/********************************************************************** mjit_compile.c - MRI method JIT compiler Copyright (C) 2017 Takashi Kokubun . **********************************************************************/ // NOTE: All functions in this file are executed on MJIT worker. So don't // call Ruby methods (C functions that may call rb_funcall) or trigger // GC (using ZALLOC, xmalloc, xfree, etc.) in this file. #include "ruby/impl/config.h" #if USE_MJIT #include "internal.h" #include "internal/compile.h" #include "internal/hash.h" #include "internal/variable.h" #include "mjit.h" #include "vm_core.h" #include "vm_callinfo.h" #include "vm_exec.h" #include "vm_insnhelper.h" #include "builtin.h" #include "insns.inc" #include "insns_info.inc" // Macros to check if a position is already compiled using compile_status.stack_size_for_pos #define NOT_COMPILED_STACK_SIZE -1 #define ALREADY_COMPILED_P(status, pos) (status->stack_size_for_pos[pos] != NOT_COMPILED_STACK_SIZE) // For propagating information needed for lazily pushing a frame. struct inlined_call_context { int orig_argc; // ci->orig_argc VALUE me; // vm_cc_cme(cc) int param_size; // def_iseq_ptr(vm_cc_cme(cc)->def)->body->param.size int local_size; // def_iseq_ptr(vm_cc_cme(cc)->def)->body->local_table_size }; // Storage to keep compiler's status. This should have information // which is global during one `mjit_compile` call. Ones conditional // in each branch should be stored in `compile_branch`. struct compile_status { bool success; // has true if compilation has had no issue int *stack_size_for_pos; // stack_size_for_pos[pos] has stack size for the position (otherwise -1) // If true, JIT-ed code will use local variables to store pushed values instead of // using VM's stack and moving stack pointer. bool local_stack_p; // Safely-accessible ivar cache entries copied from main thread. union iseq_inline_storage_entry *is_entries; // Index of call cache entries captured to compiled_iseq to be marked on GC int cc_entries_index; // A pointer to root (i.e. not inlined) iseq being compiled. const struct rb_iseq_constant_body *compiled_iseq; int compiled_id; // Just a copy of compiled_iseq->jit_unit->id // Mutated optimization levels struct rb_mjit_compile_info *compile_info; // If `inlined_iseqs[pos]` is not NULL, `mjit_compile_body` tries to inline ISeq there. const struct rb_iseq_constant_body **inlined_iseqs; struct inlined_call_context inline_context; }; // Storage to keep data which is consistent in each conditional branch. // This is created and used for one `compile_insns` call and its values // should be copied for extra `compile_insns` call. struct compile_branch { unsigned int stack_size; // this simulates sp (stack pointer) of YARV bool finish_p; // if true, compilation in this branch should stop and let another branch to be compiled }; struct case_dispatch_var { FILE *f; unsigned int base_pos; VALUE last_value; }; static size_t call_data_index(CALL_DATA cd, const struct rb_iseq_constant_body *body) { return cd - body->call_data; } const struct rb_callcache ** mjit_iseq_cc_entries(const struct rb_iseq_constant_body *const body); // Using this function to refer to cc_entries allocated by `mjit_capture_cc_entries` // instead of storing cc_entries in status directly so that we always refer to a new address // returned by `realloc` inside it. static const struct rb_callcache ** captured_cc_entries(const struct compile_status *status) { VM_ASSERT(status->cc_entries_index != -1); return mjit_iseq_cc_entries(status->compiled_iseq) + status->cc_entries_index; } // Returns true if call cache is still not obsoleted and vm_cc_cme(cc)->def->type is available. static bool has_valid_method_type(CALL_CACHE cc) { return vm_cc_cme(cc) != NULL; } // Returns true if iseq can use fastpath for setup, otherwise NULL. This becomes true in the same condition // as CC_SET_FASTPATH (in vm_callee_setup_arg) is called from vm_call_iseq_setup. static bool fastpath_applied_iseq_p(const CALL_INFO ci, const CALL_CACHE cc, const rb_iseq_t *iseq) { extern bool rb_simple_iseq_p(const rb_iseq_t *iseq); return iseq != NULL && !(vm_ci_flag(ci) & VM_CALL_KW_SPLAT) && rb_simple_iseq_p(iseq) // Top of vm_callee_setup_arg. In this case, opt_pc is 0. && vm_ci_argc(ci) == (unsigned int)iseq->body->param.lead_num // exclude argument_arity_error (assumption: `calling->argc == ci->orig_argc` in send insns) && vm_call_iseq_optimizable_p(ci, cc); // CC_SET_FASTPATH condition } static int compile_case_dispatch_each(VALUE key, VALUE value, VALUE arg) { struct case_dispatch_var *var = (struct case_dispatch_var *)arg; unsigned int offset; if (var->last_value != value) { offset = FIX2INT(value); var->last_value = value; fprintf(var->f, " case %d:\n", offset); fprintf(var->f, " goto label_%d;\n", var->base_pos + offset); fprintf(var->f, " break;\n"); } return ST_CONTINUE; } // Calling rb_id2str in MJIT worker causes random SEGV. So this is disabled by default. static void comment_id(FILE *f, ID id) { #ifdef MJIT_COMMENT_ID VALUE name = rb_id2str(id); const char *p, *e; char c, prev = '\0'; if (!name) return; p = RSTRING_PTR(name); e = RSTRING_END(name); fputs("/* :\"", f); for (; p < e; ++p) { switch (c = *p) { case '*': case '/': if (prev != (c ^ ('/' ^ '*'))) break; case '\\': case '"': fputc('\\', f); } fputc(c, f); prev = c; } fputs("\" */", f); #endif } static void compile_insns(FILE *f, const struct rb_iseq_constant_body *body, unsigned int stack_size, unsigned int pos, struct compile_status *status); // Main function of JIT compilation, vm_exec_core counterpart for JIT. Compile one insn to `f`, may modify // b->stack_size and return next position. // // When you add a new instruction to insns.def, it would be nice to have JIT compilation support here but // it's optional. This JIT compiler just ignores ISeq which includes unknown instruction, and ISeq which // does not have it can be compiled as usual. static unsigned int compile_insn(FILE *f, const struct rb_iseq_constant_body *body, const int insn, const VALUE *operands, const unsigned int pos, struct compile_status *status, struct compile_branch *b) { unsigned int next_pos = pos + insn_len(insn); /*****************/ #include "mjit_compile.inc" /*****************/ // If next_pos is already compiled and this branch is not finished yet, // next instruction won't be compiled in C code next and will need `goto`. if (!b->finish_p && next_pos < body->iseq_size && ALREADY_COMPILED_P(status, next_pos)) { fprintf(f, "goto label_%d;\n", next_pos); // Verify stack size assumption is the same among multiple branches if ((unsigned int)status->stack_size_for_pos[next_pos] != b->stack_size) { if (mjit_opts.warnings || mjit_opts.verbose) fprintf(stderr, "MJIT warning: JIT stack assumption is not the same between branches (%d != %u)\n", status->stack_size_for_pos[next_pos], b->stack_size); status->success = false; } } return next_pos; } // Compile one conditional branch. If it has branchXXX insn, this should be // called multiple times for each branch. static void compile_insns(FILE *f, const struct rb_iseq_constant_body *body, unsigned int stack_size, unsigned int pos, struct compile_status *status) { int insn; struct compile_branch branch; branch.stack_size = stack_size; branch.finish_p = false; while (pos < body->iseq_size && !ALREADY_COMPILED_P(status, pos) && !branch.finish_p) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE insn = rb_vm_insn_addr2insn((void *)body->iseq_encoded[pos]); #else insn = (int)body->iseq_encoded[pos]; #endif status->stack_size_for_pos[pos] = (int)branch.stack_size; fprintf(f, "\nlabel_%d: /* %s */\n", pos, insn_name(insn)); pos = compile_insn(f, body, insn, body->iseq_encoded + (pos+1), pos, status, &branch); if (status->success && branch.stack_size > body->stack_max) { if (mjit_opts.warnings || mjit_opts.verbose) fprintf(stderr, "MJIT warning: JIT stack size (%d) exceeded its max size (%d)\n", branch.stack_size, body->stack_max); status->success = false; } if (!status->success) break; } } // Print the block to cancel inlined method call. It's supporting only `opt_send_without_block` for now. static void compile_inlined_cancel_handler(FILE *f, const struct rb_iseq_constant_body *body, struct inlined_call_context *inline_context) { fprintf(f, "\ncancel:\n"); fprintf(f, " RB_DEBUG_COUNTER_INC(mjit_cancel);\n"); fprintf(f, " rb_mjit_iseq_compile_info(original_iseq->body)->disable_inlining = true;\n"); fprintf(f, " rb_mjit_recompile_iseq(original_iseq);\n"); // Swap pc/sp set on cancel with original pc/sp. fprintf(f, " const VALUE *current_pc = reg_cfp->pc;\n"); fprintf(f, " VALUE *current_sp = reg_cfp->sp;\n"); fprintf(f, " reg_cfp->pc = orig_pc;\n"); fprintf(f, " reg_cfp->sp = orig_sp;\n\n"); // Lazily push the current call frame. fprintf(f, " struct rb_calling_info calling;\n"); fprintf(f, " calling.block_handler = VM_BLOCK_HANDLER_NONE;\n"); // assumes `opt_send_without_block` fprintf(f, " calling.argc = %d;\n", inline_context->orig_argc); fprintf(f, " calling.recv = reg_cfp->self;\n"); fprintf(f, " reg_cfp->self = orig_self;\n"); fprintf(f, " vm_call_iseq_setup_normal(ec, reg_cfp, &calling, (const rb_callable_method_entry_t *)0x%"PRIxVALUE", 0, %d, %d);\n\n", inline_context->me, inline_context->param_size, inline_context->local_size); // fastpath_applied_iseq_p checks rb_simple_iseq_p, which ensures has_opt == FALSE // Start usual cancel from here. fprintf(f, " reg_cfp = ec->cfp;\n"); // work on the new frame fprintf(f, " reg_cfp->pc = current_pc;\n"); fprintf(f, " reg_cfp->sp = current_sp;\n"); for (unsigned int i = 0; i < body->stack_max; i++) { // should be always `status->local_stack_p` fprintf(f, " *(vm_base_ptr(reg_cfp) + %d) = stack[%d];\n", i, i); } // We're not just returning Qundef here so that caller's normal cancel handler can // push back `stack` to `cfp->sp`. fprintf(f, " return vm_exec(ec, FALSE);\n"); } // Print the block to cancel JIT execution. static void compile_cancel_handler(FILE *f, const struct rb_iseq_constant_body *body, struct compile_status *status) { if (status->inlined_iseqs == NULL) { // the current ISeq is being inlined compile_inlined_cancel_handler(f, body, &status->inline_context); return; } fprintf(f, "\nsend_cancel:\n"); fprintf(f, " RB_DEBUG_COUNTER_INC(mjit_cancel_send_inline);\n"); fprintf(f, " rb_mjit_iseq_compile_info(original_iseq->body)->disable_send_cache = true;\n"); fprintf(f, " rb_mjit_recompile_iseq(original_iseq);\n"); fprintf(f, " goto cancel;\n"); fprintf(f, "\nivar_cancel:\n"); fprintf(f, " RB_DEBUG_COUNTER_INC(mjit_cancel_ivar_inline);\n"); fprintf(f, " rb_mjit_iseq_compile_info(original_iseq->body)->disable_ivar_cache = true;\n"); fprintf(f, " rb_mjit_recompile_iseq(original_iseq);\n"); fprintf(f, " goto cancel;\n"); fprintf(f, "\nexivar_cancel:\n"); fprintf(f, " RB_DEBUG_COUNTER_INC(mjit_cancel_exivar_inline);\n"); fprintf(f, " rb_mjit_iseq_compile_info(original_iseq->body)->disable_exivar_cache = true;\n"); fprintf(f, " rb_mjit_recompile_iseq(original_iseq);\n"); fprintf(f, " goto cancel;\n"); fprintf(f, "\ncancel:\n"); fprintf(f, " RB_DEBUG_COUNTER_INC(mjit_cancel);\n"); if (status->local_stack_p) { for (unsigned int i = 0; i < body->stack_max; i++) { fprintf(f, " *(vm_base_ptr(reg_cfp) + %d) = stack[%d];\n", i, i); } } fprintf(f, " return Qundef;\n"); } extern int mjit_capture_cc_entries(const struct rb_iseq_constant_body *compiled_iseq, const struct rb_iseq_constant_body *captured_iseq); extern bool mjit_copy_cache_from_main_thread(const rb_iseq_t *iseq, union iseq_inline_storage_entry *is_entries); static bool mjit_compile_body(FILE *f, const rb_iseq_t *iseq, struct compile_status *status) { const struct rb_iseq_constant_body *body = iseq->body; status->success = true; status->local_stack_p = !body->catch_except_p; if (status->local_stack_p) { fprintf(f, " VALUE stack[%d];\n", body->stack_max); } else { fprintf(f, " VALUE *stack = reg_cfp->sp;\n"); } if (status->inlined_iseqs != NULL) // i.e. compile root fprintf(f, " static const rb_iseq_t *original_iseq = (const rb_iseq_t *)0x%"PRIxVALUE";\n", (VALUE)iseq); fprintf(f, " static const VALUE *const original_body_iseq = (VALUE *)0x%"PRIxVALUE";\n", (VALUE)body->iseq_encoded); // Simulate `opt_pc` in setup_parameters_complex. Other PCs which may be passed by catch tables // are not considered since vm_exec doesn't call mjit_exec for catch tables. if (body->param.flags.has_opt) { int i; fprintf(f, "\n"); fprintf(f, " switch (reg_cfp->pc - reg_cfp->iseq->body->iseq_encoded) {\n"); for (i = 0; i <= body->param.opt_num; i++) { VALUE pc_offset = body->param.opt_table[i]; fprintf(f, " case %"PRIdVALUE":\n", pc_offset); fprintf(f, " goto label_%"PRIdVALUE";\n", pc_offset); } fprintf(f, " }\n"); } compile_insns(f, body, 0, 0, status); compile_cancel_handler(f, body, status); return status->success; } // Return true if the ISeq can be inlined without pushing a new control frame. static bool inlinable_iseq_p(const struct rb_iseq_constant_body *body) { // 1) If catch_except_p, caller frame should be preserved when callee catches an exception. // Then we need to wrap `vm_exec()` but then we can't inline the call inside it. // // 2) If `body->catch_except_p` is false and `handles_sp?` of an insn is false, // sp is not moved as we assume `status->local_stack_p = !body->catch_except_p`. // // 3) If `body->catch_except_p` is false and `always_leaf?` of an insn is true, // pc is not moved. if (body->catch_except_p) return false; unsigned int pos = 0; while (pos < body->iseq_size) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE int insn = rb_vm_insn_addr2insn((void *)body->iseq_encoded[pos]); #else int insn = (int)body->iseq_encoded[pos]; #endif // All insns in the ISeq except `leave` (to be overridden in the inlined code) // should meet following strong assumptions: // * Do not require `cfp->sp` motion // * Do not move `cfp->pc` // * Do not read any `cfp->pc` if (insn != BIN(leave) && insn_may_depend_on_sp_or_pc(insn, body->iseq_encoded + (pos + 1))) return false; // At this moment, `cfp->ep` in an inlined method is not working. switch (insn) { case BIN(getlocal): case BIN(getlocal_WC_0): case BIN(getlocal_WC_1): case BIN(setlocal): case BIN(setlocal_WC_0): case BIN(setlocal_WC_1): case BIN(getblockparam): case BIN(getblockparamproxy): case BIN(setblockparam): return false; } pos += insn_len(insn); } return true; } // This needs to be macro instead of a function because it's using `alloca`. #define INIT_COMPILE_STATUS(status, body, compile_root_p) do { \ status = (struct compile_status){ \ .stack_size_for_pos = (int *)alloca(sizeof(int) * body->iseq_size), \ .inlined_iseqs = compile_root_p ? \ alloca(sizeof(const struct rb_iseq_constant_body *) * body->iseq_size) : NULL, \ .is_entries = (body->is_size > 0) ? \ alloca(sizeof(union iseq_inline_storage_entry) * body->is_size) : NULL, \ .cc_entries_index = (body->ci_size > 0) ? \ mjit_capture_cc_entries(status.compiled_iseq, body) : -1, \ .compiled_id = status.compiled_id, \ .compiled_iseq = status.compiled_iseq, \ .compile_info = compile_root_p ? \ rb_mjit_iseq_compile_info(body) : alloca(sizeof(struct rb_mjit_compile_info)) \ }; \ memset(status.stack_size_for_pos, NOT_COMPILED_STACK_SIZE, sizeof(int) * body->iseq_size); \ if (compile_root_p) \ memset((void *)status.inlined_iseqs, 0, sizeof(const struct rb_iseq_constant_body *) * body->iseq_size); \ else \ memset(status.compile_info, 0, sizeof(struct rb_mjit_compile_info)); \ } while (0) // Compile inlinable ISeqs to C code in `f`. It returns true if it succeeds to compile them. static bool precompile_inlinable_iseqs(FILE *f, const rb_iseq_t *iseq, struct compile_status *status) { const struct rb_iseq_constant_body *body = iseq->body; unsigned int pos = 0; while (pos < body->iseq_size) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE int insn = rb_vm_insn_addr2insn((void *)body->iseq_encoded[pos]); #else int insn = (int)body->iseq_encoded[pos]; #endif if (insn == BIN(opt_send_without_block)) { // `compile_inlined_cancel_handler` supports only `opt_send_without_block` CALL_DATA cd = (CALL_DATA)body->iseq_encoded[pos + 1]; const struct rb_callinfo *ci = cd->ci; const struct rb_callcache *cc = captured_cc_entries(status)[call_data_index(cd, body)]; // use copy to avoid race condition const rb_iseq_t *child_iseq; if (has_valid_method_type(cc) && !(vm_ci_flag(ci) & VM_CALL_TAILCALL) && // inlining only non-tailcall path vm_cc_cme(cc)->def->type == VM_METHOD_TYPE_ISEQ && fastpath_applied_iseq_p(ci, cc, child_iseq = def_iseq_ptr(vm_cc_cme(cc)->def)) && // CC_SET_FASTPATH in vm_callee_setup_arg inlinable_iseq_p(child_iseq->body)) { status->inlined_iseqs[pos] = child_iseq->body; if (mjit_opts.verbose >= 1) // print beforehand because ISeq may be GCed during copy job. fprintf(stderr, "JIT inline: %s@%s:%d => %s@%s:%d\n", RSTRING_PTR(iseq->body->location.label), RSTRING_PTR(rb_iseq_path(iseq)), FIX2INT(iseq->body->location.first_lineno), RSTRING_PTR(child_iseq->body->location.label), RSTRING_PTR(rb_iseq_path(child_iseq)), FIX2INT(child_iseq->body->location.first_lineno)); struct compile_status child_status = { .compiled_iseq = status->compiled_iseq, .compiled_id = status->compiled_id }; INIT_COMPILE_STATUS(child_status, child_iseq->body, false); child_status.inline_context = (struct inlined_call_context){ .orig_argc = vm_ci_argc(ci), .me = (VALUE)vm_cc_cme(cc), .param_size = child_iseq->body->param.size, .local_size = child_iseq->body->local_table_size }; if ((child_iseq->body->ci_size > 0 && child_status.cc_entries_index == -1) || (child_status.is_entries != NULL && !mjit_copy_cache_from_main_thread(child_iseq, child_status.is_entries))) { return false; } fprintf(f, "ALWAYS_INLINE(static VALUE _mjit%d_inlined_%d(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, const VALUE orig_self, const rb_iseq_t *original_iseq));\n", status->compiled_id, pos); fprintf(f, "static inline VALUE\n_mjit%d_inlined_%d(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, const VALUE orig_self, const rb_iseq_t *original_iseq)\n{\n", status->compiled_id, pos); fprintf(f, " const VALUE *orig_pc = reg_cfp->pc;\n"); fprintf(f, " VALUE *orig_sp = reg_cfp->sp;\n"); bool success = mjit_compile_body(f, child_iseq, &child_status); fprintf(f, "\n} /* end of _mjit%d_inlined_%d */\n\n", status->compiled_id, pos); if (!success) return false; } } pos += insn_len(insn); } return true; } // Compile ISeq to C code in `f`. It returns true if it succeeds to compile. bool mjit_compile(FILE *f, const rb_iseq_t *iseq, const char *funcname, int id) { struct compile_status status = { .compiled_iseq = iseq->body, .compiled_id = id }; INIT_COMPILE_STATUS(status, iseq->body, true); if ((iseq->body->ci_size > 0 && status.cc_entries_index == -1) || (status.is_entries != NULL && !mjit_copy_cache_from_main_thread(iseq, status.is_entries))) { return false; } if (!status.compile_info->disable_send_cache && !status.compile_info->disable_inlining) { if (!precompile_inlinable_iseqs(f, iseq, &status)) return false; } #ifdef _WIN32 fprintf(f, "__declspec(dllexport)\n"); #endif fprintf(f, "VALUE\n%s(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp)\n{\n", funcname); bool success = mjit_compile_body(f, iseq, &status); fprintf(f, "\n} // end of %s\n", funcname); return success; } #endif // USE_MJIT