/********************************************************************** math.c - $Author$ $Date$ created at: Tue Jan 25 14:12:56 JST 1994 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include #include VALUE rb_mMath; #define Need_Float(x) (x) = rb_Float(x) #define Need_Float2(x,y) do {\ Need_Float(x);\ Need_Float(y);\ } while (0) static void domain_check(double x, char *msg) { while(1) { if (errno) { rb_sys_fail(msg); } if (isnan(x)) { #if defined(EDOM) errno = EDOM; #elif define(ERANGE) errno = ERANGE; #endif continue; } break; } } /* * call-seq: * Math.atan2(y, x) => float * * Computes the arc tangent given y and x. Returns * -PI..PI. * */ static VALUE math_atan2(VALUE obj, VALUE y, VALUE x) { Need_Float2(y, x); return rb_float_new(atan2(RFLOAT(y)->value, RFLOAT(x)->value)); } /* * call-seq: * Math.cos(x) => float * * Computes the cosine of x (expressed in radians). Returns * -1..1. */ static VALUE math_cos(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(cos(RFLOAT(x)->value)); } /* * call-seq: * Math.sin(x) => float * * Computes the sine of x (expressed in radians). Returns * -1..1. */ static VALUE math_sin(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(sin(RFLOAT(x)->value)); } /* * call-seq: * Math.tan(x) => float * * Returns the tangent of x (expressed in radians). */ static VALUE math_tan(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(tan(RFLOAT(x)->value)); } /* * call-seq: * Math.acos(x) => float * * Computes the arc cosine of x. Returns 0..PI. */ static VALUE math_acos(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = acos(RFLOAT(x)->value); domain_check(d, "acos"); return rb_float_new(d); } /* * call-seq: * Math.asin(x) => float * * Computes the arc sine of x. Returns 0..PI. */ static VALUE math_asin(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = asin(RFLOAT(x)->value); domain_check(d, "asin"); return rb_float_new(d); } /* * call-seq: * Math.atan(x) => float * * Computes the arc tangent of x. Returns -{PI/2} .. {PI/2}. */ static VALUE math_atan(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(atan(RFLOAT(x)->value)); } #ifndef HAVE_COSH double cosh(double x) { return (exp(x) + exp(-x)) / 2; } #endif /* * call-seq: * Math.cosh(x) => float * * Computes the hyperbolic cosine of x (expressed in radians). */ static VALUE math_cosh(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(cosh(RFLOAT(x)->value)); } #ifndef HAVE_SINH double sinh(double x) { return (exp(x) - exp(-x)) / 2; } #endif /* * call-seq: * Math.sinh(x) => float * * Computes the hyperbolic sine of x (expressed in * radians). */ static VALUE math_sinh(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(sinh(RFLOAT(x)->value)); } #ifndef HAVE_TANH double tanh(double x) { return sinh(x) / cosh(x); } #endif /* * call-seq: * Math.tanh() => float * * Computes the hyperbolic tangent of x (expressed in * radians). */ static VALUE math_tanh(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(tanh(RFLOAT(x)->value)); } /* * call-seq: * Math.acosh(x) => float * * Computes the inverse hyperbolic cosine of x. */ static VALUE math_acosh(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = acosh(RFLOAT(x)->value); domain_check(d, "acosh"); return rb_float_new(d); } /* * call-seq: * Math.asinh(x) => float * * Computes the inverse hyperbolic sine of x. */ static VALUE math_asinh(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(asinh(RFLOAT(x)->value)); } /* * call-seq: * Math.atanh(x) => float * * Computes the inverse hyperbolic tangent of x. */ static VALUE math_atanh(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = atanh(RFLOAT(x)->value); domain_check(d, "atanh"); return rb_float_new(d); } /* * call-seq: * Math.exp(x) => float * * Returns e**x. */ static VALUE math_exp(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(exp(RFLOAT(x)->value)); } #if defined __CYGWIN__ # include # if CYGWIN_VERSION_DLL_MAJOR < 1005 # define nan(x) nan() # endif # define log(x) ((x) < 0.0 ? nan("") : log(x)) # define log10(x) ((x) < 0.0 ? nan("") : log10(x)) #endif /* * call-seq: * Math.log(numeric) => float * * Returns the natural logarithm of numeric. */ static VALUE math_log(int argc, VALUE *argv) { VALUE x, base; double d, b; rb_scan_args(argc, argv, "11", &x, &base); Need_Float(x); errno = 0; d = log(RFLOAT(x)->value); if (!NIL_P(base)) { Need_Float(base); d /= log(RFLOAT(base)->value); } domain_check(d, "log"); return rb_float_new(d); } #ifndef log2 #ifndef HAVE_LOG2 double log2(double x) { return log10(x)/log10(2.0); } #else extern double log2(double); #endif #endif /* * call-seq: * Math.log2(numeric) => float * * Returns the base 2 logarithm of numeric. */ static VALUE math_log2(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = log2(RFLOAT(x)->value); if (errno) { rb_sys_fail("log2"); } return rb_float_new(d); } /* * call-seq: * Math.log10(numeric) => float * * Returns the base 10 logarithm of numeric. */ static VALUE math_log10(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = log10(RFLOAT(x)->value); domain_check(d, "log10"); return rb_float_new(d); } /* * call-seq: * Math.sqrt(numeric) => float * * Returns the non-negative square root of numeric. */ static VALUE math_sqrt(VALUE obj, VALUE x) { double d; Need_Float(x); errno = 0; d = sqrt(RFLOAT(x)->value); domain_check(d, "sqrt"); return rb_float_new(d); } /* * call-seq: * Math.frexp(numeric) => [ fraction, exponent ] * * Returns a two-element array containing the normalized fraction (a * Float) and exponent (a Fixnum) of * numeric. * * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] * fraction * 2**exponent #=> 1234.0 */ static VALUE math_frexp(VALUE obj, VALUE x) { double d; int exp; Need_Float(x); d = frexp(RFLOAT(x)->value, &exp); return rb_assoc_new(rb_float_new(d), INT2NUM(exp)); } /* * call-seq: * Math.ldexp(flt, int) -> float * * Returns the value of flt*(2**int). * * fraction, exponent = Math.frexp(1234) * Math.ldexp(fraction, exponent) #=> 1234.0 */ static VALUE math_ldexp(VALUE obj, VALUE x, VALUE n) { Need_Float(x); return rb_float_new(ldexp(RFLOAT(x)->value, NUM2INT(n))); } /* * call-seq: * Math.hypot(x, y) => float * * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle * with sides x and y. * * Math.hypot(3, 4) #=> 5.0 */ static VALUE math_hypot(VALUE obj, VALUE x, VALUE y) { Need_Float2(x, y); return rb_float_new(hypot(RFLOAT(x)->value, RFLOAT(y)->value)); } /* * call-seq: * Math.erf(x) => float * * Calculates the error function of x. */ static VALUE math_erf(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(erf(RFLOAT(x)->value)); } /* * call-seq: * Math.erfc(x) => float * * Calculates the complementary error function of x. */ static VALUE math_erfc(VALUE obj, VALUE x) { Need_Float(x); return rb_float_new(erfc(RFLOAT(x)->value)); } /* * The Math module contains module functions for basic * trigonometric and transcendental functions. See class * Float for a list of constants that * define Ruby's floating point accuracy. */ void Init_Math(void) { rb_mMath = rb_define_module("Math"); #ifdef M_PI rb_define_const(rb_mMath, "PI", rb_float_new(M_PI)); #else rb_define_const(rb_mMath, "PI", rb_float_new(atan(1.0)*4.0)); #endif #ifdef M_E rb_define_const(rb_mMath, "E", rb_float_new(M_E)); #else rb_define_const(rb_mMath, "E", rb_float_new(exp(1.0))); #endif rb_define_module_function(rb_mMath, "atan2", math_atan2, 2); rb_define_module_function(rb_mMath, "cos", math_cos, 1); rb_define_module_function(rb_mMath, "sin", math_sin, 1); rb_define_module_function(rb_mMath, "tan", math_tan, 1); rb_define_module_function(rb_mMath, "acos", math_acos, 1); rb_define_module_function(rb_mMath, "asin", math_asin, 1); rb_define_module_function(rb_mMath, "atan", math_atan, 1); rb_define_module_function(rb_mMath, "cosh", math_cosh, 1); rb_define_module_function(rb_mMath, "sinh", math_sinh, 1); rb_define_module_function(rb_mMath, "tanh", math_tanh, 1); rb_define_module_function(rb_mMath, "acosh", math_acosh, 1); rb_define_module_function(rb_mMath, "asinh", math_asinh, 1); rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); rb_define_module_function(rb_mMath, "exp", math_exp, 1); rb_define_module_function(rb_mMath, "log", math_log, -1); rb_define_module_function(rb_mMath, "log2", math_log2, 1); rb_define_module_function(rb_mMath, "log10", math_log10, 1); rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); rb_define_module_function(rb_mMath, "frexp", math_frexp, 1); rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2); rb_define_module_function(rb_mMath, "hypot", math_hypot, 2); rb_define_module_function(rb_mMath, "erf", math_erf, 1); rb_define_module_function(rb_mMath, "erfc", math_erfc, 1); }