/********************************************************************** internal.h - $Author$ created at: Tue May 17 11:42:20 JST 2011 Copyright (C) 2011 Yukihiro Matsumoto **********************************************************************/ #ifndef RUBY_INTERNAL_H #define RUBY_INTERNAL_H 1 #include "ruby.h" #if defined(__cplusplus) extern "C" { #if 0 } /* satisfy cc-mode */ #endif #endif #ifdef HAVE_STDBOOL_H # include #endif #ifndef __bool_true_false_are_defined # ifndef __cplusplus # undef bool # undef false # undef true # define bool signed char # define false 0 # define true 1 # define __bool_true_false_are_defined 1 # endif #endif /* The most significant bit of the lower part of half-long integer. * If sizeof(long) == 4, this is 0x8000. * If sizeof(long) == 8, this is 0x80000000. */ #define HALF_LONG_MSB ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2)) #define LIKELY(x) RB_LIKELY(x) #define UNLIKELY(x) RB_UNLIKELY(x) #ifndef MAYBE_UNUSED # define MAYBE_UNUSED(x) x #endif #ifndef WARN_UNUSED_RESULT # define WARN_UNUSED_RESULT(x) x #endif #if 0 #elif defined(NO_SANITIZE) # define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \ NO_SANITIZE("address", NOINLINE(x)) #elif defined(NO_SANITIZE_ADDRESS) # define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \ NO_SANITIZE_ADDRESS(NOINLINE(x)) #elif defined(NO_ADDRESS_SAFETY_ANALYSIS) # define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \ NO_ADDRESS_SAFETY_ANALYSIS(NOINLINE(x)) #else # define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) x #endif #if defined(NO_SANITIZE) && defined(__GNUC__) &&! defined(__clang__) /* GCC warns about unknown sanitizer, which is annoying. */ #undef NO_SANITIZE #define NO_SANITIZE(x, y) \ COMPILER_WARNING_PUSH; \ COMPILER_WARNING_IGNORED(-Wattributes); \ __attribute__((__no_sanitize__(x))) y; \ COMPILER_WARNING_POP #endif #ifndef NO_SANITIZE # define NO_SANITIZE(x, y) y #endif #ifdef HAVE_VALGRIND_MEMCHECK_H # include # ifndef VALGRIND_MAKE_MEM_DEFINED # define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n)) # endif # ifndef VALGRIND_MAKE_MEM_UNDEFINED # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n)) # endif #else # define VALGRIND_MAKE_MEM_DEFINED(p, n) 0 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0 #endif #define numberof(array) ((int)(sizeof(array) / sizeof((array)[0]))) #ifndef __has_feature # define __has_feature(x) 0 #endif #ifndef __has_extension # define __has_extension __has_feature #endif #ifndef MJIT_HEADER #ifdef HAVE_SANITIZER_ASAN_INTERFACE_H # include #endif #if !__has_feature(address_sanitizer) # define __asan_poison_memory_region(x, y) # define __asan_unpoison_memory_region(x, y) # define __asan_region_is_poisoned(x, y) 0 #endif #ifdef HAVE_SANITIZER_MSAN_INTERFACE_H # include #endif #if !__has_feature(memory_sanitizer) # define __msan_allocated_memory(x, y) # define __msan_poison(x, y) # define __msan_unpoison(x, y) # define __msan_unpoison_string(x) #endif static inline void poison_memory_region(const volatile void *ptr, size_t size) { __msan_poison(ptr, size); __asan_poison_memory_region(ptr, size); } static inline void poison_object(VALUE obj) { struct RVALUE *ptr = (void *)obj; poison_memory_region(ptr, SIZEOF_VALUE); } static inline void unpoison_memory_region(const volatile void *ptr, size_t size, bool malloc_p) { __asan_unpoison_memory_region(ptr, size); if (malloc_p) { __msan_allocated_memory(ptr, size); } else { __msan_unpoison(ptr, size); } } static inline void unpoison_object(VALUE obj, bool newobj_p) { struct RVALUE *ptr = (void *)obj; unpoison_memory_region(ptr, SIZEOF_VALUE, newobj_p); } #endif /* Prevent compiler from reordering access */ #define ACCESS_ONCE(type,x) (*((volatile type *)&(x))) #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) # define STATIC_ASSERT(name, expr) _Static_assert(expr, #name ": " #expr) #elif GCC_VERSION_SINCE(4, 6, 0) || __has_extension(c_static_assert) # define STATIC_ASSERT(name, expr) RB_GNUC_EXTENSION _Static_assert(expr, #name ": " #expr) #else # define STATIC_ASSERT(name, expr) typedef int static_assert_##name##_check[1 - 2*!(expr)] #endif #define SIGNED_INTEGER_TYPE_P(int_type) (0 > ((int_type)0)-1) #define SIGNED_INTEGER_MAX(sint_type) \ (sint_type) \ ((((sint_type)1) << (sizeof(sint_type) * CHAR_BIT - 2)) | \ ((((sint_type)1) << (sizeof(sint_type) * CHAR_BIT - 2)) - 1)) #define SIGNED_INTEGER_MIN(sint_type) (-SIGNED_INTEGER_MAX(sint_type)-1) #define UNSIGNED_INTEGER_MAX(uint_type) (~(uint_type)0) #if SIGNEDNESS_OF_TIME_T < 0 /* signed */ # define TIMET_MAX SIGNED_INTEGER_MAX(time_t) # define TIMET_MIN SIGNED_INTEGER_MIN(time_t) #elif SIGNEDNESS_OF_TIME_T > 0 /* unsigned */ # define TIMET_MAX UNSIGNED_INTEGER_MAX(time_t) # define TIMET_MIN ((time_t)0) #endif #define TIMET_MAX_PLUS_ONE (2*(double)(TIMET_MAX/2+1)) #ifdef HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW_P #define MUL_OVERFLOW_P(a, b) \ __builtin_mul_overflow_p((a), (b), (__typeof__(a * b))0) #elif defined HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW #define MUL_OVERFLOW_P(a, b) \ RB_GNUC_EXTENSION_BLOCK(__typeof__(a) c; __builtin_mul_overflow((a), (b), &c)) #endif #define MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, min, max) ( \ (a) == 0 ? 0 : \ (a) == -1 ? (b) < -(max) : \ (a) > 0 ? \ ((b) > 0 ? (max) / (a) < (b) : (min) / (a) > (b)) : \ ((b) > 0 ? (min) / (a) < (b) : (max) / (a) > (b))) #ifdef HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW_P /* __builtin_mul_overflow_p can take bitfield */ /* and GCC permits bitfields for integers other than int */ #define MUL_OVERFLOW_FIXNUM_P(a, b) RB_GNUC_EXTENSION_BLOCK( \ struct { long fixnum : SIZEOF_LONG * CHAR_BIT - 1; } c; \ __builtin_mul_overflow_p((a), (b), c.fixnum); \ ) #else #define MUL_OVERFLOW_FIXNUM_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXNUM_MIN, FIXNUM_MAX) #endif #ifdef MUL_OVERFLOW_P #define MUL_OVERFLOW_LONG_LONG_P(a, b) MUL_OVERFLOW_P(a, b) #define MUL_OVERFLOW_LONG_P(a, b) MUL_OVERFLOW_P(a, b) #define MUL_OVERFLOW_INT_P(a, b) MUL_OVERFLOW_P(a, b) #else #define MUL_OVERFLOW_LONG_LONG_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, LLONG_MIN, LLONG_MAX) #define MUL_OVERFLOW_LONG_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, LONG_MIN, LONG_MAX) #define MUL_OVERFLOW_INT_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, INT_MIN, INT_MAX) #endif #ifndef swap16 # ifdef HAVE_BUILTIN___BUILTIN_BSWAP16 # define swap16(x) __builtin_bswap16(x) # endif #endif #ifndef swap16 # define swap16(x) ((uint16_t)((((x)&0xFF)<<8) | (((x)>>8)&0xFF))) #endif #ifndef swap32 # ifdef HAVE_BUILTIN___BUILTIN_BSWAP32 # define swap32(x) __builtin_bswap32(x) # endif #endif #ifndef swap32 # define swap32(x) ((uint32_t)((((x)&0xFF)<<24) \ |(((x)>>24)&0xFF) \ |(((x)&0x0000FF00)<<8) \ |(((x)&0x00FF0000)>>8) )) #endif #ifndef swap64 # ifdef HAVE_BUILTIN___BUILTIN_BSWAP64 # define swap64(x) __builtin_bswap64(x) # endif #endif #ifndef swap64 # ifdef HAVE_INT64_T # define byte_in_64bit(n) ((uint64_t)0xff << (n)) # define swap64(x) ((uint64_t)((((x)&byte_in_64bit(0))<<56) \ |(((x)>>56)&0xFF) \ |(((x)&byte_in_64bit(8))<<40) \ |(((x)&byte_in_64bit(48))>>40) \ |(((x)&byte_in_64bit(16))<<24) \ |(((x)&byte_in_64bit(40))>>24) \ |(((x)&byte_in_64bit(24))<<8) \ |(((x)&byte_in_64bit(32))>>8))) # endif #endif static inline unsigned int nlz_int(unsigned int x) { #if defined(HAVE_BUILTIN___BUILTIN_CLZ) if (x == 0) return SIZEOF_INT * CHAR_BIT; return (unsigned int)__builtin_clz(x); #else unsigned int y; # if 64 < SIZEOF_INT * CHAR_BIT unsigned int n = 128; # elif 32 < SIZEOF_INT * CHAR_BIT unsigned int n = 64; # else unsigned int n = 32; # endif # if 64 < SIZEOF_INT * CHAR_BIT y = x >> 64; if (y) {n -= 64; x = y;} # endif # if 32 < SIZEOF_INT * CHAR_BIT y = x >> 32; if (y) {n -= 32; x = y;} # endif y = x >> 16; if (y) {n -= 16; x = y;} y = x >> 8; if (y) {n -= 8; x = y;} y = x >> 4; if (y) {n -= 4; x = y;} y = x >> 2; if (y) {n -= 2; x = y;} y = x >> 1; if (y) {return n - 2;} return (unsigned int)(n - x); #endif } static inline unsigned int nlz_long(unsigned long x) { #if defined(HAVE_BUILTIN___BUILTIN_CLZL) if (x == 0) return SIZEOF_LONG * CHAR_BIT; return (unsigned int)__builtin_clzl(x); #else unsigned long y; # if 64 < SIZEOF_LONG * CHAR_BIT unsigned int n = 128; # elif 32 < SIZEOF_LONG * CHAR_BIT unsigned int n = 64; # else unsigned int n = 32; # endif # if 64 < SIZEOF_LONG * CHAR_BIT y = x >> 64; if (y) {n -= 64; x = y;} # endif # if 32 < SIZEOF_LONG * CHAR_BIT y = x >> 32; if (y) {n -= 32; x = y;} # endif y = x >> 16; if (y) {n -= 16; x = y;} y = x >> 8; if (y) {n -= 8; x = y;} y = x >> 4; if (y) {n -= 4; x = y;} y = x >> 2; if (y) {n -= 2; x = y;} y = x >> 1; if (y) {return n - 2;} return (unsigned int)(n - x); #endif } #ifdef HAVE_LONG_LONG static inline unsigned int nlz_long_long(unsigned LONG_LONG x) { #if defined(HAVE_BUILTIN___BUILTIN_CLZLL) if (x == 0) return SIZEOF_LONG_LONG * CHAR_BIT; return (unsigned int)__builtin_clzll(x); #else unsigned LONG_LONG y; # if 64 < SIZEOF_LONG_LONG * CHAR_BIT unsigned int n = 128; # elif 32 < SIZEOF_LONG_LONG * CHAR_BIT unsigned int n = 64; # else unsigned int n = 32; # endif # if 64 < SIZEOF_LONG_LONG * CHAR_BIT y = x >> 64; if (y) {n -= 64; x = y;} # endif # if 32 < SIZEOF_LONG_LONG * CHAR_BIT y = x >> 32; if (y) {n -= 32; x = y;} # endif y = x >> 16; if (y) {n -= 16; x = y;} y = x >> 8; if (y) {n -= 8; x = y;} y = x >> 4; if (y) {n -= 4; x = y;} y = x >> 2; if (y) {n -= 2; x = y;} y = x >> 1; if (y) {return n - 2;} return (unsigned int)(n - x); #endif } #endif #ifdef HAVE_UINT128_T static inline unsigned int nlz_int128(uint128_t x) { uint128_t y; unsigned int n = 128; y = x >> 64; if (y) {n -= 64; x = y;} y = x >> 32; if (y) {n -= 32; x = y;} y = x >> 16; if (y) {n -= 16; x = y;} y = x >> 8; if (y) {n -= 8; x = y;} y = x >> 4; if (y) {n -= 4; x = y;} y = x >> 2; if (y) {n -= 2; x = y;} y = x >> 1; if (y) {return n - 2;} return (unsigned int)(n - x); } #endif static inline unsigned int nlz_intptr(uintptr_t x) { #if SIZEOF_UINTPTR_T == SIZEOF_INT return nlz_int(x); #elif SIZEOF_UINTPTR_T == SIZEOF_LONG return nlz_long(x); #elif SIZEOF_UINTPTR_T == SIZEOF_LONG_LONG return nlz_long_long(x); #else #error no known integer type corresponds uintptr_t return /* sane compiler */ ~0; #endif } static inline unsigned int rb_popcount32(uint32_t x) { #ifdef HAVE_BUILTIN___BUILTIN_POPCOUNT return (unsigned int)__builtin_popcount(x); #else x = (x & 0x55555555) + (x >> 1 & 0x55555555); x = (x & 0x33333333) + (x >> 2 & 0x33333333); x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f); x = (x & 0x001f001f) + (x >> 8 & 0x001f001f); return (x & 0x0000003f) + (x >>16 & 0x0000003f); #endif } static inline int rb_popcount64(uint64_t x) { #ifdef HAVE_BUILTIN___BUILTIN_POPCOUNT return __builtin_popcountll(x); #else x = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555); x = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333); x = (x & 0x0707070707070707) + (x >> 4 & 0x0707070707070707); x = (x & 0x001f001f001f001f) + (x >> 8 & 0x001f001f001f001f); x = (x & 0x0000003f0000003f) + (x >>16 & 0x0000003f0000003f); return (x & 0x7f) + (x >>32 & 0x7f); #endif } static inline int rb_popcount_intptr(uintptr_t x) { #if SIZEOF_VOIDP == 8 return rb_popcount64(x); #elif SIZEOF_VOIDP == 4 return rb_popcount32(x); #endif } static inline int ntz_int32(uint32_t x) { #ifdef HAVE_BUILTIN___BUILTIN_CTZ return __builtin_ctz(x); #else return rb_popcount32((~x) & (x-1)); #endif } static inline int ntz_int64(uint64_t x) { #ifdef HAVE_BUILTIN___BUILTIN_CTZLL return __builtin_ctzll(x); #else return rb_popcount64((~x) & (x-1)); #endif } static inline int ntz_intptr(uintptr_t x) { #if SIZEOF_VOIDP == 8 return ntz_int64(x); #elif SIZEOF_VOIDP == 4 return ntz_int32(x); #endif } #if HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG # define DLONG LONG_LONG # define DL2NUM(x) LL2NUM(x) #elif defined(HAVE_INT128_T) # define DLONG int128_t # define DL2NUM(x) (RB_FIXABLE(x) ? LONG2FIX(x) : rb_int128t2big(x)) VALUE rb_int128t2big(int128_t n); #endif static inline long rb_overflowed_fix_to_int(long x) { return (long)((unsigned long)(x >> 1) ^ (1LU << (SIZEOF_LONG * CHAR_BIT - 1))); } static inline VALUE rb_fix_plus_fix(VALUE x, VALUE y) { #ifdef HAVE_BUILTIN___BUILTIN_ADD_OVERFLOW long lz; /* NOTE * (1) `LONG2FIX(FIX2LONG(x)+FIX2LONG(y))` + = `((lx*2+1)/2 + (ly*2+1)/2)*2+1` + = `lx*2 + ly*2 + 1` + = `(lx*2+1) + (ly*2+1) - 1` + = `x + y - 1` * (2) Fixnum's LSB is always 1. * It means you can always run `x - 1` without overflow. * (3) Of course `z = x + (y-1)` may overflow. * At that time true value is * * positive: 0b0 1xxx...1, and z = 0b1xxx...1 * * nevative: 0b1 0xxx...1, and z = 0b0xxx...1 * To convert this true value to long, * (a) Use arithmetic shift * * positive: 0b11xxx... * * negative: 0b00xxx... * (b) invert MSB * * positive: 0b01xxx... * * negative: 0b10xxx... */ if (__builtin_add_overflow((long)x, (long)y-1, &lz)) { return rb_int2big(rb_overflowed_fix_to_int(lz)); } else { return (VALUE)lz; } #else long lz = FIX2LONG(x) + FIX2LONG(y); return LONG2NUM(lz); #endif } static inline VALUE rb_fix_minus_fix(VALUE x, VALUE y) { #ifdef HAVE_BUILTIN___BUILTIN_SUB_OVERFLOW long lz; if (__builtin_sub_overflow((long)x, (long)y-1, &lz)) { return rb_int2big(rb_overflowed_fix_to_int(lz)); } else { return (VALUE)lz; } #else long lz = FIX2LONG(x) - FIX2LONG(y); return LONG2NUM(lz); #endif } /* arguments must be Fixnum */ static inline VALUE rb_fix_mul_fix(VALUE x, VALUE y) { long lx = FIX2LONG(x); long ly = FIX2LONG(y); #ifdef DLONG return DL2NUM((DLONG)lx * (DLONG)ly); #else if (MUL_OVERFLOW_FIXNUM_P(lx, ly)) { return rb_big_mul(rb_int2big(lx), rb_int2big(ly)); } else { return LONG2FIX(lx * ly); } #endif } /* * This behaves different from C99 for negative arguments. * Note that div may overflow fixnum. */ static inline void rb_fix_divmod_fix(VALUE a, VALUE b, VALUE *divp, VALUE *modp) { /* assume / and % comply C99. * ldiv(3) won't be inlined by GCC and clang. * I expect / and % are compiled as single idiv. */ long x = FIX2LONG(a); long y = FIX2LONG(b); long div, mod; if (x == FIXNUM_MIN && y == -1) { if (divp) *divp = LONG2NUM(-FIXNUM_MIN); if (modp) *modp = LONG2FIX(0); return; } div = x / y; mod = x % y; if (y > 0 ? mod < 0 : mod > 0) { mod += y; div -= 1; } if (divp) *divp = LONG2FIX(div); if (modp) *modp = LONG2FIX(mod); } /* div() for Ruby * This behaves different from C99 for negative arguments. */ static inline VALUE rb_fix_div_fix(VALUE x, VALUE y) { VALUE div; rb_fix_divmod_fix(x, y, &div, NULL); return div; } /* mod() for Ruby * This behaves different from C99 for negative arguments. */ static inline VALUE rb_fix_mod_fix(VALUE x, VALUE y) { VALUE mod; rb_fix_divmod_fix(x, y, NULL, &mod); return mod; } #if defined(HAVE_UINT128_T) && defined(HAVE_LONG_LONG) # define bit_length(x) \ (unsigned int) \ (sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \ sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \ sizeof(x) <= SIZEOF_LONG_LONG ? SIZEOF_LONG_LONG * CHAR_BIT - nlz_long_long((unsigned LONG_LONG)(x)) : \ SIZEOF_INT128_T * CHAR_BIT - nlz_int128((uint128_t)(x))) #elif defined(HAVE_UINT128_T) # define bit_length(x) \ (unsigned int) \ (sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \ sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \ SIZEOF_INT128_T * CHAR_BIT - nlz_int128((uint128_t)(x))) #elif defined(HAVE_LONG_LONG) # define bit_length(x) \ (unsigned int) \ (sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \ sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \ SIZEOF_LONG_LONG * CHAR_BIT - nlz_long_long((unsigned LONG_LONG)(x))) #else # define bit_length(x) \ (unsigned int) \ (sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \ SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x))) #endif #ifndef BDIGIT # if SIZEOF_INT*2 <= SIZEOF_LONG_LONG # define BDIGIT unsigned int # define SIZEOF_BDIGIT SIZEOF_INT # define BDIGIT_DBL unsigned LONG_LONG # define BDIGIT_DBL_SIGNED LONG_LONG # define PRI_BDIGIT_PREFIX "" # define PRI_BDIGIT_DBL_PREFIX PRI_LL_PREFIX # elif SIZEOF_INT*2 <= SIZEOF_LONG # define BDIGIT unsigned int # define SIZEOF_BDIGIT SIZEOF_INT # define BDIGIT_DBL unsigned long # define BDIGIT_DBL_SIGNED long # define PRI_BDIGIT_PREFIX "" # define PRI_BDIGIT_DBL_PREFIX "l" # elif SIZEOF_SHORT*2 <= SIZEOF_LONG # define BDIGIT unsigned short # define SIZEOF_BDIGIT SIZEOF_SHORT # define BDIGIT_DBL unsigned long # define BDIGIT_DBL_SIGNED long # define PRI_BDIGIT_PREFIX "h" # define PRI_BDIGIT_DBL_PREFIX "l" # else # define BDIGIT unsigned short # define SIZEOF_BDIGIT (SIZEOF_LONG/2) # define SIZEOF_ACTUAL_BDIGIT SIZEOF_LONG # define BDIGIT_DBL unsigned long # define BDIGIT_DBL_SIGNED long # define PRI_BDIGIT_PREFIX "h" # define PRI_BDIGIT_DBL_PREFIX "l" # endif #endif #ifndef SIZEOF_ACTUAL_BDIGIT # define SIZEOF_ACTUAL_BDIGIT SIZEOF_BDIGIT #endif #ifdef PRI_BDIGIT_PREFIX # define PRIdBDIGIT PRI_BDIGIT_PREFIX"d" # define PRIiBDIGIT PRI_BDIGIT_PREFIX"i" # define PRIoBDIGIT PRI_BDIGIT_PREFIX"o" # define PRIuBDIGIT PRI_BDIGIT_PREFIX"u" # define PRIxBDIGIT PRI_BDIGIT_PREFIX"x" # define PRIXBDIGIT PRI_BDIGIT_PREFIX"X" #endif #ifdef PRI_BDIGIT_DBL_PREFIX # define PRIdBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"d" # define PRIiBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"i" # define PRIoBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"o" # define PRIuBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"u" # define PRIxBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"x" # define PRIXBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"X" #endif #define BIGNUM_EMBED_LEN_NUMBITS 3 #ifndef BIGNUM_EMBED_LEN_MAX # if (SIZEOF_VALUE*3/SIZEOF_ACTUAL_BDIGIT) < (1 << BIGNUM_EMBED_LEN_NUMBITS)-1 # define BIGNUM_EMBED_LEN_MAX (SIZEOF_VALUE*3/SIZEOF_ACTUAL_BDIGIT) # else # define BIGNUM_EMBED_LEN_MAX ((1 << BIGNUM_EMBED_LEN_NUMBITS)-1) # endif #endif struct RBignum { struct RBasic basic; union { struct { size_t len; BDIGIT *digits; } heap; BDIGIT ary[BIGNUM_EMBED_LEN_MAX]; } as; }; #define BIGNUM_SIGN_BIT ((VALUE)FL_USER1) /* sign: positive:1, negative:0 */ #define BIGNUM_SIGN(b) ((RBASIC(b)->flags & BIGNUM_SIGN_BIT) != 0) #define BIGNUM_SET_SIGN(b,sign) \ ((sign) ? (RBASIC(b)->flags |= BIGNUM_SIGN_BIT) \ : (RBASIC(b)->flags &= ~BIGNUM_SIGN_BIT)) #define BIGNUM_POSITIVE_P(b) BIGNUM_SIGN(b) #define BIGNUM_NEGATIVE_P(b) (!BIGNUM_SIGN(b)) #define BIGNUM_NEGATE(b) (RBASIC(b)->flags ^= BIGNUM_SIGN_BIT) #define BIGNUM_EMBED_FLAG ((VALUE)FL_USER2) #define BIGNUM_EMBED_LEN_MASK \ (~(~(VALUE)0U << BIGNUM_EMBED_LEN_NUMBITS) << BIGNUM_EMBED_LEN_SHIFT) #define BIGNUM_EMBED_LEN_SHIFT \ (FL_USHIFT+3) /* bit offset of BIGNUM_EMBED_LEN_MASK */ #define BIGNUM_LEN(b) \ ((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \ (size_t)((RBASIC(b)->flags >> BIGNUM_EMBED_LEN_SHIFT) & \ (BIGNUM_EMBED_LEN_MASK >> BIGNUM_EMBED_LEN_SHIFT)) : \ RBIGNUM(b)->as.heap.len) /* LSB:BIGNUM_DIGITS(b)[0], MSB:BIGNUM_DIGITS(b)[BIGNUM_LEN(b)-1] */ #define BIGNUM_DIGITS(b) \ ((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \ RBIGNUM(b)->as.ary : \ RBIGNUM(b)->as.heap.digits) #define BIGNUM_LENINT(b) rb_long2int(BIGNUM_LEN(b)) #define RBIGNUM(obj) (R_CAST(RBignum)(obj)) struct RRational { struct RBasic basic; const VALUE num; const VALUE den; }; #define RRATIONAL(obj) (R_CAST(RRational)(obj)) #define RRATIONAL_SET_NUM(rat, n) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->num,(n)) #define RRATIONAL_SET_DEN(rat, d) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->den,(d)) struct RFloat { struct RBasic basic; double float_value; }; #define RFLOAT(obj) (R_CAST(RFloat)(obj)) struct RComplex { struct RBasic basic; const VALUE real; const VALUE imag; }; #define RCOMPLEX(obj) (R_CAST(RComplex)(obj)) /* shortcut macro for internal only */ #define RCOMPLEX_SET_REAL(cmp, r) RB_OBJ_WRITE((cmp), &((struct RComplex *)(cmp))->real,(r)) #define RCOMPLEX_SET_IMAG(cmp, i) RB_OBJ_WRITE((cmp), &((struct RComplex *)(cmp))->imag,(i)) enum ruby_rhash_flags { RHASH_ST_TABLE_FLAG = FL_USER3, RHASH_ARRAY_MAX_SIZE = 8, RHASH_ARRAY_SIZE_MASK = (FL_USER4|FL_USER5|FL_USER6|FL_USER7), RHASH_ARRAY_SIZE_SHIFT = (FL_USHIFT+4), RHASH_ARRAY_BOUND_MASK = (FL_USER8|FL_USER9|FL_USER10|FL_USER11), RHASH_ARRAY_BOUND_SHIFT = (FL_USHIFT+8), RHASH_ENUM_END }; #define HASH_PROC_DEFAULT FL_USER2 #define RHASH_ARRAY_SIZE_RAW(h) \ ((unsigned int)((RBASIC(h)->flags & RHASH_ARRAY_SIZE_MASK) >> RHASH_ARRAY_SIZE_SHIFT)) int rb_hash_array_p(VALUE hash); struct li_table *rb_hash_array(VALUE hash); st_table *rb_hash_st_table(VALUE hash); void rb_hash_st_table_set(VALUE hash, st_table *st); #if 0 /* for debug */ #define RHASH_ARRAY_P(hash) rb_hash_array_p(hash) #define RHASH_ARRAY(h) rb_hash_array(h) #define RHASH_ST_TABLE(h) rb_hash_st_table(h) #else #define RHASH_ARRAY_P(hash) (!FL_TEST_RAW((hash), RHASH_ST_TABLE_FLAG)) #define RHASH_ARRAY(hash) (RHASH(hash)->as.li) #define RHASH_ST_TABLE(hash) (RHASH(hash)->as.st) #endif #define RHASH(obj) (R_CAST(RHash)(obj)) #define RHASH_ST_SIZE(h) (RHASH_ST_TABLE(h)->num_entries) #define RHASH_TABLE_P(h) (!RHASH_ARRAY_P(h)) #define RHASH_CLEAR(h) (FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG), RHASH(h)->as.li = NULL) #define RHASH_ARRAY_SIZE_MASK (VALUE)RHASH_ARRAY_SIZE_MASK #define RHASH_ARRAY_SIZE_SHIFT RHASH_ARRAY_SIZE_SHIFT #define RHASH_ARRAY_BOUND_MASK (VALUE)RHASH_ARRAY_BOUND_MASK #define RHASH_ARRAY_BOUND_SHIFT RHASH_ARRAY_BOUND_SHIFT #if USE_TRANSIENT_HEAP #define RHASH_TRANSIENT_FLAG FL_USER14 #define RHASH_TRANSIENT_P(hash) FL_TEST_RAW((hash), RHASH_TRANSIENT_FLAG) #define RHASH_SET_TRANSIENT_FLAG(h) FL_SET_RAW(h, RHASH_TRANSIENT_FLAG) #define RHASH_UNSET_TRANSIENT_FLAG(h) FL_UNSET_RAW(h, RHASH_TRANSIENT_FLAG) #else #define RHASH_TRANSIENT_P(hash) 0 #define RHASH_SET_TRANSIENT_FLAG(h) ((void)0) #define RHASH_UNSET_TRANSIENT_FLAG(h) ((void)0) #endif #define RHASH_ARRAY_MAX_SIZE 8 #define RHASH_ARRAY_MAX_BOUND RHASH_ARRAY_MAX_SIZE typedef struct li_table_entry { VALUE hash; VALUE key; VALUE record; } li_table_entry; typedef struct li_table { li_table_entry entries[RHASH_ARRAY_MAX_SIZE]; } li_table; /* * RHASH_ARRAY_P(h): * * as.li == NULL or * as.li points li_table. * * as.li is allocated by transient heap or xmalloc. * * !RHASH_ARRAY_P(h): * * as.st points st_table. */ struct RHash { struct RBasic basic; union { struct st_table *st; struct li_table *li; /* possibly 0 */ } as; int iter_lev; const VALUE ifnone; }; #ifdef RHASH_ITER_LEV # undef RHASH_ITER_LEV # undef RHASH_IFNONE # undef RHASH_SIZE # define RHASH_ITER_LEV(h) (RHASH(h)->iter_lev) # define RHASH_IFNONE(h) (RHASH(h)->ifnone) # define RHASH_SIZE(h) (RHASH_ARRAY_P(h) ? RHASH_ARRAY_SIZE_RAW(h) : RHASH_ST_SIZE(h)) #endif /* #ifdef RHASH_ITER_LEV */ /* missing/setproctitle.c */ #ifndef HAVE_SETPROCTITLE extern void ruby_init_setproctitle(int argc, char *argv[]); #endif #define RSTRUCT_EMBED_LEN_MAX RSTRUCT_EMBED_LEN_MAX #define RSTRUCT_EMBED_LEN_MASK RSTRUCT_EMBED_LEN_MASK #define RSTRUCT_EMBED_LEN_SHIFT RSTRUCT_EMBED_LEN_SHIFT enum { RSTRUCT_EMBED_LEN_MAX = 3, RSTRUCT_EMBED_LEN_MASK = (RUBY_FL_USER2|RUBY_FL_USER1), RSTRUCT_EMBED_LEN_SHIFT = (RUBY_FL_USHIFT+1), RSTRUCT_TRANSIENT_FLAG = FL_USER3, RSTRUCT_ENUM_END }; #if USE_TRANSIENT_HEAP #define RSTRUCT_TRANSIENT_P(st) FL_TEST_RAW((obj), RSTRUCT_TRANSIENT_FLAG) #define RSTRUCT_TRANSIENT_SET(st) FL_SET_RAW((st), RSTRUCT_TRANSIENT_FLAG) #define RSTRUCT_TRANSIENT_UNSET(st) FL_UNSET_RAW((st), RSTRUCT_TRANSIENT_FLAG) #else #define RSTRUCT_TRANSIENT_P(st) 0 #define RSTRUCT_TRANSIENT_SET(st) ((void)0) #define RSTRUCT_TRANSIENT_UNSET(st) ((void)0) #endif struct RStruct { struct RBasic basic; union { struct { long len; const VALUE *ptr; } heap; const VALUE ary[RSTRUCT_EMBED_LEN_MAX]; } as; }; #undef RSTRUCT_LEN #undef RSTRUCT_PTR #undef RSTRUCT_SET #undef RSTRUCT_GET #define RSTRUCT_EMBED_LEN(st) \ (long)((RBASIC(st)->flags >> RSTRUCT_EMBED_LEN_SHIFT) & \ (RSTRUCT_EMBED_LEN_MASK >> RSTRUCT_EMBED_LEN_SHIFT)) #define RSTRUCT_LEN(st) rb_struct_len(st) #define RSTRUCT_LENINT(st) rb_long2int(RSTRUCT_LEN(st)) #define RSTRUCT_CONST_PTR(st) rb_struct_const_ptr(st) #define RSTRUCT_PTR(st) ((VALUE *)RSTRUCT_CONST_PTR(RB_OBJ_WB_UNPROTECT_FOR(STRUCT, st))) #define RSTRUCT_SET(st, idx, v) RB_OBJ_WRITE(st, &RSTRUCT_CONST_PTR(st)[idx], (v)) #define RSTRUCT_GET(st, idx) (RSTRUCT_CONST_PTR(st)[idx]) #define RSTRUCT(obj) (R_CAST(RStruct)(obj)) static inline long rb_struct_len(VALUE st) { return (RBASIC(st)->flags & RSTRUCT_EMBED_LEN_MASK) ? RSTRUCT_EMBED_LEN(st) : RSTRUCT(st)->as.heap.len; } static inline const VALUE * rb_struct_const_ptr(VALUE st) { return FIX_CONST_VALUE_PTR((RBASIC(st)->flags & RSTRUCT_EMBED_LEN_MASK) ? RSTRUCT(st)->as.ary : RSTRUCT(st)->as.heap.ptr); } static inline const VALUE * rb_struct_const_heap_ptr(VALUE st) { /* TODO: check embed on debug mode */ return RSTRUCT(st)->as.heap.ptr; } /* class.c */ struct rb_deprecated_classext_struct { char conflict[sizeof(VALUE) * 3]; }; struct rb_subclass_entry; typedef struct rb_subclass_entry rb_subclass_entry_t; struct rb_subclass_entry { VALUE klass; rb_subclass_entry_t *next; }; #if defined(HAVE_LONG_LONG) typedef unsigned LONG_LONG rb_serial_t; #define SERIALT2NUM ULL2NUM #define PRI_SERIALT_PREFIX PRI_LL_PREFIX #elif defined(HAVE_UINT64_T) typedef uint64_t rb_serial_t; #define SERIALT2NUM SIZET2NUM #define PRI_SERIALT_PREFIX PRI_64_PREFIX #else typedef unsigned long rb_serial_t; #define SERIALT2NUM ULONG2NUM #define PRI_SERIALT_PREFIX PRI_LONG_PREFIX #endif struct rb_classext_struct { struct st_table *iv_index_tbl; struct st_table *iv_tbl; struct rb_id_table *const_tbl; struct rb_id_table *callable_m_tbl; rb_subclass_entry_t *subclasses; rb_subclass_entry_t **parent_subclasses; /** * In the case that this is an `ICLASS`, `module_subclasses` points to the link * in the module's `subclasses` list that indicates that the klass has been * included. Hopefully that makes sense. */ rb_subclass_entry_t **module_subclasses; rb_serial_t class_serial; const VALUE origin_; VALUE refined_class; rb_alloc_func_t allocator; }; typedef struct rb_classext_struct rb_classext_t; #undef RClass struct RClass { struct RBasic basic; VALUE super; rb_classext_t *ptr; struct rb_id_table *m_tbl; }; void rb_class_subclass_add(VALUE super, VALUE klass); void rb_class_remove_from_super_subclasses(VALUE); int rb_singleton_class_internal_p(VALUE sklass); #define RCLASS_EXT(c) (RCLASS(c)->ptr) #define RCLASS_IV_TBL(c) (RCLASS_EXT(c)->iv_tbl) #define RCLASS_CONST_TBL(c) (RCLASS_EXT(c)->const_tbl) #define RCLASS_M_TBL(c) (RCLASS(c)->m_tbl) #define RCLASS_CALLABLE_M_TBL(c) (RCLASS_EXT(c)->callable_m_tbl) #define RCLASS_IV_INDEX_TBL(c) (RCLASS_EXT(c)->iv_index_tbl) #define RCLASS_ORIGIN(c) (RCLASS_EXT(c)->origin_) #define RCLASS_REFINED_CLASS(c) (RCLASS_EXT(c)->refined_class) #define RCLASS_SERIAL(c) (RCLASS_EXT(c)->class_serial) #define RICLASS_IS_ORIGIN FL_USER5 static inline void RCLASS_SET_ORIGIN(VALUE klass, VALUE origin) { RB_OBJ_WRITE(klass, &RCLASS_ORIGIN(klass), origin); if (klass != origin) FL_SET(origin, RICLASS_IS_ORIGIN); } #undef RCLASS_SUPER static inline VALUE RCLASS_SUPER(VALUE klass) { return RCLASS(klass)->super; } static inline VALUE RCLASS_SET_SUPER(VALUE klass, VALUE super) { if (super) { rb_class_remove_from_super_subclasses(klass); rb_class_subclass_add(super, klass); } RB_OBJ_WRITE(klass, &RCLASS(klass)->super, super); return super; } /* IMEMO: Internal memo object */ #ifndef IMEMO_DEBUG #define IMEMO_DEBUG 0 #endif struct RIMemo { VALUE flags; VALUE v0; VALUE v1; VALUE v2; VALUE v3; }; enum imemo_type { imemo_env = 0, imemo_cref = 1, /*!< class reference */ imemo_svar = 2, /*!< special variable */ imemo_throw_data = 3, imemo_ifunc = 4, /*!< iterator function */ imemo_memo = 5, imemo_ment = 6, imemo_iseq = 7, imemo_tmpbuf = 8, imemo_ast = 9, imemo_parser_strterm = 10 }; #define IMEMO_MASK 0x0f static inline enum imemo_type imemo_type(VALUE imemo) { return (RBASIC(imemo)->flags >> FL_USHIFT) & IMEMO_MASK; } static inline int imemo_type_p(VALUE imemo, enum imemo_type imemo_type) { if (LIKELY(!RB_SPECIAL_CONST_P(imemo))) { /* fixed at compile time if imemo_type is given. */ const VALUE mask = (IMEMO_MASK << FL_USHIFT) | RUBY_T_MASK; const VALUE expected_type = (imemo_type << FL_USHIFT) | T_IMEMO; /* fixed at runtime. */ return expected_type == (RBASIC(imemo)->flags & mask); } else { return 0; } } /* FL_USER0 to FL_USER3 is for type */ #define IMEMO_FL_USHIFT (FL_USHIFT + 4) #define IMEMO_FL_USER0 FL_USER4 #define IMEMO_FL_USER1 FL_USER5 #define IMEMO_FL_USER2 FL_USER6 #define IMEMO_FL_USER3 FL_USER7 #define IMEMO_FL_USER4 FL_USER8 /* CREF (Class REFerence) is defined in method.h */ /*! SVAR (Special VARiable) */ struct vm_svar { VALUE flags; const VALUE cref_or_me; /*!< class reference or rb_method_entry_t */ const VALUE lastline; const VALUE backref; const VALUE others; }; #define THROW_DATA_CONSUMED IMEMO_FL_USER0 /*! THROW_DATA */ struct vm_throw_data { VALUE flags; VALUE reserved; const VALUE throw_obj; const struct rb_control_frame_struct *catch_frame; VALUE throw_state; }; #define THROW_DATA_P(err) RB_TYPE_P((VALUE)(err), T_IMEMO) /* IFUNC (Internal FUNCtion) */ struct vm_ifunc_argc { #if SIZEOF_INT * 2 > SIZEOF_VALUE signed int min: (SIZEOF_VALUE * CHAR_BIT) / 2; signed int max: (SIZEOF_VALUE * CHAR_BIT) / 2; #else int min, max; #endif }; /*! IFUNC (Internal FUNCtion) */ struct vm_ifunc { VALUE flags; VALUE reserved; VALUE (*func)(ANYARGS); const void *data; struct vm_ifunc_argc argc; }; #define IFUNC_NEW(a, b, c) ((struct vm_ifunc *)rb_imemo_new(imemo_ifunc, (VALUE)(a), (VALUE)(b), (VALUE)(c), 0)) struct vm_ifunc *rb_vm_ifunc_new(VALUE (*func)(ANYARGS), const void *data, int min_argc, int max_argc); static inline struct vm_ifunc * rb_vm_ifunc_proc_new(VALUE (*func)(ANYARGS), const void *data) { return rb_vm_ifunc_new(func, data, 0, UNLIMITED_ARGUMENTS); } typedef struct rb_imemo_tmpbuf_struct { VALUE flags; VALUE reserved; VALUE *ptr; /* malloc'ed buffer */ struct rb_imemo_tmpbuf_struct *next; /* next imemo */ size_t cnt; /* buffer size in VALUE */ } rb_imemo_tmpbuf_t; VALUE rb_imemo_tmpbuf_auto_free_pointer(void *buf); VALUE rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(void *buf, size_t cnt); rb_imemo_tmpbuf_t *rb_imemo_tmpbuf_parser_heap(void *buf, rb_imemo_tmpbuf_t *old_heap, size_t cnt); #define RB_IMEMO_TMPBUF_PTR(v) \ ((void *)(((const struct rb_imemo_tmpbuf_struct *)(v))->ptr)) static inline VALUE rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(VALUE str) { const void *src; void *dst; size_t len; SafeStringValue(str); len = RSTRING_LEN(str); src = RSTRING_PTR(str); dst = ruby_xmalloc(len); memcpy(dst, src, len); return rb_imemo_tmpbuf_auto_free_pointer(dst); } void rb_strterm_mark(VALUE obj); /*! MEMO * * @see imemo_type * */ struct MEMO { VALUE flags; VALUE reserved; const VALUE v1; const VALUE v2; union { long cnt; long state; const VALUE value; VALUE (*func)(ANYARGS); } u3; }; #define MEMO_V1_SET(m, v) RB_OBJ_WRITE((m), &(m)->v1, (v)) #define MEMO_V2_SET(m, v) RB_OBJ_WRITE((m), &(m)->v2, (v)) #define MEMO_CAST(m) ((struct MEMO *)m) #define MEMO_NEW(a, b, c) ((struct MEMO *)rb_imemo_new(imemo_memo, (VALUE)(a), (VALUE)(b), (VALUE)(c), 0)) #define roomof(x, y) (((x) + (y) - 1) / (y)) #define type_roomof(x, y) roomof(sizeof(x), sizeof(y)) #define MEMO_FOR(type, value) ((type *)RARRAY_PTR(value)) #define NEW_MEMO_FOR(type, value) \ ((value) = rb_ary_tmp_new_fill(type_roomof(type, VALUE)), MEMO_FOR(type, value)) #define NEW_PARTIAL_MEMO_FOR(type, value, member) \ ((value) = rb_ary_tmp_new_fill(type_roomof(type, VALUE)), \ rb_ary_set_len((value), offsetof(type, member) / sizeof(VALUE)), \ MEMO_FOR(type, value)) #define STRING_P(s) (RB_TYPE_P((s), T_STRING) && CLASS_OF(s) == rb_cString) #ifdef RUBY_INTEGER_UNIFICATION # define rb_cFixnum rb_cInteger # define rb_cBignum rb_cInteger #endif enum { cmp_opt_Fixnum, cmp_opt_String, cmp_opt_Float, cmp_optimizable_count }; struct cmp_opt_data { unsigned int opt_methods; unsigned int opt_inited; }; #define NEW_CMP_OPT_MEMO(type, value) \ NEW_PARTIAL_MEMO_FOR(type, value, cmp_opt) #define CMP_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(cmp_opt_,type)) #define CMP_OPTIMIZABLE(data, type) \ (((data).opt_inited & CMP_OPTIMIZABLE_BIT(type)) ? \ ((data).opt_methods & CMP_OPTIMIZABLE_BIT(type)) : \ (((data).opt_inited |= CMP_OPTIMIZABLE_BIT(type)), \ rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \ ((data).opt_methods |= CMP_OPTIMIZABLE_BIT(type)))) #define OPTIMIZED_CMP(a, b, data) \ ((FIXNUM_P(a) && FIXNUM_P(b) && CMP_OPTIMIZABLE(data, Fixnum)) ? \ (((long)a > (long)b) ? 1 : ((long)a < (long)b) ? -1 : 0) : \ (STRING_P(a) && STRING_P(b) && CMP_OPTIMIZABLE(data, String)) ? \ rb_str_cmp(a, b) : \ (RB_FLOAT_TYPE_P(a) && RB_FLOAT_TYPE_P(b) && CMP_OPTIMIZABLE(data, Float)) ? \ rb_float_cmp(a, b) : \ rb_cmpint(rb_funcallv(a, id_cmp, 1, &b), a, b)) /* ment is in method.h */ /* global variable */ struct rb_global_entry { struct rb_global_variable *var; ID id; }; struct rb_global_entry *rb_global_entry(ID); VALUE rb_gvar_get(struct rb_global_entry *); VALUE rb_gvar_set(struct rb_global_entry *, VALUE); VALUE rb_gvar_defined(struct rb_global_entry *); /* array.c */ #ifndef ARRAY_DEBUG #define ARRAY_DEBUG 0 #endif #ifdef ARRAY_DEBUG #define RARRAY_PTR_IN_USE_FLAG FL_USER14 #define ARY_PTR_USING_P(ary) FL_TEST_RAW((ary), RARRAY_PTR_IN_USE_FLAG) #else /* disable debug function */ #undef RARRAY_PTR_USE_START #undef RARRAY_PTR_USE_END #define RARRAY_PTR_USE_START(a) ((VALUE *)RARRAY_CONST_PTR_TRANSIENT(a)) #define RARRAY_PTR_USE_END(a) #define ARY_PTR_USING_P(ary) 0 #endif #if USE_TRANSIENT_HEAP #define RARY_TRANSIENT_SET(ary) FL_SET_RAW((ary), RARRAY_TRANSIENT_FLAG); #define RARY_TRANSIENT_UNSET(ary) FL_UNSET_RAW((ary), RARRAY_TRANSIENT_FLAG); #else #undef RARRAY_TRANSIENT_P #define RARRAY_TRANSIENT_P(a) 0 #define RARY_TRANSIENT_SET(ary) ((void)0) #define RARY_TRANSIENT_UNSET(ary) ((void)0) #endif VALUE rb_ary_last(int, const VALUE *, VALUE); void rb_ary_set_len(VALUE, long); void rb_ary_delete_same(VALUE, VALUE); VALUE rb_ary_tmp_new_fill(long capa); VALUE rb_ary_at(VALUE, VALUE); VALUE rb_ary_aref1(VALUE ary, VALUE i); VALUE rb_ary_aref2(VALUE ary, VALUE b, VALUE e); size_t rb_ary_memsize(VALUE); VALUE rb_to_array_type(VALUE obj); VALUE rb_check_to_array(VALUE ary); VALUE rb_ary_tmp_new_from_values(VALUE, long, const VALUE *); VALUE rb_ary_behead(VALUE, long); #if defined(__GNUC__) && defined(HAVE_VA_ARGS_MACRO) #define rb_ary_new_from_args(n, ...) \ __extension__ ({ \ const VALUE args_to_new_ary[] = {__VA_ARGS__}; \ if (__builtin_constant_p(n)) { \ STATIC_ASSERT(rb_ary_new_from_args, numberof(args_to_new_ary) == (n)); \ } \ rb_ary_new_from_values(numberof(args_to_new_ary), args_to_new_ary); \ }) #endif static inline VALUE rb_ary_entry_internal(VALUE ary, long offset) { long len = RARRAY_LEN(ary); const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(ary); if (len == 0) return Qnil; if (offset < 0) { offset += len; if (offset < 0) return Qnil; } else if (len <= offset) { return Qnil; } return ptr[offset]; } /* bignum.c */ extern const char ruby_digitmap[]; double rb_big_fdiv_double(VALUE x, VALUE y); VALUE rb_big_uminus(VALUE x); VALUE rb_big_hash(VALUE); VALUE rb_big_odd_p(VALUE); VALUE rb_big_even_p(VALUE); size_t rb_big_size(VALUE); VALUE rb_integer_float_cmp(VALUE x, VALUE y); VALUE rb_integer_float_eq(VALUE x, VALUE y); VALUE rb_cstr_parse_inum(const char *str, ssize_t len, char **endp, int base); VALUE rb_str_convert_to_inum(VALUE str, int base, int badcheck, int raise_exception); VALUE rb_big_comp(VALUE x); VALUE rb_big_aref(VALUE x, VALUE y); VALUE rb_big_abs(VALUE x); VALUE rb_big_size_m(VALUE big); VALUE rb_big_bit_length(VALUE big); VALUE rb_big_remainder(VALUE x, VALUE y); VALUE rb_big_gt(VALUE x, VALUE y); VALUE rb_big_ge(VALUE x, VALUE y); VALUE rb_big_lt(VALUE x, VALUE y); VALUE rb_big_le(VALUE x, VALUE y); VALUE rb_int_powm(int const argc, VALUE * const argv, VALUE const num); /* class.c */ VALUE rb_class_boot(VALUE); VALUE rb_class_inherited(VALUE, VALUE); VALUE rb_make_metaclass(VALUE, VALUE); VALUE rb_include_class_new(VALUE, VALUE); void rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE); void rb_class_detach_subclasses(VALUE); void rb_class_detach_module_subclasses(VALUE); void rb_class_remove_from_module_subclasses(VALUE); VALUE rb_obj_methods(int argc, const VALUE *argv, VALUE obj); VALUE rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj); VALUE rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj); VALUE rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj); VALUE rb_special_singleton_class(VALUE); VALUE rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach); VALUE rb_singleton_class_get(VALUE obj); void Init_class_hierarchy(void); int rb_class_has_methods(VALUE c); void rb_undef_methods_from(VALUE klass, VALUE super); /* compar.c */ VALUE rb_invcmp(VALUE, VALUE); /* compile.c */ struct rb_block; int rb_dvar_defined(ID, const struct rb_block *); int rb_local_defined(ID, const struct rb_block *); const char * rb_insns_name(int i); VALUE rb_insns_name_array(void); int rb_vm_insn_addr2insn(const void *); /* complex.c */ VALUE rb_complex_plus(VALUE, VALUE); VALUE rb_complex_mul(VALUE, VALUE); VALUE rb_complex_abs(VALUE x); VALUE rb_complex_sqrt(VALUE x); VALUE rb_dbl_complex_polar_pi(double abs, double ang); VALUE rb_complex_pow(VALUE self, VALUE other); struct rb_thread_struct; /* cont.c */ VALUE rb_obj_is_fiber(VALUE); void rb_fiber_reset_root_local_storage(struct rb_thread_struct *); void ruby_register_rollback_func_for_ensure(VALUE (*ensure_func)(ANYARGS), VALUE (*rollback_func)(ANYARGS)); /* debug.c */ PRINTF_ARGS(void ruby_debug_printf(const char*, ...), 1, 2); /* dir.c */ VALUE rb_dir_getwd_ospath(void); /* dmyext.c */ void Init_enc(void); void Init_ext(void); /* encoding.c */ ID rb_id_encoding(void); #ifdef RUBY_ENCODING_H rb_encoding *rb_enc_get_from_index(int index); rb_encoding *rb_enc_check_str(VALUE str1, VALUE str2); #endif int rb_encdb_replicate(const char *alias, const char *orig); int rb_encdb_alias(const char *alias, const char *orig); int rb_encdb_dummy(const char *name); void rb_encdb_declare(const char *name); void rb_enc_set_base(const char *name, const char *orig); int rb_enc_set_dummy(int index); void rb_encdb_set_unicode(int index); PUREFUNC(int rb_data_is_encoding(VALUE obj)); /* enum.c */ VALUE rb_f_send(int argc, VALUE *argv, VALUE recv); VALUE rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary); /* error.c */ extern VALUE rb_eEAGAIN; extern VALUE rb_eEWOULDBLOCK; extern VALUE rb_eEINPROGRESS; void rb_report_bug_valist(VALUE file, int line, const char *fmt, va_list args); VALUE rb_check_backtrace(VALUE); NORETURN(void rb_async_bug_errno(const char *,int)); const char *rb_builtin_type_name(int t); const char *rb_builtin_class_name(VALUE x); PRINTF_ARGS(void rb_sys_warn(const char *fmt, ...), 1, 2); PRINTF_ARGS(void rb_syserr_warn(int err, const char *fmt, ...), 2, 3); PRINTF_ARGS(void rb_sys_warning(const char *fmt, ...), 1, 2); PRINTF_ARGS(void rb_syserr_warning(int err, const char *fmt, ...), 2, 3); #ifdef RUBY_ENCODING_H VALUE rb_syntax_error_append(VALUE, VALUE, int, int, rb_encoding*, const char*, va_list); PRINTF_ARGS(void rb_enc_warn(rb_encoding *enc, const char *fmt, ...), 2, 3); PRINTF_ARGS(void rb_sys_enc_warn(rb_encoding *enc, const char *fmt, ...), 2, 3); PRINTF_ARGS(void rb_syserr_enc_warn(int err, rb_encoding *enc, const char *fmt, ...), 3, 4); PRINTF_ARGS(void rb_enc_warning(rb_encoding *enc, const char *fmt, ...), 2, 3); PRINTF_ARGS(void rb_sys_enc_warning(rb_encoding *enc, const char *fmt, ...), 2, 3); PRINTF_ARGS(void rb_syserr_enc_warning(int err, rb_encoding *enc, const char *fmt, ...), 3, 4); #endif #define rb_raise_cstr(etype, mesg) \ rb_exc_raise(rb_exc_new_str(etype, rb_str_new_cstr(mesg))) #define rb_raise_static(etype, mesg) \ rb_exc_raise(rb_exc_new_str(etype, rb_str_new_static(mesg, rb_strlen_lit(mesg)))) VALUE rb_name_err_new(VALUE mesg, VALUE recv, VALUE method); #define rb_name_err_raise_str(mesg, recv, name) \ rb_exc_raise(rb_name_err_new(mesg, recv, name)) #define rb_name_err_raise(mesg, recv, name) \ rb_name_err_raise_str(rb_fstring_cstr(mesg), (recv), (name)) VALUE rb_nomethod_err_new(VALUE mesg, VALUE recv, VALUE method, VALUE args, int priv); VALUE rb_key_err_new(VALUE mesg, VALUE recv, VALUE name); #define rb_key_err_raise(mesg, recv, name) \ rb_exc_raise(rb_key_err_new(mesg, recv, name)) NORETURN(void ruby_deprecated_internal_feature(const char *)); #define DEPRECATED_INTERNAL_FEATURE(func) \ (ruby_deprecated_internal_feature(func), UNREACHABLE) VALUE rb_warning_warn(VALUE mod, VALUE str); PRINTF_ARGS(VALUE rb_warning_string(const char *fmt, ...), 1, 2); /* eval.c */ VALUE rb_refinement_module_get_refined_class(VALUE module); extern ID ruby_static_id_signo, ruby_static_id_status; void rb_class_modify_check(VALUE); #define id_signo ruby_static_id_signo #define id_status ruby_static_id_status /* eval_error.c */ VALUE rb_get_backtrace(VALUE info); /* eval_jump.c */ void rb_call_end_proc(VALUE data); void rb_mark_end_proc(void); /* file.c */ extern const char ruby_null_device[]; VALUE rb_home_dir_of(VALUE user, VALUE result); VALUE rb_default_home_dir(VALUE result); VALUE rb_realpath_internal(VALUE basedir, VALUE path, int strict); VALUE rb_check_realpath(VALUE basedir, VALUE path); void rb_file_const(const char*, VALUE); int rb_file_load_ok(const char *); VALUE rb_file_expand_path_fast(VALUE, VALUE); VALUE rb_file_expand_path_internal(VALUE, VALUE, int, int, VALUE); VALUE rb_get_path_check_to_string(VALUE, int); VALUE rb_get_path_check_convert(VALUE, VALUE, int); VALUE rb_get_path_check(VALUE, int); void Init_File(void); int ruby_is_fd_loadable(int fd); #ifdef RUBY_FUNCTION_NAME_STRING # if defined __GNUC__ && __GNUC__ >= 4 # pragma GCC visibility push(default) # endif NORETURN(void rb_sys_fail_path_in(const char *func_name, VALUE path)); NORETURN(void rb_syserr_fail_path_in(const char *func_name, int err, VALUE path)); # if defined __GNUC__ && __GNUC__ >= 4 # pragma GCC visibility pop # endif # define rb_sys_fail_path(path) rb_sys_fail_path_in(RUBY_FUNCTION_NAME_STRING, path) # define rb_syserr_fail_path(err, path) rb_syserr_fail_path_in(RUBY_FUNCTION_NAME_STRING, (err), (path)) #else # define rb_sys_fail_path(path) rb_sys_fail_str(path) # define rb_syserr_fail_path(err, path) rb_syserr_fail_str((err), (path)) #endif /* gc.c */ extern VALUE *ruby_initial_gc_stress_ptr; extern int ruby_disable_gc; void Init_heap(void); void *ruby_mimmalloc(size_t size); void ruby_mimfree(void *ptr); void rb_objspace_set_event_hook(const rb_event_flag_t event); #if USE_RGENGC void rb_gc_writebarrier_remember(VALUE obj); #else #define rb_gc_writebarrier_remember(obj) 0 #endif void ruby_gc_set_params(int safe_level); void rb_copy_wb_protected_attribute(VALUE dest, VALUE obj); #if defined(HAVE_MALLOC_USABLE_SIZE) || defined(HAVE_MALLOC_SIZE) || defined(_WIN32) #define ruby_sized_xrealloc(ptr, new_size, old_size) ruby_xrealloc(ptr, new_size) #define ruby_sized_xrealloc2(ptr, new_count, element_size, old_count) ruby_xrealloc(ptr, new_count, element_size) #define ruby_sized_xfree(ptr, size) ruby_xfree(ptr) #define SIZED_REALLOC_N(var,type,n,old_n) REALLOC_N(var, type, n) #else RUBY_SYMBOL_EXPORT_BEGIN void *ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size) RUBY_ATTR_ALLOC_SIZE((2)); void *ruby_sized_xrealloc2(void *ptr, size_t new_count, size_t element_size, size_t old_count) RUBY_ATTR_ALLOC_SIZE((2, 3)); void ruby_sized_xfree(void *x, size_t size); RUBY_SYMBOL_EXPORT_END #define SIZED_REALLOC_N(var,type,n,old_n) ((var)=(type*)ruby_sized_xrealloc((char*)(var), (n) * sizeof(type), (old_n) * sizeof(type))) #endif /* optimized version of NEWOBJ() */ #undef NEWOBJF_OF #undef RB_NEWOBJ_OF #define RB_NEWOBJ_OF(obj,type,klass,flags) \ type *(obj) = (type*)(((flags) & FL_WB_PROTECTED) ? \ rb_wb_protected_newobj_of(klass, (flags) & ~FL_WB_PROTECTED) : \ rb_wb_unprotected_newobj_of(klass, flags)) #define NEWOBJ_OF(obj,type,klass,flags) RB_NEWOBJ_OF(obj,type,klass,flags) void *rb_aligned_malloc(size_t, size_t); void rb_aligned_free(void *); /* hash.c */ #if RHASH_CONVERT_TABLE_DEBUG struct st_table *rb_hash_tbl_raw(VALUE hash, const char *file, int line); #define RHASH_TBL_RAW(h) rb_hash_tbl_raw(h, __FILE__, __LINE__) #else struct st_table *rb_hash_tbl_raw(VALUE hash); #define RHASH_TBL_RAW(h) rb_hash_tbl_raw(h) #endif VALUE rb_hash_new_with_size(st_index_t size); RUBY_SYMBOL_EXPORT_BEGIN VALUE rb_hash_new_compare_by_id(void); RUBY_SYMBOL_EXPORT_END VALUE rb_hash_has_key(VALUE hash, VALUE key); VALUE rb_hash_default_value(VALUE hash, VALUE key); VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc); long rb_objid_hash(st_index_t index); long rb_dbl_long_hash(double d); st_table *rb_init_identtable(void); st_table *rb_init_identtable_with_size(st_index_t size); VALUE rb_hash_compare_by_id_p(VALUE hash); VALUE rb_to_hash_type(VALUE obj); VALUE rb_hash_key_str(VALUE); VALUE rb_hash_keys(VALUE hash); VALUE rb_hash_values(VALUE hash); VALUE rb_hash_rehash(VALUE hash); int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val); VALUE rb_hash_set_pair(VALUE hash, VALUE pair); void rb_hash_bulk_insert(long, const VALUE *, VALUE); int rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval); int rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval); int rb_hash_stlike_foreach(VALUE hash, int (*func)(ANYARGS), st_data_t arg); int rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func func, st_data_t arg); /* inits.c */ void rb_call_inits(void); /* io.c */ const char *ruby_get_inplace_mode(void); void ruby_set_inplace_mode(const char *); ssize_t rb_io_bufread(VALUE io, void *buf, size_t size); void rb_stdio_set_default_encoding(void); VALUE rb_io_flush_raw(VALUE, int); #ifdef RUBY_IO_H size_t rb_io_memsize(const rb_io_t *); #endif int rb_stderr_tty_p(void); void rb_io_fptr_finalize_internal(void *ptr); #define rb_io_fptr_finalize rb_io_fptr_finalize_internal /* load.c */ VALUE rb_get_load_path(void); VALUE rb_get_expanded_load_path(void); int rb_require_internal(VALUE fname, int safe); NORETURN(void rb_load_fail(VALUE, const char*)); /* loadpath.c */ extern const char ruby_exec_prefix[]; extern const char ruby_initial_load_paths[]; /* localeinit.c */ int Init_enc_set_filesystem_encoding(void); /* math.c */ VALUE rb_math_atan2(VALUE, VALUE); VALUE rb_math_cos(VALUE); VALUE rb_math_cosh(VALUE); VALUE rb_math_exp(VALUE); VALUE rb_math_hypot(VALUE, VALUE); VALUE rb_math_log(int argc, const VALUE *argv); VALUE rb_math_sin(VALUE); VALUE rb_math_sinh(VALUE); VALUE rb_math_sqrt(VALUE); /* mjit.c */ #if USE_MJIT extern int mjit_enabled; VALUE mjit_pause(int wait_p); VALUE mjit_resume(void); #else #define mjit_enabled 0 static inline VALUE mjit_pause(int wait_p){ return Qnil; } /* unreachable */ static inline VALUE mjit_resume(void){ return Qnil; } /* unreachable */ #endif /* newline.c */ void Init_newline(void); /* numeric.c */ #define FIXNUM_POSITIVE_P(num) ((SIGNED_VALUE)(num) > (SIGNED_VALUE)INT2FIX(0)) #define FIXNUM_NEGATIVE_P(num) ((SIGNED_VALUE)(num) < 0) #define FIXNUM_ZERO_P(num) ((num) == INT2FIX(0)) #define INT_NEGATIVE_P(x) (FIXNUM_P(x) ? FIXNUM_NEGATIVE_P(x) : BIGNUM_NEGATIVE_P(x)) #ifndef ROUND_DEFAULT # define ROUND_DEFAULT RUBY_NUM_ROUND_HALF_UP #endif enum ruby_num_rounding_mode { RUBY_NUM_ROUND_HALF_UP, RUBY_NUM_ROUND_HALF_EVEN, RUBY_NUM_ROUND_HALF_DOWN, RUBY_NUM_ROUND_DEFAULT = ROUND_DEFAULT }; #define ROUND_TO(mode, even, up, down) \ ((mode) == RUBY_NUM_ROUND_HALF_EVEN ? even : \ (mode) == RUBY_NUM_ROUND_HALF_UP ? up : down) #define ROUND_FUNC(mode, name) \ ROUND_TO(mode, name##_half_even, name##_half_up, name##_half_down) #define ROUND_CALL(mode, name, args) \ ROUND_TO(mode, name##_half_even args, \ name##_half_up args, name##_half_down args) int rb_num_to_uint(VALUE val, unsigned int *ret); VALUE ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl); int ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless); double ruby_float_mod(double x, double y); int rb_num_negative_p(VALUE); VALUE rb_int_succ(VALUE num); VALUE rb_int_pred(VALUE num); VALUE rb_int_uminus(VALUE num); VALUE rb_float_uminus(VALUE num); VALUE rb_int_plus(VALUE x, VALUE y); VALUE rb_int_minus(VALUE x, VALUE y); VALUE rb_int_mul(VALUE x, VALUE y); VALUE rb_int_idiv(VALUE x, VALUE y); VALUE rb_int_modulo(VALUE x, VALUE y); VALUE rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode); VALUE rb_int2str(VALUE num, int base); VALUE rb_dbl_hash(double d); VALUE rb_fix_plus(VALUE x, VALUE y); VALUE rb_int_gt(VALUE x, VALUE y); int rb_float_cmp(VALUE x, VALUE y); VALUE rb_float_gt(VALUE x, VALUE y); VALUE rb_int_ge(VALUE x, VALUE y); enum ruby_num_rounding_mode rb_num_get_rounding_option(VALUE opts); double rb_int_fdiv_double(VALUE x, VALUE y); VALUE rb_int_pow(VALUE x, VALUE y); VALUE rb_float_pow(VALUE x, VALUE y); VALUE rb_int_cmp(VALUE x, VALUE y); VALUE rb_int_equal(VALUE x, VALUE y); VALUE rb_int_divmod(VALUE x, VALUE y); VALUE rb_int_and(VALUE x, VALUE y); VALUE rb_int_lshift(VALUE x, VALUE y); VALUE rb_int_div(VALUE x, VALUE y); VALUE rb_int_abs(VALUE num); VALUE rb_int_odd_p(VALUE num); int rb_int_positive_p(VALUE num); int rb_int_negative_p(VALUE num); VALUE rb_num_pow(VALUE x, VALUE y); static inline VALUE rb_num_compare_with_zero(VALUE num, ID mid) { VALUE zero = INT2FIX(0); VALUE r = rb_check_funcall(num, mid, 1, &zero); if (r == Qundef) { rb_cmperr(num, zero); } return r; } static inline int rb_num_positive_int_p(VALUE num) { const ID mid = '>'; if (FIXNUM_P(num)) { if (rb_method_basic_definition_p(rb_cInteger, mid)) return FIXNUM_POSITIVE_P(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { if (rb_method_basic_definition_p(rb_cInteger, mid)) return BIGNUM_POSITIVE_P(num); } return RTEST(rb_num_compare_with_zero(num, mid)); } static inline int rb_num_negative_int_p(VALUE num) { const ID mid = '<'; if (FIXNUM_P(num)) { if (rb_method_basic_definition_p(rb_cInteger, mid)) return FIXNUM_NEGATIVE_P(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { if (rb_method_basic_definition_p(rb_cInteger, mid)) return BIGNUM_NEGATIVE_P(num); } return RTEST(rb_num_compare_with_zero(num, mid)); } VALUE rb_float_abs(VALUE flt); VALUE rb_float_equal(VALUE x, VALUE y); VALUE rb_float_eql(VALUE x, VALUE y); VALUE rb_flo_div_flo(VALUE x, VALUE y); #if USE_FLONUM #define RUBY_BIT_ROTL(v, n) (((v) << (n)) | ((v) >> ((sizeof(v) * 8) - n))) #define RUBY_BIT_ROTR(v, n) (((v) >> (n)) | ((v) << ((sizeof(v) * 8) - n))) #endif static inline double rb_float_flonum_value(VALUE v) { #if USE_FLONUM if (v != (VALUE)0x8000000000000002) { /* LIKELY */ union { double d; VALUE v; } t; VALUE b63 = (v >> 63); /* e: xx1... -> 011... */ /* xx0... -> 100... */ /* ^b63 */ t.v = RUBY_BIT_ROTR((2 - b63) | (v & ~(VALUE)0x03), 3); return t.d; } #endif return 0.0; } static inline double rb_float_noflonum_value(VALUE v) { return ((struct RFloat *)v)->float_value; } static inline double rb_float_value_inline(VALUE v) { if (FLONUM_P(v)) { return rb_float_flonum_value(v); } return rb_float_noflonum_value(v); } static inline VALUE rb_float_new_inline(double d) { #if USE_FLONUM union { double d; VALUE v; } t; int bits; t.d = d; bits = (int)((VALUE)(t.v >> 60) & 0x7); /* bits contains 3 bits of b62..b60. */ /* bits - 3 = */ /* b011 -> b000 */ /* b100 -> b001 */ if (t.v != 0x3000000000000000 /* 1.72723e-77 */ && !((bits-3) & ~0x01)) { return (RUBY_BIT_ROTL(t.v, 3) & ~(VALUE)0x01) | 0x02; } else if (t.v == (VALUE)0) { /* +0.0 */ return 0x8000000000000002; } /* out of range */ #endif return rb_float_new_in_heap(d); } #define rb_float_value(v) rb_float_value_inline(v) #define rb_float_new(d) rb_float_new_inline(d) /* object.c */ void rb_obj_copy_ivar(VALUE dest, VALUE obj); CONSTFUNC(VALUE rb_obj_equal(VALUE obj1, VALUE obj2)); CONSTFUNC(VALUE rb_obj_not(VALUE obj)); VALUE rb_class_search_ancestor(VALUE klass, VALUE super); NORETURN(void rb_undefined_alloc(VALUE klass)); double rb_num_to_dbl(VALUE val); VALUE rb_obj_dig(int argc, VALUE *argv, VALUE self, VALUE notfound); VALUE rb_immutable_obj_clone(int, VALUE *, VALUE); VALUE rb_obj_not_equal(VALUE obj1, VALUE obj2); VALUE rb_convert_type_with_id(VALUE,int,const char*,ID); VALUE rb_check_convert_type_with_id(VALUE,int,const char*,ID); struct RBasicRaw { VALUE flags; VALUE klass; }; #define RBASIC_CLEAR_CLASS(obj) memset(&(((struct RBasicRaw *)((VALUE)(obj)))->klass), 0, sizeof(VALUE)) #define RBASIC_SET_CLASS_RAW(obj, cls) memcpy(&((struct RBasicRaw *)((VALUE)(obj)))->klass, &(cls), sizeof(VALUE)) #define RBASIC_SET_CLASS(obj, cls) do { \ VALUE _obj_ = (obj); \ RB_OBJ_WRITE(_obj_, &((struct RBasicRaw *)(_obj_))->klass, cls); \ } while (0) /* parse.y */ #ifndef USE_SYMBOL_GC #define USE_SYMBOL_GC 1 #endif VALUE rb_parser_get_yydebug(VALUE); VALUE rb_parser_set_yydebug(VALUE, VALUE); RUBY_SYMBOL_EXPORT_BEGIN VALUE rb_parser_set_context(VALUE, const struct rb_block *, int); RUBY_SYMBOL_EXPORT_END void *rb_parser_load_file(VALUE parser, VALUE name); int rb_is_const_name(VALUE name); int rb_is_class_name(VALUE name); int rb_is_global_name(VALUE name); int rb_is_instance_name(VALUE name); int rb_is_attrset_name(VALUE name); int rb_is_local_name(VALUE name); int rb_is_method_name(VALUE name); int rb_is_junk_name(VALUE name); PUREFUNC(int rb_is_const_sym(VALUE sym)); PUREFUNC(int rb_is_class_sym(VALUE sym)); PUREFUNC(int rb_is_global_sym(VALUE sym)); PUREFUNC(int rb_is_instance_sym(VALUE sym)); PUREFUNC(int rb_is_attrset_sym(VALUE sym)); PUREFUNC(int rb_is_local_sym(VALUE sym)); PUREFUNC(int rb_is_method_sym(VALUE sym)); PUREFUNC(int rb_is_junk_sym(VALUE sym)); ID rb_make_internal_id(void); void rb_gc_free_dsymbol(VALUE); ID rb_id_attrget(ID id); /* proc.c */ VALUE rb_proc_location(VALUE self); st_index_t rb_hash_proc(st_index_t hash, VALUE proc); int rb_block_arity(void); int rb_block_min_max_arity(int *max); VALUE rb_func_proc_new(rb_block_call_func_t func, VALUE val); VALUE rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc); VALUE rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info); /* process.c */ #define RB_MAX_GROUPS (65536) struct waitpid_state; struct rb_execarg { union { struct { VALUE shell_script; } sh; struct { VALUE command_name; VALUE command_abspath; /* full path string or nil */ VALUE argv_str; VALUE argv_buf; } cmd; } invoke; VALUE redirect_fds; VALUE envp_str; VALUE envp_buf; VALUE dup2_tmpbuf; unsigned use_shell : 1; unsigned pgroup_given : 1; unsigned umask_given : 1; unsigned unsetenv_others_given : 1; unsigned unsetenv_others_do : 1; unsigned close_others_given : 1; unsigned close_others_do : 1; unsigned chdir_given : 1; unsigned new_pgroup_given : 1; unsigned new_pgroup_flag : 1; unsigned uid_given : 1; unsigned gid_given : 1; unsigned exception : 1; struct waitpid_state *waitpid_state; /* for async process management */ rb_pid_t pgroup_pgid; /* asis(-1), new pgroup(0), specified pgroup (0= 199901L) # define FLEX_ARY_LEN /* VALUE ary[]; */ #elif defined(__GNUC__) && !defined(__STRICT_ANSI__) # define FLEX_ARY_LEN 0 /* VALUE ary[0]; */ #else # define FLEX_ARY_LEN 1 /* VALUE ary[1]; */ #endif /* * For declaring bitfields out of non-unsigned int types: * struct date { * BITFIELD(enum months, month, 4); * ... * }; */ #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) # define BITFIELD(type, name, size) type name : size #else # define BITFIELD(type, name, size) unsigned int name : size #endif #if defined(_MSC_VER) # define COMPILER_WARNING_PUSH __pragma(warning(push)) # define COMPILER_WARNING_POP __pragma(warning(pop)) # define COMPILER_WARNING_ERROR(flag) __pragma(warning(error: flag))) # define COMPILER_WARNING_IGNORED(flag) __pragma(warning(suppress: flag))) #elif defined(__clang__) /* clang 2.6 already had this feature */ # define COMPILER_WARNING_PUSH _Pragma("clang diagnostic push") # define COMPILER_WARNING_POP _Pragma("clang diagnostic pop") # define COMPILER_WARNING_SPECIFIER(kind, msg) \ clang diagnostic kind # msg # define COMPILER_WARNING_ERROR(flag) \ COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(error, flag)) # define COMPILER_WARNING_IGNORED(flag) \ COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(ignored, flag)) #elif GCC_VERSION_SINCE(4, 2, 0) /* https://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/Diagnostic-Pragmas.html */ # define COMPILER_WARNING_PUSH _Pragma("GCC diagnostic push") # define COMPILER_WARNING_POP _Pragma("GCC diagnostic pop") # define COMPILER_WARNING_SPECIFIER(kind, msg) \ GCC diagnostic kind # msg # define COMPILER_WARNING_ERROR(flag) \ COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(error, flag)) # define COMPILER_WARNING_IGNORED(flag) \ COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(ignored, flag)) #else /* other compilers to follow? */ # define COMPILER_WARNING_PUSH /* nop */ # define COMPILER_WARNING_POP /* nop */ # define COMPILER_WARNING_ERROR(flag) /* nop */ # define COMPILER_WARNING_IGNORED(flag) /* nop */ #endif #define COMPILER_WARNING_PRAGMA(str) COMPILER_WARNING_PRAGMA_(str) #define COMPILER_WARNING_PRAGMA_(str) _Pragma(#str) #if defined(__cplusplus) #if 0 { /* satisfy cc-mode */ #endif } /* extern "C" { */ #endif #endif /* RUBY_INTERNAL_H */