/* * Copyright (c) 1993, Intergraph Corporation * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the perl README file. * * Various Unix compatibility functions and NT specific functions. * * Some of this code was derived from the MSDOS port(s) and the OS/2 port. * */ #include "ruby.h" #include #include #include #include #include bool NtSyncProcess = FALSE; extern char **environ; static bool NtHasRedirection (char *); static int valid_filename(char *s); FILE *fdopen(int, char *); void sleep(unsigned int len) { time_t end; end = time((time_t *)0) + len; while (time((time_t *)0) < end) ; } // // Initialization stuff // void NtInitialize(int *argc, char ***argv) { WORD version; WSADATA retdata; int ret; // // subvert cmd.exe\'s feeble attempt at command line parsing // *argc = NtMakeCmdVector((char *)GetCommandLine(), argv, TRUE); // // Now set up the correct time stuff // tzset(); } char *getlogin() { char buffer[200]; int len = 200; extern char *NTLoginName; if (NTLoginName == NULL) { if (GetUserName(buffer, &len)) { NTLoginName = ALLOC_N(char, len+1); strncpy(NTLoginName, buffer, len); NTLoginName[len] = '\0'; } else { NTLoginName = ""; } } return NTLoginName; } // popen stuff // // use these so I can remember which index is which // #define NtPipeRead 0 // index of pipe read descriptor #define NtPipeWrite 1 // index of pipe write descriptor #define NtPipeSize 1024 // size of pipe buffer #define MYPOPENSIZE 256 // size of book keeping structure struct { int inuse; int pid; FILE *pipe; } MyPopenRecord[MYPOPENSIZE]; FILE * mypopen (char *cmd, char *mode) { FILE *fp; int saved, reading; int pipemode; int pipes[2]; int pid; int slot; static initialized = 0; // // if first time through, intialize our book keeping structure // if (!initialized++) { for (slot = 0; slot < MYPOPENSIZE; slot++) MyPopenRecord[slot].inuse = FALSE; } // // find a free popen slot // for (slot = 0; slot < MYPOPENSIZE && MyPopenRecord[slot].inuse; slot++) ; if (slot > MYPOPENSIZE) { return NULL; } // // Figure out what we\'re doing... // reading = (*mode == 'r') ? TRUE : FALSE; pipemode = (*(mode+1) == 'b') ? O_BINARY : O_TEXT; // // Now get a pipe // if (_pipe(pipes, NtPipeSize, pipemode) == -1) { return NULL; } if (reading) { // // we\'re reading from the pipe, so we must hook up the // write end of the pipe to the new processes stdout. // To do this we must save our file handle from stdout // by _dup\'ing it, then setting our stdout to be the pipe\'s // write descriptor. We must also make the write handle // inheritable so the new process can use it. if ((saved = _dup(fileno(stdout))) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } if (_dup2 (pipes[NtPipeWrite], fileno(stdout)) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } else { // // must be writing to the new process. Do the opposite of // the above, i.e. hook up the processes stdin to the read // end of the pipe. // if ((saved = _dup(fileno(stdin))) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } if (_dup2(pipes[NtPipeRead], fileno(stdin)) == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } // // Start the new process. Must set _fileinfo to non-zero value // for file descriptors to be inherited. Reset after the process // is started. // if (NtHasRedirection(cmd)) { docmd: pid = spawnlpe(_P_NOWAIT, "cmd.exe", "/c", cmd, 0, environ); if (pid == -1) { _close(pipes[NtPipeRead]); _close(pipes[NtPipeWrite]); return NULL; } } else { char **vec; int vecc = NtMakeCmdVector(cmd, &vec, FALSE); pid = spawnvpe (_P_NOWAIT, vec[0], vec, environ); if (pid == -1) { goto docmd; } Safefree (vec); } if (reading) { // // We need to close our instance of the inherited pipe write // handle now that it's been inherited so that it will actually close // when the child process ends. // if (_close(pipes[NtPipeWrite]) == -1) { _close(pipes[NtPipeRead]); return NULL; } if (_dup2 (saved, fileno(stdout)) == -1) { _close(pipes[NtPipeRead]); return NULL; } _close(saved); // // Now get a stream pointer to return to the calling program. // if ((fp = (FILE *) fdopen(pipes[NtPipeRead], mode)) == NULL) { return NULL; } } else { // // need to close our read end of the pipe so that it will go // away when the write end is closed. // if (_close(pipes[NtPipeRead]) == -1) { _close(pipes[NtPipeWrite]); return NULL; } if (_dup2 (saved, fileno(stdin)) == -1) { _close(pipes[NtPipeWrite]); return NULL; } _close(saved); // // Now get a stream pointer to return to the calling program. // if ((fp = (FILE *) fdopen(pipes[NtPipeWrite], mode)) == NULL) { _close(pipes[NtPipeWrite]); return NULL; } } // // do the book keeping // MyPopenRecord[slot].inuse = TRUE; MyPopenRecord[slot].pipe = fp; MyPopenRecord[slot].pid = pid; return fp; } int mypclose(FILE *fp) { int i; int exitcode; for (i = 0; i < MYPOPENSIZE; i++) { if (MyPopenRecord[i].inuse && MyPopenRecord[i].pipe == fp) break; } if (i >= MYPOPENSIZE) { fprintf(stderr,"Invalid file pointer passed to mypclose!\n"); abort(); } // // get the return status of the process // if (_cwait(&exitcode, MyPopenRecord[i].pid, WAIT_CHILD) == -1) { if (errno == ECHILD) { fprintf(stderr, "mypclose: nosuch child as pid %x\n", MyPopenRecord[i].pid); } } // // close the pipe // fclose(fp); // // free this slot // MyPopenRecord[i].inuse = FALSE; return exitcode; } /* * The following code is based on the do_exec and do_aexec functions * in file doio.c */ int do_spawn(cmd) char *cmd; { register char **a; register char *s; char **argv; int status; char *shell, *cmd2; int mode = NtSyncProcess ? P_WAIT : P_NOWAIT; /* save an extra exec if possible */ if ((shell = getenv("COMSPEC")) == 0) shell = "cmd.exe"; /* see if there are shell metacharacters in it */ if (NtHasRedirection(cmd)) { doshell: return spawnle(mode, shell, shell, "/c", cmd, (char*)0, environ); } argv = ALLOC_N(char*, strlen(cmd) / 2 + 2); cmd2 = ALOOC_N(char, strlen(cmd) + 1); strcpy(cmd2, cmd); a = argv; for (s = cmd2; *s;) { while (*s && isspace(*s)) s++; if (*s) *(a++) = s; while (*s && !isspace(*s)) s++; if (*s) *s++ = '\0'; } *a = Qnil; if (argv[0]) { if ((status = spawnvpe(mode, argv[0], argv, environ)) == -1) { free(argv); free(cmd2); goto doshell; } } free(cmd2); free(argv); return status; } typedef struct _NtCmdLineElement { struct _NtCmdLineElement *next, *prev; char *str; int len; int flags; } NtCmdLineElement; // // Possible values for flags // #define NTGLOB 0x1 // element contains a wildcard #define NTMALLOC 0x2 // string in element was malloc'ed #define NTSTRING 0x4 // element contains a quoted string NtCmdLineElement *NtCmdHead = NULL, *NtCmdTail = NULL; void NtFreeCmdLine(void) { NtCmdLineElement *ptr; while(NtCmdHead) { ptr = NtCmdHead; NtCmdHead = NtCmdHead->next; free(ptr); } NtCmdHead = NtCmdTail = NULL; } // // This function expands wild card characters that were spotted // during the parse phase. The idea here is to call FindFirstFile and // FindNextFile with the wildcard pattern specified, and splice in the // resulting list of new names. If the wildcard pattern doesn\'t match // any existing files, just leave it in the list. // void NtCmdGlob (NtCmdLineElement *patt) { WIN32_FIND_DATA fd; HANDLE fh; char buffer[512]; NtCmdLineElement *tmphead, *tmptail, *tmpcurr; strncpy(buffer, patt->str, patt->len); buffer[patt->len] = '\0'; if ((fh = FindFirstFile (buffer, &fd)) == INVALID_HANDLE_VALUE) { return; } tmphead = tmptail = NULL; do { tmpcurr = ALLOC(NtCmdLineElement); if (tmpcurr == NULL) { fprintf(stderr, "Out of Memory in globbing!\n"); while (tmphead) { tmpcurr = tmphead; tmphead = tmphead->next; free(tmpcurr->str); free(tmpcurr); } return; } memset (tmpcurr, 0, sizeof(*tmpcurr)); tmpcurr->len = strlen(fd.cFileName); tmpcurr->str = ALLOC_N(char, tmpcurr->len+1); if (tmpcurr->str == NULL) { fprintf(stderr, "Out of Memory in globbing!\n"); while (tmphead) { tmpcurr = tmphead; tmphead = tmphead->next; free(tmpcurr->str); free(tmpcurr); } return; } strcpy(tmpcurr->str, fd.cFileName); tmpcurr->flags |= NTMALLOC; if (tmptail) { tmptail->next = tmpcurr; tmpcurr->prev = tmptail; tmptail = tmpcurr; } else { tmptail = tmphead = tmpcurr; } } while(FindNextFile(fh, &fd)); // // ok, now we\'ve got a list of files that matched the wildcard // specification. Put it in place of the pattern structure. // tmphead->prev = patt->prev; tmptail->next = patt->next; if (tmphead->prev) tmphead->prev->next = tmphead; if (tmptail->next) tmptail->next->prev = tmptail; // // Now get rid of the pattern structure // if (patt->flags & NTMALLOC) free(patt->str); free(patt); } // // Check a command string to determine if it has I/O redirection // characters that require it to be executed by a command interpreter // static bool NtHasRedirection (char *cmd) { int inquote = 0; char quote = '\0'; char *ptr ; // // Scan the string, looking for redirection (< or >) or pipe // characters (|) that are not in a quoted string // for (ptr = cmd; *ptr; ptr++) { switch (*ptr) { case '\'': case '\"': if (inquote) { if (quote == *ptr) { inquote = 0; quote = '\0'; } } else { quote = *ptr; inquote++; } break; case '>': case '<': if (!inquote) return TRUE; } } return FALSE; } int NtMakeCmdVector (char *cmdline, char ***vec, int InputCmd) { int cmdlen = strlen(cmdline); int done, instring, globbing, quoted, len; int newline, need_free = 0, i; int elements, strsz; int slashes = 0; char *ptr, *base, *buffer; char **vptr; char quote; NtCmdLineElement *curr; // // just return if we don\'t have a command line // if (cmdlen == 0) { *vec = NULL; return 0; } // // strip trailing white space // ptr = cmdline+(cmdlen - 1); while(ptr >= cmdline && isspace(*ptr)) --ptr; *++ptr = '\0'; // // check for newlines and formfeeds. If we find any, make a new // command string that replaces them with escaped sequences (\n or \f) // for (ptr = cmdline, newline = 0; *ptr; ptr++) { if (*ptr == '\n' || *ptr == '\f') newline++; } if (newline) { base = ALLOC_N(char, strlen(cmdline) + 1 + newline + slashes); if (base == NULL) { fprintf(stderr, "malloc failed!\n"); return 0; } for (i = 0, ptr = base; (unsigned) i < strlen(cmdline); i++) { switch (cmdline[i]) { case '\n': *ptr++ = '\\'; *ptr++ = 'n'; break; default: *ptr++ = cmdline[i]; } } *ptr = '\0'; cmdline = base; need_free++; } // // Ok, parse the command line, building a list of CmdLineElements. // When we\'ve finished, and it\'s an input command (meaning that it\'s // the processes argv), we\'ll do globing and then build the argument // vector. // The outer loop does one interation for each element seen. // The inner loop does one interation for each character in the element. // for (done = 0, ptr = cmdline; *ptr;) { // // zap any leading whitespace // while(isspace(*ptr)) ptr++; base = ptr; for (done = newline = globbing = instring = quoted = 0; *ptr && !done; ptr++) { // // Switch on the current character. We only care about the // white-space characters, the wild-card characters, and the // quote characters. // switch (*ptr) { case ' ': case '\t': #if 0 case '/': // have to do this for NT/DOS option strings // // check to see if we\'re parsing an option switch // if (*ptr == '/' && base == ptr) continue; #endif // // if we\'re not in a string, then we\'re finished with this // element // if (!instring) done++; break; case '*': case '?': // // record the fact that this element has a wildcard character // N.B. Don\'t glob if inside a single quoted string // if (!(instring && quote == '\'')) globbing++; break; case '\n': // // If this string contains a newline, mark it as such so // we can replace it with the two character sequence "\n" // (cmd.exe doesn\'t like raw newlines in strings...sigh). // newline++; break; case '\'': case '\"': // // if we\'re already in a string, see if this is the // terminating close-quote. If it is, we\'re finished with // the string, but not neccessarily with the element. // If we\'re not already in a string, start one. // if (instring) { if (quote == *ptr) { instring = 0; quote = '\0'; } } else { instring++; quote = *ptr; quoted++; } break; } } // // need to back up ptr by one due to last increment of for loop // (if we got out by seeing white space) // if (*ptr) ptr--; // // when we get here, we\'ve got a pair of pointers to the element, // base and ptr. Base points to the start of the element while ptr // points to the character following the element. // curr = ALLOC(NtCmdLineElement); if (curr == NULL) { NtFreeCmdLine(); fprintf(stderr, "Out of memory!!\n"); *vec = NULL; return 0; } memset (curr, 0, sizeof(*curr)); len = ptr - base; // // if it\'s an input vector element and it\'s enclosed by quotes, // we can remove them. // if (InputCmd && ((base[0] == '\"' && base[len-1] == '\"') || (base[0] == '\'' && base[len-1] == '\''))) { base++; len -= 2; } curr->str = base; curr->len = len; curr->flags |= (globbing ? NTGLOB : 0); // // Now put it in the list of elements // if (NtCmdTail) { NtCmdTail->next = curr; curr->prev = NtCmdTail; NtCmdTail = curr; } else { NtCmdHead = NtCmdTail = curr; } } if (InputCmd) { // // When we get here we\'ve finished parsing the command line. Now // we need to run the list, expanding any globbing patterns. // for(curr = NtCmdHead; curr; curr = curr->next) { if (curr->flags & NTGLOB) { NtCmdGlob(curr); } } } // // Almost done! // Count up the elements, then allocate space for a vector of pointers // (argv) and a string table for the elements. // for (elements = 0, strsz = 0, curr = NtCmdHead; curr; curr = curr->next) { elements++; strsz += (curr->len + 1); } len = (elements+1)*sizeof(char *) + strsz; buffer = ALLOC_N(char, len); if (buffer == NULL) { fprintf(stderr, "Out of memory!!\n"); NtFreeCmdLine(); *vec = NULL; return 0; } memset (buffer, 0, len); // // make vptr point to the start of the buffer // and ptr point to the area we\'ll consider the string table. // vptr = (char **) buffer; ptr = buffer + (elements+1) * sizeof(char *); for (curr = NtCmdHead; curr; curr = curr->next) { strncpy (ptr, curr->str, curr->len); ptr[curr->len] = '\0'; *vptr++ = ptr; ptr += curr->len + 1; } NtFreeCmdLine(); *vec = (char **) buffer; return elements; } // // UNIX compatible directory access functions for NT // // // File names are converted to lowercase if the // CONVERT_TO_LOWER_CASE variable is defined. // #define CONVERT_TO_LOWER_CASE #define PATHLEN 1024 // // The idea here is to read all the directory names into a string table // (separated by nulls) and when one of the other dir functions is called // return the pointer to the current file name. // DIR * opendir(char *filename) { DIR *p; long len; long idx; char scannamespc[PATHLEN]; char *scanname = scannamespc; struct stat sbuf; WIN32_FIND_DATA FindData; HANDLE fh; char root[PATHLEN]; char volname[PATHLEN]; DWORD serial, maxname, flags; BOOL downcase; char *dummy; // // check to see if we\'ve got a directory // if (stat (filename, &sbuf) < 0 || sbuf.st_mode & _S_IFDIR == 0) { return NULL; } // // check out the file system characteristics // if (GetFullPathName(filename, PATHLEN, root, &dummy)) { if (dummy = strchr(root, '\\')) *++dummy = '\0'; if (GetVolumeInformation(root, volname, PATHLEN, &serial, &maxname, &flags, 0, 0)) { downcase = !(flags & FS_CASE_SENSITIVE); } } else { downcase = TRUE; } // // Get us a DIR structure // p = xcalloc(sizeof(DIR), 1); if (p == NULL) return NULL; // // Create the search pattern // strcpy(scanname, filename); if (index("/\\", *(scanname + strlen(scanname) - 1)) == NULL) strcat(scanname, "/*"); else strcat(scanname, "*"); // // do the FindFirstFile call // fh = FindFirstFile (scanname, &FindData); if (fh == INVALID_HANDLE_VALUE) { return NULL; } // // now allocate the first part of the string table for the // filenames that we find. // idx = strlen(FindData.cFileName)+1; p->start = ALLOC_N(char, idx); strcpy (p->start, FindData.cFileName); if (downcase) strlwr(p->start); p->nfiles++; // // loop finding all the files that match the wildcard // (which should be all of them in this directory!). // the variable idx should point one past the null terminator // of the previous string found. // while (FindNextFile(fh, &FindData)) { len = strlen (FindData.cFileName); // // bump the string table size by enough for the // new name and it's null terminator // Renew (p->start, idx+len+1, char); if (p->start == NULL) { fatal ("opendir: malloc failed!\n"); } strcpy(&p->start[idx], FindData.cFileName); if (downcase) strlwr(&p->start[idx]); p->nfiles++; idx += len+1; } FindClose(fh); p->size = idx; p->curr = p->start; return p; } // // Readdir just returns the current string pointer and bumps the // string pointer to the next entry. // struct direct * readdir(DIR *dirp) { int len; static int dummy = 0; if (dirp->curr) { // // first set up the structure to return // len = strlen(dirp->curr); strcpy(dirp->dirstr.d_name, dirp->curr); dirp->dirstr.d_namlen = len; // // Fake inode // dirp->dirstr.d_ino = dummy++; // // Now set up for the next call to readdir // dirp->curr += len + 1; if (dirp->curr >= (dirp->start + dirp->size)) { dirp->curr = NULL; } return &(dirp->dirstr); } else return NULL; } // // Telldir returns the current string pointer position // long telldir(DIR *dirp) { return (long) dirp->curr; /* ouch! pointer to long cast */ } // // Seekdir moves the string pointer to a previously saved position // (Saved by telldir). void seekdir(DIR *dirp, long loc) { dirp->curr = (char *) loc; /* ouch! long to pointer cast */ } // // Rewinddir resets the string pointer to the start // void rewinddir(DIR *dirp) { dirp->curr = dirp->start; } // // This just free\'s the memory allocated by opendir // void closedir(DIR *dirp) { free(dirp->start); free(dirp); } // // 98.2% of this code was lifted from the OS2 port. (JCW) // /* * Suffix appending for in-place editing under MS-DOS and OS/2 (and now NT!). * * Here are the rules: * * Style 0: Append the suffix exactly as standard perl would do it. * If the filesystem groks it, use it. (HPFS will always * grok it. So will NTFS. FAT will rarely accept it.) * * Style 1: The suffix begins with a '.'. The extension is replaced. * If the name matches the original name, use the fallback method. * * Style 2: The suffix is a single character, not a '.'. Try to add the * suffix to the following places, using the first one that works. * [1] Append to extension. * [2] Append to filename, * [3] Replace end of extension, * [4] Replace end of filename. * If the name matches the original name, use the fallback method. * * Style 3: Any other case: Ignore the suffix completely and use the * fallback method. * * Fallback method: Change the extension to ".$$$". If that matches the * original name, then change the extension to ".~~~". * * If filename is more than 1000 characters long, we die a horrible * death. Sorry. * * The filename restriction is a cheat so that we can use buf[] to store * assorted temporary goo. * * Examples, assuming style 0 failed. * * suffix = ".bak" (style 1) * foo.bar => foo.bak * foo.bak => foo.$$$ (fallback) * foo.$$$ => foo.~~~ (fallback) * makefile => makefile.bak * * suffix = "~" (style 2) * foo.c => foo.c~ * foo.c~ => foo.c~~ * foo.c~~ => foo~.c~~ * foo~.c~~ => foo~~.c~~ * foo~~~~~.c~~ => foo~~~~~.$$$ (fallback) * * foo.pas => foo~.pas * makefile => makefile.~ * longname.fil => longname.fi~ * longname.fi~ => longnam~.fi~ * longnam~.fi~ => longnam~.$$$ * */ static char suffix1[] = ".$$$"; static char suffix2[] = ".~~~"; #define ext (&buf[1000]) #define strEQ(s1,s2) (strcmp(s1,s2) == 0) void add_suffix(struct RString *str, char *suffix) { int baselen; int extlen = strlen(suffix); char *s, *t, *p; int slen; char buf[1024]; if (str->len > 1000) Fatal("Cannot do inplace edit on long filename (%d characters)", str->len); /* Style 0 */ slen = str->len; str_cat(str, suffix, extlen); if (valid_filename(str->ptr)) return; /* Fooey, style 0 failed. Fix str before continuing. */ str->ptr[str->len = slen] = '\0'; slen = extlen; t = buf; baselen = 0; s = str->ptr; while ( (*t = *s) && *s != '.') { baselen++; if (*s == '\\' || *s == '/') baselen = 0; s++; t++; } p = t; t = ext; extlen = 0; while (*t++ = *s++) extlen++; if (extlen == 0) { ext[0] = '.'; ext[1] = 0; extlen++; } if (*suffix == '.') { /* Style 1 */ if (strEQ(ext, suffix)) goto fallback; strcpy(p, suffix); } else if (suffix[1] == '\0') { /* Style 2 */ if (extlen < 4) { ext[extlen] = *suffix; ext[++extlen] = '\0'; } else if (baselen < 8) { *p++ = *suffix; } else if (ext[3] != *suffix) { ext[3] = *suffix; } else if (buf[7] != *suffix) { buf[7] = *suffix; } else goto fallback; strcpy(p, ext); } else { /* Style 3: Panic */ fallback: (void)memcpy(p, strEQ(ext, suffix1) ? suffix2 : suffix1, 5); } str_grow(str, strlen(buf)); memcpy(str->ptr, buf, str->len); } static int valid_filename(char *s) { int fd; // // if the file exists, then it\'s a valid filename! // if (_access(s, 0) == 0) { return 1; } // // It doesn\'t exist, so see if we can open it. // if ((fd = _open(s, _O_CREAT, 0666)) >= 0) { close(fd); _unlink (s); // don\'t leave it laying around return 1; } return 0; } // // This is a clone of fdopen so that we can handle the // brain damaged version of sockets that NT gets to use. // // The problem is that sockets are not real file handles and // cannot be fdopen\'ed. This causes problems in the do_socket // routine in doio.c, since it tries to create two file pointers // for the socket just created. We\'ll fake out an fdopen and see // if we can prevent perl from trying to do stdio on sockets. // FILE * fdopen (int fd, char *mode) { FILE *fp; char sockbuf[80]; int optlen; int retval; extern int errno; retval = getsockopt((SOCKET)fd, SOL_SOCKET, SO_TYPE, sockbuf, &optlen); if (retval == SOCKET_ERROR && WSAGetLastError() == WSAENOTSOCK) { return (_fdopen(fd, mode)); } // // If we get here, then fd is actually a socket. // fp = xcalloc(sizeof(FILE), 1); #if _MSC_VER < 800 fileno(fp) = fd; #else fp->_file = fd; #endif if (*mode = 'r') fp->_flag = _IOREAD; else fp->_flag = _IOWRT; return fp; } // // Since the errors returned by the socket error function // WSAGetLastError() are not known by the library routine strerror // we have to roll our own. // #undef strerror char * mystrerror(int e) { static char buffer[512]; extern int sys_nerr; DWORD source = 0; if (e < 0 || e > sys_nerr) { if (e < 0) e = GetLastError(); if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, &source, e, 0, buffer, 512, NULL) == 0) { strcpy (buffer, "Unknown Error"); } return buffer; } return strerror(e); } // // various stubs // // Ownership // // Just pretend that everyone is a superuser. NT will let us know if // we don\'t really have permission to do something. // #define ROOT_UID 0 #define ROOT_GID 0 UIDTYPE getuid(void) { return ROOT_UID; } UIDTYPE geteuid(void) { return ROOT_UID; } GIDTYPE getgid(void) { return ROOT_GID; } GIDTYPE getegid(void) { return ROOT_GID; } int setuid(int uid) { return (uid == ROOT_UID ? 0 : -1); } int setgid(int gid) { return (gid == ROOT_GID ? 0 : -1); } // // File system stuff // int ioctl(int i, unsigned int u, char *data) { return -1; } // // Networking trampolines // These are used to avoid socket startup/shutdown overhead in case // the socket routines aren\'t used. // #undef select static int NtSocketsInitialized = 0; long myselect (int nfds, fd_set *rd, fd_set *wr, fd_set *ex, struct timeval *timeout) { long r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = select (nfds, rd, wr, ex, timeout)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } static void StartSockets () { WORD version; WSADATA retdata; int ret; // // initalize the winsock interface and insure that it\'s // cleaned up at exit. // version = MAKEWORD(1, 1); if (ret = WSAStartup(version, &retdata)) fatal ("Unable to locate winsock library!\n"); if (LOBYTE(retdata.wVersion) != 1) fatal("could not find version 1 of winsock dll\n"); if (HIBYTE(retdata.wVersion) != 1) fatal("could not find version 1 of winsock dll\n"); atexit((void (*)(void)) WSACleanup); } #undef accept SOCKET myaccept (SOCKET s, struct sockaddr *addr, int *addrlen) { SOCKET r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = accept (s, addr, addrlen)) == INVALID_SOCKET) errno = WSAGetLastError(); return r; } #undef bind int mybind (SOCKET s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = bind (s, addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef connect int myconnect (SOCKET s, struct sockaddr *addr, int addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = connect (s, addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getpeername int mygetpeername (SOCKET s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getpeername (s, addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getsockname int mygetsockname (SOCKET s, struct sockaddr *addr, int *addrlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getsockname (s, addr, addrlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getsockopt int mygetsockopt (SOCKET s, int level, int optname, char *optval, int *optlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getsockopt (s, level, optname, optval, optlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef ioctlsocket int myioctlsocket (SOCKET s, long cmd, u_long *argp) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = ioctlsocket (s, cmd, argp)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef listen int mylisten (SOCKET s, int backlog) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = listen (s, backlog)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef recv int myrecv (SOCKET s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = recv (s, buf, len, flags)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef recvfrom int myrecvfrom (SOCKET s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = recvfrom (s, buf, len, flags, from, fromlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef send int mysend (SOCKET s, char *buf, int len, int flags) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = send (s, buf, len, flags)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef sendto int mysendto (SOCKET s, char *buf, int len, int flags, struct sockaddr *to, int tolen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = sendto (s, buf, len, flags, to, tolen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef setsockopt int mysetsockopt (SOCKET s, int level, int optname, char *optval, int optlen) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = setsockopt (s, level, optname, optval, optlen)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef shutdown int myshutdown (SOCKET s, int how) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = shutdown (s, how)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef socket SOCKET mysocket (int af, int type, int protocol) { SOCKET s; if (!NtSocketsInitialized++) { StartSockets(); } if ((s = socket (af, type, protocol)) == INVALID_SOCKET) errno = WSAGetLastError(); return s; } #undef gethostbyaddr struct hostent * mygethostbyaddr (char *addr, int len, int type) { struct hostent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostbyaddr (addr, len, type)) == NULL) errno = WSAGetLastError(); return r; } #undef gethostbyname struct hostent * mygethostbyname (char *name) { struct hostent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostbyname (name)) == NULL) errno = WSAGetLastError(); return r; } #undef gethostname int mygethostname (char *name, int len) { int r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = gethostname (name, len)) == SOCKET_ERROR) errno = WSAGetLastError(); return r; } #undef getprotobyname struct protoent * mygetprotobyname (char *name) { struct protoent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getprotobyname (name)) == NULL) errno = WSAGetLastError(); return r; } #undef getprotobynumber struct protoent * mygetprotobynumber (int num) { struct protoent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getprotobynumber (num)) == NULL) errno = WSAGetLastError(); return r; } #undef getservbyname struct servent * mygetservbyname (char *name, char *proto) { struct servent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getservbyname (name, proto)) == NULL) errno = WSAGetLastError(); return r; } #undef getservbyport struct servent * mygetservbyport (int port, char *proto) { struct servent *r; if (!NtSocketsInitialized++) { StartSockets(); } if ((r = getservbyport (port, proto)) == NULL) errno = WSAGetLastError(); return r; } // // Networking stubs // void endhostent() {} void endnetent() {} void endprotoent() {} void endservent() {} struct netent *getnetent (void) {return (struct netent *) NULL;} struct netent *getnetbyaddr(char *name) {return (struct netent *)NULL;} struct netent *getnetbyname(long net, int type) {return (struct netent *)NULL;} struct protoent *getprotoent (void) {return (struct protoent *) NULL;} struct servent *getservent (void) {return (struct servent *) NULL;} void sethostent (int stayopen) {} void setnetent (int stayopen) {} void setprotoent (int stayopen) {} void setservent (int stayopen) {} pid_t waitpid (pid_t pid, int *stat_loc, int options) { DWORD timeout; if (options == WNOHANG) { timeout = 0; } else { timeout = INFINITE; } if (WaitForSingleObject((HANDLE) pid, timeout) == WAIT_OBJECT_0) { pid = _cwait(stat_loc, pid, 0); return pid; } return 0; } #include void _cdecl gettimeofday(struct timeval *tv, struct timezone *tz) { struct timeb tb; ftime(&tb); tv->tv_sec = tb.time; tv->tv_usec = tb.millitm * 1000; } char * getcwd(buffer, size) char *buffer; int size; { int length; char *pb; if (_getcwd(buffer, size) == NULL) { return NULL; } length = strlen(buffer); if (length >= size) { return NULL; } for (bp = buffer; *bp != '\0'; bp++) { if (*bp == '\\') { *bp = '/'; } } return buffer; }