // when compiling the statements so that next/redo statements // inside the body will throw to the correct place instead of // jumping straight to the end of this iseq LABEL *prev_end = ISEQ_COMPILE_DATA(iseq)->end_label; ISEQ_COMPILE_DATA(iseq)->end_label = NULL; PM_COMPILE((pm_node_t *) cast->statements); // Now restore the end_label ISEQ_COMPILE_DATA(iseq)->end_label = prev_end; } else { PM_PUTNIL; } ADD_INSN(ret, &dummy_line_node, leave); // Here we'll insert the rescue_end_label label, which is jumped to if // none of the exceptions matched. It will cause the control-flow to // either jump to the next rescue clause or it will fall through to the // subsequent instruction returning the raised error. ADD_LABEL(ret, rescue_end_label); if (cast->consequent) { PM_COMPILE((pm_node_t *) cast->consequent); } else { ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); } return; } case PM_RESCUE_MODIFIER_NODE: { pm_rescue_modifier_node_t *cast = (pm_rescue_modifier_node_t *) node; pm_scope_node_t rescue_scope_node; pm_scope_node_init((pm_node_t *) cast, &rescue_scope_node, scope_node, parser); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ( &rescue_scope_node, rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, pm_node_line_number(parser, cast->rescue_expression) ); pm_scope_node_destroy(&rescue_scope_node); LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); LABEL *lcont = NEW_LABEL(lineno); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; ADD_LABEL(ret, lstart); PM_COMPILE_NOT_POPPED(cast->expression); ADD_LABEL(ret, lend); PM_NOP; ADD_LABEL(ret, lcont); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); ADD_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); return; } case PM_RETURN_NODE: { pm_arguments_node_t *arguments = ((pm_return_node_t *)node)->arguments; if (iseq) { enum rb_iseq_type type = ISEQ_BODY(iseq)->type; LABEL *splabel = 0; const rb_iseq_t *parent_iseq = iseq; enum rb_iseq_type parent_type = ISEQ_BODY(parent_iseq)->type; while (parent_type == ISEQ_TYPE_RESCUE || parent_type == ISEQ_TYPE_ENSURE) { if (!(parent_iseq = ISEQ_BODY(parent_iseq)->parent_iseq)) break; parent_type = ISEQ_BODY(parent_iseq)->type; } switch (parent_type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_MAIN: if (arguments) { rb_warn("argument of top-level return is ignored"); } if (parent_iseq == iseq) { type = ISEQ_TYPE_METHOD; } break; default: break; } if (type == ISEQ_TYPE_METHOD) { splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, 0); } if (arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)arguments); } else { PM_PUTNIL; } if (type == ISEQ_TYPE_METHOD && can_add_ensure_iseq(iseq)) { pm_add_ensure_iseq(ret, iseq, 1, scope_node); ADD_TRACE(ret, RUBY_EVENT_RETURN); ADD_INSN(ret, &dummy_line_node, leave); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(TAG_RETURN)); PM_POP_IF_POPPED; } } return; } case PM_RETRY_NODE: { if (ISEQ_BODY(iseq)->type == ISEQ_TYPE_RESCUE) { PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(TAG_RETRY)); PM_POP_IF_POPPED; } else { COMPILE_ERROR(ERROR_ARGS "Invalid retry"); return; } return; } case PM_SCOPE_NODE: { pm_scope_node_t *scope_node = (pm_scope_node_t *)node; pm_constant_id_list_t *locals = &scope_node->locals; pm_parameters_node_t *parameters_node = NULL; pm_node_list_t *keywords_list = NULL; pm_node_list_t *optionals_list = NULL; pm_node_list_t *posts_list = NULL; pm_node_list_t *requireds_list = NULL; pm_node_list_t *block_locals = NULL; bool trailing_comma = false; struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); if (scope_node->parameters) { switch (PM_NODE_TYPE(scope_node->parameters)) { case PM_BLOCK_PARAMETERS_NODE: { pm_block_parameters_node_t *block_parameters_node = (pm_block_parameters_node_t *)scope_node->parameters; parameters_node = block_parameters_node->parameters; block_locals = &block_parameters_node->locals; if (parameters_node) { if (parameters_node->rest && PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE)) { trailing_comma = true; } } break; } case PM_PARAMETERS_NODE: { parameters_node = (pm_parameters_node_t *) scope_node->parameters; break; } case PM_NUMBERED_PARAMETERS_NODE: { body->param.lead_num = ((pm_numbered_parameters_node_t *) scope_node->parameters)->maximum; break; } default: rb_bug("Unexpected node type for parameters: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } struct rb_iseq_param_keyword *keyword = NULL; if (parameters_node) { optionals_list = ¶meters_node->optionals; requireds_list = ¶meters_node->requireds; keywords_list = ¶meters_node->keywords; posts_list = ¶meters_node->posts; } else if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) { body->param.opt_num = 0; } else { body->param.lead_num = 0; body->param.opt_num = 0; } //********STEP 1********** // Goal: calculate the table size for the locals, accounting for // hidden variables and multi target nodes size_t locals_size = locals->size; // Index lookup table buffer size is only the number of the locals st_table *index_lookup_table = st_init_numtable(); int table_size = (int) locals_size; // For nodes have a hidden iteration variable. We add that to the local // table size here. if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) table_size++; if (keywords_list && keywords_list->size) { table_size++; } if (requireds_list) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { table_size++; } else if (PM_NODE_TYPE_P(required, PM_REQUIRED_PARAMETER_NODE)) { if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } } // Ensure there is enough room in the local table for any // parameters that have been repeated // ex: def underscore_parameters(_, _ = 1, _ = 2); _; end // ^^^^^^^^^^^^ if (optionals_list && optionals_list->size) { for (size_t i = 0; i < optionals_list->size; i++) { pm_node_t * node = optionals_list->nodes[i]; if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } // If we have an anonymous "rest" node, we'll need to increase the local // table size to take it in to account. // def m(foo, *, bar) // ^ if (parameters_node) { if (parameters_node->rest) { if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { if (!((pm_rest_parameter_node_t *)parameters_node->rest)->name || PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } // def foo(_, **_); _; end // ^^^ if (parameters_node->keyword_rest) { // def foo(...); end // ^^^ // When we have a `...` as the keyword_rest, it's a forwarding_parameter_node and // we need to leave space for 4 locals: *, **, &, ... if (PM_NODE_TYPE_P(parameters_node->keyword_rest, PM_FORWARDING_PARAMETER_NODE)) { table_size += 4; } else { pm_keyword_rest_parameter_node_t * kw_rest = (pm_keyword_rest_parameter_node_t *)parameters_node->keyword_rest; // If it's anonymous or repeated, then we need to allocate stack space if (!kw_rest->name || PM_NODE_FLAG_P(kw_rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } } if (posts_list) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = posts_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE) || PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } if (keywords_list && keywords_list->size) { for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } if (parameters_node && parameters_node->block) { pm_block_parameter_node_t * block_node = (pm_block_parameter_node_t *)parameters_node->block; if (PM_NODE_FLAG_P(block_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER) || !block_node->name) { table_size++; } } // We can create local_table_for_iseq with the correct size VALUE idtmp = 0; rb_ast_id_table_t *local_table_for_iseq = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + table_size * sizeof(ID)); local_table_for_iseq->size = table_size; //********END OF STEP 1********** //********STEP 2********** // Goal: populate iv index table as well as local table, keeping the // layout of the local table consistent with the layout of the // stack when calling the method // // Do a first pass on all of the parameters, setting their values in // the local_table_for_iseq, _except_ for Multis who get a hidden // variable in this step, and will get their names inserted in step 3 // local_index is a cursor that keeps track of the current // index into local_table_for_iseq. The local table is actually a list, // and the order of that list must match the order of the items pushed // on the stack. We need to take in to account things pushed on the // stack that _might not have a name_ (for example array destructuring). // This index helps us know which item we're dealing with and also give // those anonymous items temporary names (as below) int local_index = 0; // Here we figure out local table indices and insert them in to the // index lookup table and local tables. // // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. pm_node_t *required = requireds_list->nodes[i]; switch (PM_NODE_TYPE(required)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t * param = (pm_required_parameter_node_t *)required; if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, param->name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } break; } default: { rb_bug("Unsupported node in requireds in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } body->param.lead_num = (int) requireds_list->size; body->param.flags.has_lead = true; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^ if (optionals_list && optionals_list->size) { body->param.opt_num = (int) optionals_list->size; body->param.flags.has_opt = true; for (size_t i = 0; i < optionals_list->size; i++, local_index++) { pm_node_t * node = optionals_list->nodes[i]; pm_constant_id_t name = ((pm_optional_parameter_node_t *)node)->name; if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node && parameters_node->rest) { body->param.rest_start = local_index; // If there's a trailing comma, we'll have an implicit rest node, // and we don't want it to impact the rest variables on param if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { body->param.flags.has_rest = true; RUBY_ASSERT(body->param.rest_start != -1); pm_constant_id_t name = ((pm_rest_parameter_node_t *) parameters_node->rest)->name; if (name) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { // def foo(a, (b, *c, d), e = 1, *, g, (h, *i, j), k:, l: 1, **m, &n) // ^ pm_insert_local_special(idMULT, local_index, index_lookup_table, local_table_for_iseq); } local_index++; } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (posts_list && posts_list->size) { body->param.post_num = (int) posts_list->size; body->param.post_start = local_index; body->param.flags.has_post = true; for (size_t i = 0; i < posts_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *post_node = posts_list->nodes[i]; switch (PM_NODE_TYPE(post_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) post_node; if (PM_NODE_FLAG_P(param, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, param->name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } break; } default: { rb_bug("Unsupported node in posts in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^ // Keywords create an internal variable on the parse tree if (keywords_list && keywords_list->size) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); keyword->num = (int) keywords_list->size; body->param.flags.has_kw = true; const VALUE default_values = rb_ary_hidden_new(1); const VALUE complex_mark = rb_str_tmp_new(0); ID *ids = xcalloc(keywords_list->size, sizeof(ID)); size_t kw_index = 0; for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (PM_NODE_TYPE_P(keyword_parameter_node, PM_REQUIRED_KEYWORD_PARAMETER_NODE)) { name = ((pm_required_keyword_parameter_node_t *)keyword_parameter_node)->name; keyword->required_num++; ID local = pm_constant_id_lookup(scope_node, name); if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } local_index++; ids[kw_index++] = local; } } for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ if (PM_NODE_TYPE_P(keyword_parameter_node, PM_OPTIONAL_KEYWORD_PARAMETER_NODE)) { pm_optional_keyword_parameter_node_t *cast = ((pm_optional_keyword_parameter_node_t *)keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (pm_static_literal_p(value) && !(PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE))) { rb_ary_push(default_values, pm_static_literal_value(value, scope_node)); } else { rb_ary_push(default_values, complex_mark); } ID local = pm_constant_id_lookup(scope_node, name); if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } ids[kw_index++] = local; local_index++; } } keyword->bits_start = local_index; keyword->table = ids; VALUE *dvs = ALLOC_N(VALUE, RARRAY_LEN(default_values)); for (int i = 0; i < RARRAY_LEN(default_values); i++) { VALUE dv = RARRAY_AREF(default_values, i); if (dv == complex_mark) dv = Qundef; if (!SPECIAL_CONST_P(dv)) { RB_OBJ_WRITTEN(iseq, Qundef, dv); } dvs[i] = dv; } keyword->default_values = dvs; // Hidden local for keyword arguments ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } if (body->type == ISEQ_TYPE_BLOCK && local_index == 1 && requireds_list && requireds_list->size == 1 && !trailing_comma) { body->param.flags.ambiguous_param0 = true; } if (parameters_node) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ if (parameters_node->keyword_rest) { switch (PM_NODE_TYPE(parameters_node->keyword_rest)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **nil, &n) // ^^^^^ case PM_NO_KEYWORDS_PARAMETER_NODE: { body->param.flags.accepts_no_kwarg = true; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ case PM_KEYWORD_REST_PARAMETER_NODE: { const pm_keyword_rest_parameter_node_t *kw_rest_node = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest; if (!body->param.flags.has_kw) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); } keyword->rest_start = local_index; body->param.flags.has_kwrest = true; pm_constant_id_t constant_id = kw_rest_node->name; if (constant_id) { if (PM_NODE_FLAG_P(kw_rest_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { pm_insert_local_special(idPow, local_index, index_lookup_table, local_table_for_iseq); } local_index++; break; } // def foo(...) // ^^^ case PM_FORWARDING_PARAMETER_NODE: { body->param.rest_start = local_index; body->param.flags.has_rest = true; // Add the leading * pm_insert_local_special(idMULT, local_index++, index_lookup_table, local_table_for_iseq); // Add the kwrest ** RUBY_ASSERT(!body->param.flags.has_kw); // There are no keywords declared (in the text of the program) // but the forwarding node implies we support kwrest (**) body->param.flags.has_kw = false; body->param.flags.has_kwrest = true; body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); keyword->rest_start = local_index; pm_insert_local_special(idPow, local_index++, index_lookup_table, local_table_for_iseq); body->param.block_start = local_index; body->param.flags.has_block = true; pm_insert_local_special(idAnd, local_index++, index_lookup_table, local_table_for_iseq); pm_insert_local_special(idDot3, local_index++, index_lookup_table, local_table_for_iseq); break; } default: { rb_bug("node type %s not expected as keyword_rest", pm_node_type_to_str(PM_NODE_TYPE(parameters_node->keyword_rest))); } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node->block) { body->param.block_start = local_index; body->param.flags.has_block = true; pm_constant_id_t name = ((pm_block_parameter_node_t *) parameters_node->block)->name; if (name) { if (PM_NODE_FLAG_P(parameters_node->block, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { pm_insert_local_special(idAnd, local_index, index_lookup_table, local_table_for_iseq); } local_index++; } } //********END OF STEP 2********** // The local table is now consistent with expected // stack layout // If there's only one required element in the parameters // CRuby needs to recognize it as an ambiguous parameter //********STEP 3********** // Goal: fill in the names of the parameters in MultiTargetNodes // // Go through requireds again to set the multis if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size const pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) required, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Go through posts again to set the multis if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size const pm_node_t *post = posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) post, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Set any anonymous locals for the for node if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { if (PM_NODE_TYPE_P(((const pm_for_node_t *) scope_node->ast_node)->index, PM_LOCAL_VARIABLE_TARGET_NODE)) { body->param.lead_num++; } else { body->param.rest_start = local_index; body->param.flags.has_rest = true; } ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } // Fill in any NumberedParameters, if they exist if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) { int maximum = ((pm_numbered_parameters_node_t *)scope_node->parameters)->maximum; RUBY_ASSERT(0 < maximum && maximum <= 9); for (int i = 0; i < maximum; i++, local_index++) { const uint8_t param_name[] = { '_', '1' + i }; pm_constant_id_t constant_id = pm_constant_pool_find(&parser->constant_pool, param_name, 2); RUBY_ASSERT(constant_id && "parser should fill in any gaps in numbered parameters"); pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } body->param.lead_num = maximum; body->param.flags.has_lead = true; } //********END OF STEP 3********** //********STEP 4********** // Goal: fill in the method body locals // To be explicit, these are the non-parameter locals // We fill in the block_locals, if they exist // lambda { |x; y| y } // ^ if (block_locals && block_locals->size) { for (size_t i = 0; i < block_locals->size; i++, local_index++) { pm_constant_id_t constant_id = ((pm_block_local_variable_node_t *)block_locals->nodes[i])->name; pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } // Fill in any locals we missed if (scope_node->locals.size) { for (size_t i = 0; i < scope_node->locals.size; i++) { pm_constant_id_t constant_id = locals->ids[i]; if (constant_id) { struct pm_local_table_insert_ctx ctx; ctx.scope_node = scope_node; ctx.local_table_for_iseq = local_table_for_iseq; ctx.local_index = local_index; st_update(index_lookup_table, (st_data_t)constant_id, pm_local_table_insert_func, (st_data_t)&ctx); local_index = ctx.local_index; } } } //********END OF STEP 4********** // We set the index_lookup_table on the scope node so we can // refer to the parameters correctly if (scope_node->index_lookup_table) { st_free_table(scope_node->index_lookup_table); } scope_node->index_lookup_table = index_lookup_table; iseq_calc_param_size(iseq); iseq_set_local_table(iseq, local_table_for_iseq); scope_node->local_table_for_iseq_size = local_table_for_iseq->size; //********STEP 5************ // Goal: compile anything that needed to be compiled if (optionals_list && optionals_list->size) { LABEL **opt_table = (LABEL **)ALLOC_N(VALUE, optionals_list->size + 1); LABEL *label; // TODO: Should we make an api for NEW_LABEL where you can pass // a pointer to the label it should fill out? We already // have a list of labels allocated above so it seems wasteful // to do the copies. for (size_t i = 0; i < optionals_list->size; i++) { label = NEW_LABEL(lineno); opt_table[i] = label; ADD_LABEL(ret, label); pm_node_t *optional_node = optionals_list->nodes[i]; PM_COMPILE_NOT_POPPED(optional_node); } // Set the last label label = NEW_LABEL(lineno); opt_table[optionals_list->size] = label; ADD_LABEL(ret, label); body->param.opt_table = (const VALUE *)opt_table; } if (keywords_list && keywords_list->size) { size_t optional_index = 0; for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; switch (PM_NODE_TYPE(keyword_parameter_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ case PM_OPTIONAL_KEYWORD_PARAMETER_NODE: { pm_optional_keyword_parameter_node_t *cast = ((pm_optional_keyword_parameter_node_t *)keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (!(pm_static_literal_p(value)) || PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE)) { LABEL *end_label = NEW_LABEL(nd_line(&dummy_line_node)); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, name, 0); int kw_bits_idx = table_size - body->param.keyword->bits_start; ADD_INSN2(ret, &dummy_line_node, checkkeyword, INT2FIX(kw_bits_idx + VM_ENV_DATA_SIZE - 1), INT2FIX(optional_index)); ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_COMPILE(value); ADD_SETLOCAL(ret, &dummy_line_node, index.index, index.level); ADD_LABEL(ret, end_label); } optional_index++; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ case PM_REQUIRED_KEYWORD_PARAMETER_NODE: { break; } default: { rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node))); } } } } if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { ADD_GETLOCAL(ret, &dummy_line_node, table_size - (int)i, 0); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) required, ret, scope_node); } } } if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *post = posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { ADD_GETLOCAL(ret, &dummy_line_node, table_size - body->param.post_start - (int) i, 0); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) post, ret, scope_node); } } } switch (body->type) { case ISEQ_TYPE_BLOCK: { LABEL *start = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(0); LABEL *end = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(0); NODE dummy_line_node = generate_dummy_line_node(body->location.first_lineno, -1); start->rescued = LABEL_RESCUE_BEG; end->rescued = LABEL_RESCUE_END; // For nodes automatically assign the iteration variable to whatever // index variable. We need to handle that write here because it has // to happen in the context of the block. Note that this happens // before the B_CALL tracepoint event. if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { pm_compile_for_node_index(iseq, ((const pm_for_node_t *) scope_node->ast_node)->index, ret, scope_node); } ADD_TRACE(ret, RUBY_EVENT_B_CALL); PM_NOP; ADD_LABEL(ret, start); if (scope_node->body != NULL) { switch (PM_NODE_TYPE(scope_node->ast_node)) { case PM_POST_EXECUTION_NODE: { pm_post_execution_node_t *post_execution_node = (pm_post_execution_node_t *)scope_node->ast_node; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); // We create another ScopeNode from the statements within the PostExecutionNode pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)post_execution_node->statements, &next_scope_node, scope_node, parser); const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(body->parent_iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); ADD_CALL_WITH_BLOCK(ret, &dummy_line_node, id_core_set_postexe, INT2FIX(0), block); break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { pm_interpolated_regular_expression_node_t *cast = (pm_interpolated_regular_expression_node_t *) scope_node->ast_node; int parts_size = pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, popped, scope_node); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags((pm_node_t *)cast)), INT2FIX(parts_size)); break; } default: pm_compile_node(iseq, scope_node->body, ret, popped, scope_node); break; } } else { PM_PUTNIL; } ADD_LABEL(ret, end); ADD_TRACE(ret, RUBY_EVENT_B_RETURN); ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno; /* wide range catch handler must put at last */ ADD_CATCH_ENTRY(CATCH_TYPE_REDO, start, end, NULL, start); ADD_CATCH_ENTRY(CATCH_TYPE_NEXT, start, end, NULL, end); break; } case ISEQ_TYPE_ENSURE: { iseq_set_exception_local_table(iseq); if (scope_node->body) { PM_COMPILE_POPPED((pm_node_t *)scope_node->body); } ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(0)); return; } case ISEQ_TYPE_METHOD: { ADD_TRACE(ret, RUBY_EVENT_CALL); if (scope_node->body) { PM_COMPILE((pm_node_t *)scope_node->body); } else { PM_PUTNIL; } ADD_TRACE(ret, RUBY_EVENT_RETURN); ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno; break; } case ISEQ_TYPE_RESCUE: { iseq_set_exception_local_table(iseq); if (PM_NODE_TYPE_P(scope_node->ast_node, PM_RESCUE_MODIFIER_NODE)) { LABEL *lab = NEW_LABEL(lineno); LABEL *rescue_end = NEW_LABEL(lineno); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_INSN1(ret, &dummy_line_node, putobject, rb_eStandardError); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); ADD_INSNL(ret, &dummy_line_node, branchif, lab); ADD_INSNL(ret, &dummy_line_node, jump, rescue_end); ADD_LABEL(ret, lab); PM_COMPILE((pm_node_t *)scope_node->body); ADD_INSN(ret, &dummy_line_node, leave); ADD_LABEL(ret, rescue_end); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); } else { PM_COMPILE((pm_node_t *)scope_node->ast_node); } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(0)); return; } default: if (scope_node->body) { PM_COMPILE((pm_node_t *)scope_node->body); } else { PM_PUTNIL; } break; } if (!PM_NODE_TYPE_P(scope_node->ast_node, PM_ENSURE_NODE)) { NODE dummy_line_node = generate_dummy_line_node(ISEQ_COMPILE_DATA(iseq)->last_line, -1); ADD_INSN(ret, &dummy_line_node, leave); } return; } case PM_SELF_NODE: if (!popped) { PM_PUTSELF; } return; case PM_SINGLETON_CLASS_NODE: { pm_singleton_class_node_t *singleton_class_node = (pm_singleton_class_node_t *)node; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)singleton_class_node, &next_scope_node, scope_node, parser); const rb_iseq_t *singleton_class = NEW_ISEQ(&next_scope_node, rb_fstring_lit("singleton class"), ISEQ_TYPE_CLASS, lineno); pm_scope_node_destroy(&next_scope_node); PM_COMPILE_NOT_POPPED(singleton_class_node->expression); PM_PUTNIL; ID singletonclass; CONST_ID(singletonclass, "singletonclass"); ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(singletonclass), singleton_class, INT2FIX(VM_DEFINECLASS_TYPE_SINGLETON_CLASS)); PM_POP_IF_POPPED; RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)singleton_class); return; } case PM_SOURCE_ENCODING_NODE: { // Source encoding nodes are generated by the __ENCODING__ syntax. They // reference the encoding object corresponding to the encoding of the // source file, and can be changed by a magic encoding comment. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SOURCE_FILE_NODE: { // Source file nodes are generated by the __FILE__ syntax. They // reference the file name of the source file. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node); ADD_INSN1(ret, &dummy_line_node, putstring, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SOURCE_LINE_NODE: { // Source line nodes are generated by the __LINE__ syntax. They // reference the line number where they occur in the source file. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SPLAT_NODE: { pm_splat_node_t *splat_node = (pm_splat_node_t *)node; if (splat_node->expression) { PM_COMPILE(splat_node->expression); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); } return; } case PM_STATEMENTS_NODE: { pm_statements_node_t *statements_node = (pm_statements_node_t *) node; pm_node_list_t node_list = statements_node->body; if (node_list.size > 0) { for (size_t index = 0; index < node_list.size - 1; index++) { PM_COMPILE_POPPED(node_list.nodes[index]); } PM_COMPILE(node_list.nodes[node_list.size - 1]); } else { PM_PUTNIL; } return; } case PM_STRING_NODE: { if (!popped) { pm_string_node_t *cast = (pm_string_node_t *) node; VALUE value = parse_string_encoded(node, &cast->unescaped, parser); value = rb_fstring(value); if (node->flags & PM_STRING_FLAGS_FROZEN) { ADD_INSN1(ret, &dummy_line_node, putobject, value); } else { ADD_INSN1(ret, &dummy_line_node, putstring, value); } } return; } case PM_SUPER_NODE: { pm_super_node_t *super_node = (pm_super_node_t *) node; DECL_ANCHOR(args); int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; const rb_iseq_t *parent_block = ISEQ_COMPILE_DATA(iseq)->current_block; INIT_ANCHOR(args); ISEQ_COMPILE_DATA(iseq)->current_block = NULL; PM_PUTSELF; int argc = pm_setup_args(super_node->arguments, super_node->block, &flags, &keywords, iseq, ret, scope_node, dummy_line_node); flags |= VM_CALL_SUPER | VM_CALL_FCALL; if (super_node->block && PM_NODE_TYPE_P(super_node->block, PM_BLOCK_NODE)) { pm_scope_node_t next_scope_node; pm_scope_node_init(super_node->block, &next_scope_node, scope_node, parser); parent_block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); } if ((flags & VM_CALL_ARGS_BLOCKARG) && (flags & VM_CALL_KW_SPLAT) && !(flags & VM_CALL_KW_SPLAT_MUT)) { ADD_INSN(args, &dummy_line_node, splatkw); } ADD_SEQ(ret, args); ADD_INSN2(ret, &dummy_line_node, invokesuper, new_callinfo(iseq, 0, argc, flags, keywords, parent_block != NULL), parent_block); PM_POP_IF_POPPED; return; } case PM_SYMBOL_NODE: { // Symbols nodes are symbol literals with no interpolation. They are // always marked as static literals. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_TRUE_NODE: if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); } return; case PM_UNDEF_NODE: { pm_undef_node_t *undef_node = (pm_undef_node_t *) node; for (size_t index = 0; index < undef_node->names.size; index++) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(undef_node->names.nodes[index]); ADD_SEND(ret, &dummy_line_node, id_core_undef_method, INT2NUM(2)); if (index < undef_node->names.size - 1) { PM_POP; } } PM_POP_IF_POPPED; return; } case PM_UNLESS_NODE: { const int line = pm_node_line_number(parser, node); pm_unless_node_t *unless_node = (pm_unless_node_t *)node; pm_node_t *node_body = (pm_node_t *)(unless_node->statements); pm_statements_node_t *node_else = NULL; if (unless_node->consequent != NULL) { node_else = ((pm_else_node_t *)unless_node->consequent)->statements; } pm_node_t *predicate = unless_node->predicate; pm_compile_if(iseq, line, node_else, node_body, predicate, ret, popped, scope_node); return; } case PM_UNTIL_NODE: { pm_until_node_t *until_node = (pm_until_node_t *)node; pm_statements_node_t *statements = until_node->statements; pm_node_t *predicate = until_node->predicate; pm_node_flags_t flags = node->flags; pm_compile_while(iseq, lineno, flags, node->type, statements, predicate, ret, popped, scope_node); return; } case PM_WHEN_NODE: { rb_bug("Cannot compile a WhenNode directly\n"); return; } case PM_WHILE_NODE: { pm_while_node_t *while_node = (pm_while_node_t *)node; pm_statements_node_t *statements = while_node->statements; pm_node_t *predicate = while_node->predicate; pm_node_flags_t flags = node->flags; pm_compile_while(iseq, lineno, flags, node->type, statements, predicate, ret, popped, scope_node); return; } case PM_X_STRING_NODE: { pm_x_string_node_t *cast = (pm_x_string_node_t *) node; VALUE value = parse_string_encoded(node, &cast->unescaped, parser); PM_PUTSELF; ADD_INSN1(ret, &dummy_line_node, putobject, value); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); PM_POP_IF_POPPED; return; } case PM_YIELD_NODE: { pm_yield_node_t *yield_node = (pm_yield_node_t *)node; switch (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_MAIN: case ISEQ_TYPE_CLASS: COMPILE_ERROR(ERROR_ARGS "Invalid yield"); return; default: /* valid */; } int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = 0; if (yield_node->arguments) { argc = pm_setup_args(yield_node->arguments, NULL, &flags, &keywords, iseq, ret, scope_node, dummy_line_node); } ADD_INSN1(ret, &dummy_line_node, invokeblock, new_callinfo(iseq, 0, argc, flags, keywords, FALSE)); PM_POP_IF_POPPED; int level = 0; const rb_iseq_t *tmp_iseq = iseq; for (; tmp_iseq != ISEQ_BODY(iseq)->local_iseq; level++ ) { tmp_iseq = ISEQ_BODY(tmp_iseq)->parent_iseq; } if (level > 0) access_outer_variables(iseq, level, rb_intern("yield"), true); return; } default: rb_raise(rb_eNotImpError, "node type %s not implemented", pm_node_type_to_str(PM_NODE_TYPE(node))); return; } } /** * This is the main entry-point into the prism compiler. It accepts the iseq * that it should be compiling instruction into and a pointer to the scope node * that it should be compiling. It returns the established instruction sequence. * Note that this function could raise Ruby errors if it encounters compilation * errors or if there is a bug in the compiler. */ VALUE pm_iseq_compile_node(rb_iseq_t *iseq, pm_scope_node_t *node) { DECL_ANCHOR(ret); INIT_ANCHOR(ret); pm_compile_node(iseq, (const pm_node_t *) node, ret, false, node); CHECK(iseq_setup_insn(iseq, ret)); return iseq_setup(iseq, ret); } /** * Free the internal memory associated with a pm_parse_result_t struct. * Importantly this does not free the struct itself. */ void pm_parse_result_free(pm_parse_result_t *result) { if (result->parsed) { pm_node_destroy(&result->parser, result->node.ast_node); pm_scope_node_destroy(&result->node); } pm_parser_free(&result->parser); pm_string_free(&result->input); pm_options_free(&result->options); } /** * Check if the given source slice is valid UTF-8. The location represents the * location of the error, but the slice of the source will include the content * of all of the lines that the error touches, so we need to check those parts * as well. */ static bool pm_parse_input_error_utf8_p(const pm_parser_t *parser, const pm_location_t *location) { const size_t start_line = pm_newline_list_line_column(&parser->newline_list, location->start, 1).line; const size_t end_line = pm_newline_list_line_column(&parser->newline_list, location->end, 1).line; const uint8_t *start = parser->start + parser->newline_list.offsets[start_line - 1]; const uint8_t *end = ((end_line == parser->newline_list.size) ? parser->end : (parser->start + parser->newline_list.offsets[end_line])); size_t width; while (start < end) { if ((width = pm_encoding_utf_8_char_width(start, end - start)) == 0) return false; start += width; } return true; } /** * Generate an error object from the given parser that contains as much * information as possible about the errors that were encountered. */ static VALUE pm_parse_input_error(const pm_parse_result_t *result) { const pm_diagnostic_t *head = (const pm_diagnostic_t *) result->parser.error_list.head; bool valid_utf8 = true; for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) { // Any errors with the level PM_ERROR_LEVEL_ARGUMENT effectively take // over as the only argument that gets raised. This is to allow priority // messages that should be handled before anything else. if (error->level == PM_ERROR_LEVEL_ARGUMENT) { return rb_exc_new(rb_eArgError, error->message, strlen(error->message)); } // It is implicitly assumed that the error messages will be encodeable // as UTF-8. Because of this, we can't include source examples that // contain invalid byte sequences. So if any source examples include // invalid UTF-8 byte sequences, we will skip showing source examples // entirely. if (valid_utf8 && !pm_parse_input_error_utf8_p(&result->parser, &error->location)) { valid_utf8 = false; } } pm_buffer_t buffer = { 0 }; pm_buffer_append_string(&buffer, "syntax errors found\n", 20); if (valid_utf8) { pm_parser_errors_format(&result->parser, &buffer, rb_stderr_tty_p()); } else { const pm_string_t *filepath = &result->parser.filepath; for (const pm_diagnostic_t *error = head; error != NULL; error = (pm_diagnostic_t *) error->node.next) { if (error != head) pm_buffer_append_byte(&buffer, '\n'); pm_buffer_append_format(&buffer, "%.*s:%" PRIi32 ": %s", (int) pm_string_length(filepath), pm_string_source(filepath), (int32_t) pm_location_line_number(&result->parser, &error->location), error->message); } } VALUE error = rb_exc_new(rb_eSyntaxError, pm_buffer_value(&buffer), pm_buffer_length(&buffer)); pm_buffer_free(&buffer); return error; } /** * Parse the parse result and raise a Ruby error if there are any syntax errors. * It returns an error if one should be raised. It is assumed that the parse * result object is zeroed out. */ static VALUE pm_parse_input(pm_parse_result_t *result, VALUE filepath) { // Set up the parser and parse the input. pm_options_filepath_set(&result->options, RSTRING_PTR(filepath)); RB_GC_GUARD(filepath); pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options); const pm_node_t *node = pm_parse(&result->parser); // If there are errors, raise an appropriate error and free the result. if (result->parser.error_list.size > 0) { VALUE error = pm_parse_input_error(result); // TODO: We need to set the backtrace. // rb_funcallv(error, rb_intern("set_backtrace"), 1, &path); return error; } // Emit all of the various warnings from the parse. const pm_diagnostic_t *warning; const char *warning_filepath = (const char *) pm_string_source(&result->parser.filepath); for (warning = (pm_diagnostic_t *) result->parser.warning_list.head; warning != NULL; warning = (pm_diagnostic_t *) warning->node.next) { int line = pm_location_line_number(&result->parser, &warning->location); if (warning->level == PM_WARNING_LEVEL_VERBOSE) { rb_compile_warning(warning_filepath, line, "%s", warning->message); } else { rb_compile_warn(warning_filepath, line, "%s", warning->message); } } // Now set up the constant pool and intern all of the various constants into // their corresponding IDs. pm_scope_node_init(node, &result->node, NULL, &result->parser); result->node.constants = calloc(result->parser.constant_pool.size, sizeof(ID)); rb_encoding *encoding = rb_enc_find(result->parser.encoding->name); for (uint32_t index = 0; index < result->parser.constant_pool.size; index++) { pm_constant_t *constant = &result->parser.constant_pool.constants[index]; result->node.constants[index] = rb_intern3((const char *) constant->start, constant->length, encoding); } result->node.index_lookup_table = st_init_numtable(); pm_constant_id_list_t *locals = &result->node.locals; for (size_t index = 0; index < locals->size; index++) { st_insert(result->node.index_lookup_table, locals->ids[index], index); } // If we got here, this is a success and we can return Qnil to indicate that // no error should be raised. result->parsed = true; return Qnil; } /** * Returns an array of ruby String objects that represent the lines of the * source file that the given parser parsed. */ static inline VALUE pm_parse_file_script_lines(const pm_parser_t *parser) { const char *start = (const char *) parser->start; const char *end = (const char *) parser->end; rb_encoding *encoding = rb_enc_find(parser->encoding->name); const pm_newline_list_t *newline_list = &parser->newline_list; // If we end exactly on a newline, then there's no need to push on a final // segment. If we don't, then we need to push on the last offset up to the // end of the string. size_t last_offset = newline_list->offsets[newline_list->size - 1]; bool last_push = start + last_offset != end; // Create the ruby strings that represent the lines of the source. VALUE lines = rb_ary_new_capa(newline_list->size - (last_push ? 0 : 1)); for (size_t index = 0; index < newline_list->size - 1; index++) { size_t offset = newline_list->offsets[index]; size_t length = newline_list->offsets[index + 1] - offset; rb_ary_push(lines, rb_enc_str_new(start + offset, length, encoding)); } // Push on the last line if we need to. if (last_push) { rb_ary_push(lines, rb_enc_str_new(start + last_offset, end - (start + last_offset), encoding)); } return lines; } /** * Parse the given filepath and store the resulting scope node in the given * parse result struct. It returns a Ruby error if the file cannot be read or * if it cannot be parsed properly. It is assumed that the parse result object * is zeroed out. * * TODO: This should raise a better error when the file cannot be read. */ VALUE pm_parse_file(pm_parse_result_t *result, VALUE filepath) { if (!pm_string_mapped_init(&result->input, RSTRING_PTR(filepath))) { #ifdef _WIN32 int e = rb_w32_map_errno(GetLastError()); #else int e = errno; #endif VALUE err = rb_syserr_new(e, RSTRING_PTR(filepath)); RB_GC_GUARD(filepath); return err; } VALUE error = pm_parse_input(result, filepath); // If we're parsing a filepath, then we need to potentially support the // SCRIPT_LINES__ constant, which can be a hash that has an array of lines // of every read file. ID id_script_lines = rb_intern("SCRIPT_LINES__"); if (rb_const_defined_at(rb_cObject, id_script_lines)) { VALUE script_lines = rb_const_get_at(rb_cObject, id_script_lines); if (RB_TYPE_P(script_lines, T_HASH)) { rb_hash_aset(script_lines, filepath, pm_parse_file_script_lines(&result->parser)); } } return error; } /** * Parse the given source that corresponds to the given filepath and store the * resulting scope node in the given parse result struct. This function could * potentially raise a Ruby error. It is assumed that the parse result object is * zeroed out. */ VALUE pm_parse_string(pm_parse_result_t *result, VALUE source, VALUE filepath) { pm_string_constant_init(&result->input, RSTRING_PTR(source), RSTRING_LEN(source)); rb_encoding *encoding = rb_enc_get(source); pm_options_encoding_set(&result->options, rb_enc_name(encoding)); return pm_parse_input(result, filepath); } #undef NEW_ISEQ #define NEW_ISEQ OLD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ OLD_CHILD_ISEQ