/********************************************************************** math.c - $Author$ created at: Tue Jan 25 14:12:56 JST 1994 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/internal/config.h" #ifdef _MSC_VER # define _USE_MATH_DEFINES 1 #endif #include #include #include #include "internal.h" #include "internal/bignum.h" #include "internal/complex.h" #include "internal/math.h" #include "internal/object.h" #include "internal/vm.h" VALUE rb_mMath; VALUE rb_eMathDomainError; #define Get_Double(x) rb_num_to_dbl(x) #define domain_error(msg) \ rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " msg) #define domain_check_min(val, min, msg) \ ((val) < (min) ? domain_error(msg) : (void)0) #define domain_check_range(val, min, max, msg) \ ((val) < (min) || (max) < (val) ? domain_error(msg) : (void)0) /* * call-seq: * Math.atan2(y, x) -> float * * Returns the {arc tangent}[https://en.wikipedia.org/wiki/Atan2] of +y+ and +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain of +y+: [-INFINITY, INFINITY]. * - Domain of +x+: [-INFINITY, INFINITY]. * - Range: [-PI, PI]. * * Examples: * * atan2(-1.0, -1.0) # => -2.356194490192345 # -3*PI/4 * atan2(-1.0, 0.0) # => -1.5707963267948966 # -PI/2 * atan2(-1.0, 1.0) # => -0.7853981633974483 # -PI/4 * atan2(0.0, -1.0) # => 3.141592653589793 # PI * */ static VALUE math_atan2(VALUE unused_obj, VALUE y, VALUE x) { double dx, dy; dx = Get_Double(x); dy = Get_Double(y); if (dx == 0.0 && dy == 0.0) { if (!signbit(dx)) return DBL2NUM(dy); if (!signbit(dy)) return DBL2NUM(M_PI); return DBL2NUM(-M_PI); } #ifndef ATAN2_INF_C99 if (isinf(dx) && isinf(dy)) { /* optimization for FLONUM */ if (dx < 0.0) { const double dz = (3.0 * M_PI / 4.0); return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); } else { const double dz = (M_PI / 4.0); return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); } } #endif return DBL2NUM(atan2(dy, dx)); } /* * call-seq: * Math.cos(x) -> float * * Returns the * {cosine}[https://en.wikipedia.org/wiki/Sine_and_cosine] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: (-INFINITY, INFINITY). * - Range: [-1.0, 1.0]. * * Examples: * * cos(-PI) # => -1.0 * cos(-PI/2) # => 6.123031769111886e-17 # 0.0000000000000001 * cos(0.0) # => 1.0 * cos(PI/2) # => 6.123031769111886e-17 # 0.0000000000000001 * cos(PI) # => -1.0 * */ static VALUE math_cos(VALUE unused_obj, VALUE x) { return DBL2NUM(cos(Get_Double(x))); } /* * call-seq: * Math.sin(x) -> float * * Returns the * {sine}[https://en.wikipedia.org/wiki/Sine_and_cosine] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: (-INFINITY, INFINITY). * - Range: [-1.0, 1.0]. * * Examples: * * sin(-PI) # => -1.2246063538223773e-16 # -0.0000000000000001 * sin(-PI/2) # => -1.0 * sin(0.0) # => 0.0 * sin(PI/2) # => 1.0 * sin(PI) # => 1.2246063538223773e-16 # 0.0000000000000001 * */ static VALUE math_sin(VALUE unused_obj, VALUE x) { return DBL2NUM(sin(Get_Double(x))); } /* * call-seq: * Math.tan(x) -> float * * Returns the * {tangent}[https://en.wikipedia.org/wiki/Trigonometric_functions] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: (-INFINITY, INFINITY). * - Range: (-INFINITY, INFINITY). * * Examples: * * tan(-PI) # => 1.2246467991473532e-16 # -0.0000000000000001 * tan(-PI/2) # => -1.633123935319537e+16 # -16331239353195370.0 * tan(0.0) # => 0.0 * tan(PI/2) # => 1.633123935319537e+16 # 16331239353195370.0 * tan(PI) # => -1.2246467991473532e-16 # -0.0000000000000001 * */ static VALUE math_tan(VALUE unused_obj, VALUE x) { return DBL2NUM(tan(Get_Double(x))); } /* * call-seq: * Math.acos(x) -> float * * Returns the {arc cosine}[https://en.wikipedia.org/wiki/Inverse_trigonometric_functions] of +x+. * * - Domain: [-1, 1]. * - Range: [0, PI]. * * Examples: * * acos(-1.0) # => 3.141592653589793 # PI * acos(0.0) # => 1.5707963267948966 # PI/2 * acos(1.0) # => 0.0 * */ static VALUE math_acos(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); domain_check_range(d, -1.0, 1.0, "acos"); return DBL2NUM(acos(d)); } /* * call-seq: * Math.asin(x) -> float * * Returns the {arc sine}[https://en.wikipedia.org/wiki/Inverse_trigonometric_functions] of +x+. * * - Domain: [-1, -1]. * - Range: [-PI/2, PI/2]. * * Examples: * * asin(-1.0) # => -1.5707963267948966 # -PI/2 * asin(0.0) # => 0.0 * asin(1.0) # => 1.5707963267948966 # PI/2 * */ static VALUE math_asin(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); domain_check_range(d, -1.0, 1.0, "asin"); return DBL2NUM(asin(d)); } /* * call-seq: * Math.atan(x) -> Float * * Returns the {arc tangent}[https://en.wikipedia.org/wiki/Inverse_trigonometric_functions] of +x+. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-PI/2, PI/2] . * * Examples: * * atan(-INFINITY) # => -1.5707963267948966 # -PI2 * atan(-PI) # => -1.2626272556789115 * atan(-PI/2) # => -1.0038848218538872 * atan(0.0) # => 0.0 * atan(PI/2) # => 1.0038848218538872 * atan(PI) # => 1.2626272556789115 * atan(INFINITY) # => 1.5707963267948966 # PI/2 * */ static VALUE math_atan(VALUE unused_obj, VALUE x) { return DBL2NUM(atan(Get_Double(x))); } #ifndef HAVE_COSH double cosh(double x) { return (exp(x) + exp(-x)) / 2; } #endif /* * call-seq: * Math.cosh(x) -> float * * Returns the {hyperbolic cosine}[https://en.wikipedia.org/wiki/Hyperbolic_functions] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: [-INFINITY, INFINITY]. * - Range: [1, INFINITY]. * * Examples: * * cosh(-INFINITY) # => Infinity * cosh(0.0) # => 1.0 * cosh(INFINITY) # => Infinity * */ static VALUE math_cosh(VALUE unused_obj, VALUE x) { return DBL2NUM(cosh(Get_Double(x))); } #ifndef HAVE_SINH double sinh(double x) { return (exp(x) - exp(-x)) / 2; } #endif /* * call-seq: * Math.sinh(x) -> float * * Returns the {hyperbolic sine}[https://en.wikipedia.org/wiki/Hyperbolic_functions] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * sinh(-INFINITY) # => -Infinity * sinh(0.0) # => 0.0 * sinh(INFINITY) # => Infinity * */ static VALUE math_sinh(VALUE unused_obj, VALUE x) { return DBL2NUM(sinh(Get_Double(x))); } #ifndef HAVE_TANH double tanh(double x) { # if defined(HAVE_SINH) && defined(HAVE_COSH) const double c = cosh(x); if (!isinf(c)) return sinh(x) / c; # else const double e = exp(x+x); if (!isinf(e)) return (e - 1) / (e + 1); # endif return x > 0 ? 1.0 : -1.0; } #endif /* * call-seq: * Math.tanh(x) -> float * * Returns the {hyperbolic tangent}[https://en.wikipedia.org/wiki/Hyperbolic_functions] of +x+ * in {radians}[https://en.wikipedia.org/wiki/Trigonometric_functions#Radians_versus_degrees]. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-1, 1]. * * Examples: * * tanh(-INFINITY) # => -1.0 * tanh(0.0) # => 0.0 * tanh(INFINITY) # => 1.0 * */ static VALUE math_tanh(VALUE unused_obj, VALUE x) { return DBL2NUM(tanh(Get_Double(x))); } /* * call-seq: * Math.acosh(x) -> float * * Returns the {inverse hyperbolic cosine}[https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions] of +x+. * * - Domain: [1, INFINITY]. * - Range: [0, INFINITY]. * * Examples: * * acosh(1.0) # => 0.0 * acosh(INFINITY) # => Infinity * */ static VALUE math_acosh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); domain_check_min(d, 1.0, "acosh"); return DBL2NUM(acosh(d)); } /* * call-seq: * Math.asinh(x) -> float * * Returns the {inverse hyperbolic sine}[https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions] of +x+. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * asinh(-INFINITY) # => -Infinity * asinh(0.0) # => 0.0 * asinh(INFINITY) # => Infinity * */ static VALUE math_asinh(VALUE unused_obj, VALUE x) { return DBL2NUM(asinh(Get_Double(x))); } /* * call-seq: * Math.atanh(x) -> float * * Returns the {inverse hyperbolic tangent}[https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions] of +x+. * * - Domain: [-1, 1]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * atanh(-1.0) # => -Infinity * atanh(0.0) # => 0.0 * atanh(1.0) # => Infinity * */ static VALUE math_atanh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); domain_check_range(d, -1.0, +1.0, "atanh"); /* check for pole error */ if (d == -1.0) return DBL2NUM(-HUGE_VAL); if (d == +1.0) return DBL2NUM(+HUGE_VAL); return DBL2NUM(atanh(d)); } /* * call-seq: * Math.exp(x) -> float * * Returns +e+ raised to the +x+ power. * * - Domain: [-INFINITY, INFINITY]. * - Range: [0, INFINITY]. * * Examples: * * exp(-INFINITY) # => 0.0 * exp(-1.0) # => 0.36787944117144233 # 1.0/E * exp(0.0) # => 1.0 * exp(0.5) # => 1.6487212707001282 # sqrt(E) * exp(1.0) # => 2.718281828459045 # E * exp(2.0) # => 7.38905609893065 # E**2 * exp(INFINITY) # => Infinity * */ static VALUE math_exp(VALUE unused_obj, VALUE x) { return DBL2NUM(exp(Get_Double(x))); } #if defined __CYGWIN__ # include # if CYGWIN_VERSION_DLL_MAJOR < 1005 # define nan(x) nan() # endif # define log(x) ((x) < 0.0 ? nan("") : log(x)) # define log10(x) ((x) < 0.0 ? nan("") : log10(x)) #endif #ifndef M_LN2 # define M_LN2 0.693147180559945309417232121458176568 #endif #ifndef M_LN10 # define M_LN10 2.30258509299404568401799145468436421 #endif static double math_log1(VALUE x); FUNC_MINIMIZED(static VALUE math_log(int, const VALUE *, VALUE)); /* * call-seq: * Math.log(x, base = Math::E) -> Float * * Returns the base +base+ {logarithm}[https://en.wikipedia.org/wiki/Logarithm] of +x+. * * - Domain: [0, INFINITY]. * - Range: [-INFINITY, INFINITY)]. * * Examples: * * log(0.0) # => -Infinity * log(1.0) # => 0.0 * log(E) # => 1.0 * log(INFINITY) # => Infinity * * log(0.0, 2.0) # => -Infinity * log(1.0, 2.0) # => 0.0 * log(2.0, 2.0) # => 1.0 * * log(0.0, 10.0) # => -Infinity * log(1.0, 10.0) # => 0.0 * log(10.0, 10.0) # => 1.0 * */ static VALUE math_log(int argc, const VALUE *argv, VALUE unused_obj) { return rb_math_log(argc, argv); } VALUE rb_math_log(int argc, const VALUE *argv) { VALUE x, base; double d; rb_scan_args(argc, argv, "11", &x, &base); d = math_log1(x); if (argc == 2) { d /= math_log1(base); } return DBL2NUM(d); } static double get_double_rshift(VALUE x, size_t *pnumbits) { size_t numbits; if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) && DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) { numbits -= DBL_MANT_DIG; x = rb_big_rshift(x, SIZET2NUM(numbits)); } else { numbits = 0; } *pnumbits = numbits; return Get_Double(x); } static double math_log1(VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); domain_check_min(d, 0.0, "log"); /* check for pole error */ if (d == 0.0) return -HUGE_VAL; return log(d) + numbits * M_LN2; /* log(d * 2 ** numbits) */ } #ifndef log2 #ifndef HAVE_LOG2 double log2(double x) { return log10(x)/log10(2.0); } #else extern double log2(double); #endif #endif /* * call-seq: * Math.log2(x) -> float * * Returns the base 2 {logarithm}[https://en.wikipedia.org/wiki/Logarithm] of +x+. * * - Domain: [0, INFINITY]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * log2(0.0) # => -Infinity * log2(1.0) # => 0.0 * log2(2.0) # => 1.0 * log2(INFINITY) # => Infinity * */ static VALUE math_log2(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); domain_check_min(d, 0.0, "log2"); /* check for pole error */ if (d == 0.0) return DBL2NUM(-HUGE_VAL); return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */ } /* * call-seq: * Math.log10(x) -> float * * Returns the base 10 {logarithm}[https://en.wikipedia.org/wiki/Logarithm] of +x+. * * - Domain: [0, INFINITY]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * log10(0.0) # => -Infinity * log10(1.0) # => 0.0 * log10(10.0) # => 1.0 * log10(INFINITY) # => Infinity * */ static VALUE math_log10(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); domain_check_min(d, 0.0, "log10"); /* check for pole error */ if (d == 0.0) return DBL2NUM(-HUGE_VAL); return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */ } static VALUE rb_math_sqrt(VALUE x); /* * call-seq: * Math.sqrt(x) -> float * * Returns the principal (non-negative) {square root}[https://en.wikipedia.org/wiki/Square_root] of +x+. * * - Domain: [0, INFINITY]. * - Range: [0, INFINITY]. * * Examples: * * sqrt(0.0) # => 0.0 * sqrt(0.5) # => 0.7071067811865476 * sqrt(1.0) # => 1.0 * sqrt(2.0) # => 1.4142135623730951 * sqrt(4.0) # => 2.0 * sqrt(9.0) # => 3.0 * sqrt(INFINITY) # => Infinity * */ static VALUE math_sqrt(VALUE unused_obj, VALUE x) { return rb_math_sqrt(x); } inline static VALUE f_negative_p(VALUE x) { if (FIXNUM_P(x)) return RBOOL(FIX2LONG(x) < 0); return rb_funcall(x, '<', 1, INT2FIX(0)); } inline static VALUE f_signbit(VALUE x) { if (RB_FLOAT_TYPE_P(x)) { double f = RFLOAT_VALUE(x); return RBOOL(!isnan(f) && signbit(f)); } return f_negative_p(x); } static VALUE rb_math_sqrt(VALUE x) { double d; if (RB_TYPE_P(x, T_COMPLEX)) { VALUE neg = f_signbit(RCOMPLEX(x)->imag); double re = Get_Double(RCOMPLEX(x)->real), im; d = Get_Double(rb_complex_abs(x)); im = sqrt((d - re) / 2.0); re = sqrt((d + re) / 2.0); if (neg) im = -im; return rb_complex_new(DBL2NUM(re), DBL2NUM(im)); } d = Get_Double(x); domain_check_min(d, 0.0, "sqrt"); if (d == 0.0) return DBL2NUM(0.0); return DBL2NUM(sqrt(d)); } /* * call-seq: * Math.cbrt(x) -> float * * Returns the {cube root}[https://en.wikipedia.org/wiki/Cube_root] of +x+. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-INFINITY, INFINITY]. * * Examples: * * cbrt(-INFINITY) # => -Infinity * cbrt(-27.0) # => -3.0 * cbrt(-8.0) # => -2.0 * cbrt(-2.0) # => -1.2599210498948732 * cbrt(1.0) # => 1.0 * cbrt(0.0) # => 0.0 * cbrt(1.0) # => 1.0 cbrt(2.0) # => 1.2599210498948732 * cbrt(8.0) # => 2.0 * cbrt(27.0) # => 3.0 * cbrt(INFINITY) # => Infinity * */ static VALUE math_cbrt(VALUE unused_obj, VALUE x) { double f = Get_Double(x); double r = cbrt(f); #if defined __GLIBC__ if (isfinite(r) && !(f == 0.0 && r == 0.0)) { r = (2.0 * r + (f / r / r)) / 3.0; } #endif return DBL2NUM(r); } /* * call-seq: * Math.frexp(x) -> [fraction, exponent] * * Returns a 2-element array containing the normalized signed float +fraction+ * and integer +exponent+ of +x+ such that: * * x = fraction * 2**exponent * * See {IEEE 754 double-precision binary floating-point format: binary64}[https://en.wikipedia.org/wiki/Double-precision_floating-point_format#IEEE_754_double-precision_binary_floating-point_format:_binary64]. * * - Domain: [-INFINITY, INFINITY]. * - Range [-INFINITY, INFINITY]. * * Examples: * * frexp(-INFINITY) # => [-Infinity, -1] * frexp(-2.0) # => [-0.5, 2] * frexp(-1.0) # => [-0.5, 1] * frexp(0.0) # => [0.0, 0] * frexp(1.0) # => [0.5, 1] * frexp(2.0) # => [0.5, 2] * frexp(INFINITY) # => [Infinity, -1] * * Related: Math.ldexp (inverse of Math.frexp). * */ static VALUE math_frexp(VALUE unused_obj, VALUE x) { double d; int exp; d = frexp(Get_Double(x), &exp); return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)); } /* * call-seq: * Math.ldexp(fraction, exponent) -> float * * Returns the value of fraction * 2**exponent. * * - Domain of +fraction+: [0.0, 1.0). * - Domain of +exponent+: [0, 1024] * (larger values are equivalent to 1024). * * See {IEEE 754 double-precision binary floating-point format: binary64}[https://en.wikipedia.org/wiki/Double-precision_floating-point_format#IEEE_754_double-precision_binary_floating-point_format:_binary64]. * * Examples: * * ldexp(-INFINITY, -1) # => -Infinity * ldexp(-0.5, 2) # => -2.0 * ldexp(-0.5, 1) # => -1.0 * ldexp(0.0, 0) # => 0.0 * ldexp(-0.5, 1) # => 1.0 * ldexp(-0.5, 2) # => 2.0 * ldexp(INFINITY, -1) # => Infinity * * Related: Math.frexp (inverse of Math.ldexp). * */ static VALUE math_ldexp(VALUE unused_obj, VALUE x, VALUE n) { return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n))); } /* * call-seq: * Math.hypot(a, b) -> float * * Returns sqrt(a**2 + b**2), * which is the length of the longest side +c+ (the hypotenuse) * of the right triangle whose other sides have lengths +a+ and +b+. * * - Domain of +a+: [-INFINITY, INFINITY]. * - Domain of +ab: [-INFINITY, INFINITY]. * - Range: [0, INFINITY]. * * Examples: * * hypot(0.0, 1.0) # => 1.0 * hypot(1.0, 1.0) # => 1.4142135623730951 # sqrt(2.0) * hypot(3.0, 4.0) # => 5.0 * hypot(5.0, 12.0) # => 13.0 * hypot(1.0, sqrt(3.0)) # => 1.9999999999999998 # Near 2.0 * * Note that if either argument is +INFINITY+ or -INFINITY, * the result is +Infinity+. * */ static VALUE math_hypot(VALUE unused_obj, VALUE x, VALUE y) { return DBL2NUM(hypot(Get_Double(x), Get_Double(y))); } /* * call-seq: * Math.erf(x) -> float * * Returns the value of the {Gauss error function}[https://en.wikipedia.org/wiki/Error_function] for +x+. * * - Domain: [-INFINITY, INFINITY]. * - Range: [-1, 1]. * * Examples: * * erf(-INFINITY) # => -1.0 * erf(0.0) # => 0.0 * erf(INFINITY) # => 1.0 * * Related: Math.erfc. * */ static VALUE math_erf(VALUE unused_obj, VALUE x) { return DBL2NUM(erf(Get_Double(x))); } /* * call-seq: * Math.erfc(x) -> Float * * Returns the value of the {complementary error function}[https://en.wikipedia.org/wiki/Error_function#Complementary_error_function] for +x+. * * - Domain: [-INFINITY, INFINITY]. * - Range: [0, 2]. * * Examples: * * erfc(-INFINITY) # => 2.0 * erfc(0.0) # => 1.0 * erfc(INFINITY) # => 0.0 * * Related: Math.erf. * */ static VALUE math_erfc(VALUE unused_obj, VALUE x) { return DBL2NUM(erfc(Get_Double(x))); } /* * call-seq: * Math.gamma(x) -> float * * Returns the value of the {gamma function}[https://en.wikipedia.org/wiki/Gamma_function] for +x+. * * - Domain: (-INFINITY, INFINITY] excluding negative integers. * - Range: [-INFINITY, INFINITY]. * * Examples: * * gamma(-2.5) # => -0.9453087204829431 * gamma(-1.5) # => 2.3632718012073513 * gamma(-0.5) # => -3.5449077018110375 * gamma(0.0) # => Infinity * gamma(1.0) # => 1.0 * gamma(2.0) # => 1.0 * gamma(3.0) # => 2.0 * gamma(4.0) # => 6.0 * gamma(5.0) # => 24.0 * * Related: Math.lgamma. * */ static VALUE math_gamma(VALUE unused_obj, VALUE x) { static const double fact_table[] = { /* fact(0) */ 1.0, /* fact(1) */ 1.0, /* fact(2) */ 2.0, /* fact(3) */ 6.0, /* fact(4) */ 24.0, /* fact(5) */ 120.0, /* fact(6) */ 720.0, /* fact(7) */ 5040.0, /* fact(8) */ 40320.0, /* fact(9) */ 362880.0, /* fact(10) */ 3628800.0, /* fact(11) */ 39916800.0, /* fact(12) */ 479001600.0, /* fact(13) */ 6227020800.0, /* fact(14) */ 87178291200.0, /* fact(15) */ 1307674368000.0, /* fact(16) */ 20922789888000.0, /* fact(17) */ 355687428096000.0, /* fact(18) */ 6402373705728000.0, /* fact(19) */ 121645100408832000.0, /* fact(20) */ 2432902008176640000.0, /* fact(21) */ 51090942171709440000.0, /* fact(22) */ 1124000727777607680000.0, /* fact(23)=25852016738884976640000 needs 56bit mantissa which is * impossible to represent exactly in IEEE 754 double which have * 53bit mantissa. */ }; enum {NFACT_TABLE = numberof(fact_table)}; double d; d = Get_Double(x); /* check for domain error */ if (isinf(d)) { if (signbit(d)) domain_error("gamma"); return DBL2NUM(HUGE_VAL); } if (d == 0.0) { return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL); } if (d == floor(d)) { domain_check_min(d, 0.0, "gamma"); if (1.0 <= d && d <= (double)NFACT_TABLE) { return DBL2NUM(fact_table[(int)d - 1]); } } return DBL2NUM(tgamma(d)); } /* * call-seq: * Math.lgamma(x) -> [float, -1 or 1] * * Returns a 2-element array equivalent to: * * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1] * * See {logarithmic gamma function}[https://en.wikipedia.org/wiki/Gamma_function#The_log-gamma_function]. * * - Domain: (-INFINITY, INFINITY]. * - Range of first element: (-INFINITY, INFINITY]. * - Second element is -1 or 1. * * Examples: * * lgamma(-4.0) # => [Infinity, -1] * lgamma(-3.0) # => [Infinity, -1] * lgamma(-2.0) # => [Infinity, -1] * lgamma(-1.0) # => [Infinity, -1] * lgamma(0.0) # => [Infinity, 1] * * lgamma(1.0) # => [0.0, 1] * lgamma(2.0) # => [0.0, 1] * lgamma(3.0) # => [0.6931471805599436, 1] * lgamma(4.0) # => [1.7917594692280545, 1] * * lgamma(-2.5) # => [-0.05624371649767279, -1] * lgamma(-1.5) # => [0.8600470153764797, 1] * lgamma(-0.5) # => [1.265512123484647, -1] * lgamma(0.5) # => [0.5723649429247004, 1] * lgamma(1.5) # => [-0.12078223763524676, 1] * lgamma(2.5) # => [0.2846828704729205, 1] * * Related: Math.gamma. * */ static VALUE math_lgamma(VALUE unused_obj, VALUE x) { double d; int sign=1; VALUE v; d = Get_Double(x); /* check for domain error */ if (isinf(d)) { if (signbit(d)) domain_error("lgamma"); return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1)); } if (d == 0.0) { VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1); return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign); } v = DBL2NUM(lgamma_r(d, &sign)); return rb_assoc_new(v, INT2FIX(sign)); } #define exp1(n) \ VALUE \ rb_math_##n(VALUE x)\ {\ return math_##n(0, x);\ } #define exp2(n) \ VALUE \ rb_math_##n(VALUE x, VALUE y)\ {\ return math_##n(0, x, y);\ } exp2(atan2) exp1(cos) exp1(cosh) exp1(exp) exp2(hypot) exp1(sin) exp1(sinh) #if 0 exp1(sqrt) #endif /* * Document-class: Math::DomainError * * Raised when a mathematical function is evaluated outside of its * domain of definition. * * For example, since +cos+ returns values in the range -1..1, * its inverse function +acos+ is only defined on that interval: * * Math.acos(42) * * produces: * * Math::DomainError: Numerical argument is out of domain - "acos" */ /* * Document-class: Math * * :include: doc/math/math.rdoc * */ void InitVM_Math(void) { rb_mMath = rb_define_module("Math"); rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError); /* Definition of the mathematical constant PI as a Float number. */ rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI)); #ifdef M_E /* Definition of the mathematical constant E for Euler's number (e) as a Float number. */ rb_define_const(rb_mMath, "E", DBL2NUM(M_E)); #else rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0))); #endif rb_define_module_function(rb_mMath, "atan2", math_atan2, 2); rb_define_module_function(rb_mMath, "cos", math_cos, 1); rb_define_module_function(rb_mMath, "sin", math_sin, 1); rb_define_module_function(rb_mMath, "tan", math_tan, 1); rb_define_module_function(rb_mMath, "acos", math_acos, 1); rb_define_module_function(rb_mMath, "asin", math_asin, 1); rb_define_module_function(rb_mMath, "atan", math_atan, 1); rb_define_module_function(rb_mMath, "cosh", math_cosh, 1); rb_define_module_function(rb_mMath, "sinh", math_sinh, 1); rb_define_module_function(rb_mMath, "tanh", math_tanh, 1); rb_define_module_function(rb_mMath, "acosh", math_acosh, 1); rb_define_module_function(rb_mMath, "asinh", math_asinh, 1); rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); rb_define_module_function(rb_mMath, "exp", math_exp, 1); rb_define_module_function(rb_mMath, "log", math_log, -1); rb_define_module_function(rb_mMath, "log2", math_log2, 1); rb_define_module_function(rb_mMath, "log10", math_log10, 1); rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1); rb_define_module_function(rb_mMath, "frexp", math_frexp, 1); rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2); rb_define_module_function(rb_mMath, "hypot", math_hypot, 2); rb_define_module_function(rb_mMath, "erf", math_erf, 1); rb_define_module_function(rb_mMath, "erfc", math_erfc, 1); rb_define_module_function(rb_mMath, "gamma", math_gamma, 1); rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1); } void Init_Math(void) { InitVM(Math); }