/********************************************************************** object.c - $Author$ created at: Thu Jul 15 12:01:24 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/encoding.h" #include "ruby/st.h" #include "ruby/util.h" #include "internal.h" #include #include #include #include #include #include "constant.h" #include "id.h" #include "probes.h" /*! * \defgroup object Core objects and their operations * \{ */ VALUE rb_cBasicObject; /*!< BasicObject class */ VALUE rb_mKernel; /*!< Kernel module */ VALUE rb_cObject; /*!< Object class */ VALUE rb_cModule; /*!< Module class */ VALUE rb_cClass; /*!< Class class */ VALUE rb_cData; /*!< Data class */ VALUE rb_cNilClass; /*!< NilClass class */ VALUE rb_cTrueClass; /*!< TrueClass class */ VALUE rb_cFalseClass; /*!< FalseClass class */ /*! \cond INTERNAL_MACRO */ #define id_eq idEq #define id_eql idEqlP #define id_match idEqTilde #define id_inspect idInspect #define id_init_copy idInitialize_copy #define id_init_clone idInitialize_clone #define id_init_dup idInitialize_dup #define id_const_missing idConst_missing #define id_to_f idTo_f #define CLASS_OR_MODULE_P(obj) \ (!SPECIAL_CONST_P(obj) && \ (BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE)) /*! \endcond */ /*! * Make the object invisible from Ruby code. * * It is useful to let Ruby's GC manage your internal data structure -- * The object keeps being managed by GC, but \c ObjectSpace.each_object * never yields the object. * * Note that the object also lose a way to call a method on it. * * \param[in] obj a Ruby object * \sa rb_obj_reveal */ VALUE rb_obj_hide(VALUE obj) { if (!SPECIAL_CONST_P(obj)) { RBASIC_CLEAR_CLASS(obj); } return obj; } /*! * Make a hidden object visible again. * * It is the caller's responsibility to pass the right \a klass * which \a obj originally used to belong to. * * \sa rb_obj_hide */ VALUE rb_obj_reveal(VALUE obj, VALUE klass) { if (!SPECIAL_CONST_P(obj)) { RBASIC_SET_CLASS(obj, klass); } return obj; } /*! * Fills common (\c RBasic) fields in \a obj. * * \note Prefer rb_newobj_of() to this function. * \param[in,out] obj a Ruby object to be set up. * \param[in] klass \c obj will belong to this class. * \param[in] type one of \c ruby_value_type */ VALUE rb_obj_setup(VALUE obj, VALUE klass, VALUE type) { RBASIC(obj)->flags = type; RBASIC_SET_CLASS(obj, klass); return obj; } /** * call-seq: * obj === other -> true or false * * Case Equality -- For class Object, effectively the same as calling * #==, but typically overridden by descendants to provide * meaningful semantics in +case+ statements. *-- * Same as \c Object#===, case equality. *++ */ VALUE rb_equal(VALUE obj1, VALUE obj2) { VALUE result; if (obj1 == obj2) return Qtrue; result = rb_equal_opt(obj1, obj2); if (result == Qundef) { result = rb_funcall(obj1, id_eq, 1, obj2); } if (RTEST(result)) return Qtrue; return Qfalse; } /** * Determines if \a obj1 and \a obj2 are equal in terms of * \c Object#eql?. * * \note It actually calls \c #eql? when necessary. * So you cannot implement \c #eql? with this function. * \retval non-zero if they are eql? * \retval zero if they are not eql?. */ int rb_eql(VALUE obj1, VALUE obj2) { VALUE result; if (obj1 == obj2) return Qtrue; result = rb_eql_opt(obj1, obj2); if (result == Qundef) { result = rb_funcall(obj1, id_eql, 1, obj2); } if (RTEST(result)) return Qtrue; return Qfalse; } /** * call-seq: * obj == other -> true or false * obj.equal?(other) -> true or false * obj.eql?(other) -> true or false * * Equality --- At the Object level, #== returns true * only if +obj+ and +other+ are the same object. Typically, this * method is overridden in descendant classes to provide * class-specific meaning. * * Unlike #==, the #equal? method should never be overridden by * subclasses as it is used to determine object identity (that is, * a.equal?(b) if and only if a is the same * object as b): * * obj = "a" * other = obj.dup * * obj == other #=> true * obj.equal? other #=> false * obj.equal? obj #=> true * * The #eql? method returns true if +obj+ and +other+ * refer to the same hash key. This is used by Hash to test members * for equality. For any pair of objects where #eql? returns +true+, * the #hash value of both objects must be equal. So any subclass * that overrides #eql? should also override #hash appropriately. * * For objects of class Object, #eql? is synonymous * with #==. Subclasses normally continue this tradition by aliasing * #eql? to their overridden #== method, but there are exceptions. * Numeric types, for example, perform type conversion across #==, * but not across #eql?, so: * * 1 == 1.0 #=> true * 1.eql? 1.0 #=> false *-- * \private *++ */ MJIT_FUNC_EXPORTED VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; } /** * call-seq: * obj.hash -> integer * * Generates an Integer hash value for this object. This function must have the * property that a.eql?(b) implies a.hash == b.hash. * * The hash value is used along with #eql? by the Hash class to determine if * two objects reference the same hash key. Any hash value that exceeds the * capacity of an Integer will be truncated before being used. * * The hash value for an object may not be identical across invocations or * implementations of Ruby. If you need a stable identifier across Ruby * invocations and implementations you will need to generate one with a custom * method. *-- * \private *++ */ VALUE rb_obj_hash(VALUE obj); /** * call-seq: * !obj -> true or false * * Boolean negate. *-- * \private *++ */ MJIT_FUNC_EXPORTED VALUE rb_obj_not(VALUE obj) { return RTEST(obj) ? Qfalse : Qtrue; } /** * call-seq: * obj != other -> true or false * * Returns true if two objects are not-equal, otherwise false. *-- * \private *++ */ MJIT_FUNC_EXPORTED VALUE rb_obj_not_equal(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_eq, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; } /*! * Looks up the nearest ancestor of \a cl, skipping singleton classes or * module inclusions. * It returns the \a cl itself if it is neither a singleton class or a module. * * \param[in] cl a Class object. * \return the ancestor class found, or a falsey value if nothing found. */ VALUE rb_class_real(VALUE cl) { while (cl && ((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS)) { cl = RCLASS_SUPER(cl); } return cl; } /** * call-seq: * obj.class -> class * * Returns the class of obj. This method must always be called * with an explicit receiver, as #class is also a reserved word in * Ruby. * * 1.class #=> Integer * self.class #=> Object *-- * Equivalent to \c Object\#class in Ruby. * * Returns the class of \c obj, skipping singleton classes or module inclusions. *++ */ VALUE rb_obj_class(VALUE obj) { return rb_class_real(CLASS_OF(obj)); } /* * call-seq: * obj.singleton_class -> class * * Returns the singleton class of obj. This method creates * a new singleton class if obj does not have one. * * If obj is nil, true, or * false, it returns NilClass, TrueClass, or FalseClass, * respectively. * If obj is an Integer, a Float or a Symbol, it raises a TypeError. * * Object.new.singleton_class #=> #> * String.singleton_class #=> # * nil.singleton_class #=> NilClass */ static VALUE rb_obj_singleton_class(VALUE obj) { return rb_singleton_class(obj); } /*! \private */ MJIT_FUNC_EXPORTED void rb_obj_copy_ivar(VALUE dest, VALUE obj) { if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) { xfree(ROBJECT_IVPTR(dest)); ROBJECT(dest)->as.heap.ivptr = 0; ROBJECT(dest)->as.heap.numiv = 0; ROBJECT(dest)->as.heap.iv_index_tbl = 0; } if (RBASIC(obj)->flags & ROBJECT_EMBED) { MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX); RBASIC(dest)->flags |= ROBJECT_EMBED; } else { uint32_t len = ROBJECT(obj)->as.heap.numiv; VALUE *ptr = 0; if (len > 0) { ptr = ALLOC_N(VALUE, len); MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len); } ROBJECT(dest)->as.heap.ivptr = ptr; ROBJECT(dest)->as.heap.numiv = len; ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl; RBASIC(dest)->flags &= ~ROBJECT_EMBED; } } static void init_copy(VALUE dest, VALUE obj) { if (OBJ_FROZEN(dest)) { rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest)); } RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR); RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT); rb_copy_wb_protected_attribute(dest, obj); rb_copy_generic_ivar(dest, obj); rb_gc_copy_finalizer(dest, obj); if (RB_TYPE_P(obj, T_OBJECT)) { rb_obj_copy_ivar(dest, obj); } } static int freeze_opt(int argc, VALUE *argv); static VALUE immutable_obj_clone(VALUE obj, int kwfreeze); static VALUE mutable_obj_clone(VALUE obj, int kwfreeze); PUREFUNC(static inline int special_object_p(VALUE obj)); /*!< \private */ static inline int special_object_p(VALUE obj) { if (SPECIAL_CONST_P(obj)) return TRUE; switch (BUILTIN_TYPE(obj)) { case T_BIGNUM: case T_FLOAT: case T_SYMBOL: case T_RATIONAL: case T_COMPLEX: /* not a comprehensive list */ return TRUE; default: return FALSE; } } /* * call-seq: * obj.clone(freeze: true) -> an_object * * Produces a shallow copy of obj---the instance variables of * obj are copied, but not the objects they reference. * #clone copies the frozen (unless +:freeze+ keyword argument is * given with a false value) and tainted state of obj. See * also the discussion under Object#dup. * * class Klass * attr_accessor :str * end * s1 = Klass.new #=> # * s1.str = "Hello" #=> "Hello" * s2 = s1.clone #=> # * s2.str[1,4] = "i" #=> "i" * s1.inspect #=> "#" * s2.inspect #=> "#" * * This method may have class-specific behavior. If so, that * behavior will be documented under the #+initialize_copy+ method of * the class. */ static VALUE rb_obj_clone2(int argc, VALUE *argv, VALUE obj) { int kwfreeze = freeze_opt(argc, argv); if (!special_object_p(obj)) return mutable_obj_clone(obj, kwfreeze); return immutable_obj_clone(obj, kwfreeze); } /*! \private */ VALUE rb_immutable_obj_clone(int argc, VALUE *argv, VALUE obj) { int kwfreeze = freeze_opt(argc, argv); return immutable_obj_clone(obj, kwfreeze); } static int freeze_opt(int argc, VALUE *argv) { static ID keyword_ids[1]; VALUE opt; VALUE kwfreeze; if (!keyword_ids[0]) { CONST_ID(keyword_ids[0], "freeze"); } rb_scan_args(argc, argv, "0:", &opt); if (!NIL_P(opt)) { rb_get_kwargs(opt, keyword_ids, 0, 1, &kwfreeze); if (kwfreeze == Qfalse) return FALSE; if (kwfreeze != Qundef && kwfreeze != Qtrue) { rb_raise(rb_eArgError, "unexpected value for freeze: %"PRIsVALUE, rb_obj_class(kwfreeze)); } } return TRUE; } static VALUE immutable_obj_clone(VALUE obj, int kwfreeze) { if (!kwfreeze) rb_raise(rb_eArgError, "can't unfreeze %"PRIsVALUE, rb_obj_class(obj)); return obj; } static VALUE mutable_obj_clone(VALUE obj, int kwfreeze) { VALUE clone, singleton; clone = rb_obj_alloc(rb_obj_class(obj)); singleton = rb_singleton_class_clone_and_attach(obj, clone); RBASIC_SET_CLASS(clone, singleton); if (FL_TEST(singleton, FL_SINGLETON)) { rb_singleton_class_attached(singleton, clone); } init_copy(clone, obj); rb_funcall(clone, id_init_clone, 1, obj); if (kwfreeze) { RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE; } return clone; } /** * :nodoc *-- * Almost same as \c Object#clone *++ */ VALUE rb_obj_clone(VALUE obj) { if (special_object_p(obj)) return obj; return mutable_obj_clone(obj, Qtrue); } /** * call-seq: * obj.dup -> an_object * * Produces a shallow copy of obj---the instance variables of * obj are copied, but not the objects they reference. * #dup copies the tainted state of obj. * * This method may have class-specific behavior. If so, that * behavior will be documented under the #+initialize_copy+ method of * the class. * * === on dup vs clone * * In general, #clone and #dup may have different semantics in * descendant classes. While #clone is used to duplicate an object, * including its internal state, #dup typically uses the class of the * descendant object to create the new instance. * * When using #dup, any modules that the object has been extended with will not * be copied. * * class Klass * attr_accessor :str * end * * module Foo * def foo; 'foo'; end * end * * s1 = Klass.new #=> # * s1.extend(Foo) #=> # * s1.foo #=> "foo" * * s2 = s1.clone #=> # * s2.foo #=> "foo" * * s3 = s1.dup #=> # * s3.foo #=> NoMethodError: undefined method `foo' for # *-- * Equivalent to \c Object\#dup in Ruby *++ */ VALUE rb_obj_dup(VALUE obj) { VALUE dup; if (special_object_p(obj)) { return obj; } dup = rb_obj_alloc(rb_obj_class(obj)); init_copy(dup, obj); rb_funcall(dup, id_init_dup, 1, obj); return dup; } /* * call-seq: * obj.itself -> obj * * Returns the receiver. * * string = "my string" * string.itself.object_id == string.object_id #=> true * */ static VALUE rb_obj_itself(VALUE obj) { return obj; } static VALUE rb_obj_size(VALUE self, VALUE args, VALUE obj) { return LONG2FIX(1); } /* * call-seq: * obj.then {|x| block } -> an_object * obj.yield_self {|x| block } -> an_object * * Yields self to the block and returns the result of the block. * * 3.next.then {|x| x**x }.to_s #=> "256" * "my string".yield_self {|s| s.upcase } #=> "MY STRING" * * Good usage for +yield_self+ is value piping in method chains: * * require 'open-uri' * require 'json' * * construct_url(arguments). * yield_self {|url| open(url).read }. * yield_self {|response| JSON.parse(response) } * * When called without block, the method returns +Enumerator+, * which can be used, for example, for conditional * circuit-breaking: * * # meets condition, no-op * 1.yield_self.detect(&:odd?) # => 1 * # does not meet condition, drop value * 2.yield_self.detect(&:odd?) # => nil * */ static VALUE rb_obj_yield_self(VALUE obj) { RETURN_SIZED_ENUMERATOR(obj, 0, 0, rb_obj_size); return rb_yield_values2(1, &obj); } /** * :nodoc: *-- * Default implementation of \c #initialize_copy * \param[in,out] obj the receiver being initialized * \param[in] orig the object to be copied from. *++ */ VALUE rb_obj_init_copy(VALUE obj, VALUE orig) { if (obj == orig) return obj; rb_check_frozen(obj); rb_check_trusted(obj); if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) { rb_raise(rb_eTypeError, "initialize_copy should take same class object"); } return obj; } /*! * :nodoc: *-- * Default implementation of \c #initialize_dup and \c #initialize_clone * * \param[in,out] obj the receiver being initialized * \param[in] orig the object to be dup or cloned from. *++ **/ VALUE rb_obj_init_dup_clone(VALUE obj, VALUE orig) { rb_funcall(obj, id_init_copy, 1, orig); return obj; } /** * call-seq: * obj.to_s -> string * * Returns a string representing obj. The default #to_s prints * the object's class and an encoding of the object id. As a special * case, the top-level object that is the initial execution context * of Ruby programs returns ``main''. * *-- * Default implementation of \c #to_s. *++ */ VALUE rb_any_to_s(VALUE obj) { VALUE str; VALUE cname = rb_class_name(CLASS_OF(obj)); str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj); OBJ_INFECT(str, obj); return str; } VALUE rb_str_escape(VALUE str); /*! * Convenient wrapper of \c Object#inspect. * Returns a human-readable string representation of \a obj, * similarly to \c Object#inspect. * * Unlike Ruby-level \c #inspect, it escapes characters to keep the * result compatible to the default internal or external encoding. * If the default internal or external encoding is ASCII compatible, * the encoding of the inspected result must be compatible with it. * If the default internal or external encoding is ASCII incompatible, * the result must be ASCII only. */ VALUE rb_inspect(VALUE obj) { VALUE str = rb_obj_as_string(rb_funcallv(obj, id_inspect, 0, 0)); rb_encoding *enc = rb_default_internal_encoding(); if (enc == NULL) enc = rb_default_external_encoding(); if (!rb_enc_asciicompat(enc)) { if (!rb_enc_str_asciionly_p(str)) return rb_str_escape(str); return str; } if (rb_enc_get(str) != enc && !rb_enc_str_asciionly_p(str)) return rb_str_escape(str); return str; } static int inspect_i(st_data_t k, st_data_t v, st_data_t a) { ID id = (ID)k; VALUE value = (VALUE)v; VALUE str = (VALUE)a; /* need not to show internal data */ if (CLASS_OF(value) == 0) return ST_CONTINUE; if (!rb_is_instance_id(id)) return ST_CONTINUE; if (RSTRING_PTR(str)[0] == '-') { /* first element */ RSTRING_PTR(str)[0] = '#'; rb_str_cat2(str, " "); } else { rb_str_cat2(str, ", "); } rb_str_catf(str, "%"PRIsVALUE"=%+"PRIsVALUE, rb_id2str(id), value); return ST_CONTINUE; } static VALUE inspect_obj(VALUE obj, VALUE str, int recur) { if (recur) { rb_str_cat2(str, " ..."); } else { rb_ivar_foreach(obj, inspect_i, str); } rb_str_cat2(str, ">"); RSTRING_PTR(str)[0] = '#'; OBJ_INFECT(str, obj); return str; } /* * call-seq: * obj.inspect -> string * * Returns a string containing a human-readable representation of obj. * The default #inspect shows the object's class name, an encoding of * the object id, and a list of the instance variables and their * values (by calling #inspect on each of them). User defined classes * should override this method to provide a better representation of * obj. When overriding this method, it should return a string * whose encoding is compatible with the default external encoding. * * [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]" * Time.new.inspect #=> "2008-03-08 19:43:39 +0900" * * class Foo * end * Foo.new.inspect #=> "#" * * class Bar * def initialize * @bar = 1 * end * end * Bar.new.inspect #=> "#" */ static VALUE rb_obj_inspect(VALUE obj) { if (rb_ivar_count(obj) > 0) { VALUE str; VALUE c = rb_class_name(CLASS_OF(obj)); str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj); return rb_exec_recursive(inspect_obj, obj, str); } else { return rb_any_to_s(obj); } } static VALUE class_or_module_required(VALUE c) { if (SPECIAL_CONST_P(c)) goto not_class; switch (BUILTIN_TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: not_class: rb_raise(rb_eTypeError, "class or module required"); } return c; } static VALUE class_search_ancestor(VALUE cl, VALUE c); /** * call-seq: * obj.instance_of?(class) -> true or false * * Returns true if obj is an instance of the given * class. See also Object#kind_of?. * * class A; end * class B < A; end * class C < B; end * * b = B.new * b.instance_of? A #=> false * b.instance_of? B #=> true * b.instance_of? C #=> false *-- * Determines if \a obj is an instance of \a c. * * Equivalent to \c Object\#is_instance_of in Ruby. * \param[in] obj the object to be determined. * \param[in] c a Class object *++ */ VALUE rb_obj_is_instance_of(VALUE obj, VALUE c) { c = class_or_module_required(c); if (rb_obj_class(obj) == c) return Qtrue; return Qfalse; } /** * call-seq: * obj.is_a?(class) -> true or false * obj.kind_of?(class) -> true or false * * Returns true if class is the class of * obj, or if class is one of the superclasses of * obj or modules included in obj. * * module M; end * class A * include M * end * class B < A; end * class C < B; end * * b = B.new * b.is_a? A #=> true * b.is_a? B #=> true * b.is_a? C #=> false * b.is_a? M #=> true * * b.kind_of? A #=> true * b.kind_of? B #=> true * b.kind_of? C #=> false * b.kind_of? M #=> true *-- * Determines if \a obj is a kind of \a c. * * Equivalent to \c Object\#kind_of? in Ruby. * \param[in] obj the object to be determined * \param[in] c a Module object. *++ */ VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); c = class_or_module_required(c); return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse; } static VALUE class_search_ancestor(VALUE cl, VALUE c) { while (cl) { if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c)) return cl; cl = RCLASS_SUPER(cl); } return 0; } /*! \private */ VALUE rb_class_search_ancestor(VALUE cl, VALUE c) { cl = class_or_module_required(cl); c = class_or_module_required(c); return class_search_ancestor(cl, RCLASS_ORIGIN(c)); } /** * call-seq: * obj.tap {|x| block } -> obj * * Yields self to the block, and then returns self. * The primary purpose of this method is to "tap into" a method chain, * in order to perform operations on intermediate results within the chain. * * (1..10) .tap {|x| puts "original: #{x}" } * .to_a .tap {|x| puts "array: #{x}" } * .select {|x| x.even? } .tap {|x| puts "evens: #{x}" } * .map {|x| x*x } .tap {|x| puts "squares: #{x}" } * *-- * \private *++ */ VALUE rb_obj_tap(VALUE obj) { rb_yield(obj); return obj; } /* * Document-method: inherited * * call-seq: * inherited(subclass) * * Callback invoked whenever a subclass of the current class is created. * * Example: * * class Foo * def self.inherited(subclass) * puts "New subclass: #{subclass}" * end * end * * class Bar < Foo * end * * class Baz < Bar * end * * produces: * * New subclass: Bar * New subclass: Baz */ /* Document-method: method_added * * call-seq: * method_added(method_name) * * Invoked as a callback whenever an instance method is added to the * receiver. * * module Chatty * def self.method_added(method_name) * puts "Adding #{method_name.inspect}" * end * def self.some_class_method() end * def some_instance_method() end * end * * produces: * * Adding :some_instance_method * */ /* Document-method: method_removed * * call-seq: * method_removed(method_name) * * Invoked as a callback whenever an instance method is removed from the * receiver. * * module Chatty * def self.method_removed(method_name) * puts "Removing #{method_name.inspect}" * end * def self.some_class_method() end * def some_instance_method() end * class << self * remove_method :some_class_method * end * remove_method :some_instance_method * end * * produces: * * Removing :some_instance_method * */ /* * Document-method: singleton_method_added * * call-seq: * singleton_method_added(symbol) * * Invoked as a callback whenever a singleton method is added to the * receiver. * * module Chatty * def Chatty.singleton_method_added(id) * puts "Adding #{id.id2name}" * end * def self.one() end * def two() end * def Chatty.three() end * end * * produces: * * Adding singleton_method_added * Adding one * Adding three * */ /* * Document-method: singleton_method_removed * * call-seq: * singleton_method_removed(symbol) * * Invoked as a callback whenever a singleton method is removed from * the receiver. * * module Chatty * def Chatty.singleton_method_removed(id) * puts "Removing #{id.id2name}" * end * def self.one() end * def two() end * def Chatty.three() end * class << self * remove_method :three * remove_method :one * end * end * * produces: * * Removing three * Removing one */ /* * Document-method: singleton_method_undefined * * call-seq: * singleton_method_undefined(symbol) * * Invoked as a callback whenever a singleton method is undefined in * the receiver. * * module Chatty * def Chatty.singleton_method_undefined(id) * puts "Undefining #{id.id2name}" * end * def Chatty.one() end * class << self * undef_method(:one) * end * end * * produces: * * Undefining one */ /* * Document-method: extended * * call-seq: * extended(othermod) * * The equivalent of included, but for extended modules. * * module A * def self.extended(mod) * puts "#{self} extended in #{mod}" * end * end * module Enumerable * extend A * end * # => prints "A extended in Enumerable" */ /* * Document-method: included * * call-seq: * included(othermod) * * Callback invoked whenever the receiver is included in another * module or class. This should be used in preference to * Module.append_features if your code wants to perform some * action when a module is included in another. * * module A * def A.included(mod) * puts "#{self} included in #{mod}" * end * end * module Enumerable * include A * end * # => prints "A included in Enumerable" */ /* * Document-method: prepended * * call-seq: * prepended(othermod) * * The equivalent of included, but for prepended modules. * * module A * def self.prepended(mod) * puts "#{self} prepended to #{mod}" * end * end * module Enumerable * prepend A * end * # => prints "A prepended to Enumerable" */ /* * Document-method: initialize * * call-seq: * BasicObject.new * * Returns a new BasicObject. */ /* * Not documented */ static VALUE rb_obj_dummy(void) { return Qnil; } /** * call-seq: * obj.tainted? -> true or false * * Returns true if the object is tainted. * * See #taint for more information. *-- * Determines if \a obj is tainted. Equivalent to \c Object\#tainted? in Ruby. * \param[in] obj the object to be determined * \retval Qtrue if the object is tainted * \retval Qfalse if the object is not tainted * \sa rb_obj_taint * \sa rb_obj_untaint *++ */ VALUE rb_obj_tainted(VALUE obj) { if (OBJ_TAINTED(obj)) return Qtrue; return Qfalse; } /** * call-seq: * obj.taint -> obj * * Mark the object as tainted. * * Objects that are marked as tainted will be restricted from various built-in * methods. This is to prevent insecure data, such as command-line arguments * or strings read from Kernel#gets, from inadvertently compromising the user's * system. * * To check whether an object is tainted, use #tainted?. * * You should only untaint a tainted object if your code has inspected it and * determined that it is safe. To do so use #untaint. *-- * Marks the object as tainted. Equivalent to \c Object\#taint in Ruby * \param[in] obj the object to be tainted * \return the object itself * \sa rb_obj_untaint * \sa rb_obj_tainted *++ */ VALUE rb_obj_taint(VALUE obj) { if (!OBJ_TAINTED(obj) && OBJ_TAINTABLE(obj)) { rb_check_frozen(obj); OBJ_TAINT(obj); } return obj; } /** * call-seq: * obj.untaint -> obj * * Removes the tainted mark from the object. * * See #taint for more information. *-- * Removes the tainted mark from the object. * Equivalent to \c Object\#untaint in Ruby. * * \param[in] obj the object to be tainted * \return the object itself * \sa rb_obj_taint * \sa rb_obj_tainted *++ */ VALUE rb_obj_untaint(VALUE obj) { if (OBJ_TAINTED(obj)) { rb_check_frozen(obj); FL_UNSET(obj, FL_TAINT); } return obj; } /** * call-seq: * obj.untrusted? -> true or false * * Deprecated method that is equivalent to #tainted?. *-- * \deprecated Use rb_obj_tainted. * * Trustiness used to have independent semantics from taintedness. * But now trustiness of objects is obsolete and this function behaves * the same as rb_obj_tainted. * * \sa rb_obj_tainted *++ */ VALUE rb_obj_untrusted(VALUE obj) { rb_warning("untrusted? is deprecated and its behavior is same as tainted?"); return rb_obj_tainted(obj); } /** * call-seq: * obj.untrust -> obj * * Deprecated method that is equivalent to #taint. *-- * \deprecated Use rb_obj_taint(obj) * * Trustiness used to have independent semantics from taintedness. * But now trustiness of objects is obsolete and this function behaves * the same as rb_obj_taint. * * \sa rb_obj_taint *++ */ VALUE rb_obj_untrust(VALUE obj) { rb_warning("untrust is deprecated and its behavior is same as taint"); return rb_obj_taint(obj); } /** * call-seq: * obj.trust -> obj * * Deprecated method that is equivalent to #untaint. *-- * \deprecated Use rb_obj_untaint(obj) * * Trustiness used to have independent semantics from taintedness. * But now trustiness of objects is obsolete and this function behaves * the same as rb_obj_untaint. * * \sa rb_obj_untaint *++ */ VALUE rb_obj_trust(VALUE obj) { rb_warning("trust is deprecated and its behavior is same as untaint"); return rb_obj_untaint(obj); } /** * Convenient function to infect \a victim with the taintedness of \a carrier. * * It just keeps the taintedness of \a victim if \a carrier is not tainted. * \param[in,out] victim the object being infected with the taintness of \a carrier * \param[in] carrier a possibly tainted object */ void rb_obj_infect(VALUE victim, VALUE carrier) { OBJ_INFECT(victim, carrier); } /** * call-seq: * obj.freeze -> obj * * Prevents further modifications to obj. A * RuntimeError will be raised if modification is attempted. * There is no way to unfreeze a frozen object. See also * Object#frozen?. * * This method returns self. * * a = [ "a", "b", "c" ] * a.freeze * a << "z" * * produces: * * prog.rb:3:in `<<': can't modify frozen Array (FrozenError) * from prog.rb:3 * * Objects of the following classes are always frozen: Integer, * Float, Symbol. *-- * Make the object unmodifiable. Equivalent to \c Object\#freeze in Ruby. * \param[in,out] obj the object to be frozen * \return the frozen object *++ */ VALUE rb_obj_freeze(VALUE obj) { if (!OBJ_FROZEN(obj)) { OBJ_FREEZE(obj); if (SPECIAL_CONST_P(obj)) { rb_bug("special consts should be frozen."); } } return obj; } /** * call-seq: * obj.frozen? -> true or false * * Returns the freeze status of obj. * * a = [ "a", "b", "c" ] * a.freeze #=> ["a", "b", "c"] * a.frozen? #=> true *-- * Determines if the object is frozen. Equivalent to \c Object\#frozen? in Ruby. * \param[in] obj the object to be determines * \retval Qtrue if frozen * \retval Qfalse if not frozen *++ */ VALUE rb_obj_frozen_p(VALUE obj) { return OBJ_FROZEN(obj) ? Qtrue : Qfalse; } /* * Document-class: NilClass * * The class of the singleton object nil. */ /* * call-seq: * nil.to_i -> 0 * * Always returns zero. * * nil.to_i #=> 0 */ static VALUE nil_to_i(VALUE obj) { return INT2FIX(0); } /* * call-seq: * nil.to_f -> 0.0 * * Always returns zero. * * nil.to_f #=> 0.0 */ static VALUE nil_to_f(VALUE obj) { return DBL2NUM(0.0); } /* * call-seq: * nil.to_s -> "" * * Always returns the empty string. */ static VALUE nil_to_s(VALUE obj) { return rb_usascii_str_new(0, 0); } /* * Document-method: to_a * * call-seq: * nil.to_a -> [] * * Always returns an empty array. * * nil.to_a #=> [] */ static VALUE nil_to_a(VALUE obj) { return rb_ary_new2(0); } /* * Document-method: to_h * * call-seq: * nil.to_h -> {} * * Always returns an empty hash. * * nil.to_h #=> {} */ static VALUE nil_to_h(VALUE obj) { return rb_hash_new(); } /* * call-seq: * nil.inspect -> "nil" * * Always returns the string "nil". */ static VALUE nil_inspect(VALUE obj) { return rb_usascii_str_new2("nil"); } /* * call-seq: * nil =~ other -> nil * * Dummy pattern matching -- always returns nil. */ static VALUE nil_match(VALUE obj1, VALUE obj2) { return Qnil; } /*********************************************************************** * Document-class: TrueClass * * The global value true is the only instance of class * TrueClass and represents a logically true value in * boolean expressions. The class provides operators allowing * true to be used in logical expressions. */ /* * call-seq: * true.to_s -> "true" * * The string representation of true is "true". */ static VALUE true_to_s(VALUE obj) { return rb_usascii_str_new2("true"); } /* * call-seq: * true & obj -> true or false * * And---Returns false if obj is * nil or false, true otherwise. */ static VALUE true_and(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call-seq: * true | obj -> true * * Or---Returns true. As obj is an argument to * a method call, it is always evaluated; there is no short-circuit * evaluation in this case. * * true | puts("or") * true || puts("logical or") * * produces: * * or */ static VALUE true_or(VALUE obj, VALUE obj2) { return Qtrue; } /* * call-seq: * true ^ obj -> !obj * * Exclusive Or---Returns true if obj is * nil or false, false * otherwise. */ static VALUE true_xor(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qfalse:Qtrue; } /* * Document-class: FalseClass * * The global value false is the only instance of class * FalseClass and represents a logically false value in * boolean expressions. The class provides operators allowing * false to participate correctly in logical expressions. * */ /* * call-seq: * false.to_s -> "false" * * The string representation of false is "false". */ static VALUE false_to_s(VALUE obj) { return rb_usascii_str_new2("false"); } /* * call-seq: * false & obj -> false * nil & obj -> false * * And---Returns false. obj is always * evaluated as it is the argument to a method call---there is no * short-circuit evaluation in this case. */ static VALUE false_and(VALUE obj, VALUE obj2) { return Qfalse; } /* * call-seq: * false | obj -> true or false * nil | obj -> true or false * * Or---Returns false if obj is * nil or false; true otherwise. */ static VALUE false_or(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call-seq: * false ^ obj -> true or false * nil ^ obj -> true or false * * Exclusive Or---If obj is nil or * false, returns false; otherwise, returns * true. * */ static VALUE false_xor(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call-seq: * nil.nil? -> true * * Only the object nil responds true to nil?. */ static VALUE rb_true(VALUE obj) { return Qtrue; } /* * call-seq: * obj.nil? -> true or false * * Only the object nil responds true to nil?. * * Object.new.nil? #=> false * nil.nil? #=> true */ MJIT_FUNC_EXPORTED VALUE rb_false(VALUE obj) { return Qfalse; } /* * call-seq: * obj =~ other -> nil * * This method is deprecated. * * This is not only unuseful but also troublesome because it * may hide a type error. */ static VALUE rb_obj_match(VALUE obj1, VALUE obj2) { rb_warn("deprecated Object#=~ is called on %"PRIsVALUE "; it always returns nil", rb_obj_class(obj1)); return Qnil; } /* * call-seq: * obj !~ other -> true or false * * Returns true if two objects do not match (using the =~ * method), otherwise false. */ static VALUE rb_obj_not_match(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_match, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; } /* * call-seq: * obj <=> other -> 0 or nil * * Returns 0 if +obj+ and +other+ are the same object * or obj == other, otherwise nil. * * The #<=> is used by various methods to compare objects, for example * Enumerable#sort, Enumerable#max etc. * * Your implementation of #<=> should return one of the following values: -1, 0, * 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. * 1 means self is bigger than other. Nil means the two values could not be * compared. * * When you define #<=>, you can include Comparable to gain the * methods #<=, #<, #==, #>=, #> and #between?. */ static VALUE rb_obj_cmp(VALUE obj1, VALUE obj2) { if (obj1 == obj2 || rb_equal(obj1, obj2)) return INT2FIX(0); return Qnil; } /*********************************************************************** * * Document-class: Module * * A Module is a collection of methods and constants. The * methods in a module may be instance methods or module methods. * Instance methods appear as methods in a class when the module is * included, module methods do not. Conversely, module methods may be * called without creating an encapsulating object, while instance * methods may not. (See Module#module_function.) * * In the descriptions that follow, the parameter sym refers * to a symbol, which is either a quoted string or a * Symbol (such as :name). * * module Mod * include Math * CONST = 1 * def meth * # ... * end * end * Mod.class #=> Module * Mod.constants #=> [:CONST, :PI, :E] * Mod.instance_methods #=> [:meth] * */ /* * call-seq: * mod.to_s -> string * * Returns a string representing this module or class. For basic * classes and modules, this is the name. For singletons, we * show information on the thing we're attached to as well. */ static VALUE rb_mod_to_s(VALUE klass) { ID id_defined_at; VALUE refined_class, defined_at; if (FL_TEST(klass, FL_SINGLETON)) { VALUE s = rb_usascii_str_new2("#"); return s; } refined_class = rb_refinement_module_get_refined_class(klass); if (!NIL_P(refined_class)) { VALUE s = rb_usascii_str_new2("#"); return s; } return rb_class_name(klass); } /* * call-seq: * mod.freeze -> mod * * Prevents further modifications to mod. * * This method returns self. */ static VALUE rb_mod_freeze(VALUE mod) { rb_class_name(mod); return rb_obj_freeze(mod); } /* * call-seq: * mod === obj -> true or false * * Case Equality---Returns true if obj is an * instance of mod or an instance of one of mod's descendants. * Of limited use for modules, but can be used in case statements * to classify objects by class. */ static VALUE rb_mod_eqq(VALUE mod, VALUE arg) { return rb_obj_is_kind_of(arg, mod); } /** * call-seq: * mod <= other -> true, false, or nil * * Returns true if mod is a subclass of other or * is the same as other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A < B" implies "A < B".) *-- * Determines if \a mod inherits \a arg. Equivalent to \c Module\#<= in Ruby * * \param[in] mod a Module object * \param[in] arg another Module object or an iclass of a module * \retval Qtrue if \a mod inherits \a arg, or \a mod equals \a arg * \retval Qfalse if \a arg inherits \a mod * \retval Qnil if otherwise *++ */ VALUE rb_class_inherited_p(VALUE mod, VALUE arg) { if (mod == arg) return Qtrue; if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) { rb_raise(rb_eTypeError, "compared with non class/module"); } if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) { return Qtrue; } /* not mod < arg; check if mod > arg */ if (class_search_ancestor(arg, mod)) { return Qfalse; } return Qnil; } /* * call-seq: * mod < other -> true, false, or nil * * Returns true if mod is a subclass of other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A < B" implies "A < B".) * */ static VALUE rb_mod_lt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_class_inherited_p(mod, arg); } /* * call-seq: * mod >= other -> true, false, or nil * * Returns true if mod is an ancestor of other, or the * two modules are the same. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A < B" implies "B > A".) * */ static VALUE rb_mod_ge(VALUE mod, VALUE arg) { if (!CLASS_OR_MODULE_P(arg)) { rb_raise(rb_eTypeError, "compared with non class/module"); } return rb_class_inherited_p(arg, mod); } /* * call-seq: * mod > other -> true, false, or nil * * Returns true if mod is an ancestor of other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A < B" implies "B > A".) * */ static VALUE rb_mod_gt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_mod_ge(mod, arg); } /* * call-seq: * module <=> other_module -> -1, 0, +1, or nil * * Comparison---Returns -1, 0, +1 or nil depending on whether +module+ * includes +other_module+, they are the same, or if +module+ is included by * +other_module+. * * Returns +nil+ if +module+ has no relationship with +other_module+, if * +other_module+ is not a module, or if the two values are incomparable. */ static VALUE rb_mod_cmp(VALUE mod, VALUE arg) { VALUE cmp; if (mod == arg) return INT2FIX(0); if (!CLASS_OR_MODULE_P(arg)) { return Qnil; } cmp = rb_class_inherited_p(mod, arg); if (NIL_P(cmp)) return Qnil; if (cmp) { return INT2FIX(-1); } return INT2FIX(1); } static VALUE rb_module_s_alloc(VALUE klass) { VALUE mod = rb_module_new(); RBASIC_SET_CLASS(mod, klass); return mod; } static VALUE rb_class_s_alloc(VALUE klass) { return rb_class_boot(0); } /* * call-seq: * Module.new -> mod * Module.new {|mod| block } -> mod * * Creates a new anonymous module. If a block is given, it is passed * the module object, and the block is evaluated in the context of this * module like #module_eval. * * fred = Module.new do * def meth1 * "hello" * end * def meth2 * "bye" * end * end * a = "my string" * a.extend(fred) #=> "my string" * a.meth1 #=> "hello" * a.meth2 #=> "bye" * * Assign the module to a constant (name starting uppercase) if you * want to treat it like a regular module. */ static VALUE rb_mod_initialize(VALUE module) { if (rb_block_given_p()) { rb_mod_module_exec(1, &module, module); } return Qnil; } /* :nodoc: */ static VALUE rb_mod_initialize_clone(VALUE clone, VALUE orig) { VALUE ret; ret = rb_obj_init_dup_clone(clone, orig); if (OBJ_FROZEN(orig)) rb_class_name(clone); return ret; } /* * call-seq: * Class.new(super_class=Object) -> a_class * Class.new(super_class=Object) { |mod| ... } -> a_class * * Creates a new anonymous (unnamed) class with the given superclass * (or Object if no parameter is given). You can give a * class a name by assigning the class object to a constant. * * If a block is given, it is passed the class object, and the block * is evaluated in the context of this class like * #class_eval. * * fred = Class.new do * def meth1 * "hello" * end * def meth2 * "bye" * end * end * * a = fred.new #=> #<#:0x100376b98> * a.meth1 #=> "hello" * a.meth2 #=> "bye" * * Assign the class to a constant (name starting uppercase) if you * want to treat it like a regular class. */ static VALUE rb_class_initialize(int argc, VALUE *argv, VALUE klass) { VALUE super; if (RCLASS_SUPER(klass) != 0 || klass == rb_cBasicObject) { rb_raise(rb_eTypeError, "already initialized class"); } if (rb_check_arity(argc, 0, 1) == 0) { super = rb_cObject; } else { super = argv[0]; rb_check_inheritable(super); if (super != rb_cBasicObject && !RCLASS_SUPER(super)) { rb_raise(rb_eTypeError, "can't inherit uninitialized class"); } } RCLASS_SET_SUPER(klass, super); rb_make_metaclass(klass, RBASIC(super)->klass); rb_class_inherited(super, klass); rb_mod_initialize(klass); return klass; } /*! \private */ void rb_undefined_alloc(VALUE klass) { rb_raise(rb_eTypeError, "allocator undefined for %"PRIsVALUE, klass); } /* * call-seq: * class.allocate() -> obj * * Allocates space for a new object of class's class and does not * call initialize on the new instance. The returned object must be an * instance of class. * * klass = Class.new do * def initialize(*args) * @initialized = true * end * * def initialized? * @initialized || false * end * end * * klass.allocate.initialized? #=> false * */ static VALUE rb_class_alloc(VALUE klass) { VALUE obj; rb_alloc_func_t allocator; if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) { rb_raise(rb_eTypeError, "can't instantiate uninitialized class"); } if (FL_TEST(klass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't create instance of singleton class"); } allocator = rb_get_alloc_func(klass); if (!allocator) { rb_undefined_alloc(klass); } RUBY_DTRACE_CREATE_HOOK(OBJECT, rb_class2name(klass)); obj = (*allocator)(klass); if (rb_obj_class(obj) != rb_class_real(klass)) { rb_raise(rb_eTypeError, "wrong instance allocation"); } return obj; } /** * Allocates an instance of \a klass * * \note It calls the allocator defined by {rb_define_alloc_func}. * So you cannot use this function to define an allocator. * Use {rb_newobj_of}, {TypedData_Make_Struct} or others, instead. * \note Usually prefer rb_class_new_instance to rb_obj_alloc and rb_obj_call_init * \param[in] klass a Class object * \sa rb_class_new_instance * \sa rb_obj_call_init * \sa rb_define_alloc_func * \sa rb_newobj_of * \sa TypedData_Make_Struct */ VALUE rb_obj_alloc(VALUE klass) { Check_Type(klass, T_CLASS); return rb_class_alloc(klass); } static VALUE rb_class_allocate_instance(VALUE klass) { NEWOBJ_OF(obj, struct RObject, klass, T_OBJECT | (RGENGC_WB_PROTECTED_OBJECT ? FL_WB_PROTECTED : 0)); return (VALUE)obj; } /* * call-seq: * class.new(args, ...) -> obj * * Calls #allocate to create a new object of class's class, * then invokes that object's #initialize method, passing it * args. This is the method that ends up getting called * whenever an object is constructed using .new. * */ static VALUE rb_class_s_new(int argc, const VALUE *argv, VALUE klass) { VALUE obj; obj = rb_class_alloc(klass); rb_obj_call_init(obj, argc, argv); return obj; } /** * Allocates and initializes an instance of \a klass. * * Equivalent to \c Class\#new in Ruby * * \param[in] argc the number of arguments to \c #initialize * \param[in] argv a pointer to an array of arguments to \c #initialize * \param[in] klass a Class object * \return the new instance of \a klass * \sa rb_obj_call_init * \sa rb_obj_alloc */ VALUE rb_class_new_instance(int argc, const VALUE *argv, VALUE klass) { Check_Type(klass, T_CLASS); return rb_class_s_new(argc, argv, klass); } /** * call-seq: * class.superclass -> a_super_class or nil * * Returns the superclass of class, or nil. * * File.superclass #=> IO * IO.superclass #=> Object * Object.superclass #=> BasicObject * class Foo; end * class Bar < Foo; end * Bar.superclass #=> Foo * * Returns nil when the given class does not have a parent class: * * BasicObject.superclass #=> nil * *-- * Returns the superclass of \a klass. Equivalent to \c Class\#superclass in Ruby. * * It skips modules. * \param[in] klass a Class object * \return the superclass, or \c Qnil if \a klass does not have a parent class. * \sa rb_class_get_superclass *++ */ VALUE rb_class_superclass(VALUE klass) { VALUE super = RCLASS_SUPER(klass); if (!super) { if (klass == rb_cBasicObject) return Qnil; rb_raise(rb_eTypeError, "uninitialized class"); } while (RB_TYPE_P(super, T_ICLASS)) { super = RCLASS_SUPER(super); } if (!super) { return Qnil; } return super; } /** * Returns the superclass of \a klass * The return value might be an iclass of a module, unlike rb_class_superclass. * * Also it returns Qfalse when \a klass does not have a parent class. * \sa rb_class_superclass */ VALUE rb_class_get_superclass(VALUE klass) { return RCLASS(klass)->super; } static const char bad_instance_name[] = "`%1$s' is not allowed as an instance variable name"; static const char bad_class_name[] = "`%1$s' is not allowed as a class variable name"; static const char bad_const_name[] = "wrong constant name %1$s"; static const char bad_attr_name[] = "invalid attribute name `%1$s'"; #define wrong_constant_name bad_const_name /*! \private */ #define id_for_var(obj, name, type) id_for_setter(obj, name, type, bad_##type##_name) /*! \private */ #define id_for_setter(obj, name, type, message) \ check_setter_id(obj, &(name), rb_is_##type##_id, rb_is_##type##_name, message, strlen(message)) static ID check_setter_id(VALUE obj, VALUE *pname, int (*valid_id_p)(ID), int (*valid_name_p)(VALUE), const char *message, size_t message_len) { ID id = rb_check_id(pname); VALUE name = *pname; if (id ? !valid_id_p(id) : !valid_name_p(name)) { rb_name_err_raise_str(rb_fstring_new(message, message_len), obj, name); } return id; } static int rb_is_attr_name(VALUE name) { return rb_is_local_name(name) || rb_is_const_name(name); } static int rb_is_attr_id(ID id) { return rb_is_local_id(id) || rb_is_const_id(id); } static ID id_for_attr(VALUE obj, VALUE name) { ID id = id_for_var(obj, name, attr); if (!id) id = rb_intern_str(name); return id; } /* * call-seq: * attr_reader(symbol, ...) -> nil * attr(symbol, ...) -> nil * attr_reader(string, ...) -> nil * attr(string, ...) -> nil * * Creates instance variables and corresponding methods that return the * value of each instance variable. Equivalent to calling * ``attr:name'' on each name in turn. * String arguments are converted to symbols. */ static VALUE rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i nil * attr(name, true) -> nil * attr(name, false) -> nil * * The first form is equivalent to #attr_reader. * The second form is equivalent to attr_accessor(name) but deprecated. * The last form is equivalent to attr_reader(name) but deprecated. *-- * \private * \todo can be static? *++ */ VALUE rb_mod_attr(int argc, VALUE *argv, VALUE klass) { if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) { rb_warning("optional boolean argument is obsoleted"); rb_attr(klass, id_for_attr(klass, argv[0]), 1, RTEST(argv[1]), TRUE); return Qnil; } return rb_mod_attr_reader(argc, argv, klass); } /* * call-seq: * attr_writer(symbol, ...) -> nil * attr_writer(string, ...) -> nil * * Creates an accessor method to allow assignment to the attribute * symbol.id2name. * String arguments are converted to symbols. */ static VALUE rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i nil * attr_accessor(string, ...) -> nil * * Defines a named attribute for this module, where the name is * symbol.id2name, creating an instance variable * (@name) and a corresponding access method to read it. * Also creates a method called name= to set the attribute. * String arguments are converted to symbols. * * module Mod * attr_accessor(:one, :two) * end * Mod.instance_methods.sort #=> [:one, :one=, :two, :two=] */ static VALUE rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i obj * mod.const_get(str, inherit=true) -> obj * * Checks for a constant with the given name in mod. * If +inherit+ is set, the lookup will also search * the ancestors (and +Object+ if mod is a +Module+). * * The value of the constant is returned if a definition is found, * otherwise a +NameError+ is raised. * * Math.const_get(:PI) #=> 3.14159265358979 * * This method will recursively look up constant names if a namespaced * class name is provided. For example: * * module Foo; class Bar; end end * Object.const_get 'Foo::Bar' * * The +inherit+ flag is respected on each lookup. For example: * * module Foo * class Bar * VAL = 10 * end * * class Baz < Bar; end * end * * Object.const_get 'Foo::Baz::VAL' # => 10 * Object.const_get 'Foo::Baz::VAL', false # => NameError * * If the argument is not a valid constant name a +NameError+ will be * raised with a warning "wrong constant name". * * Object.const_get 'foobar' #=> NameError: wrong constant name foobar * */ static VALUE rb_mod_const_get(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return rb_const_missing(mod, name); return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) { part = rb_str_intern(part); mod = rb_const_missing(mod, part); continue; } else { rb_mod_const_missing(mod, part); } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } #if 0 mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE); #else if (!RTEST(recur)) { mod = rb_const_get_at(mod, id); } else if (beglen == 0) { mod = rb_const_get(mod, id); } else { mod = rb_const_get_from(mod, id); } #endif } return mod; } /* * call-seq: * mod.const_set(sym, obj) -> obj * mod.const_set(str, obj) -> obj * * Sets the named constant to the given object, returning that object. * Creates a new constant if no constant with the given name previously * existed. * * Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 * Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968 * * If +sym+ or +str+ is not a valid constant name a +NameError+ will be * raised with a warning "wrong constant name". * * Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar * */ static VALUE rb_mod_const_set(VALUE mod, VALUE name, VALUE value) { ID id = id_for_var(mod, name, const); if (!id) id = rb_intern_str(name); rb_const_set(mod, id, value); return value; } /* * call-seq: * mod.const_defined?(sym, inherit=true) -> true or false * mod.const_defined?(str, inherit=true) -> true or false * * Says whether _mod_ or its ancestors have a constant with the given name: * * Float.const_defined?(:EPSILON) #=> true, found in Float itself * Float.const_defined?("String") #=> true, found in Object (ancestor) * BasicObject.const_defined?(:Hash) #=> false * * If _mod_ is a +Module+, additionally +Object+ and its ancestors are checked: * * Math.const_defined?(:String) #=> true, found in Object * * In each of the checked classes or modules, if the constant is not present * but there is an autoload for it, +true+ is returned directly without * autoloading: * * module Admin * autoload :User, 'admin/user' * end * Admin.const_defined?(:User) #=> true * * If the constant is not found the callback +const_missing+ is *not* called * and the method returns +false+. * * If +inherit+ is false, the lookup only checks the constants in the receiver: * * IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor) * IO.const_defined?(:SYNC, false) #=> false, not found in IO itself * * In this case, the same logic for autoloading applies. * * If the argument is not a valid constant name a +NameError+ is raised with the * message "wrong constant name _name_": * * Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar * */ static VALUE rb_mod_const_defined(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return Qfalse; return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else { return Qfalse; } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } #if 0 mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE); if (mod == Qundef) return Qfalse; #else if (!RTEST(recur)) { if (!rb_const_defined_at(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get_at(mod, id); } else if (beglen == 0) { if (!rb_const_defined(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get(mod, id); } else { if (!rb_const_defined_from(mod, id)) return Qfalse; if (p == pend) return Qtrue; mod = rb_const_get_from(mod, id); } #endif if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } } return Qtrue; } static VALUE rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod) { VALUE name, recur, loc = Qnil; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return Qnil; return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { wrong_name: rb_name_err_raise(wrong_constant_name, mod, name); } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!rb_is_const_name(part)) { name = part; goto wrong_name; } else { return Qnil; } } if (!rb_is_const_id(id)) { name = ID2SYM(id); goto wrong_name; } if (p < pend) { if (RTEST(recur)) { mod = rb_const_get(mod, id); } else { mod = rb_const_get_at(mod, id); } if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } } else { if (RTEST(recur)) { loc = rb_const_source_location(mod, id); } else { loc = rb_const_source_location_at(mod, id); } break; } recur = Qfalse; } return loc; } /* * call-seq: * obj.instance_variable_get(symbol) -> obj * obj.instance_variable_get(string) -> obj * * Returns the value of the given instance variable, or nil if the * instance variable is not set. The @ part of the * variable name should be included for regular instance * variables. Throws a NameError exception if the * supplied symbol is not valid as an instance variable name. * String arguments are converted to symbols. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_get(:@a) #=> "cat" * fred.instance_variable_get("@b") #=> 99 */ static VALUE rb_obj_ivar_get(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, instance); if (!id) { return Qnil; } return rb_ivar_get(obj, id); } /* * call-seq: * obj.instance_variable_set(symbol, obj) -> obj * obj.instance_variable_set(string, obj) -> obj * * Sets the instance variable named by symbol to the given * object, thereby frustrating the efforts of the class's * author to attempt to provide proper encapsulation. The variable * does not have to exist prior to this call. * If the instance variable name is passed as a string, that string * is converted to a symbol. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_set(:@a, 'dog') #=> "dog" * fred.instance_variable_set(:@c, 'cat') #=> "cat" * fred.inspect #=> "#" */ static VALUE rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val) { ID id = id_for_var(obj, iv, instance); if (!id) id = rb_intern_str(iv); return rb_ivar_set(obj, id, val); } /* * call-seq: * obj.instance_variable_defined?(symbol) -> true or false * obj.instance_variable_defined?(string) -> true or false * * Returns true if the given instance variable is * defined in obj. * String arguments are converted to symbols. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_defined?(:@a) #=> true * fred.instance_variable_defined?("@b") #=> true * fred.instance_variable_defined?("@c") #=> false */ static VALUE rb_obj_ivar_defined(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, instance); if (!id) { return Qfalse; } return rb_ivar_defined(obj, id); } /* * call-seq: * mod.class_variable_get(symbol) -> obj * mod.class_variable_get(string) -> obj * * Returns the value of the given class variable (or throws a * NameError exception). The @@ part of the * variable name should be included for regular class variables. * String arguments are converted to symbols. * * class Fred * @@foo = 99 * end * Fred.class_variable_get(:@@foo) #=> 99 */ static VALUE rb_mod_cvar_get(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, class); if (!id) { rb_name_err_raise("uninitialized class variable %1$s in %2$s", obj, iv); } return rb_cvar_get(obj, id); } /* * call-seq: * obj.class_variable_set(symbol, obj) -> obj * obj.class_variable_set(string, obj) -> obj * * Sets the class variable named by symbol to the given * object. * If the class variable name is passed as a string, that string * is converted to a symbol. * * class Fred * @@foo = 99 * def foo * @@foo * end * end * Fred.class_variable_set(:@@foo, 101) #=> 101 * Fred.new.foo #=> 101 */ static VALUE rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val) { ID id = id_for_var(obj, iv, class); if (!id) id = rb_intern_str(iv); rb_cvar_set(obj, id, val); return val; } /* * call-seq: * obj.class_variable_defined?(symbol) -> true or false * obj.class_variable_defined?(string) -> true or false * * Returns true if the given class variable is defined * in obj. * String arguments are converted to symbols. * * class Fred * @@foo = 99 * end * Fred.class_variable_defined?(:@@foo) #=> true * Fred.class_variable_defined?(:@@bar) #=> false */ static VALUE rb_mod_cvar_defined(VALUE obj, VALUE iv) { ID id = id_for_var(obj, iv, class); if (!id) { return Qfalse; } return rb_cvar_defined(obj, id); } /* * call-seq: * mod.singleton_class? -> true or false * * Returns true if mod is a singleton class or * false if it is an ordinary class or module. * * class C * end * C.singleton_class? #=> false * C.singleton_class.singleton_class? #=> true */ static VALUE rb_mod_singleton_p(VALUE klass) { if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON)) return Qtrue; return Qfalse; } /*! \private */ static const struct conv_method_tbl { const char method[6]; unsigned short id; } conv_method_names[] = { #define M(n) {#n, (unsigned short)idTo_##n} M(int), M(ary), M(str), M(sym), M(hash), M(proc), M(io), M(a), M(s), M(i), M(r), #undef M }; #define IMPLICIT_CONVERSIONS 7 static int conv_method_index(const char *method) { static const char prefix[] = "to_"; if (strncmp(prefix, method, sizeof(prefix)-1) == 0) { const char *const meth = &method[sizeof(prefix)-1]; int i; for (i=0; i < numberof(conv_method_names); i++) { if (conv_method_names[i].method[0] == meth[0] && strcmp(conv_method_names[i].method, meth) == 0) { return i; } } } return numberof(conv_method_names); } static VALUE convert_type_with_id(VALUE val, const char *tname, ID method, int raise, int index) { VALUE r = rb_check_funcall(val, method, 0, 0); if (r == Qundef) { if (raise) { const char *msg = ((index < 0 ? conv_method_index(rb_id2name(method)) : index) < IMPLICIT_CONVERSIONS) ? "no implicit conversion of" : "can't convert"; const char *cname = NIL_P(val) ? "nil" : val == Qtrue ? "true" : val == Qfalse ? "false" : NULL; if (cname) rb_raise(rb_eTypeError, "%s %s into %s", msg, cname, tname); rb_raise(rb_eTypeError, "%s %"PRIsVALUE" into %s", msg, rb_obj_class(val), tname); } return Qnil; } return r; } static VALUE convert_type(VALUE val, const char *tname, const char *method, int raise) { int i = conv_method_index(method); ID m = i < numberof(conv_method_names) ? conv_method_names[i].id : rb_intern(method); return convert_type_with_id(val, tname, m, raise, i); } /*! \private */ NORETURN(static void conversion_mismatch(VALUE, const char *, const char *, VALUE)); static void conversion_mismatch(VALUE val, const char *tname, const char *method, VALUE result) { VALUE cname = rb_obj_class(val); rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" to %s (%"PRIsVALUE"#%s gives %"PRIsVALUE")", cname, tname, cname, method, rb_obj_class(result)); } /*! * Converts an object into another type. * Calls the specified conversion method if necessary. * * \param[in] val the object to be converted * \param[in] type a value of \c ruby_value_type * \param[in] tname name of the target type. * only used for error messages. * \param[in] method name of the method * \return an object of the specified type * \throw TypeError on failure * \sa rb_check_convert_type */ VALUE rb_convert_type(VALUE val, int type, const char *tname, const char *method) { VALUE v; if (TYPE(val) == type) return val; v = convert_type(val, tname, method, TRUE); if (TYPE(v) != type) { conversion_mismatch(val, tname, method, v); } return v; } /*! \private */ VALUE rb_convert_type_with_id(VALUE val, int type, const char *tname, ID method) { VALUE v; if (TYPE(val) == type) return val; v = convert_type_with_id(val, tname, method, TRUE, -1); if (TYPE(v) != type) { conversion_mismatch(val, tname, RSTRING_PTR(rb_id2str(method)), v); } return v; } /*! * Tries to convert an object into another type. * Calls the specified conversion method if necessary. * * \param[in] val the object to be converted * \param[in] type a value of \c ruby_value_type * \param[in] tname name of the target type. * only used for error messages. * \param[in] method name of the method * \return an object of the specified type, or Qnil if no such conversion method defined. * \throw TypeError if the conversion method returns an unexpected type of value. * \sa rb_convert_type * \sa rb_check_convert_type_with_id */ VALUE rb_check_convert_type(VALUE val, int type, const char *tname, const char *method) { VALUE v; /* always convert T_DATA */ if (TYPE(val) == type && type != T_DATA) return val; v = convert_type(val, tname, method, FALSE); if (NIL_P(v)) return Qnil; if (TYPE(v) != type) { conversion_mismatch(val, tname, method, v); } return v; } /*! \private */ MJIT_FUNC_EXPORTED VALUE rb_check_convert_type_with_id(VALUE val, int type, const char *tname, ID method) { VALUE v; /* always convert T_DATA */ if (TYPE(val) == type && type != T_DATA) return val; v = convert_type_with_id(val, tname, method, FALSE, -1); if (NIL_P(v)) return Qnil; if (TYPE(v) != type) { conversion_mismatch(val, tname, RSTRING_PTR(rb_id2str(method)), v); } return v; } #define try_to_int(val, mid, raise) \ convert_type_with_id(val, "Integer", mid, raise, -1) ALWAYS_INLINE(static VALUE rb_to_integer(VALUE val, const char *method, ID mid)); static inline VALUE rb_to_integer(VALUE val, const char *method, ID mid) { VALUE v; if (RB_INTEGER_TYPE_P(val)) return val; v = try_to_int(val, mid, TRUE); if (!RB_INTEGER_TYPE_P(v)) { conversion_mismatch(val, "Integer", method, v); } return v; } /** * Tries to convert \a val into \c Integer. * It calls the specified conversion method if necessary. * * \param[in] val a Ruby object * \param[in] method a name of a method * \return an \c Integer object on success, * or \c Qnil if no such conversion method defined. * \exception TypeError if the conversion method returns a non-Integer object. */ VALUE rb_check_to_integer(VALUE val, const char *method) { VALUE v; if (FIXNUM_P(val)) return val; if (RB_TYPE_P(val, T_BIGNUM)) return val; v = convert_type(val, "Integer", method, FALSE); if (!RB_INTEGER_TYPE_P(v)) { return Qnil; } return v; } /** * Converts \a val into \c Integer. * It calls \a #to_int method if necessary. * * \param[in] val a Ruby object * \return an \c Integer object * \exception TypeError on failure */ VALUE rb_to_int(VALUE val) { return rb_to_integer(val, "to_int", idTo_int); } /** * Tries to convert \a val into Integer. * It calls \c #to_int method if necessary. * * \param[in] val a Ruby object * \return an Integer object on success, * or \c Qnil if \c #to_int is not defined. * \exception TypeError if \c #to_int returns a non-Integer object. */ VALUE rb_check_to_int(VALUE val) { if (RB_INTEGER_TYPE_P(val)) return val; val = try_to_int(val, idTo_int, FALSE); if (RB_INTEGER_TYPE_P(val)) return val; return Qnil; } static VALUE rb_check_to_i(VALUE val) { if (RB_INTEGER_TYPE_P(val)) return val; val = try_to_int(val, idTo_i, FALSE); if (RB_INTEGER_TYPE_P(val)) return val; return Qnil; } static VALUE rb_convert_to_integer(VALUE val, int base, int raise_exception) { VALUE tmp; if (RB_FLOAT_TYPE_P(val)) { double f; if (base != 0) goto arg_error; f = RFLOAT_VALUE(val); if (!raise_exception && !isfinite(f)) return Qnil; if (FIXABLE(f)) return LONG2FIX((long)f); return rb_dbl2big(f); } else if (RB_INTEGER_TYPE_P(val)) { if (base != 0) goto arg_error; return val; } else if (RB_TYPE_P(val, T_STRING)) { return rb_str_convert_to_inum(val, base, TRUE, raise_exception); } else if (NIL_P(val)) { if (base != 0) goto arg_error; if (!raise_exception) return Qnil; rb_raise(rb_eTypeError, "can't convert nil into Integer"); } if (base != 0) { tmp = rb_check_string_type(val); if (!NIL_P(tmp)) return rb_str_convert_to_inum(tmp, base, TRUE, raise_exception); arg_error: if (!raise_exception) return Qnil; rb_raise(rb_eArgError, "base specified for non string value"); } tmp = rb_protect(rb_check_to_int, val, NULL); if (RB_INTEGER_TYPE_P(tmp)) return tmp; rb_set_errinfo(Qnil); if (!raise_exception) { VALUE result = rb_protect(rb_check_to_i, val, NULL); rb_set_errinfo(Qnil); return result; } return rb_to_integer(val, "to_i", idTo_i); } /** * Equivalent to \c Kernel\#Integer in Ruby. * * Converts \a val into \c Integer in a slightly more strict manner * than \c #to_i. */ VALUE rb_Integer(VALUE val) { return rb_convert_to_integer(val, 0, TRUE); } int rb_bool_expected(VALUE obj, const char *flagname) { switch (obj) { case Qtrue: case Qfalse: break; default: rb_raise(rb_eArgError, "true or false is expected as %s: %+"PRIsVALUE, flagname, obj); } return obj != Qfalse; } int rb_opts_exception_p(VALUE opts, int default_value) { static ID kwds[1] = {idException}; VALUE exception; if (rb_get_kwargs(opts, kwds, 0, 1, &exception)) return rb_bool_expected(exception, "exception"); return default_value; } #define opts_exception_p(opts) rb_opts_exception_p((opts), TRUE) /* * call-seq: * Integer(arg, base=0, exception: true) -> integer or nil * * Converts arg to an Integer. * Numeric types are converted directly (with floating point numbers * being truncated). base (0, or between 2 and 36) is a base for * integer string representation. If arg is a String, * when base is omitted or equals zero, radix indicators * (0, 0b, and 0x) are honored. * In any case, strings should be strictly conformed to numeric * representation. This behavior is different from that of * String#to_i. Non string values will be converted by first * trying to_int, then to_i. * * Passing nil raises a TypeError, while passing a String that * does not conform with numeric representation raises an ArgumentError. * This behavior can be altered by passing exception: false, * in this case a not convertible value will return nil. * * Integer(123.999) #=> 123 * Integer("0x1a") #=> 26 * Integer(Time.new) #=> 1204973019 * Integer("0930", 10) #=> 930 * Integer("111", 2) #=> 7 * Integer(nil) #=> TypeError: can't convert nil into Integer * Integer("x") #=> ArgumentError: invalid value for Integer(): "x" * * Integer("x", exception: false) #=> nil * */ static VALUE rb_f_integer(int argc, VALUE *argv, VALUE obj) { VALUE arg = Qnil, opts = Qnil; int base = 0; if (argc > 1) { int narg = 1; VALUE vbase = rb_check_to_int(argv[1]); if (!NIL_P(vbase)) { base = NUM2INT(vbase); narg = 2; } if (argc > narg) { VALUE hash = rb_check_hash_type(argv[argc-1]); if (!NIL_P(hash)) { opts = rb_extract_keywords(&hash); if (!hash) --argc; } } } rb_check_arity(argc, 1, 2); arg = argv[0]; return rb_convert_to_integer(arg, base, opts_exception_p(opts)); } static double rb_cstr_to_dbl_raise(const char *p, int badcheck, int raise, int *error) { const char *q; char *end; double d; const char *ellipsis = ""; int w; enum {max_width = 20}; #define OutOfRange() ((end - p > max_width) ? \ (w = max_width, ellipsis = "...") : \ (w = (int)(end - p), ellipsis = "")) if (!p) return 0.0; q = p; while (ISSPACE(*p)) p++; if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { return 0.0; } d = strtod(p, &end); if (errno == ERANGE) { OutOfRange(); rb_warning("Float %.*s%s out of range", w, p, ellipsis); errno = 0; } if (p == end) { if (badcheck) { bad: if (raise) rb_invalid_str(q, "Float()"); else { if (error) *error = 1; return 0.0; } } return d; } if (*end) { char buf[DBL_DIG * 4 + 10]; char *n = buf; char *const init_e = buf + DBL_DIG * 4; char *e = init_e; char prev = 0; int dot_seen = FALSE; switch (*p) {case '+': case '-': prev = *n++ = *p++;} if (*p == '0') { prev = *n++ = '0'; while (*++p == '0'); } while (p < end && n < e) prev = *n++ = *p++; while (*p) { if (*p == '_') { /* remove an underscore between digits */ if (n == buf || !ISDIGIT(prev) || (++p, !ISDIGIT(*p))) { if (badcheck) goto bad; break; } } prev = *p++; if (e == init_e && (prev == 'e' || prev == 'E' || prev == 'p' || prev == 'P')) { e = buf + sizeof(buf) - 1; *n++ = prev; switch (*p) {case '+': case '-': prev = *n++ = *p++;} if (*p == '0') { prev = *n++ = '0'; while (*++p == '0'); } continue; } else if (ISSPACE(prev)) { while (ISSPACE(*p)) ++p; if (*p) { if (badcheck) goto bad; break; } } else if (prev == '.' ? dot_seen++ : !ISDIGIT(prev)) { if (badcheck) goto bad; break; } if (n < e) *n++ = prev; } *n = '\0'; p = buf; if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { return 0.0; } d = strtod(p, &end); if (errno == ERANGE) { OutOfRange(); rb_warning("Float %.*s%s out of range", w, p, ellipsis); errno = 0; } if (badcheck) { if (!end || p == end) goto bad; while (*end && ISSPACE(*end)) end++; if (*end) goto bad; } } if (errno == ERANGE) { errno = 0; OutOfRange(); rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis); } return d; } /*! * Parses a string representation of a floating point number. * * \param[in] p a string representation of a floating number * \param[in] badcheck raises an exception on parse error if \a badcheck is non-zero. * \return the floating point number in the string on success, * 0.0 on parse error and \a badcheck is zero. * \note it always fails to parse a hexadecimal representation like "0xAB.CDp+1" when * \a badcheck is zero, even though it would success if \a badcheck was non-zero. * This inconsistency is coming from a historical compatibility reason. [ruby-dev:40822] */ double rb_cstr_to_dbl(const char *p, int badcheck) { return rb_cstr_to_dbl_raise(p, badcheck, TRUE, NULL); } static double rb_str_to_dbl_raise(VALUE str, int badcheck, int raise, int *error) { char *s; long len; double ret; VALUE v = 0; StringValue(str); s = RSTRING_PTR(str); len = RSTRING_LEN(str); if (s) { if (badcheck && memchr(s, '\0', len)) { if (raise) rb_raise(rb_eArgError, "string for Float contains null byte"); else { if (error) *error = 1; return 0.0; } } if (s[len]) { /* no sentinel somehow */ char *p = ALLOCV(v, (size_t)len + 1); MEMCPY(p, s, char, len); p[len] = '\0'; s = p; } } ret = rb_cstr_to_dbl_raise(s, badcheck, raise, error); if (v) ALLOCV_END(v); return ret; } FUNC_MINIMIZED(double rb_str_to_dbl(VALUE str, int badcheck)); /*! * Parses a string representation of a floating point number. * * \param[in] str a \c String object representation of a floating number * \param[in] badcheck raises an exception on parse error if \a badcheck is non-zero. * \return the floating point number in the string on success, * 0.0 on parse error and \a badcheck is zero. * \note it always fails to parse a hexadecimal representation like "0xAB.CDp+1" when * \a badcheck is zero, even though it would success if \a badcheck was non-zero. * This inconsistency is coming from a historical compatibility reason. [ruby-dev:40822] */ double rb_str_to_dbl(VALUE str, int badcheck) { return rb_str_to_dbl_raise(str, badcheck, TRUE, NULL); } /*! \cond INTERNAL_MACRO */ #define fix2dbl_without_to_f(x) (double)FIX2LONG(x) #define big2dbl_without_to_f(x) rb_big2dbl(x) #define int2dbl_without_to_f(x) \ (FIXNUM_P(x) ? fix2dbl_without_to_f(x) : big2dbl_without_to_f(x)) #define num2dbl_without_to_f(x) \ (FIXNUM_P(x) ? fix2dbl_without_to_f(x) : \ RB_TYPE_P(x, T_BIGNUM) ? big2dbl_without_to_f(x) : \ (Check_Type(x, T_FLOAT), RFLOAT_VALUE(x))) static inline double rat2dbl_without_to_f(VALUE x) { VALUE num = rb_rational_num(x); VALUE den = rb_rational_den(x); return num2dbl_without_to_f(num) / num2dbl_without_to_f(den); } #define special_const_to_float(val, pre, post) \ switch (val) { \ case Qnil: \ rb_raise_static(rb_eTypeError, pre "nil" post); \ case Qtrue: \ rb_raise_static(rb_eTypeError, pre "true" post); \ case Qfalse: \ rb_raise_static(rb_eTypeError, pre "false" post); \ } /*! \endcond */ static inline void conversion_to_float(VALUE val) { special_const_to_float(val, "can't convert ", " into Float"); } static inline void implicit_conversion_to_float(VALUE val) { special_const_to_float(val, "no implicit conversion to float from ", ""); } static int to_float(VALUE *valp, int raise_exception) { VALUE val = *valp; if (SPECIAL_CONST_P(val)) { if (FIXNUM_P(val)) { *valp = DBL2NUM(fix2dbl_without_to_f(val)); return T_FLOAT; } else if (FLONUM_P(val)) { return T_FLOAT; } else if (raise_exception) { conversion_to_float(val); } } else { int type = BUILTIN_TYPE(val); switch (type) { case T_FLOAT: return T_FLOAT; case T_BIGNUM: *valp = DBL2NUM(big2dbl_without_to_f(val)); return T_FLOAT; case T_RATIONAL: *valp = DBL2NUM(rat2dbl_without_to_f(val)); return T_FLOAT; case T_STRING: return T_STRING; } } return T_NONE; } static VALUE convert_type_to_float_protected(VALUE val) { return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f); } static VALUE rb_convert_to_float(VALUE val, int raise_exception) { switch (to_float(&val, raise_exception)) { case T_FLOAT: return val; case T_STRING: if (!raise_exception) { int e = 0; double x = rb_str_to_dbl_raise(val, TRUE, raise_exception, &e); return e ? Qnil : DBL2NUM(x); } return DBL2NUM(rb_str_to_dbl(val, TRUE)); case T_NONE: if (SPECIAL_CONST_P(val) && !raise_exception) return Qnil; } if (!raise_exception) { int state; VALUE result = rb_protect(convert_type_to_float_protected, val, &state); if (state) rb_set_errinfo(Qnil); return result; } return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f); } FUNC_MINIMIZED(VALUE rb_Float(VALUE val)); /*! * Equivalent to \c Kernel\#Float in Ruby. * * Converts \a val into \c Float in a slightly more strict manner * than \c #to_f. */ VALUE rb_Float(VALUE val) { return rb_convert_to_float(val, TRUE); } /* * call-seq: * Float(arg, exception: true) -> float or nil * * Returns arg converted to a float. Numeric types are * converted directly, and with exception to String and * nil the rest are converted using * arg.to_f. Converting a String with invalid * characters will result in a ArgumentError. Converting * nil generates a TypeError. Exceptions can be * suppressed by passing exception: false. * * Float(1) #=> 1.0 * Float("123.456") #=> 123.456 * Float("123.0_badstring") #=> ArgumentError: invalid value for Float(): "123.0_badstring" * Float(nil) #=> TypeError: can't convert nil into Float * Float("123.0_badstring", exception: false) #=> nil */ static VALUE rb_f_float(int argc, VALUE *argv, VALUE obj) { VALUE arg = Qnil, opts = Qnil; rb_scan_args(argc, argv, "1:", &arg, &opts); return rb_convert_to_float(arg, opts_exception_p(opts)); } static VALUE numeric_to_float(VALUE val) { if (!rb_obj_is_kind_of(val, rb_cNumeric)) { rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into Float", rb_obj_class(val)); } return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f); } /*! * Converts a \c Numeric object into \c Float. * \param[in] val a \c Numeric object * \exception TypeError if \a val is not a \c Numeric or other conversion failures. */ VALUE rb_to_float(VALUE val) { switch (to_float(&val, TRUE)) { case T_FLOAT: return val; } return numeric_to_float(val); } /*! * Tries to convert an object into \c Float. * It calls \c #to_f if necessary. * * It returns \c Qnil if the object is not a \c Numeric * or \c #to_f is not defined on the object. */ VALUE rb_check_to_float(VALUE val) { if (RB_TYPE_P(val, T_FLOAT)) return val; if (!rb_obj_is_kind_of(val, rb_cNumeric)) { return Qnil; } return rb_check_convert_type_with_id(val, T_FLOAT, "Float", id_to_f); } static inline int basic_to_f_p(VALUE klass) { return rb_method_basic_definition_p(klass, id_to_f); } /*! \private */ double rb_num_to_dbl(VALUE val) { if (SPECIAL_CONST_P(val)) { if (FIXNUM_P(val)) { if (basic_to_f_p(rb_cInteger)) return fix2dbl_without_to_f(val); } else if (FLONUM_P(val)) { return rb_float_flonum_value(val); } else { conversion_to_float(val); } } else { switch (BUILTIN_TYPE(val)) { case T_FLOAT: return rb_float_noflonum_value(val); case T_BIGNUM: if (basic_to_f_p(rb_cInteger)) return big2dbl_without_to_f(val); break; case T_RATIONAL: if (basic_to_f_p(rb_cRational)) return rat2dbl_without_to_f(val); break; } } val = numeric_to_float(val); return RFLOAT_VALUE(val); } /*! * Converts a \c Numeric object to \c double. * \param[in] val a \c Numeric object * \return the converted value * \exception TypeError if \a val is not a \c Numeric or * it does not support conversion to a floating point number. */ double rb_num2dbl(VALUE val) { if (SPECIAL_CONST_P(val)) { if (FIXNUM_P(val)) { return fix2dbl_without_to_f(val); } else if (FLONUM_P(val)) { return rb_float_flonum_value(val); } else { implicit_conversion_to_float(val); } } else { switch (BUILTIN_TYPE(val)) { case T_FLOAT: return rb_float_noflonum_value(val); case T_BIGNUM: return big2dbl_without_to_f(val); case T_RATIONAL: return rat2dbl_without_to_f(val); case T_STRING: rb_raise(rb_eTypeError, "no implicit conversion to float from string"); } } val = rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f); return RFLOAT_VALUE(val); } /*! * Equivalent to \c Kernel\#String in Ruby. * * Converts \a val into \c String by trying \c #to_str at first and * then trying \c #to_s. */ VALUE rb_String(VALUE val) { VALUE tmp = rb_check_string_type(val); if (NIL_P(tmp)) tmp = rb_convert_type_with_id(val, T_STRING, "String", idTo_s); return tmp; } /* * call-seq: * String(arg) -> string * * Returns arg as a String. * * First tries to call its to_str method, then its to_s method. * * String(self) #=> "main" * String(self.class) #=> "Object" * String(123456) #=> "123456" */ static VALUE rb_f_string(VALUE obj, VALUE arg) { return rb_String(arg); } /*! * Equivalent to \c Kernel\#Array in Ruby. */ VALUE rb_Array(VALUE val) { VALUE tmp = rb_check_array_type(val); if (NIL_P(tmp)) { tmp = rb_check_to_array(val); if (NIL_P(tmp)) { return rb_ary_new3(1, val); } } return tmp; } /* * call-seq: * Array(arg) -> array * * Returns +arg+ as an Array. * * First tries to call to_ary on +arg+, then to_a. * If +arg+ does not respond to to_ary or to_a, * returns an Array of length 1 containing +arg+. * * If to_ary or to_a returns something other than * an Array, raises a TypeError. * * Array(["a", "b"]) #=> ["a", "b"] * Array(1..5) #=> [1, 2, 3, 4, 5] * Array(key: :value) #=> [[:key, :value]] * Array(nil) #=> [] * Array(1) #=> [1] */ static VALUE rb_f_array(VALUE obj, VALUE arg) { return rb_Array(arg); } /** * Equivalent to \c Kernel\#Hash in Ruby */ VALUE rb_Hash(VALUE val) { VALUE tmp; if (NIL_P(val)) return rb_hash_new(); tmp = rb_check_hash_type(val); if (NIL_P(tmp)) { if (RB_TYPE_P(val, T_ARRAY) && RARRAY_LEN(val) == 0) return rb_hash_new(); rb_raise(rb_eTypeError, "can't convert %s into Hash", rb_obj_classname(val)); } return tmp; } /* * call-seq: * Hash(arg) -> hash * * Converts arg to a Hash by calling * arg.to_hash. Returns an empty Hash when * arg is nil or []. * * Hash([]) #=> {} * Hash(nil) #=> {} * Hash(key: :value) #=> {:key => :value} * Hash([1, 2, 3]) #=> TypeError */ static VALUE rb_f_hash(VALUE obj, VALUE arg) { return rb_Hash(arg); } /*! \private */ struct dig_method { VALUE klass; int basic; }; static ID id_dig; static int dig_basic_p(VALUE obj, struct dig_method *cache) { VALUE klass = RBASIC_CLASS(obj); if (klass != cache->klass) { cache->klass = klass; cache->basic = rb_method_basic_definition_p(klass, id_dig); } return cache->basic; } static void no_dig_method(int found, VALUE recv, ID mid, int argc, const VALUE *argv, VALUE data) { if (!found) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not have #dig method", CLASS_OF(data)); } } /*! \private */ VALUE rb_obj_dig(int argc, VALUE *argv, VALUE obj, VALUE notfound) { struct dig_method hash = {Qnil}, ary = {Qnil}, strt = {Qnil}; for (; argc > 0; ++argv, --argc) { if (NIL_P(obj)) return notfound; if (!SPECIAL_CONST_P(obj)) { switch (BUILTIN_TYPE(obj)) { case T_HASH: if (dig_basic_p(obj, &hash)) { obj = rb_hash_aref(obj, *argv); continue; } break; case T_ARRAY: if (dig_basic_p(obj, &ary)) { obj = rb_ary_at(obj, *argv); continue; } break; case T_STRUCT: if (dig_basic_p(obj, &strt)) { obj = rb_struct_lookup(obj, *argv); continue; } break; } } return rb_check_funcall_with_hook(obj, id_dig, argc, argv, no_dig_method, obj); } return obj; } /* * Document-class: Class * * Classes in Ruby are first-class objects---each is an instance of * class Class. * * Typically, you create a new class by using: * * class Name * # some code describing the class behavior * end * * When a new class is created, an object of type Class is initialized and * assigned to a global constant (Name in this case). * * When Name.new is called to create a new object, the * #new method in Class is run by default. * This can be demonstrated by overriding #new in Class: * * class Class * alias old_new new * def new(*args) * print "Creating a new ", self.name, "\n" * old_new(*args) * end * end * * class Name * end * * n = Name.new * * produces: * * Creating a new Name * * Classes, modules, and objects are interrelated. In the diagram * that follows, the vertical arrows represent inheritance, and the * parentheses metaclasses. All metaclasses are instances * of the class `Class'. * +---------+ +-... * | | | * BasicObject-----|-->(BasicObject)-------|-... * ^ | ^ | * | | | | * Object---------|----->(Object)---------|-... * ^ | ^ | * | | | | * +-------+ | +--------+ | * | | | | | | * | Module-|---------|--->(Module)-|-... * | ^ | | ^ | * | | | | | | * | Class-|---------|---->(Class)-|-... * | ^ | | ^ | * | +---+ | +----+ * | | * obj--->OtherClass---------->(OtherClass)-----------... * */ /* Document-class: BasicObject * * BasicObject is the parent class of all classes in Ruby. It's an explicit * blank class. * * BasicObject can be used for creating object hierarchies independent of * Ruby's object hierarchy, proxy objects like the Delegator class, or other * uses where namespace pollution from Ruby's methods and classes must be * avoided. * * To avoid polluting BasicObject for other users an appropriately named * subclass of BasicObject should be created instead of directly modifying * BasicObject: * * class MyObjectSystem < BasicObject * end * * BasicObject does not include Kernel (for methods like +puts+) and * BasicObject is outside of the namespace of the standard library so common * classes will not be found without using a full class path. * * A variety of strategies can be used to provide useful portions of the * standard library to subclasses of BasicObject. A subclass could * include Kernel to obtain +puts+, +exit+, etc. A custom * Kernel-like module could be created and included or delegation can be used * via #method_missing: * * class MyObjectSystem < BasicObject * DELEGATE = [:puts, :p] * * def method_missing(name, *args, &block) * return super unless DELEGATE.include? name * ::Kernel.send(name, *args, &block) * end * * def respond_to_missing?(name, include_private = false) * DELEGATE.include?(name) or super * end * end * * Access to classes and modules from the Ruby standard library can be * obtained in a BasicObject subclass by referencing the desired constant * from the root like ::File or ::Enumerator. * Like #method_missing, #const_missing can be used to delegate constant * lookup to +Object+: * * class MyObjectSystem < BasicObject * def self.const_missing(name) * ::Object.const_get(name) * end * end */ /* Document-class: Object * * Object is the default root of all Ruby objects. Object inherits from * BasicObject which allows creating alternate object hierarchies. Methods * on Object are available to all classes unless explicitly overridden. * * Object mixes in the Kernel module, making the built-in kernel functions * globally accessible. Although the instance methods of Object are defined * by the Kernel module, we have chosen to document them here for clarity. * * When referencing constants in classes inheriting from Object you do not * need to use the full namespace. For example, referencing +File+ inside * +YourClass+ will find the top-level File class. * * In the descriptions of Object's methods, the parameter symbol refers * to a symbol, which is either a quoted string or a Symbol (such as * :name). */ /*! *-- * \private * Initializes the world of objects and classes. * * At first, the function bootstraps the class hierarchy. * It initializes the most fundamental classes and their metaclasses. * - \c BasicObject * - \c Object * - \c Module * - \c Class * After the bootstrap step, the class hierarchy becomes as the following * diagram. * * \image html boottime-classes.png * * Then, the function defines classes, modules and methods as usual. * \ingroup class *++ */ void InitVM_Object(void) { Init_class_hierarchy(); #if 0 // teach RDoc about these classes rb_cBasicObject = rb_define_class("BasicObject", Qnil); rb_cObject = rb_define_class("Object", rb_cBasicObject); rb_cModule = rb_define_class("Module", rb_cObject); rb_cClass = rb_define_class("Class", rb_cModule); #endif #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_define_private_method(rb_cBasicObject, "initialize", rb_obj_dummy, 0); rb_define_alloc_func(rb_cBasicObject, rb_class_allocate_instance); rb_define_method(rb_cBasicObject, "==", rb_obj_equal, 1); rb_define_method(rb_cBasicObject, "equal?", rb_obj_equal, 1); rb_define_method(rb_cBasicObject, "!", rb_obj_not, 0); rb_define_method(rb_cBasicObject, "!=", rb_obj_not_equal, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_added", rb_obj_dummy, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_removed", rb_obj_dummy, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_undefined", rb_obj_dummy, 1); /* Document-module: Kernel * * The Kernel module is included by class Object, so its methods are * available in every Ruby object. * * The Kernel instance methods are documented in class Object while the * module methods are documented here. These methods are called without a * receiver and thus can be called in functional form: * * sprintf "%.1f", 1.234 #=> "1.2" * */ rb_mKernel = rb_define_module("Kernel"); rb_include_module(rb_cObject, rb_mKernel); rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "prepended", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1); rb_define_method(rb_mKernel, "nil?", rb_false, 0); rb_define_method(rb_mKernel, "===", rb_equal, 1); rb_define_method(rb_mKernel, "=~", rb_obj_match, 1); rb_define_method(rb_mKernel, "!~", rb_obj_not_match, 1); rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1); rb_define_method(rb_mKernel, "hash", rb_obj_hash, 0); rb_define_method(rb_mKernel, "<=>", rb_obj_cmp, 1); rb_define_method(rb_mKernel, "class", rb_obj_class, 0); rb_define_method(rb_mKernel, "singleton_class", rb_obj_singleton_class, 0); rb_define_method(rb_mKernel, "clone", rb_obj_clone2, -1); rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0); rb_define_method(rb_mKernel, "itself", rb_obj_itself, 0); rb_define_method(rb_mKernel, "yield_self", rb_obj_yield_self, 0); rb_define_method(rb_mKernel, "then", rb_obj_yield_self, 0); rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1); rb_define_method(rb_mKernel, "initialize_dup", rb_obj_init_dup_clone, 1); rb_define_method(rb_mKernel, "initialize_clone", rb_obj_init_dup_clone, 1); rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0); rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0); rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0); rb_define_method(rb_mKernel, "untrust", rb_obj_untrust, 0); rb_define_method(rb_mKernel, "untrusted?", rb_obj_untrusted, 0); rb_define_method(rb_mKernel, "trust", rb_obj_trust, 0); rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0); rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0); rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0); rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0); rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "singleton_methods", rb_obj_singleton_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "protected_methods", rb_obj_protected_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "instance_variables", rb_obj_instance_variables, 0); /* in variable.c */ rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1); rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2); rb_define_method(rb_mKernel, "instance_variable_defined?", rb_obj_ivar_defined, 1); rb_define_method(rb_mKernel, "remove_instance_variable", rb_obj_remove_instance_variable, 1); /* in variable.c */ rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1); rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1); rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1); rb_define_method(rb_mKernel, "tap", rb_obj_tap, 0); rb_define_global_function("sprintf", rb_f_sprintf, -1); /* in sprintf.c */ rb_define_global_function("format", rb_f_sprintf, -1); /* in sprintf.c */ rb_define_global_function("Integer", rb_f_integer, -1); rb_define_global_function("Float", rb_f_float, -1); rb_define_global_function("String", rb_f_string, 1); rb_define_global_function("Array", rb_f_array, 1); rb_define_global_function("Hash", rb_f_hash, 1); rb_cNilClass = rb_define_class("NilClass", rb_cObject); rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0); rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0); rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0); rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0); rb_define_method(rb_cNilClass, "to_h", nil_to_h, 0); rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0); rb_define_method(rb_cNilClass, "=~", nil_match, 1); rb_define_method(rb_cNilClass, "&", false_and, 1); rb_define_method(rb_cNilClass, "|", false_or, 1); rb_define_method(rb_cNilClass, "^", false_xor, 1); rb_define_method(rb_cNilClass, "===", rb_equal, 1); rb_define_method(rb_cNilClass, "nil?", rb_true, 0); rb_undef_alloc_func(rb_cNilClass); rb_undef_method(CLASS_OF(rb_cNilClass), "new"); /* * An obsolete alias of +nil+ */ rb_define_global_const("NIL", Qnil); rb_deprecate_constant(rb_cObject, "NIL"); rb_define_method(rb_cModule, "freeze", rb_mod_freeze, 0); rb_define_method(rb_cModule, "===", rb_mod_eqq, 1); rb_define_method(rb_cModule, "==", rb_obj_equal, 1); rb_define_method(rb_cModule, "<=>", rb_mod_cmp, 1); rb_define_method(rb_cModule, "<", rb_mod_lt, 1); rb_define_method(rb_cModule, "<=", rb_class_inherited_p, 1); rb_define_method(rb_cModule, ">", rb_mod_gt, 1); rb_define_method(rb_cModule, ">=", rb_mod_ge, 1); rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1); /* in class.c */ rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0); rb_define_alias(rb_cModule, "inspect", "to_s"); rb_define_method(rb_cModule, "included_modules", rb_mod_included_modules, 0); /* in class.c */ rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); /* in class.c */ rb_define_method(rb_cModule, "name", rb_mod_name, 0); /* in variable.c */ rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); /* in class.c */ rb_define_method(rb_cModule, "attr", rb_mod_attr, -1); rb_define_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1); rb_define_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1); rb_define_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1); rb_define_alloc_func(rb_cModule, rb_module_s_alloc); rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0); rb_define_method(rb_cModule, "initialize_clone", rb_mod_initialize_clone, 1); rb_define_method(rb_cModule, "instance_methods", rb_class_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "public_instance_methods", rb_class_public_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "protected_instance_methods", rb_class_protected_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "private_instance_methods", rb_class_private_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "constants", rb_mod_constants, -1); /* in variable.c */ rb_define_method(rb_cModule, "const_get", rb_mod_const_get, -1); rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2); rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, -1); rb_define_method(rb_cModule, "const_source_location", rb_mod_const_source_location, -1); rb_define_private_method(rb_cModule, "remove_const", rb_mod_remove_const, 1); /* in variable.c */ rb_define_method(rb_cModule, "const_missing", rb_mod_const_missing, 1); /* in variable.c */ rb_define_method(rb_cModule, "class_variables", rb_mod_class_variables, -1); /* in variable.c */ rb_define_method(rb_cModule, "remove_class_variable", rb_mod_remove_cvar, 1); /* in variable.c */ rb_define_method(rb_cModule, "class_variable_get", rb_mod_cvar_get, 1); rb_define_method(rb_cModule, "class_variable_set", rb_mod_cvar_set, 2); rb_define_method(rb_cModule, "class_variable_defined?", rb_mod_cvar_defined, 1); rb_define_method(rb_cModule, "public_constant", rb_mod_public_constant, -1); /* in variable.c */ rb_define_method(rb_cModule, "private_constant", rb_mod_private_constant, -1); /* in variable.c */ rb_define_method(rb_cModule, "deprecate_constant", rb_mod_deprecate_constant, -1); /* in variable.c */ rb_define_method(rb_cModule, "singleton_class?", rb_mod_singleton_p, 0); rb_define_method(rb_cClass, "allocate", rb_class_alloc, 0); rb_define_method(rb_cClass, "new", rb_class_s_new, -1); rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1); rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0); rb_define_alloc_func(rb_cClass, rb_class_s_alloc); rb_undef_method(rb_cClass, "extend_object"); rb_undef_method(rb_cClass, "append_features"); rb_undef_method(rb_cClass, "prepend_features"); /* * Document-class: Data * * This is a deprecated class, base class for C extensions using * Data_Make_Struct or Data_Wrap_Struct. */ rb_cData = rb_define_class("Data", rb_cObject); rb_undef_alloc_func(rb_cData); rb_deprecate_constant(rb_cObject, "Data"); rb_cTrueClass = rb_define_class("TrueClass", rb_cObject); rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0); rb_define_alias(rb_cTrueClass, "inspect", "to_s"); rb_define_method(rb_cTrueClass, "&", true_and, 1); rb_define_method(rb_cTrueClass, "|", true_or, 1); rb_define_method(rb_cTrueClass, "^", true_xor, 1); rb_define_method(rb_cTrueClass, "===", rb_equal, 1); rb_undef_alloc_func(rb_cTrueClass); rb_undef_method(CLASS_OF(rb_cTrueClass), "new"); /* * An obsolete alias of +true+ */ rb_define_global_const("TRUE", Qtrue); rb_deprecate_constant(rb_cObject, "TRUE"); rb_cFalseClass = rb_define_class("FalseClass", rb_cObject); rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0); rb_define_alias(rb_cFalseClass, "inspect", "to_s"); rb_define_method(rb_cFalseClass, "&", false_and, 1); rb_define_method(rb_cFalseClass, "|", false_or, 1); rb_define_method(rb_cFalseClass, "^", false_xor, 1); rb_define_method(rb_cFalseClass, "===", rb_equal, 1); rb_undef_alloc_func(rb_cFalseClass); rb_undef_method(CLASS_OF(rb_cFalseClass), "new"); /* * An obsolete alias of +false+ */ rb_define_global_const("FALSE", Qfalse); rb_deprecate_constant(rb_cObject, "FALSE"); } void Init_Object(void) { id_dig = rb_intern_const("dig"); InitVM(Object); } /*! * \} */