/********************************************************************** marshal.c - $Author$ created at: Thu Apr 27 16:30:01 JST 1995 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/ruby.h" #include "ruby/io.h" #include "ruby/st.h" #include "ruby/util.h" #include "ruby/encoding.h" #include #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif #define BITSPERSHORT (2*CHAR_BIT) #define SHORTMASK ((1<newclass); rb_gc_mark(p->oldclass); return ST_CONTINUE; } static void mark_marshal_compat_t(void *tbl) { if (!tbl) return; st_foreach(tbl, mark_marshal_compat_i, 0); } void rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE (*dumper)(VALUE), VALUE (*loader)(VALUE, VALUE)) { marshal_compat_t *compat; rb_alloc_func_t allocator = rb_get_alloc_func(newclass); if (!allocator) { rb_raise(rb_eTypeError, "no allocator"); } compat = ALLOC(marshal_compat_t); compat->newclass = Qnil; compat->oldclass = Qnil; compat->newclass = newclass; compat->oldclass = oldclass; compat->dumper = dumper; compat->loader = loader; st_insert(compat_allocator_tbl, (st_data_t)allocator, (st_data_t)compat); } struct dump_arg { VALUE obj; VALUE str, dest; st_table *symbols; st_table *data; int taint; int untrust; st_table *compat_tbl; VALUE wrapper; st_table *encodings; }; struct dump_call_arg { VALUE obj; struct dump_arg *arg; int limit; }; static void check_dump_arg(struct dump_arg *arg, ID sym) { if (!DATA_PTR(arg->wrapper)) { rb_raise(rb_eRuntimeError, "Marshal.dump reentered at %s", rb_id2name(sym)); } } static void mark_dump_arg(void *ptr) { struct dump_arg *p = ptr; if (!ptr) return; rb_mark_set(p->data); rb_mark_hash(p->compat_tbl); } static VALUE class2path(VALUE klass) { VALUE path = rb_class_path(klass); char *n = RSTRING_PTR(path); if (n[0] == '#') { rb_raise(rb_eTypeError, "can't dump anonymous %s %s", (TYPE(klass) == T_CLASS ? "class" : "module"), n); } if (rb_path2class(n) != rb_class_real(klass)) { rb_raise(rb_eTypeError, "%s can't be referred to", n); } return path; } static void w_long(long, struct dump_arg*); static void w_nbyte(const char *s, int n, struct dump_arg *arg) { VALUE buf = arg->str; rb_str_buf_cat(buf, s, n); if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) { if (arg->taint) OBJ_TAINT(buf); if (arg->untrust) OBJ_UNTRUST(buf); rb_io_write(arg->dest, buf); rb_str_resize(buf, 0); } } static void w_byte(char c, struct dump_arg *arg) { w_nbyte(&c, 1, arg); } static void w_bytes(const char *s, int n, struct dump_arg *arg) { w_long(n, arg); w_nbyte(s, n, arg); } static void w_short(int x, struct dump_arg *arg) { w_byte((char)((x >> 0) & 0xff), arg); w_byte((char)((x >> 8) & 0xff), arg); } static void w_long(long x, struct dump_arg *arg) { char buf[sizeof(long)+1]; int i, len = 0; #if SIZEOF_LONG > 4 if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) { /* big long does not fit in 4 bytes */ rb_raise(rb_eTypeError, "long too big to dump"); } #endif if (x == 0) { w_byte(0, arg); return; } if (0 < x && x < 123) { w_byte((char)(x + 5), arg); return; } if (-124 < x && x < 0) { w_byte((char)((x - 5)&0xff), arg); return; } for (i=1;i 32 #define MANT_BITS 32 #elif DBL_MANT_DIG > 24 #define MANT_BITS 24 #elif DBL_MANT_DIG > 16 #define MANT_BITS 16 #else #define MANT_BITS 8 #endif static int save_mantissa(double d, char *buf) { int e, i = 0; unsigned long m; double n; d = modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d); if (d > 0) { buf[i++] = 0; do { d = modf(ldexp(d, MANT_BITS), &n); m = (unsigned long)n; #if MANT_BITS > 24 buf[i++] = (char)(m >> 24); #endif #if MANT_BITS > 16 buf[i++] = (char)(m >> 16); #endif #if MANT_BITS > 8 buf[i++] = (char)(m >> 8); #endif buf[i++] = (char)m; } while (d > 0); while (!buf[i - 1]) --i; } return i; } static double load_mantissa(double d, const char *buf, int len) { if (--len > 0 && !*buf++) { /* binary mantissa mark */ int e, s = d < 0, dig = 0; unsigned long m; modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d); do { m = 0; switch (len) { default: m = *buf++ & 0xff; #if MANT_BITS > 24 case 3: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 16 case 2: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 8 case 1: m = (m << 8) | (*buf++ & 0xff); #endif } dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS; d += ldexp((double)m, dig); } while ((len -= MANT_BITS / 8) > 0); d = ldexp(d, e - DECIMAL_MANT); if (s) d = -d; } return d; } #else #define load_mantissa(d, buf, len) (d) #define save_mantissa(d, buf) 0 #endif #ifdef DBL_DIG #define FLOAT_DIG (DBL_DIG+2) #else #define FLOAT_DIG 17 #endif static void w_float(double d, struct dump_arg *arg) { char buf[FLOAT_DIG + (DECIMAL_MANT + 7) / 8 + 10]; if (isinf(d)) { if (d < 0) strcpy(buf, "-inf"); else strcpy(buf, "inf"); } else if (isnan(d)) { strcpy(buf, "nan"); } else if (d == 0.0) { if (1.0/d < 0) strcpy(buf, "-0"); else strcpy(buf, "0"); } else { int len; /* xxx: should not use system's sprintf(3) */ snprintf(buf, sizeof(buf), "%.*g", FLOAT_DIG, d); len = strlen(buf); w_bytes(buf, len + save_mantissa(d, buf + len), arg); return; } w_bytes(buf, strlen(buf), arg); } static void w_symbol(ID id, struct dump_arg *arg) { const char *sym; st_data_t num; if (st_lookup(arg->symbols, id, &num)) { w_byte(TYPE_SYMLINK, arg); w_long((long)num, arg); } else { sym = rb_id2name(id); if (!sym) { rb_raise(rb_eTypeError, "can't dump anonymous ID %ld", id); } w_byte(TYPE_SYMBOL, arg); w_bytes(sym, strlen(sym), arg); st_add_direct(arg->symbols, id, arg->symbols->num_entries); } } static void w_unique(const char *s, struct dump_arg *arg) { if (s[0] == '#') { rb_raise(rb_eTypeError, "can't dump anonymous class %s", s); } w_symbol(rb_intern(s), arg); } static void w_object(VALUE,struct dump_arg*,int); static int hash_each(VALUE key, VALUE value, struct dump_call_arg *arg) { w_object(key, arg->arg, arg->limit); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } static void w_extended(VALUE klass, struct dump_arg *arg, int check) { const char *path; if (check && FL_TEST(klass, FL_SINGLETON)) { if (RCLASS_M_TBL(klass)->num_entries || (RCLASS_IV_TBL(klass) && RCLASS_IV_TBL(klass)->num_entries > 1)) { rb_raise(rb_eTypeError, "singleton can't be dumped"); } klass = RCLASS_SUPER(klass); } while (BUILTIN_TYPE(klass) == T_ICLASS) { path = rb_class2name(RBASIC(klass)->klass); w_byte(TYPE_EXTENDED, arg); w_unique(path, arg); klass = RCLASS_SUPER(klass); } } static void w_class(char type, VALUE obj, struct dump_arg *arg, int check) { volatile VALUE p; char *path; st_data_t real_obj; VALUE klass; if (st_lookup(arg->compat_tbl, (st_data_t)obj, &real_obj)) { obj = (VALUE)real_obj; } klass = CLASS_OF(obj); w_extended(klass, arg, check); w_byte(type, arg); p = class2path(rb_class_real(klass)); path = RSTRING_PTR(p); w_unique(path, arg); } static void w_uclass(VALUE obj, VALUE super, struct dump_arg *arg) { VALUE klass = CLASS_OF(obj); w_extended(klass, arg, Qtrue); klass = rb_class_real(klass); if (klass != super) { w_byte(TYPE_UCLASS, arg); w_unique(RSTRING_PTR(class2path(klass)), arg); } } static int w_obj_each(ID id, VALUE value, struct dump_call_arg *arg) { if (id == rb_id_encoding()) return ST_CONTINUE; w_symbol(id, arg->arg); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } static void w_encoding(VALUE obj, long num, struct dump_call_arg *arg) { int encidx = rb_enc_get_index(obj); rb_encoding *enc = 0; st_data_t name; if (encidx <= 0 || !(enc = rb_enc_from_index(encidx))) { w_long(num, arg->arg); return; } w_long(num + 1, arg->arg); w_symbol(rb_id_encoding(), arg->arg); do { if (!arg->arg->encodings) arg->arg->encodings = st_init_strcasetable(); else if (st_lookup(arg->arg->encodings, (st_data_t)rb_enc_name(enc), &name)) break; name = (st_data_t)rb_str_new2(rb_enc_name(enc)); st_insert(arg->arg->encodings, (st_data_t)rb_enc_name(enc), name); } while (0); w_object(name, arg->arg, arg->limit); } static void w_ivar(VALUE obj, st_table *tbl, struct dump_call_arg *arg) { long num = tbl ? tbl->num_entries : 0; w_encoding(obj, num, arg); if (tbl) { st_foreach_safe(tbl, w_obj_each, (st_data_t)arg); } } static void w_objivar(VALUE obj, struct dump_call_arg *arg) { VALUE *ptr; long i, len, num; len = ROBJECT_NUMIV(obj); ptr = ROBJECT_IVPTR(obj); num = 0; for (i = 0; i < len; i++) if (ptr[i] != Qundef) num += 1; w_encoding(obj, num, arg); if (num != 0) { rb_ivar_foreach(obj, w_obj_each, (st_data_t)arg); } } static void w_object(VALUE obj, struct dump_arg *arg, int limit) { struct dump_call_arg c_arg; st_table *ivtbl = 0; st_data_t num; int hasiv = 0; #define has_ivars(obj, ivtbl) ((ivtbl = rb_generic_ivar_table(obj)) != 0 || \ (!SPECIAL_CONST_P(obj) && !ENCODING_IS_ASCII8BIT(obj))) if (limit == 0) { rb_raise(rb_eArgError, "exceed depth limit"); } limit--; c_arg.limit = limit; c_arg.arg = arg; if (st_lookup(arg->data, obj, &num)) { w_byte(TYPE_LINK, arg); w_long((long)num, arg); return; } if ((hasiv = has_ivars(obj, ivtbl)) != 0) { w_byte(TYPE_IVAR, arg); } if (obj == Qnil) { w_byte(TYPE_NIL, arg); } else if (obj == Qtrue) { w_byte(TYPE_TRUE, arg); } else if (obj == Qfalse) { w_byte(TYPE_FALSE, arg); } else if (FIXNUM_P(obj)) { #if SIZEOF_LONG <= 4 w_byte(TYPE_FIXNUM, arg); w_long(FIX2INT(obj), arg); #else if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) { w_byte(TYPE_FIXNUM, arg); w_long(FIX2LONG(obj), arg); } else { w_object(rb_int2big(FIX2LONG(obj)), arg, limit); } #endif } else if (SYMBOL_P(obj)) { w_symbol(SYM2ID(obj), arg); } else { if (OBJ_TAINTED(obj)) arg->taint = Qtrue; if (OBJ_UNTRUSTED(obj)) arg->untrust = Qtrue; if (rb_respond_to(obj, s_mdump)) { volatile VALUE v; st_add_direct(arg->data, obj, arg->data->num_entries); v = rb_funcall(obj, s_mdump, 0, 0); check_dump_arg(arg, s_mdump); w_class(TYPE_USRMARSHAL, obj, arg, Qfalse); w_object(v, arg, limit); if (hasiv) w_ivar(obj, 0, &c_arg); return; } if (rb_respond_to(obj, s_dump)) { VALUE v; st_table *ivtbl2 = 0; int hasiv2; v = rb_funcall(obj, s_dump, 1, INT2NUM(limit)); check_dump_arg(arg, s_dump); if (TYPE(v) != T_STRING) { rb_raise(rb_eTypeError, "_dump() must return string"); } if ((hasiv2 = has_ivars(v, ivtbl2)) != 0 && !hasiv) { w_byte(TYPE_IVAR, arg); } w_class(TYPE_USERDEF, obj, arg, Qfalse); w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg); if (hasiv2) { w_ivar(v, ivtbl2, &c_arg); } else if (hasiv) { w_ivar(obj, ivtbl, &c_arg); } st_add_direct(arg->data, obj, arg->data->num_entries); return; } st_add_direct(arg->data, obj, arg->data->num_entries); { st_data_t compat_data; rb_alloc_func_t allocator = rb_get_alloc_func(RBASIC(obj)->klass); if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &compat_data)) { marshal_compat_t *compat = (marshal_compat_t*)compat_data; VALUE real_obj = obj; obj = compat->dumper(real_obj); st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj); } } switch (BUILTIN_TYPE(obj)) { case T_CLASS: if (FL_TEST(obj, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton class can't be dumped"); } w_byte(TYPE_CLASS, arg); { volatile VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); } break; case T_MODULE: w_byte(TYPE_MODULE, arg); { VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); } break; case T_FLOAT: w_byte(TYPE_FLOAT, arg); w_float(RFLOAT_VALUE(obj), arg); break; case T_BIGNUM: w_byte(TYPE_BIGNUM, arg); { char sign = RBIGNUM_SIGN(obj) ? '+' : '-'; long len = RBIGNUM_LEN(obj); BDIGIT *d = RBIGNUM_DIGITS(obj); w_byte(sign, arg); w_long(SHORTLEN(len), arg); /* w_short? */ while (len--) { #if SIZEOF_BDIGITS > SIZEOF_SHORT BDIGIT num = *d; int i; for (i=0; iifnone)) { w_byte(TYPE_HASH, arg); } else if (FL_TEST(obj, FL_USER2)) { /* FL_USER2 means HASH_PROC_DEFAULT (see hash.c) */ rb_raise(rb_eTypeError, "can't dump hash with default proc"); } else { w_byte(TYPE_HASH_DEF, arg); } w_long(RHASH_SIZE(obj), arg); rb_hash_foreach(obj, hash_each, (st_data_t)&c_arg); if (!NIL_P(RHASH(obj)->ifnone)) { w_object(RHASH(obj)->ifnone, arg, limit); } break; case T_STRUCT: w_class(TYPE_STRUCT, obj, arg, Qtrue); { long len = RSTRUCT_LEN(obj); VALUE mem; long i; w_long(len, arg); mem = rb_struct_members(obj); for (i=0; iobj, arg->arg, arg->limit); if (arg->arg->dest) { rb_io_write(arg->arg->dest, arg->arg->str); rb_str_resize(arg->arg->str, 0); } return 0; } static VALUE dump_ensure(struct dump_arg *arg) { if (!DATA_PTR(arg->wrapper)) return 0; st_free_table(arg->symbols); st_free_table(arg->data); st_free_table(arg->compat_tbl); if (arg->encodings) st_free_table(arg->encodings); DATA_PTR(arg->wrapper) = 0; arg->wrapper = 0; if (arg->taint) { OBJ_TAINT(arg->str); } if (arg->untrust) { OBJ_UNTRUST(arg->str); } return 0; } /* * call-seq: * dump( obj [, anIO] , limit=--1 ) => anIO * * Serializes obj and all descendent objects. If anIO is * specified, the serialized data will be written to it, otherwise the * data will be returned as a String. If limit is specified, the * traversal of subobjects will be limited to that depth. If limit is * negative, no checking of depth will be performed. * * class Klass * def initialize(str) * @str = str * end * def sayHello * @str * end * end * * (produces no output) * * o = Klass.new("hello\n") * data = Marshal.dump(o) * obj = Marshal.load(data) * obj.sayHello #=> "hello\n" */ static VALUE marshal_dump(int argc, VALUE *argv) { VALUE obj, port, a1, a2; int limit = -1; struct dump_arg arg; struct dump_call_arg c_arg; port = Qnil; rb_scan_args(argc, argv, "12", &obj, &a1, &a2); if (argc == 3) { if (!NIL_P(a2)) limit = NUM2INT(a2); if (NIL_P(a1)) goto type_error; port = a1; } else if (argc == 2) { if (FIXNUM_P(a1)) limit = FIX2INT(a1); else if (NIL_P(a1)) goto type_error; else port = a1; } arg.dest = 0; arg.symbols = st_init_numtable(); arg.data = st_init_numtable(); arg.taint = Qfalse; arg.untrust = Qfalse; arg.compat_tbl = st_init_numtable(); arg.encodings = 0; arg.str = rb_str_buf_new(0); RBASIC(arg.str)->klass = 0; arg.wrapper = Data_Wrap_Struct(rb_cData, mark_dump_arg, 0, &arg); if (!NIL_P(port)) { if (!rb_respond_to(port, s_write)) { type_error: rb_raise(rb_eTypeError, "instance of IO needed"); } arg.dest = port; if (rb_respond_to(port, s_binmode)) { rb_funcall2(port, s_binmode, 0, 0); check_dump_arg(&arg, s_binmode); } } else { port = arg.str; } c_arg.obj = obj; c_arg.arg = &arg; c_arg.limit = limit; w_byte(MARSHAL_MAJOR, &arg); w_byte(MARSHAL_MINOR, &arg); rb_ensure(dump, (VALUE)&c_arg, dump_ensure, (VALUE)&arg); RBASIC(arg.str)->klass = rb_cString; return port; } struct load_arg { VALUE src; long offset; st_table *symbols; st_table *data; VALUE proc; int taint; int untrust; st_table *compat_tbl; VALUE wrapper; }; static void check_load_arg(struct load_arg *arg, ID sym) { if (!DATA_PTR(arg->wrapper)) { rb_raise(rb_eRuntimeError, "Marshal.load reentered at %s", rb_id2name(sym)); } } static void mark_load_arg(void *ptr) { struct load_arg *p = ptr; if (!ptr) return; rb_mark_tbl(p->data); rb_mark_hash(p->compat_tbl); } static VALUE r_entry(VALUE v, struct load_arg *arg); static VALUE r_object(struct load_arg *arg); static VALUE path2class(const char *path); static int r_byte(struct load_arg *arg) { int c; if (TYPE(arg->src) == T_STRING) { if (RSTRING_LEN(arg->src) > arg->offset) { c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++]; } else { rb_raise(rb_eArgError, "marshal data too short"); } } else { VALUE src = arg->src; VALUE v = rb_funcall2(src, s_getbyte, 0, 0); check_load_arg(arg, s_getbyte); if (NIL_P(v)) rb_eof_error(); c = (unsigned char)NUM2CHR(v); } return c; } static void long_toobig(int size) { rb_raise(rb_eTypeError, "long too big for this architecture (size " STRINGIZE(SIZEOF_LONG)", given %d)", size); } #undef SIGN_EXTEND_CHAR #if __STDC__ # define SIGN_EXTEND_CHAR(c) ((signed char)(c)) #else /* not __STDC__ */ /* As in Harbison and Steele. */ # define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128) #endif static long r_long(struct load_arg *arg) { register long x; int c = SIGN_EXTEND_CHAR(r_byte(arg)); long i; if (c == 0) return 0; if (c > 0) { if (4 < c && c < 128) { return c - 5; } if (c > sizeof(long)) long_toobig(c); x = 0; for (i=0;i sizeof(long)) long_toobig(c); x = -1; for (i=0;isrc) == T_STRING) { if (RSTRING_LEN(arg->src) - arg->offset >= len) { str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len); arg->offset += len; } else { too_short: rb_raise(rb_eArgError, "marshal data too short"); } } else { VALUE src = arg->src; VALUE n = LONG2NUM(len); str = rb_funcall2(src, s_read, 1, &n); check_load_arg(arg, s_read); if (NIL_P(str)) goto too_short; StringValue(str); if (RSTRING_LEN(str) != len) goto too_short; if (OBJ_TAINTED(str)) arg->taint = Qtrue; if (OBJ_UNTRUSTED(str)) arg->untrust = Qtrue; } return str; } static ID r_symlink(struct load_arg *arg) { ID id; long num = r_long(arg); if (st_lookup(arg->symbols, num, &id)) { return id; } rb_raise(rb_eArgError, "bad symbol"); } static ID r_symreal(struct load_arg *arg) { volatile VALUE s = r_bytes(arg); ID id = rb_intern(RSTRING_PTR(s)); st_insert(arg->symbols, arg->symbols->num_entries, id); return id; } static ID r_symbol(struct load_arg *arg) { int type; switch ((type = r_byte(arg))) { case TYPE_SYMBOL: return r_symreal(arg); case TYPE_SYMLINK: return r_symlink(arg); default: rb_raise(rb_eArgError, "dump format error(0x%x)", type); break; } } static const char* r_unique(struct load_arg *arg) { return rb_id2name(r_symbol(arg)); } static VALUE r_string(struct load_arg *arg) { return r_bytes(arg); } static VALUE r_entry(VALUE v, struct load_arg *arg) { st_data_t real_obj = (VALUE)Qundef; if (st_lookup(arg->compat_tbl, v, &real_obj)) { st_insert(arg->data, arg->data->num_entries, (st_data_t)real_obj); } else { st_insert(arg->data, arg->data->num_entries, (st_data_t)v); } if (arg->taint) { OBJ_TAINT(v); if ((VALUE)real_obj != Qundef) OBJ_TAINT((VALUE)real_obj); } if (arg->untrust) { OBJ_UNTRUST(v); if ((VALUE)real_obj != Qundef) OBJ_UNTRUST((VALUE)real_obj); } return v; } static VALUE r_leave(VALUE v, struct load_arg *arg) { st_data_t data; if (st_lookup(arg->compat_tbl, v, &data)) { VALUE real_obj = (VALUE)data; rb_alloc_func_t allocator = rb_get_alloc_func(CLASS_OF(real_obj)); st_data_t key = v; if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) { marshal_compat_t *compat = (marshal_compat_t*)data; compat->loader(real_obj, v); } st_delete(arg->compat_tbl, &key, 0); v = real_obj; } if (arg->proc) { v = rb_funcall(arg->proc, s_call, 1, v); check_load_arg(arg, s_call); } return v; } static void r_ivar(VALUE obj, struct load_arg *arg) { long len; len = r_long(arg); if (len > 0) { while (len--) { ID id = r_symbol(arg); VALUE val = r_object(arg); if (id == rb_id_encoding()) { int idx = rb_enc_find_index(StringValueCStr(val)); if (idx > 0) rb_enc_associate_index(obj, idx); } else { rb_ivar_set(obj, id, val); } } } } static VALUE path2class(const char *path) { VALUE v = rb_path2class(path); if (TYPE(v) != T_CLASS) { rb_raise(rb_eArgError, "%s does not refer to class", path); } return v; } static VALUE path2module(const char *path) { VALUE v = rb_path2class(path); if (TYPE(v) != T_MODULE) { rb_raise(rb_eArgError, "%s does not refer to module", path); } return v; } static VALUE obj_alloc_by_path(const char *path, struct load_arg *arg) { VALUE klass; st_data_t data; rb_alloc_func_t allocator; klass = path2class(path); allocator = rb_get_alloc_func(klass); if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) { marshal_compat_t *compat = (marshal_compat_t*)data; VALUE real_obj = rb_obj_alloc(klass); VALUE obj = rb_obj_alloc(compat->oldclass); st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj); return obj; } return rb_obj_alloc(klass); } #if defined _MSC_VER && _MSC_VER >= 1300 #pragma warning(push) #pragma warning(disable:4723) #endif static double div0(double x) { double t = 0.0; return x / t; } #if defined _MSC_VER && _MSC_VER >= 1300 #pragma warning(pop) #endif static VALUE r_object0(struct load_arg *arg, int *ivp, VALUE extmod) { VALUE v = Qnil; int type = r_byte(arg); long id; st_data_t link; switch (type) { case TYPE_LINK: id = r_long(arg); if (!st_lookup(arg->data, (st_data_t)id, &link)) { rb_raise(rb_eArgError, "dump format error (unlinked)"); } v = (VALUE)link; if (arg->proc) { v = rb_funcall(arg->proc, s_call, 1, v); check_load_arg(arg, s_call); } break; case TYPE_IVAR: { int ivar = Qtrue; v = r_object0(arg, &ivar, extmod); if (ivar) r_ivar(v, arg); } break; case TYPE_EXTENDED: { VALUE m = path2module(r_unique(arg)); if (NIL_P(extmod)) extmod = rb_ary_new2(0); rb_ary_push(extmod, m); v = r_object0(arg, 0, extmod); while (RARRAY_LEN(extmod) > 0) { m = rb_ary_pop(extmod); rb_extend_object(v, m); } } break; case TYPE_UCLASS: { VALUE c = path2class(r_unique(arg)); if (FL_TEST(c, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton can't be loaded"); } v = r_object0(arg, 0, extmod); if (rb_special_const_p(v) || TYPE(v) == T_OBJECT || TYPE(v) == T_CLASS) { format_error: rb_raise(rb_eArgError, "dump format error (user class)"); } if (TYPE(v) == T_MODULE || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) { VALUE tmp = rb_obj_alloc(c); if (TYPE(v) != TYPE(tmp)) goto format_error; } RBASIC(v)->klass = c; } break; case TYPE_NIL: v = Qnil; v = r_leave(v, arg); break; case TYPE_TRUE: v = Qtrue; v = r_leave(v, arg); break; case TYPE_FALSE: v = Qfalse; v = r_leave(v, arg); break; case TYPE_FIXNUM: { long i = r_long(arg); v = LONG2FIX(i); } v = r_leave(v, arg); break; case TYPE_FLOAT: { double d; VALUE str = r_bytes(arg); const char *ptr = RSTRING_PTR(str); if (strcmp(ptr, "nan") == 0) { d = div0(0.0); } else if (strcmp(ptr, "inf") == 0) { d = div0(+1.0); } else if (strcmp(ptr, "-inf") == 0) { d = div0(-1.0); } else { char *e; d = strtod(ptr, &e); d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr)); } v = DBL2NUM(d); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_BIGNUM: { long len; BDIGIT *digits; volatile VALUE data; NEWOBJ(big, struct RBignum); OBJSETUP(big, rb_cBignum, T_BIGNUM); RBIGNUM_SET_SIGN(big, (r_byte(arg) == '+')); len = r_long(arg); data = r_bytes0(len * 2, arg); #if SIZEOF_BDIGITS == SIZEOF_SHORT rb_big_resize((VALUE)big, len); #else rb_big_resize((VALUE)big, (len + 1) * 2 / sizeof(BDIGIT)); #endif digits = RBIGNUM_DIGITS(big); MEMCPY(digits, RSTRING_PTR(data), char, len * 2); #if SIZEOF_BDIGITS > SIZEOF_SHORT MEMZERO((char *)digits + len * 2, char, RBIGNUM_LEN(big) * sizeof(BDIGIT) - len * 2); #endif len = RBIGNUM_LEN(big); while (len > 0) { unsigned char *p = (unsigned char *)digits; BDIGIT num = 0; #if SIZEOF_BDIGITS > SIZEOF_SHORT int shift = 0; int i; for (i=0; iifnone = r_object(arg); } v = r_leave(v, arg); } break; case TYPE_STRUCT: { VALUE klass, mem; VALUE values; volatile long i; /* gcc 2.7.2.3 -O2 bug?? */ long len; ID slot; klass = path2class(r_unique(arg)); len = r_long(arg); v = rb_obj_alloc(klass); if (TYPE(v) != T_STRUCT) { rb_raise(rb_eTypeError, "class %s not a struct", rb_class2name(klass)); } mem = rb_struct_s_members(klass); if (RARRAY_LEN(mem) != len) { rb_raise(rb_eTypeError, "struct %s not compatible (struct size differs)", rb_class2name(klass)); } v = r_entry(v, arg); values = rb_ary_new2(len); for (i=0; i 0) { VALUE m = rb_ary_pop(extmod); rb_extend_object(v, m); } } if (!rb_respond_to(v, s_mload)) { rb_raise(rb_eTypeError, "instance of %s needs to have method `marshal_load'", rb_class2name(klass)); } v = r_entry(v, arg); data = r_object(arg); rb_funcall(v, s_mload, 1, data); check_load_arg(arg, s_mload); v = r_leave(v, arg); } break; case TYPE_OBJECT: { v = obj_alloc_by_path(r_unique(arg), arg); if (TYPE(v) != T_OBJECT) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry(v, arg); r_ivar(v, arg); v = r_leave(v, arg); } break; case TYPE_DATA: { VALUE klass = path2class(r_unique(arg)); if (rb_respond_to(klass, s_alloc)) { static int warn = Qtrue; if (warn) { rb_warn("define `allocate' instead of `_alloc'"); warn = Qfalse; } v = rb_funcall(klass, s_alloc, 0); check_load_arg(arg, s_alloc); } else { v = rb_obj_alloc(klass); } if (TYPE(v) != T_DATA) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry(v, arg); if (!rb_respond_to(v, s_load_data)) { rb_raise(rb_eTypeError, "class %s needs to have instance method `_load_data'", rb_class2name(klass)); } rb_funcall(v, s_load_data, 1, r_object0(arg, 0, extmod)); check_load_arg(arg, s_load_data); v = r_leave(v, arg); } break; case TYPE_MODULE_OLD: { volatile VALUE str = r_bytes(arg); v = rb_path2class(RSTRING_PTR(str)); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_CLASS: { volatile VALUE str = r_bytes(arg); v = path2class(RSTRING_PTR(str)); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_MODULE: { volatile VALUE str = r_bytes(arg); v = path2module(RSTRING_PTR(str)); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_SYMBOL: v = ID2SYM(r_symreal(arg)); v = r_leave(v, arg); break; case TYPE_SYMLINK: v = ID2SYM(r_symlink(arg)); break; default: rb_raise(rb_eArgError, "dump format error(0x%x)", type); break; } return v; } static VALUE r_object(struct load_arg *arg) { return r_object0(arg, 0, Qnil); } static VALUE load(struct load_arg *arg) { return r_object(arg); } static VALUE load_ensure(struct load_arg *arg) { if (!DATA_PTR(arg->wrapper)) return 0; st_free_table(arg->symbols); st_free_table(arg->data); st_free_table(arg->compat_tbl); DATA_PTR(arg->wrapper) = 0; arg->wrapper = 0; return 0; } /* * call-seq: * load( source [, proc] ) => obj * restore( source [, proc] ) => obj * * Returns the result of converting the serialized data in source into a * Ruby object (possibly with associated subordinate objects). source * may be either an instance of IO or an object that responds to * to_str. If proc is specified, it will be passed each object as it * is deserialized. */ static VALUE marshal_load(int argc, VALUE *argv) { VALUE port, proc; int major, minor; VALUE v; struct load_arg arg; rb_scan_args(argc, argv, "11", &port, &proc); v = rb_check_string_type(port); if (!NIL_P(v)) { arg.taint = OBJ_TAINTED(port); /* original taintedness */ port = v; } else if (rb_respond_to(port, s_getbyte) && rb_respond_to(port, s_read)) { if (rb_respond_to(port, s_binmode)) { rb_funcall2(port, s_binmode, 0, 0); } arg.taint = Qtrue; } else { rb_raise(rb_eTypeError, "instance of IO needed"); } arg.untrust = OBJ_UNTRUSTED(port); arg.src = port; arg.offset = 0; arg.symbols = st_init_numtable(); arg.data = st_init_numtable(); arg.compat_tbl = st_init_numtable(); arg.proc = 0; arg.wrapper = Data_Wrap_Struct(rb_cData, mark_load_arg, 0, &arg); major = r_byte(&arg); minor = r_byte(&arg); if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) { rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) { rb_warn("incompatible marshal file format (can be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } if (!NIL_P(proc)) arg.proc = proc; v = rb_ensure(load, (VALUE)&arg, load_ensure, (VALUE)&arg); return v; } /* * The marshaling library converts collections of Ruby objects into a * byte stream, allowing them to be stored outside the currently * active script. This data may subsequently be read and the original * objects reconstituted. * Marshaled data has major and minor version numbers stored along * with the object information. In normal use, marshaling can only * load data written with the same major version number and an equal * or lower minor version number. If Ruby's ``verbose'' flag is set * (normally using -d, -v, -w, or --verbose) the major and minor * numbers must match exactly. Marshal versioning is independent of * Ruby's version numbers. You can extract the version by reading the * first two bytes of marshaled data. * * str = Marshal.dump("thing") * RUBY_VERSION #=> "1.9.0" * str[0].ord #=> 4 * str[1].ord #=> 8 * * Some objects cannot be dumped: if the objects to be dumped include * bindings, procedure or method objects, instances of class IO, or * singleton objects, a TypeError will be raised. * If your class has special serialization needs (for example, if you * want to serialize in some specific format), or if it contains * objects that would otherwise not be serializable, you can implement * your own serialization strategy by defining two methods, _dump and * _load: * The instance method _dump should return a String object containing * all the information necessary to reconstitute objects of this class * and all referenced objects up to a maximum depth given as an integer * parameter (a value of -1 implies that you should disable depth checking). * The class method _load should take a String and return an object of this class. */ void Init_marshal(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) VALUE rb_mMarshal = rb_define_module("Marshal"); s_dump = rb_intern("_dump"); s_load = rb_intern("_load"); s_mdump = rb_intern("marshal_dump"); s_mload = rb_intern("marshal_load"); s_dump_data = rb_intern("_dump_data"); s_load_data = rb_intern("_load_data"); s_alloc = rb_intern("_alloc"); s_call = rb_intern("call"); s_getbyte = rb_intern("getbyte"); s_read = rb_intern("read"); s_write = rb_intern("write"); s_binmode = rb_intern("binmode"); rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1); rb_define_module_function(rb_mMarshal, "load", marshal_load, -1); rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1); rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR)); rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR)); compat_allocator_tbl = st_init_numtable(); compat_allocator_tbl_wrapper = Data_Wrap_Struct(rb_cData, mark_marshal_compat_t, 0, compat_allocator_tbl); rb_gc_register_mark_object(compat_allocator_tbl_wrapper); } VALUE rb_marshal_dump(VALUE obj, VALUE port) { int argc = 1; VALUE argv[2]; argv[0] = obj; argv[1] = port; if (!NIL_P(port)) argc = 2; return marshal_dump(argc, argv); } VALUE rb_marshal_load(VALUE port) { return marshal_load(1, &port); }