# # complex.rb - # $Release Version: 0.5 $ # $Revision: 1.3 $ # $Date: 1998/07/08 10:05:28 $ # by Keiju ISHITSUKA(SHL Japan Inc.) # # ---- # # complex.rb implements the Complex class for complex numbers. Additionally, # some methods in other Numeric classes are redefined or added to allow greater # interoperability with Complex numbers. # # Complex numbers can be created in the following manner: # - Complex(a, b) # - Complex.polar(radius, theta) # # Additionally, note the following: # - Complex::I (the mathematical constant i) # - Numeric#im (e.g. 5.im -> 0+5i) # # The following +Math+ module methods are redefined to handle Complex arguments. # They will work as normal with non-Complex arguments. # sqrt exp cos sin tan log log10 atan2 # # # Creates a Complex number. +a+ and +b+ should be Numeric. The result will be # a+bi. # def Complex(a, b = 0) if a.kind_of?(Complex) and b == 0 a elsif b.kind_of?(Complex) if a.kind_of?(Complex) Complex(a.real-b.image, a.image + b.real) else Complex(a-b.image, b.real) end elsif b == 0 and defined? Complex::Unify a else Complex.new!(a, b) end end # # The complex number class. See complex.rb for an overview. # class Complex < Numeric @RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-' undef step def Complex.generic?(other) # :nodoc: other.kind_of?(Integer) or other.kind_of?(Float) or (defined?(Rational) and other.kind_of?(Rational)) end # # Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle). # def Complex.polar(r, theta) Complex(r*Math.cos(theta), r*Math.sin(theta)) end private_class_method :new # # Creates a +Complex+ number a+bi. # def Complex.new!(a, b=0) new(a,b) end def initialize(a, b) raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric @real = a @image = b end # # Addition with real or complex number. # def + (other) if other.kind_of?(Complex) re = @real + other.real im = @image + other.image Complex(re, im) elsif Complex.generic?(other) Complex(@real + other, @image) else x , y = other.coerce(self) x + y end end # # Subtraction with real or complex number. # def - (other) if other.kind_of?(Complex) re = @real - other.real im = @image - other.image Complex(re, im) elsif Complex.generic?(other) Complex(@real - other, @image) else x , y = other.coerce(self) x - y end end # # Multiplication with real or complex number. # def * (other) if other.kind_of?(Complex) re = @real*other.real - @image*other.image im = @real*other.image + @image*other.real Complex(re, im) elsif Complex.generic?(other) Complex(@real * other, @image * other) else x , y = other.coerce(self) x * y end end # # Division by real or complex number. # def / (other) if other.kind_of?(Complex) self*other.conjugate/other.abs2 elsif Complex.generic?(other) Complex(@real/other, @image/other) else x, y = other.coerce(self) x/y end end # # Raise this complex number to the given (real or complex) power. # def ** (other) if other == 0 return Complex(1) end if other.kind_of?(Complex) r, theta = polar ore = other.real oim = other.image nr = Math.exp!(ore*Math.log!(r) - oim * theta) ntheta = theta*ore + oim*Math.log!(r) Complex.polar(nr, ntheta) elsif other.kind_of?(Integer) if other > 0 x = self z = x n = other - 1 while n != 0 while (div, mod = n.divmod(2) mod == 0) x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image) n = div end z *= x n -= 1 end z else if defined? Rational (Rational(1) / self) ** -other else self ** Float(other) end end elsif Complex.generic?(other) r, theta = polar Complex.polar(r.power!(other), theta * other) else x, y = other.coerce(self) x/y end end # # Remainder after division by a real or complex number. # def % (other) if other.kind_of?(Complex) Complex(@real % other.real, @image % other.image) elsif Complex.generic?(other) Complex(@real % other, @image % other) else x , y = other.coerce(self) x % y end end #-- # def divmod(other) # if other.kind_of?(Complex) # rdiv, rmod = @real.divmod(other.real) # idiv, imod = @image.divmod(other.image) # return Complex(rdiv, idiv), Complex(rmod, rmod) # elsif Complex.generic?(other) # Complex(@real.divmod(other), @image.divmod(other)) # else # x , y = other.coerce(self) # x.divmod(y) # end # end #++ # # Absolute value (aka modulus): distance from the zero point on the complex # plane. # def abs Math.sqrt!((@real*@real + @image*@image).to_f) end # # Square of the absolute value. # def abs2 @real*@real + @image*@image end # # Argument (angle from (1,0) on the complex plane). # def arg Math.atan2(@image.to_f, @real.to_f) end # # Returns the absolute value _and_ the argument. # def polar return abs, arg end # # Complex conjugate (z + z.conjugate = 2 * z.real). # def conjugate Complex(@real, -@image) end # # Compares the absolute values of the two numbers. # def <=> (other) self.abs <=> other.abs end # # Test for numerical equality (a == a + 0i). # def == (other) if other.kind_of?(Complex) @real == other.real and @image == other.image elsif Complex.generic?(other) @real == other and @image == 0 else other == self end end # # Attempts to coerce +other+ to a Complex number. # def coerce(other) if Complex.generic?(other) return Complex.new!(other), self else super end end # # FIXME # def denominator @real.denominator.lcm(@image.denominator) end # # FIXME # def numerator cd = denominator Complex(@real.numerator*(cd/@real.denominator), @image.numerator*(cd/@image.denominator)) end # # Standard string representation of the complex number. # def to_s if @real != 0 if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1 if @image >= 0 @real.to_s+"+("+@image.to_s+")i" else @real.to_s+"-("+(-@image).to_s+")i" end else if @image >= 0 @real.to_s+"+"+@image.to_s+"i" else @real.to_s+"-"+(-@image).to_s+"i" end end else if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1 "("+@image.to_s+")i" else @image.to_s+"i" end end end # # Returns a hash code for the complex number. # def hash @real.hash ^ @image.hash end # # Returns "Complex(real, image)". # def inspect sprintf("Complex(%s, %s)", @real.inspect, @image.inspect) end # # +I+ is the imaginary number. It exists at point (0,1) on the complex plane. # I = Complex(0,1) # The real part of a complex number. attr :real # The imaginary part of a complex number. attr :image end # # Numeric is a built-in class on which Fixnum, Bignum, etc., are based. Here # some methods are added so that all number types can be treated to some extent # as Complex numbers. # class Numeric # # Returns a Complex number (0,self). # def im Complex(0, self) end # # The real part of a complex number, i.e. self. # def real self end # # The imaginary part of a complex number, i.e. 0. # def image 0 end # # See Complex#arg. # def arg if self >= 0 return 0 else return Math.atan2(1,1)*4 end end # # See Complex#polar. # def polar return abs, arg end # # See Complex#conjugate (short answer: returns self). # def conjugate self end end class Fixnum alias power! ** # Redefined to handle a Complex argument. def ** (other) if self < 0 Complex.new!(self, 0) ** other else if defined? Rational if other >= 0 self.power!(other) else Rational.new!(self,1)**other end else self.power!(other) end end end end class Bignum alias power! ** end class Float alias power! ** end module Math alias sqrt! sqrt alias exp! exp alias cos! cos alias sin! sin alias tan! tan alias log! log alias atan! atan alias log10! log10 alias atan2! atan2 # Redefined to handle a Complex argument. def sqrt(z) if Complex.generic?(z) if z >= 0 sqrt!(z) else Complex(0,sqrt!(-z)) end else if defined? Rational z**Rational(1,2) else z**0.5 end end end # Redefined to handle a Complex argument. def exp(z) if Complex.generic?(z) exp!(z) else Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image)) end end # # Hyperbolic cosine. # def cosh!(x) (exp!(x) + exp!(-x))/2.0 end # # Hyperbolic sine. # def sinh!(x) (exp!(x) - exp!(-x))/2.0 end # Redefined to handle a Complex argument. def cos(z) if Complex.generic?(z) cos!(z) else Complex(cos!(z.real)*cosh!(z.image), -sin!(z.real)*sinh!(z.image)) end end # Redefined to handle a Complex argument. def sin(z) if Complex.generic?(z) sin!(z) else Complex(sin!(z.real)*cosh!(z.image), cos!(z.real)*sinh!(z.image)) end end # Redefined to handle a Complex argument. def tan(z) if Complex.generic?(z) tan!(z) else sin(z)/cos(z) end end # Redefined to handle a Complex argument. def log(z) if Complex.generic?(z) and z >= 0 log!(z) else r, theta = z.polar Complex(log!(r.abs), theta) end end # Redefined to handle a Complex argument. def log10(z) if Complex.generic?(z) log10!(z) else log(z)/log!(10) end end # FIXME: I don't know what the point of this is. If you give it Complex # arguments, it will fail. def atan2(x, y) if Complex.generic?(x) and Complex.generic?(y) atan2!(x, y) else fail "Not yet implemented." end end # # Hyperbolic arctangent. # def atanh!(x) log((1.0 + x.to_f) / ( 1.0 - x.to_f)) / 2.0 end # Redefined to handle a Complex argument. def atan(z) if Complex.generic?(z) atan2!(z, 1) elsif z.image == 0 atan2(z.real,1) else a = z.real b = z.image c = (a*a + b*b - 1.0) d = (a*a + b*b + 1.0) Complex(atan2!((c + sqrt(c*c + 4.0*a*a)), 2.0*a), atanh!((-d + sqrt(d*d - 4.0*b*b))/(2.0*b))) end end module_function :sqrt module_function :sqrt! module_function :exp! module_function :exp module_function :cosh! module_function :cos! module_function :cos module_function :sinh! module_function :sin! module_function :sin module_function :tan! module_function :tan module_function :log! module_function :log module_function :log10! module_function :log module_function :atan2! module_function :atan2 # module_function :atan! module_function :atan module_function :atanh! end # Documentation comments: # - source: original (researched from pickaxe) # - a couple of fixme's # - Math module methods sinh! etc. a bit fuzzy. What exactly is the intention? # - RDoc output for Bignum etc. is a bit short, with nothing but an # (undocumented) alias. No big deal.