/********************************************************************** hash.c - $Author$ created at: Mon Nov 22 18:51:18 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/encoding.h" #include "ruby/st.h" #include "ruby/util.h" #include "internal.h" #include #include "probes.h" #include "id.h" #include "symbol.h" #include "gc.h" #ifdef __APPLE__ # ifdef HAVE_CRT_EXTERNS_H # include # else # include "missing/crt_externs.h" # endif #endif #define HAS_EXTRA_STATES(hash, klass) ( \ ((klass = has_extra_methods(rb_obj_class(hash))) != 0) || \ FL_TEST((hash), FL_EXIVAR|FL_TAINT|HASH_PROC_DEFAULT) || \ !NIL_P(RHASH_IFNONE(hash))) #define SET_DEFAULT(hash, ifnone) ( \ FL_UNSET_RAW(hash, HASH_PROC_DEFAULT), \ RHASH_SET_IFNONE(hash, ifnone)) #define SET_PROC_DEFAULT(hash, proc) set_proc_default(hash, proc) #define COPY_DEFAULT(hash, hash2) copy_default(RHASH(hash), RHASH(hash2)) static inline void copy_default(struct RHash *hash, const struct RHash *hash2) { hash->basic.flags &= ~HASH_PROC_DEFAULT; hash->basic.flags |= hash2->basic.flags & HASH_PROC_DEFAULT; RHASH_SET_IFNONE(hash, RHASH_IFNONE(hash2)); } static VALUE has_extra_methods(VALUE klass) { const VALUE base = rb_cHash; VALUE c = klass; while (c != base) { if (rb_class_has_methods(c)) return klass; c = RCLASS_SUPER(c); } return 0; } static VALUE rb_hash_s_try_convert(VALUE, VALUE); /* * Hash WB strategy: * 1. Check mutate st_* functions * * st_insert() * * st_insert2() * * st_update() * * st_add_direct() * 2. Insert WBs */ VALUE rb_hash_freeze(VALUE hash) { return rb_obj_freeze(hash); } VALUE rb_cHash; static VALUE envtbl; static ID id_hash, id_yield, id_default, id_flatten_bang; VALUE rb_hash_set_ifnone(VALUE hash, VALUE ifnone) { RB_OBJ_WRITE(hash, (&RHASH(hash)->ifnone), ifnone); return hash; } static int rb_any_cmp(VALUE a, VALUE b) { if (a == b) return 0; if (FIXNUM_P(a) && FIXNUM_P(b)) { return a != b; } if (RB_TYPE_P(a, T_STRING) && RBASIC(a)->klass == rb_cString && RB_TYPE_P(b, T_STRING) && RBASIC(b)->klass == rb_cString) { return rb_str_hash_cmp(a, b); } if (a == Qundef || b == Qundef) return -1; if (SYMBOL_P(a) && SYMBOL_P(b)) { return a != b; } return !rb_eql(a, b); } static VALUE hash_recursive(VALUE obj, VALUE arg, int recurse) { if (recurse) return INT2FIX(0); return rb_funcallv(obj, id_hash, 0, 0); } VALUE rb_hash(VALUE obj) { VALUE hval = rb_exec_recursive_outer(hash_recursive, obj, 0); while (!FIXNUM_P(hval)) { if (RB_TYPE_P(hval, T_BIGNUM)) { int sign; unsigned long ul; sign = rb_integer_pack(hval, &ul, 1, sizeof(ul), 0, INTEGER_PACK_NATIVE_BYTE_ORDER); ul &= (1UL << (sizeof(long)*CHAR_BIT-1)) - 1; if (sign < 0) return LONG2FIX(-(long)ul); return LONG2FIX((long)ul); } hval = rb_to_int(hval); } return hval; } long rb_objid_hash(st_index_t index); long rb_dbl_long_hash(double d) { /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; #if SIZEOF_INT == SIZEOF_VOIDP return rb_memhash(&d, sizeof(d)); #else { union {double d; uint64_t i;} u; u.d = d; return rb_objid_hash(rb_hash_start(u.i)); } #endif } static inline long any_hash(VALUE a, st_index_t (*other_func)(VALUE)) { VALUE hval; st_index_t hnum; if (SPECIAL_CONST_P(a)) { if (STATIC_SYM_P(a)) { hnum = a >> (RUBY_SPECIAL_SHIFT + ID_SCOPE_SHIFT); hnum = rb_hash_start(hnum); goto out; } else if (FLONUM_P(a)) { /* prevent pathological behavior: [Bug #10761] */ goto flt; } hnum = rb_objid_hash((st_index_t)a); } else if (BUILTIN_TYPE(a) == T_STRING) { hnum = rb_str_hash(a); } else if (BUILTIN_TYPE(a) == T_SYMBOL) { hnum = RSYMBOL(a)->hashval; } else if (BUILTIN_TYPE(a) == T_BIGNUM) { hval = rb_big_hash(a); hnum = FIX2LONG(hval); } else if (BUILTIN_TYPE(a) == T_FLOAT) { flt: hnum = rb_dbl_long_hash(rb_float_value(a)); } else { hnum = other_func(a); } out: #if SIZEOF_LONG < SIZEOF_ST_INDEX_T if (hnum > 0) hnum &= (unsigned long)-1 >> 2; else hnum |= ~((unsigned long)-1 >> 2); #else hnum <<= 1; hnum = RSHIFT(hnum, 1); #endif return (long)hnum; } static st_index_t obj_any_hash(VALUE obj) { obj = rb_hash(obj); return FIX2LONG(obj); } static st_index_t rb_any_hash(VALUE a) { return any_hash(a, obj_any_hash); } /* Here is a hash function for 64-bit key. It is about 5 times faster (2 times faster when uint128 type is absent) on Haswell than tailored Spooky or City hash function can be. */ /* Here we two primes with random bit generation. */ static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5; static const uint32_t prime2 = 0x830fcab9; static inline uint64_t mult_and_mix(uint64_t m1, uint64_t m2) { #if defined HAVE_UINT128_T uint128_t r = (uint128_t) m1 * (uint128_t) m2; return (uint64_t) (r >> 64) ^ (uint64_t) r; #else uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32; uint64_t lm1 = m1, lm2 = m2; uint64_t v64_128 = hm1 * hm2; uint64_t v32_96 = hm1 * lm2 + lm1 * hm2; uint64_t v1_32 = lm1 * lm2; return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32); #endif } static inline uint64_t key64_hash(uint64_t key, uint32_t seed) { return mult_and_mix(key + seed, prime1); } long rb_objid_hash(st_index_t index) { return (long)key64_hash(rb_hash_start(index), prime2); } static st_index_t objid_hash(VALUE obj) { return rb_objid_hash((st_index_t)obj); } VALUE rb_obj_hash(VALUE obj) { long hnum = any_hash(obj, objid_hash); return ST2FIX(hnum); } static const struct st_hash_type objhash = { rb_any_cmp, rb_any_hash, }; #define rb_ident_cmp st_numcmp static st_index_t rb_ident_hash(st_data_t n) { #ifdef USE_FLONUM /* RUBY */ /* * - flonum (on 64-bit) is pathologically bad, mix the actual * float value in, but do not use the float value as-is since * many integers get interpreted as 2.0 or -2.0 [Bug #10761] */ if (FLONUM_P(n)) { n ^= (st_data_t)rb_float_value(n); } #endif return (st_index_t)key64_hash(rb_hash_start((st_index_t)n), prime2); } static const struct st_hash_type identhash = { rb_ident_cmp, rb_ident_hash, }; typedef int st_foreach_func(st_data_t, st_data_t, st_data_t); struct foreach_safe_arg { st_table *tbl; st_foreach_func *func; st_data_t arg; }; static int foreach_safe_i(st_data_t key, st_data_t value, st_data_t args, int error) { int status; struct foreach_safe_arg *arg = (void *)args; if (error) return ST_STOP; status = (*arg->func)(key, value, arg->arg); if (status == ST_CONTINUE) { return ST_CHECK; } return status; } void st_foreach_safe(st_table *table, int (*func)(ANYARGS), st_data_t a) { struct foreach_safe_arg arg; arg.tbl = table; arg.func = (st_foreach_func *)func; arg.arg = a; if (st_foreach_check(table, foreach_safe_i, (st_data_t)&arg, 0)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } typedef int rb_foreach_func(VALUE, VALUE, VALUE); struct hash_foreach_arg { VALUE hash; rb_foreach_func *func; VALUE arg; }; static int hash_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error) { struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp; int status; st_table *tbl; if (error) return ST_STOP; tbl = RHASH(arg->hash)->ntbl; status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); if (RHASH(arg->hash)->ntbl != tbl) { rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); } switch (status) { case ST_DELETE: return ST_DELETE; case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static VALUE hash_foreach_ensure_rollback(VALUE hash) { RHASH_ITER_LEV(hash)++; return 0; } static VALUE hash_foreach_ensure(VALUE hash) { RHASH_ITER_LEV(hash)--; return 0; } static VALUE hash_foreach_call(VALUE arg) { VALUE hash = ((struct hash_foreach_arg *)arg)->hash; if (st_foreach_check(RHASH(hash)->ntbl, hash_foreach_iter, (st_data_t)arg, (st_data_t)Qundef)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } return Qnil; } void rb_hash_foreach(VALUE hash, int (*func)(ANYARGS), VALUE farg) { struct hash_foreach_arg arg; if (!RHASH(hash)->ntbl) return; RHASH_ITER_LEV(hash)++; arg.hash = hash; arg.func = (rb_foreach_func *)func; arg.arg = farg; rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash); } static VALUE hash_alloc_flags(VALUE klass, VALUE flags, VALUE ifnone) { const VALUE wb = (RGENGC_WB_PROTECTED_HASH ? FL_WB_PROTECTED : 0); NEWOBJ_OF(hash, struct RHash, klass, T_HASH | wb | flags); RHASH_SET_IFNONE((VALUE)hash, ifnone); return (VALUE)hash; } static VALUE hash_alloc(VALUE klass) { return hash_alloc_flags(klass, 0, Qnil); } static VALUE empty_hash_alloc(VALUE klass) { RUBY_DTRACE_CREATE_HOOK(HASH, 0); return hash_alloc(klass); } VALUE rb_hash_new(void) { return hash_alloc(rb_cHash); } VALUE rb_hash_new_compare_by_id(void) { VALUE hash = rb_hash_new(); RHASH(hash)->ntbl = rb_init_identtable(); return hash; } MJIT_FUNC_EXPORTED VALUE rb_hash_new_with_size(st_index_t size) { VALUE ret = rb_hash_new(); if (size) RHASH(ret)->ntbl = st_init_table_with_size(&objhash, size); return ret; } static VALUE hash_dup(VALUE hash, VALUE klass, VALUE flags) { VALUE ret = hash_alloc_flags(klass, flags, RHASH_IFNONE(hash)); if (!RHASH_EMPTY_P(hash)) RHASH(ret)->ntbl = st_copy(RHASH(hash)->ntbl); return ret; } VALUE rb_hash_dup(VALUE hash) { const VALUE flags = RBASIC(hash)->flags; VALUE ret = hash_dup(hash, rb_obj_class(hash), flags & (FL_EXIVAR|FL_TAINT|HASH_PROC_DEFAULT)); if (flags & FL_EXIVAR) rb_copy_generic_ivar(ret, hash); return ret; } static void rb_hash_modify_check(VALUE hash) { rb_check_frozen(hash); } static struct st_table * hash_tbl(VALUE hash) { if (!RHASH(hash)->ntbl) { RHASH(hash)->ntbl = st_init_table(&objhash); } return RHASH(hash)->ntbl; } struct st_table * rb_hash_tbl(VALUE hash) { OBJ_WB_UNPROTECT(hash); return hash_tbl(hash); } MJIT_FUNC_EXPORTED struct st_table * rb_hash_tbl_raw(VALUE hash) { return hash_tbl(hash); } static void rb_hash_modify(VALUE hash) { rb_hash_modify_check(hash); hash_tbl(hash); } NORETURN(static void no_new_key(void)); static void no_new_key(void) { rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration"); } struct update_callback_arg { VALUE hash; st_data_t arg; }; #define NOINSERT_UPDATE_CALLBACK(func) \ static int \ func##_noinsert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ if (!existing) no_new_key(); \ return func(key, val, (struct update_arg *)arg, existing); \ } \ \ static int \ func##_insert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ return func(key, val, (struct update_arg *)arg, existing); \ } struct update_arg { st_data_t arg; VALUE hash; VALUE new_key; VALUE old_key; VALUE new_value; VALUE old_value; }; typedef int (*tbl_update_func)(st_data_t *, st_data_t *, st_data_t, int); static int tbl_update(VALUE hash, VALUE key, tbl_update_func func, st_data_t optional_arg) { struct update_arg arg; int result; arg.arg = optional_arg; arg.hash = hash; arg.new_key = 0; arg.old_key = Qundef; arg.new_value = 0; arg.old_value = Qundef; result = st_update(RHASH(hash)->ntbl, (st_data_t)key, func, (st_data_t)&arg); /* write barrier */ if (arg.new_key) RB_OBJ_WRITTEN(hash, arg.old_key, arg.new_key); if (arg.new_value) RB_OBJ_WRITTEN(hash, arg.old_value, arg.new_value); return result; } #define UPDATE_CALLBACK(iter_lev, func) ((iter_lev) > 0 ? func##_noinsert : func##_insert) #define RHASH_UPDATE_ITER(h, iter_lev, key, func, a) do { \ tbl_update((h), (key), UPDATE_CALLBACK((iter_lev), func), (st_data_t)(a)); \ } while (0) #define RHASH_UPDATE(hash, key, func, arg) \ RHASH_UPDATE_ITER(hash, RHASH_ITER_LEV(hash), key, func, arg) static void set_proc_default(VALUE hash, VALUE proc) { if (rb_proc_lambda_p(proc)) { int n = rb_proc_arity(proc); if (n != 2 && (n >= 0 || n < -3)) { if (n < 0) n = -n-1; rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n); } } FL_SET_RAW(hash, HASH_PROC_DEFAULT); RHASH_SET_IFNONE(hash, proc); } /* * call-seq: * Hash.new -> new_hash * Hash.new(obj) -> new_hash * Hash.new {|hash, key| block } -> new_hash * * Returns a new, empty hash. If this hash is subsequently accessed by * a key that doesn't correspond to a hash entry, the value returned * depends on the style of new used to create the hash. In * the first form, the access returns nil. If * obj is specified, this single object will be used for * all default values. If a block is specified, it will be * called with the hash object and the key, and should return the * default value. It is the block's responsibility to store the value * in the hash if required. * * h = Hash.new("Go Fish") * h["a"] = 100 * h["b"] = 200 * h["a"] #=> 100 * h["c"] #=> "Go Fish" * # The following alters the single default object * h["c"].upcase! #=> "GO FISH" * h["d"] #=> "GO FISH" * h.keys #=> ["a", "b"] * * # While this creates a new default object each time * h = Hash.new { |hash, key| hash[key] = "Go Fish: #{key}" } * h["c"] #=> "Go Fish: c" * h["c"].upcase! #=> "GO FISH: C" * h["d"] #=> "Go Fish: d" * h.keys #=> ["c", "d"] * */ static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { rb_check_arity(argc, 0, 0); ifnone = rb_block_proc(); SET_PROC_DEFAULT(hash, ifnone); } else { rb_check_arity(argc, 0, 1); ifnone = argc == 0 ? Qnil : argv[0]; RHASH_SET_IFNONE(hash, ifnone); } return hash; } /* * call-seq: * Hash[ key, value, ... ] -> new_hash * Hash[ [ [key, value], ... ] ] -> new_hash * Hash[ object ] -> new_hash * * Creates a new hash populated with the given objects. * * Similar to the literal { _key_ => _value_, ... }. In the first * form, keys and values occur in pairs, so there must be an even number of * arguments. * * The second and third form take a single argument which is either an array * of key-value pairs or an object convertible to a hash. * * Hash["a", 100, "b", 200] #=> {"a"=>100, "b"=>200} * Hash[ [ ["a", 100], ["b", 200] ] ] #=> {"a"=>100, "b"=>200} * Hash["a" => 100, "b" => 200] #=> {"a"=>100, "b"=>200} */ static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); if (RHASH(tmp)->ntbl) { RHASH(hash)->ntbl = st_copy(RHASH(tmp)->ntbl); } return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE e = RARRAY_AREF(tmp, i); VALUE v = rb_check_array_type(e); VALUE key, val = Qnil; if (NIL_P(v)) { #if 0 /* refix in the next release */ rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); #else rb_warn("wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); rb_warn("ignoring wrong elements is deprecated, remove them explicitly"); rb_warn("this causes ArgumentError in the next release"); continue; #endif } switch (RARRAY_LEN(v)) { default: rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)", RARRAY_LEN(v)); case 2: val = RARRAY_AREF(v, 1); case 1: key = RARRAY_AREF(v, 0); rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); rb_hash_bulk_insert(argc, argv, hash); return hash; } VALUE rb_to_hash_type(VALUE hash) { return rb_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } #define to_hash rb_to_hash_type VALUE rb_check_hash_type(VALUE hash) { return rb_check_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } /* * call-seq: * Hash.try_convert(obj) -> hash or nil * * Try to convert obj into a hash, using to_hash method. * Returns converted hash or nil if obj cannot be converted * for any reason. * * Hash.try_convert({1=>2}) # => {1=>2} * Hash.try_convert("1=>2") # => nil */ static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_hash_type(hash); } struct rehash_arg { VALUE hash; st_table *tbl; }; static int rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg) { st_table *tbl = (st_table *)arg; st_insert(tbl, (st_data_t)key, (st_data_t)value); return ST_CONTINUE; } /* * call-seq: * hsh.rehash -> hsh * * Rebuilds the hash based on the current hash values for each key. If * values of key objects have changed since they were inserted, this * method will reindex hsh. If Hash#rehash is * called while an iterator is traversing the hash, a * RuntimeError will be raised in the iterator. * * a = [ "a", "b" ] * c = [ "c", "d" ] * h = { a => 100, c => 300 } * h[a] #=> 100 * a[0] = "z" * h[a] #=> nil * h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300} * h[a] #=> 100 */ VALUE rb_hash_rehash(VALUE hash) { VALUE tmp; st_table *tbl; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; tmp = hash_alloc(0); tbl = st_init_table_with_size(RHASH(hash)->ntbl->type, RHASH(hash)->ntbl->num_entries); RHASH(tmp)->ntbl = tbl; rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tbl); st_free_table(RHASH(hash)->ntbl); RHASH(hash)->ntbl = tbl; RHASH(tmp)->ntbl = 0; return hash; } VALUE rb_hash_default_value(VALUE hash, VALUE key) { if (rb_method_basic_definition_p(CLASS_OF(hash), id_default)) { VALUE ifnone = RHASH_IFNONE(hash); if (!FL_TEST(hash, HASH_PROC_DEFAULT)) return ifnone; if (key == Qundef) return Qnil; return rb_funcall(ifnone, id_yield, 2, hash, key); } else { return rb_funcall(hash, id_default, 1, key); } } /* * call-seq: * hsh[key] -> value * * Element Reference---Retrieves the value object corresponding * to the key object. If not found, returns the default value (see * Hash::new for details). * * h = { "a" => 100, "b" => 200 } * h["a"] #=> 100 * h["c"] #=> nil * */ VALUE rb_hash_aref(VALUE hash, VALUE key) { st_data_t val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return rb_hash_default_value(hash, key); } return (VALUE)val; } VALUE rb_hash_lookup2(VALUE hash, VALUE key, VALUE def) { st_data_t val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return def; /* without Hash#default */ } return (VALUE)val; } VALUE rb_hash_lookup(VALUE hash, VALUE key) { return rb_hash_lookup2(hash, key, Qnil); } /* * call-seq: * hsh.fetch(key [, default] ) -> obj * hsh.fetch(key) {| key | block } -> obj * * Returns a value from the hash for the given key. If the key can't be * found, there are several options: With no other arguments, it will * raise a KeyError exception; if default is given, * then that will be returned; if the optional code block is specified, * then that will be run and its result returned. * * h = { "a" => 100, "b" => 200 } * h.fetch("a") #=> 100 * h.fetch("z", "go fish") #=> "go fish" * h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z" * * The following example shows that an exception is raised if the key * is not found and a default value is not supplied. * * h = { "a" => 100, "b" => 200 } * h.fetch("z") * * produces: * * prog.rb:2:in `fetch': key not found (KeyError) * from prog.rb:2 * */ static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key; st_data_t val; long block_given; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { if (block_given) return rb_yield(key); if (argc == 1) { VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc)) { desc = rb_any_to_s(key); } desc = rb_str_ellipsize(desc, 65); rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key); } return argv[1]; } return (VALUE)val; } VALUE rb_hash_fetch(VALUE hash, VALUE key) { return rb_hash_fetch_m(1, &key, hash); } /* * call-seq: * hsh.default(key=nil) -> obj * * Returns the default value, the value that would be returned by * hsh[key] if key did not exist in hsh. * See also Hash::new and Hash#default=. * * h = Hash.new #=> {} * h.default #=> nil * h.default(2) #=> nil * * h = Hash.new("cat") #=> {} * h.default #=> "cat" * h.default(2) #=> "cat" * * h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {} * h.default #=> nil * h.default(2) #=> 20 */ static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE args[2], ifnone; rb_check_arity(argc, 0, 1); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, HASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; args[0] = hash; args[1] = argv[0]; return rb_funcallv(ifnone, id_yield, 2, args); } return ifnone; } /* * call-seq: * hsh.default = obj -> obj * * Sets the default value, the value returned for a key that does not * exist in the hash. It is not possible to set the default to a * Proc that will be executed on each key lookup. * * h = { "a" => 100, "b" => 200 } * h.default = "Go fish" * h["a"] #=> 100 * h["z"] #=> "Go fish" * # This doesn't do what you might hope... * h.default = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> # * h["cat"] #=> # */ static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify_check(hash); SET_DEFAULT(hash, ifnone); return ifnone; } /* * call-seq: * hsh.default_proc -> anObject * * If Hash::new was invoked with a block, return that * block, otherwise return nil. * * h = Hash.new {|h,k| h[k] = k*k } #=> {} * p = h.default_proc #=> # * a = [] #=> [] * p.call(a, 2) * a #=> [nil, nil, 4] */ static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, HASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; } /* * call-seq: * hsh.default_proc = proc_obj or nil * * Sets the default proc to be executed on each failed key lookup. * * h.default_proc = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> 4 * h["cat"] #=> "catcat" */ VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify_check(hash); if (NIL_P(proc)) { SET_DEFAULT(hash, proc); return proc; } b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; SET_PROC_DEFAULT(hash, proc); return proc; } static int key_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; if (rb_equal(value, args[0])) { args[1] = key; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.key(value) -> key * * Returns the key of an occurrence of a given value. If the value is * not found, returns nil. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 300 } * h.key(200) #=> "b" * h.key(300) #=> "c" * h.key(999) #=> nil * */ static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; } /* :nodoc: */ static VALUE rb_hash_index(VALUE hash, VALUE value) { rb_warn("Hash#index is deprecated; use Hash#key"); return rb_hash_key(hash, value); } /* * delete a specified entry a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qundef. */ VALUE rb_hash_delete_entry(VALUE hash, VALUE key) { st_data_t ktmp = (st_data_t)key, val; if (!RHASH(hash)->ntbl) { return Qundef; } else if (st_delete(RHASH(hash)->ntbl, &ktmp, &val)) { return (VALUE)val; } else { return Qundef; } } /* * delete a specified entry by a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qnil. */ VALUE rb_hash_delete(VALUE hash, VALUE key) { VALUE deleted_value = rb_hash_delete_entry(hash, key); if (deleted_value != Qundef) { /* likely pass */ return deleted_value; } else { return Qnil; } } /* * call-seq: * hsh.delete(key) -> value * hsh.delete(key) {| key | block } -> value * * Deletes the key-value pair and returns the value from hsh whose * key is equal to key. If the key is not found, it returns * nil. If the optional code block is given and the * key is not found, pass in the key and return the result of * block. * * h = { "a" => 100, "b" => 200 } * h.delete("a") #=> 100 * h.delete("z") #=> nil * h.delete("z") { |el| "#{el} not found" } #=> "z not found" * */ static VALUE rb_hash_delete_m(VALUE hash, VALUE key) { VALUE val; rb_hash_modify_check(hash); val = rb_hash_delete_entry(hash, key); if (val != Qundef) { return val; } else { if (rb_block_given_p()) { return rb_yield(key); } else { return Qnil; } } } struct shift_var { VALUE key; VALUE val; }; static int shift_i_safe(VALUE key, VALUE value, VALUE arg) { struct shift_var *var = (struct shift_var *)arg; var->key = key; var->val = value; return ST_STOP; } /* * call-seq: * hsh.shift -> anArray or obj * * Removes a key-value pair from hsh and returns it as the * two-item array [ key, value ], or * the hash's default value if the hash is empty. * * h = { 1 => "a", 2 => "b", 3 => "c" } * h.shift #=> [1, "a"] * h #=> {2=>"b", 3=>"c"} */ static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (st_shift(RHASH(hash)->ntbl, &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } return rb_hash_default_value(hash, Qnil); } static int delete_if_i(VALUE key, VALUE value, VALUE hash) { if (RTEST(rb_yield_values(2, key, value))) { return ST_DELETE; } return ST_CONTINUE; } static VALUE hash_enum_size(VALUE hash, VALUE args, VALUE eobj) { return rb_hash_size(hash); } /* * call-seq: * hsh.delete_if {| key, value | block } -> hsh * hsh.delete_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.delete_if {|key, value| key >= "b" } #=> {"a"=>100} * */ VALUE rb_hash_delete_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) rb_hash_foreach(hash, delete_if_i, hash); return hash; } /* * call-seq: * hsh.reject! {| key, value | block } -> hsh or nil * hsh.reject! -> an_enumerator * * Equivalent to Hash#delete_if, but returns * nil if no changes were made. */ VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH(hash)->ntbl->num_entries) return Qnil; return hash; } static int reject_i(VALUE key, VALUE value, VALUE result) { if (!RTEST(rb_yield_values(2, key, value))) { rb_hash_aset(result, key, value); } return ST_CONTINUE; } /* * call-seq: * hsh.reject {|key, value| block} -> a_hash * hsh.reject -> an_enumerator * * Returns a new hash consisting of entries for which the block returns false. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.reject {|k,v| k < "b"} #=> {"b" => 200, "c" => 300} * h.reject {|k,v| v > 100} #=> {"a" => 100} */ VALUE rb_hash_reject(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (RTEST(ruby_verbose)) { VALUE klass; if (HAS_EXTRA_STATES(hash, klass)) { rb_warn("extra states are no longer copied: %+"PRIsVALUE, hash); } } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, reject_i, result); } return result; } /* * call-seq: * hsh.slice(*keys) -> a_hash * * Returns a hash containing only the given keys and their values. * * h = { a: 100, b: 200, c: 300 } * h.slice(:a) #=> {:a=>100} * h.slice(:b, :c, :d) #=> {:b=>200, :c=>300} */ static VALUE rb_hash_slice(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, value, result; if (argc == 0 || RHASH_EMPTY_P(hash)) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_hash_lookup2(hash, key, Qundef); if (value != Qundef) rb_hash_aset(result, key, value); } return result; } /* * call-seq: * hsh.values_at(key, ...) -> array * * Return an array containing the values associated with the given keys. * Also see Hash.select. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * h.values_at("cow", "cat") #=> ["bovine", "feline"] */ VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i array * hsh.fetch_values(key, ...) { |key| block } -> array * * Returns an array containing the values associated with the given keys * but also raises KeyError when one of keys can't be found. * Also see Hash#values_at and Hash#fetch. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * * h.fetch_values("cow", "cat") #=> ["bovine", "feline"] * h.fetch_values("cow", "bird") # raises KeyError * h.fetch_values("cow", "bird") { |k| k.upcase } #=> ["bovine", "BIRD"] */ VALUE rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i a_hash * hsh.select -> an_enumerator * * Returns a new hash consisting of entries for which the block returns true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300} * h.select {|k,v| v < 200} #=> {"a" => 100} */ VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, select_i, result); } return result; } static int keep_if_i(VALUE key, VALUE value, VALUE hash) { if (!RTEST(rb_yield_values(2, key, value))) { return ST_DELETE; } return ST_CONTINUE; } /* * call-seq: * hsh.select! {| key, value | block } -> hsh or nil * hsh.select! -> an_enumerator * * Equivalent to Hash#keep_if, but returns * nil if no changes were made. */ VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return Qnil; n = RHASH(hash)->ntbl->num_entries; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH(hash)->ntbl->num_entries) return Qnil; return hash; } /* * call-seq: * hsh.keep_if {| key, value | block } -> hsh * hsh.keep_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to false. * * If no block is given, an enumerator is returned instead. * */ VALUE rb_hash_keep_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) rb_hash_foreach(hash, keep_if_i, hash); return hash; } static int clear_i(VALUE key, VALUE value, VALUE dummy) { return ST_DELETE; } /* * call-seq: * hsh.clear -> hsh * * Removes all key-value pairs from hsh. * * h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200} * h.clear #=> {} * */ VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; if (RHASH(hash)->ntbl->num_entries > 0) { if (RHASH_ITER_LEV(hash) > 0) rb_hash_foreach(hash, clear_i, 0); else st_clear(RHASH(hash)->ntbl); } return hash; } static int hash_aset(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { if (existing) { arg->new_value = arg->arg; arg->old_value = *val; } else { arg->new_key = *key; arg->new_value = arg->arg; } *val = arg->arg; return ST_CONTINUE; } static VALUE fstring_existing_str(VALUE str) { st_data_t fstr; st_table *tbl = rb_vm_fstring_table(); if (st_lookup(tbl, str, &fstr)) { if (rb_objspace_garbage_object_p(fstr)) { return rb_fstring(str); } else { return (VALUE)fstr; } } else { return Qnil; } } VALUE rb_hash_key_str(VALUE key) { VALUE k; if (!RB_OBJ_TAINTED(key) && (k = fstring_existing_str(key)) != Qnil) { return k; } else { return rb_str_new_frozen(key); } } static int hash_aset_str(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { if (!existing && !RB_OBJ_FROZEN(*key)) { *key = rb_hash_key_str(*key); } return hash_aset(key, val, arg, existing); } NOINSERT_UPDATE_CALLBACK(hash_aset) NOINSERT_UPDATE_CALLBACK(hash_aset_str) /* * call-seq: * hsh[key] = value -> value * hsh.store(key, value) -> value * * == Element Assignment * * Associates the value given by +value+ with the key given by +key+. * * h = { "a" => 100, "b" => 200 } * h["a"] = 9 * h["c"] = 4 * h #=> {"a"=>9, "b"=>200, "c"=>4} * h.store("d", 42) #=> 42 * h #=> {"a"=>9, "b"=>200, "c"=>4, "d"=>42} * * +key+ should not have its value changed while it is in use as a key (an * unfrozen String passed as a key will be duplicated and frozen). * * a = "a" * b = "b".freeze * h = { a => 100, b => 200 } * h.key(100).equal? a #=> false * h.key(200).equal? b #=> true * */ VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { int iter_lev = RHASH_ITER_LEV(hash); st_table *tbl = RHASH(hash)->ntbl; rb_hash_modify(hash); if (!tbl) { if (iter_lev > 0) no_new_key(); tbl = hash_tbl(hash); } if (tbl->type == &identhash || rb_obj_class(key) != rb_cString) { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val); } else { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val); } return val; } static int replace_i(VALUE key, VALUE val, VALUE hash) { rb_hash_aset(hash, key, val); return ST_CONTINUE; } /* :nodoc: */ static VALUE rb_hash_initialize_copy(VALUE hash, VALUE hash2) { st_table *ntbl; rb_hash_modify_check(hash); hash2 = to_hash(hash2); Check_Type(hash2, T_HASH); if (hash == hash2) return hash; ntbl = RHASH(hash)->ntbl; if (RHASH(hash2)->ntbl) { if (ntbl) st_free_table(ntbl); RHASH(hash)->ntbl = st_copy(RHASH(hash2)->ntbl); if (RHASH(hash)->ntbl->num_entries) rb_hash_rehash(hash); } else if (ntbl) { st_clear(ntbl); } COPY_DEFAULT(hash, hash2); return hash; } /* * call-seq: * hsh.replace(other_hash) -> hsh * * Replaces the contents of hsh with the contents of * other_hash. * * h = { "a" => 100, "b" => 200 } * h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400} * */ static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { st_table *table2; rb_hash_modify_check(hash); if (hash == hash2) return hash; hash2 = to_hash(hash2); COPY_DEFAULT(hash, hash2); table2 = RHASH(hash2)->ntbl; rb_hash_clear(hash); if (table2) hash_tbl(hash)->type = table2->type; rb_hash_foreach(hash2, replace_i, hash); return hash; } /* * call-seq: * hsh.length -> integer * hsh.size -> integer * * Returns the number of key-value pairs in the hash. * * h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 } * h.length #=> 4 * h.delete("a") #=> 200 * h.length #=> 3 */ VALUE rb_hash_size(VALUE hash) { return INT2FIX(RHASH_SIZE(hash)); } /* * call-seq: * hsh.empty? -> true or false * * Returns true if hsh contains no key-value pairs. * * {}.empty? #=> true * */ static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; } static int each_value_i(VALUE key, VALUE value) { rb_yield(value); return ST_CONTINUE; } /* * call-seq: * hsh.each_value {| value | block } -> hsh * hsh.each_value -> an_enumerator * * Calls block once for each key in hsh, passing the * value as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_value {|value| puts value } * * produces: * * 100 * 200 */ static VALUE rb_hash_each_value(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_value_i, 0); return hash; } static int each_key_i(VALUE key, VALUE value) { rb_yield(key); return ST_CONTINUE; } /* * call-seq: * hsh.each_key {| key | block } -> hsh * hsh.each_key -> an_enumerator * * Calls block once for each key in hsh, passing the key * as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_key {|key| puts key } * * produces: * * a * b */ static VALUE rb_hash_each_key(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_key_i, 0); return hash; } static int each_pair_i(VALUE key, VALUE value) { rb_yield(rb_assoc_new(key, value)); return ST_CONTINUE; } static int each_pair_i_fast(VALUE key, VALUE value) { VALUE argv[2]; argv[0] = key; argv[1] = value; rb_yield_values2(2, argv); return ST_CONTINUE; } /* * call-seq: * hsh.each {| key, value | block } -> hsh * hsh.each_pair {| key, value | block } -> hsh * hsh.each -> an_enumerator * hsh.each_pair -> an_enumerator * * Calls block once for each key in hsh, passing the key-value * pair as parameters. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each {|key, value| puts "#{key} is #{value}" } * * produces: * * a is 100 * b is 200 * */ static VALUE rb_hash_each_pair(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (rb_block_arity() > 1) rb_hash_foreach(hash, each_pair_i_fast, 0); else rb_hash_foreach(hash, each_pair_i, 0); return hash; } static int transform_keys_i(VALUE key, VALUE value, VALUE result) { VALUE new_key = rb_yield(key); rb_hash_aset(result, new_key, value); return ST_CONTINUE; } /* * call-seq: * hsh.transform_keys {|key| block } -> new_hash * hsh.transform_keys -> an_enumerator * * Returns a new hash with the results of running the block once for * every key. * This method does not change the values. * * h = { a: 1, b: 2, c: 3 } * h.transform_keys {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys(&:to_s) #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys.with_index {|k, i| "#{k}.#{i}" } * #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_keys(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, transform_keys_i, result); } return result; } static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash); /* * call-seq: * hsh.transform_keys! {|key| block } -> hsh * hsh.transform_keys! -> an_enumerator * * Invokes the given block once for each key in hsh, replacing it * with the new key returned by the block, and then returns hsh. * This method does not change the values. * * h = { a: 1, b: 2, c: 3 } * h.transform_keys! {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys!(&:to_sym) #=> { a: 1, b: 2, c: 3 } * h.transform_keys!.with_index {|k, i| "#{k}.#{i}" } * #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_keys_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) { long i; VALUE pairs = rb_hash_flatten(0, NULL, hash); rb_hash_clear(hash); for (i = 0; i < RARRAY_LEN(pairs); i += 2) { VALUE key = RARRAY_AREF(pairs, i), new_key = rb_yield(key), val = RARRAY_AREF(pairs, i+1); rb_hash_aset(hash, new_key, val); } } return hash; } static int transform_values_i(VALUE key, VALUE value, VALUE result) { VALUE new_value = rb_yield(value); rb_hash_aset(result, key, new_value); return ST_CONTINUE; } /* * call-seq: * hsh.transform_values {|value| block } -> new_hash * hsh.transform_values -> an_enumerator * * Returns a new hash with the results of running the block once for * every value. * This method does not change the keys. * * h = { a: 1, b: 2, c: 3 } * h.transform_values {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 } * h.transform_values(&:to_s) #=> { a: "1", b: "2", c: "3" } * h.transform_values.with_index {|v, i| "#{v}.#{i}" } * #=> { a: "1.0", b: "2.1", c: "3.2" } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_values(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = rb_hash_new_with_size(RHASH_SIZE(hash)); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, transform_values_i, result); } return result; } /* * call-seq: * hsh.transform_values! {|value| block } -> hsh * hsh.transform_values! -> an_enumerator * * Invokes the given block once for each value in hsh, replacing it * with the new value returned by the block, and then returns hsh. * This method does not change the keys. * * h = { a: 1, b: 2, c: 3 } * h.transform_values! {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 } * h.transform_values!(&:to_s) #=> { a: "2", b: "5", c: "10" } * h.transform_values!.with_index {|v, i| "#{v}.#{i}" } * #=> { a: "2.0", b: "5.1", c: "10.2" } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_values_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) rb_hash_foreach(hash, transform_values_i, hash); return hash; } static int to_a_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.to_a -> array * * Converts hsh to a nested array of [ key, * value ] arrays. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_a #=> [["c", 300], ["a", 100], ["d", 400]] */ static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new_capa(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_a_i, ary); OBJ_INFECT(ary, hash); return ary; } static int inspect_i(VALUE key, VALUE value, VALUE str) { VALUE str2; str2 = rb_inspect(key); if (RSTRING_LEN(str) > 1) { rb_str_buf_cat_ascii(str, ", "); } else { rb_enc_copy(str, str2); } rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); rb_str_buf_cat_ascii(str, "=>"); str2 = rb_inspect(value); rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); return ST_CONTINUE; } static VALUE inspect_hash(VALUE hash, VALUE dummy, int recur) { VALUE str; if (recur) return rb_usascii_str_new2("{...}"); str = rb_str_buf_new2("{"); rb_hash_foreach(hash, inspect_i, str); rb_str_buf_cat2(str, "}"); OBJ_INFECT(str, hash); return str; } /* * call-seq: * hsh.to_s -> string * hsh.inspect -> string * * Return the contents of this hash as a string. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}" */ static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); } /* * call-seq: * hsh.to_hash => hsh * * Returns +self+. */ static VALUE rb_hash_to_hash(VALUE hash) { return hash; } /* * call-seq: * hsh.to_h -> hsh or new_hash * * Returns +self+. If called on a subclass of Hash, converts * the receiver to a Hash object. */ static VALUE rb_hash_to_h(VALUE hash) { if (rb_obj_class(hash) != rb_cHash) { const VALUE flags = RBASIC(hash)->flags; hash = hash_dup(hash, rb_cHash, flags & HASH_PROC_DEFAULT); } return hash; } static int keys_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, key); return ST_CONTINUE; } /* * call-seq: * hsh.keys -> array * * Returns a new array populated with the keys from this hash. See also * Hash#values. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 } * h.keys #=> ["a", "b", "c", "d"] * */ MJIT_FUNC_EXPORTED VALUE rb_hash_keys(VALUE hash) { VALUE keys; st_index_t size = RHASH_SIZE(hash); keys = rb_ary_new_capa(size); if (size == 0) return keys; if (ST_DATA_COMPATIBLE_P(VALUE)) { st_table *table = RHASH(hash)->ntbl; rb_gc_writebarrier_remember(keys); RARRAY_PTR_USE(keys, ptr, { size = st_keys(table, ptr, size); }); rb_ary_set_len(keys, size); } else { rb_hash_foreach(hash, keys_i, keys); } return keys; } static int values_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, value); return ST_CONTINUE; } /* * call-seq: * hsh.values -> array * * Returns a new array populated with the values from hsh. See * also Hash#keys. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.values #=> [100, 200, 300] * */ VALUE rb_hash_values(VALUE hash) { VALUE values; st_index_t size = RHASH_SIZE(hash); values = rb_ary_new_capa(size); if (size == 0) return values; if (ST_DATA_COMPATIBLE_P(VALUE)) { st_table *table = RHASH(hash)->ntbl; rb_gc_writebarrier_remember(values); RARRAY_PTR_USE(values, ptr, { size = st_values(table, ptr, size); }); rb_ary_set_len(values, size); } else { rb_hash_foreach(hash, values_i, values); } return values; } /* * call-seq: * hsh.has_key?(key) -> true or false * hsh.include?(key) -> true or false * hsh.key?(key) -> true or false * hsh.member?(key) -> true or false * * Returns true if the given key is present in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_key?("a") #=> true * h.has_key?("z") #=> false * * Note that include? and member? do not test member * equality using == as do other Enumerables. * * See also Enumerable#include? */ MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (!RHASH(hash)->ntbl) return Qfalse; if (st_lookup(RHASH(hash)->ntbl, key, 0)) { return Qtrue; } return Qfalse; } static int rb_hash_search_value(VALUE key, VALUE value, VALUE arg) { VALUE *data = (VALUE *)arg; if (rb_equal(value, data[1])) { data[0] = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.has_value?(value) -> true or false * hsh.value?(value) -> true or false * * Returns true if the given value is present for some key * in hsh. * * h = { "a" => 100, "b" => 200 } * h.value?(100) #=> true * h.value?(999) #=> false */ static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data); return data[0]; } struct equal_data { VALUE result; st_table *tbl; int eql; }; static int eql_i(VALUE key, VALUE val1, VALUE arg) { struct equal_data *data = (struct equal_data *)arg; st_data_t val2; if (!st_lookup(data->tbl, key, &val2)) { data->result = Qfalse; return ST_STOP; } if (!(data->eql ? rb_eql(val1, (VALUE)val2) : (int)rb_equal(val1, (VALUE)val2))) { data->result = Qfalse; return ST_STOP; } return ST_CONTINUE; } static VALUE recursive_eql(VALUE hash, VALUE dt, int recur) { struct equal_data *data; if (recur) return Qtrue; /* Subtle! */ data = (struct equal_data*)dt; data->result = Qtrue; rb_hash_foreach(hash, eql_i, dt); return data->result; } static VALUE hash_equal(VALUE hash1, VALUE hash2, int eql) { struct equal_data data; if (hash1 == hash2) return Qtrue; if (!RB_TYPE_P(hash2, T_HASH)) { if (!rb_respond_to(hash2, idTo_hash)) { return Qfalse; } if (eql) { if (rb_eql(hash2, hash1)) { return Qtrue; } else { return Qfalse; } } else { return rb_equal(hash2, hash1); } } if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2)) return Qfalse; if (!RHASH(hash1)->ntbl || !RHASH(hash2)->ntbl) return Qtrue; if (RHASH(hash1)->ntbl->type != RHASH(hash2)->ntbl->type) return Qfalse; #if 0 if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) && FL_TEST(hash1, HASH_PROC_DEFAULT) == FL_TEST(hash2, HASH_PROC_DEFAULT))) return Qfalse; #endif data.tbl = RHASH(hash2)->ntbl; data.eql = eql; return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data); } /* * call-seq: * hsh == other_hash -> true or false * * Equality---Two hashes are equal if they each contain the same number * of keys and if each key-value pair is equal to (according to * Object#==) the corresponding elements in the other * hash. * * h1 = { "a" => 1, "c" => 2 } * h2 = { 7 => 35, "c" => 2, "a" => 1 } * h3 = { "a" => 1, "c" => 2, 7 => 35 } * h4 = { "a" => 1, "d" => 2, "f" => 35 } * h1 == h2 #=> false * h2 == h3 #=> true * h3 == h4 #=> false * * The orders of each hashes are not compared. * * h1 = { "a" => 1, "c" => 2 } * h2 = { "c" => 2, "a" => 1 } * h1 == h2 #=> true * */ static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); } /* * call-seq: * hash.eql?(other) -> true or false * * Returns true if hash and other are * both hashes with the same content. * The orders of each hashes are not compared. */ static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); } static int hash_i(VALUE key, VALUE val, VALUE arg) { st_index_t *hval = (st_index_t *)arg; st_index_t hdata[2]; hdata[0] = rb_hash(key); hdata[1] = rb_hash(val); *hval ^= st_hash(hdata, sizeof(hdata), 0); return ST_CONTINUE; } /* * call-seq: * hsh.hash -> integer * * Compute a hash-code for this hash. Two hashes with the same content * will have the same hash code (and will compare using eql?). * * See also Object#hash. */ static VALUE rb_hash_hash(VALUE hash) { st_index_t size = RHASH_SIZE(hash); st_index_t hval = rb_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash); if (size) { rb_hash_foreach(hash, hash_i, (VALUE)&hval); } hval = rb_hash_end(hval); return ST2FIX(hval); } static int rb_hash_invert_i(VALUE key, VALUE value, VALUE hash) { rb_hash_aset(hash, value, key); return ST_CONTINUE; } /* * call-seq: * hsh.invert -> new_hash * * Returns a new hash created by using hsh's values as keys, and * the keys as values. * If a key with the same value already exists in the hsh, then * the last one defined will be used, the earlier value(s) will be discarded. * * h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 } * h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"} * * If there is no key with the same value, Hash#invert is involutive. * * h = { a: 1, b: 3, c: 4 } * h.invert.invert == h #=> true * * The condition, no key with the same value, can be tested by comparing * the size of inverted hash. * * # no key with the same value * h = { a: 1, b: 3, c: 4 } * h.size == h.invert.size #=> true * * # two (or more) keys has the same value * h = { a: 1, b: 3, c: 1 } * h.size == h.invert.size #=> false * */ static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; } static int rb_hash_update_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { if (existing) { arg->old_value = *value; arg->new_value = arg->arg; } else { arg->new_key = *key; arg->new_value = arg->arg; } *value = arg->arg; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_callback) static int rb_hash_update_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_callback, value); return ST_CONTINUE; } static int rb_hash_update_block_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { VALUE newvalue = (VALUE)arg->arg; if (existing) { newvalue = rb_yield_values(3, (VALUE)*key, (VALUE)*value, newvalue); arg->old_value = *value; } else { arg->new_key = *key; } arg->new_value = newvalue; *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_block_callback) static int rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_block_callback, value); return ST_CONTINUE; } /* * call-seq: * hsh.merge!(other_hash) -> hsh * hsh.update(other_hash) -> hsh * hsh.merge!(other_hash){|key, oldval, newval| block} -> hsh * hsh.update(other_hash){|key, oldval, newval| block} -> hsh * * Adds the contents of _other_hash_ to _hsh_. If no block is specified, * entries with duplicate keys are overwritten with the values from * _other_hash_, otherwise the value of each duplicate key is determined by * calling the block with the key, its value in _hsh_ and its value in * _other_hash_. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * h1 #=> {"a"=>100, "b"=>254, "c"=>300} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) { |key, v1, v2| v1 } * #=> {"a"=>100, "b"=>200, "c"=>300} * h1 #=> {"a"=>100, "b"=>200, "c"=>300} */ static VALUE rb_hash_update(VALUE hash1, VALUE hash2) { rb_hash_modify(hash1); hash2 = to_hash(hash2); if (rb_block_given_p()) { rb_hash_foreach(hash2, rb_hash_update_block_i, hash1); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } struct update_func_arg { VALUE hash; VALUE value; rb_hash_update_func *func; }; static int rb_hash_update_func_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { struct update_func_arg *uf_arg = (struct update_func_arg *)arg->arg; VALUE newvalue = uf_arg->value; if (existing) { newvalue = (*uf_arg->func)((VALUE)*key, (VALUE)*value, newvalue); arg->old_value = *value; } else { arg->new_key = *key; } arg->new_value = newvalue; *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_func_callback) static int rb_hash_update_func_i(VALUE key, VALUE value, VALUE arg0) { struct update_func_arg *arg = (struct update_func_arg *)arg0; VALUE hash = arg->hash; arg->value = value; RHASH_UPDATE(hash, key, rb_hash_update_func_callback, (VALUE)arg); return ST_CONTINUE; } VALUE rb_hash_update_by(VALUE hash1, VALUE hash2, rb_hash_update_func *func) { rb_hash_modify(hash1); hash2 = to_hash(hash2); if (func) { struct update_func_arg arg; arg.hash = hash1; arg.func = func; rb_hash_foreach(hash2, rb_hash_update_func_i, (VALUE)&arg); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } /* * call-seq: * hsh.merge(other_hash) -> new_hash * hsh.merge(other_hash){|key, oldval, newval| block} -> new_hash * * Returns a new hash containing the contents of other_hash and * the contents of hsh. If no block is specified, the value for * entries with duplicate keys will be that of other_hash. Otherwise * the value for each duplicate key is determined by calling the block * with the key, its value in hsh and its value in other_hash. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * h1.merge(h2){|key, oldval, newval| newval - oldval} * #=> {"a"=>100, "b"=>54, "c"=>300} * h1 #=> {"a"=>100, "b"=>200} * */ static VALUE rb_hash_merge(VALUE hash1, VALUE hash2) { return rb_hash_update(rb_hash_dup(hash1), hash2); } static int assoc_cmp(VALUE a, VALUE b) { return !RTEST(rb_equal(a, b)); } static VALUE lookup2_call(VALUE arg) { VALUE *args = (VALUE *)arg; return rb_hash_lookup2(args[0], args[1], Qundef); } struct reset_hash_type_arg { VALUE hash; const struct st_hash_type *orighash; }; static VALUE reset_hash_type(VALUE arg) { struct reset_hash_type_arg *p = (struct reset_hash_type_arg *)arg; RHASH(p->hash)->ntbl->type = p->orighash; return Qundef; } static int assoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], key))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.assoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the key using ==. * Returns the key-value pair (two elements array) or +nil+ * if no match is found. See Array#assoc. * * h = {"colors" => ["red", "blue", "green"], * "letters" => ["a", "b", "c" ]} * h.assoc("letters") #=> ["letters", ["a", "b", "c"]] * h.assoc("foo") #=> nil */ VALUE rb_hash_assoc(VALUE hash, VALUE key) { st_table *table; const struct st_hash_type *orighash; VALUE args[2]; if (RHASH_EMPTY_P(hash)) return Qnil; table = RHASH(hash)->ntbl; orighash = table->type; if (orighash != &identhash) { VALUE value; struct reset_hash_type_arg ensure_arg; struct st_hash_type assochash; assochash.compare = assoc_cmp; assochash.hash = orighash->hash; table->type = &assochash; args[0] = hash; args[1] = key; ensure_arg.hash = hash; ensure_arg.orighash = orighash; value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg); if (value != Qundef) return rb_assoc_new(key, value); } args[0] = key; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; } static int rassoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], val))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.rassoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the value using ==. * Returns the first key-value pair (two-element array) that matches. See * also Array#rassoc. * * a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"} * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; } static int flatten_i(VALUE key, VALUE val, VALUE ary) { VALUE pair[2]; pair[0] = key; pair[1] = val; rb_ary_cat(ary, pair, 2); return ST_CONTINUE; } /* * call-seq: * hash.flatten -> an_array * hash.flatten(level) -> an_array * * Returns a new array that is a one-dimensional flattening of this * hash. That is, for every key or value that is an array, extract * its elements into the new array. Unlike Array#flatten, this * method does not flatten recursively by default. The optional * level argument determines the level of recursion to flatten. * * a = {1=> "one", 2 => [2,"two"], 3 => "three"} * a.flatten # => [1, "one", 2, [2, "two"], 3, "three"] * a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"] */ static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary; rb_check_arity(argc, 0, 1); if (argc) { int level = NUM2INT(argv[0]); if (level == 0) return rb_hash_to_a(hash); ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); level--; if (level > 0) { VALUE ary_flatten_level = INT2FIX(level); rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level); } else if (level < 0) { /* flatten recursively */ rb_funcallv(ary, id_flatten_bang, 0, 0); } } else { ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); } return ary; } static int delete_if_nil(VALUE key, VALUE value, VALUE hash) { if (NIL_P(value)) { return ST_DELETE; } return ST_CONTINUE; } static int set_if_not_nil(VALUE key, VALUE value, VALUE hash) { if (!NIL_P(value)) { rb_hash_aset(hash, key, value); } return ST_CONTINUE; } /* * call-seq: * hsh.compact -> new_hash * * Returns a new hash with the nil values/key pairs removed * * h = { a: 1, b: false, c: nil } * h.compact #=> { a: 1, b: false } * h #=> { a: 1, b: false, c: nil } * */ static VALUE rb_hash_compact(VALUE hash) { VALUE result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, set_if_not_nil, result); } return result; } /* * call-seq: * hsh.compact! -> hsh or nil * * Removes all nil values from the hash. * Returns nil if no changes were made, otherwise returns the hash. * * h = { a: 1, b: false, c: nil } * h.compact! #=> { a: 1, b: false } * */ static VALUE rb_hash_compact_bang(VALUE hash) { rb_hash_modify_check(hash); if (RHASH(hash)->ntbl) { st_index_t n = RHASH(hash)->ntbl->num_entries; rb_hash_foreach(hash, delete_if_nil, hash); if (n != RHASH(hash)->ntbl->num_entries) return hash; } return Qnil; } /* * call-seq: * hsh.compare_by_identity -> hsh * * Makes hsh compare its keys by their identity, i.e. it * will consider exact same objects as same keys. * * h1 = { "a" => 100, "b" => 200, :c => "c" } * h1["a"] #=> 100 * h1.compare_by_identity * h1.compare_by_identity? #=> true * h1["a".dup] #=> nil # different objects. * h1[:c] #=> "c" # same symbols are all same. * */ static VALUE rb_hash_compare_by_id(VALUE hash) { st_table *identtable; if (rb_hash_compare_by_id_p(hash)) return hash; rb_hash_modify_check(hash); identtable = rb_init_identtable_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)identtable); if (RHASH(hash)->ntbl) st_free_table(RHASH(hash)->ntbl); RHASH(hash)->ntbl = identtable; return hash; } /* * call-seq: * hsh.compare_by_identity? -> true or false * * Returns true if hsh will compare its keys by * their identity. Also see Hash#compare_by_identity. * */ MJIT_FUNC_EXPORTED VALUE rb_hash_compare_by_id_p(VALUE hash) { if (!RHASH(hash)->ntbl) return Qfalse; if (RHASH(hash)->ntbl->type == &identhash) { return Qtrue; } return Qfalse; } VALUE rb_ident_hash_new(void) { VALUE hash = rb_hash_new(); RHASH(hash)->ntbl = st_init_table(&identhash); return hash; } st_table * rb_init_identtable(void) { return st_init_table(&identhash); } st_table * rb_init_identtable_with_size(st_index_t size) { return st_init_table_with_size(&identhash, size); } static int any_p_i(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield(rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_fast(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield_values(2, key, value); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_pattern(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_funcall(((VALUE *)arg)[1], idEqq, 1, rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.any? [{ |(key, value)| block }] -> true or false * * See also Enumerable#any? */ static VALUE rb_hash_any_p(int argc, VALUE *argv, VALUE hash) { VALUE args[2]; args[0] = Qfalse; rb_check_arity(argc, 0, 1); if (RHASH_EMPTY_P(hash)) return Qfalse; if (argc) { args[1] = argv[0]; rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args); } else { if (!rb_block_given_p()) { /* yields pairs, never false */ return Qtrue; } if (rb_block_arity() > 1) rb_hash_foreach(hash, any_p_i_fast, (VALUE)args); else rb_hash_foreach(hash, any_p_i, (VALUE)args); } return args[0]; } /* * call-seq: * hsh.dig(key, ...) -> object * * Extracts the nested value specified by the sequence of key * objects by calling +dig+ at each step, returning +nil+ if any * intermediate step is +nil+. * * h = { foo: {bar: {baz: 1}}} * * h.dig(:foo, :bar, :baz) #=> 1 * h.dig(:foo, :zot, :xyz) #=> nil * * g = { foo: [10, 11, 12] } * g.dig(:foo, 1) #=> 11 * g.dig(:foo, 1, 0) #=> TypeError: Integer does not have #dig method * g.dig(:foo, :bar) #=> TypeError: no implicit conversion of Symbol into Integer */ VALUE rb_hash_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_hash_aref(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); } static int hash_le_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; VALUE v = rb_hash_lookup2(args[0], key, Qundef); if (v != Qundef && rb_equal(value, v)) return ST_CONTINUE; args[1] = Qfalse; return ST_STOP; } static VALUE hash_le(VALUE hash1, VALUE hash2) { VALUE args[2]; args[0] = hash2; args[1] = Qtrue; rb_hash_foreach(hash1, hash_le_i, (VALUE)args); return args[1]; } /* * call-seq: * hash <= other -> true or false * * Returns true if hash is subset of * other or equals to other. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 <= h2 #=> true * h2 <= h1 #=> false * h1 <= h1 #=> true */ static VALUE rb_hash_le(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash < other -> true or false * * Returns true if hash is subset of * other. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 < h2 #=> true * h2 < h1 #=> false * h1 < h1 #=> false */ static VALUE rb_hash_lt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash >= other -> true or false * * Returns true if other is subset of * hash or equals to hash. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 >= h2 #=> false * h2 >= h1 #=> true * h1 >= h1 #=> true */ static VALUE rb_hash_ge(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } /* * call-seq: * hash > other -> true or false * * Returns true if other is subset of * hash. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 > h2 #=> false * h2 > h1 #=> true * h1 > h1 #=> false */ static VALUE rb_hash_gt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } static VALUE hash_proc_call(VALUE key, VALUE hash, int argc, const VALUE *argv, VALUE passed_proc) { rb_check_arity(argc, 1, 1); return rb_hash_aref(hash, *argv); } /* * call-seq: * hash.to_proc -> proc * * Returns a Proc which maps keys to values. * * h = {a:1, b:2} * hp = h.to_proc * hp.call(:a) #=> 1 * hp.call(:b) #=> 2 * hp.call(:c) #=> nil * [:a, :b, :c].map(&h) #=> [1, 2, nil] */ static VALUE rb_hash_to_proc(VALUE hash) { return rb_func_proc_new(hash_proc_call, hash); } static int add_new_i(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { VALUE *args = (VALUE *)arg; if (existing) return ST_STOP; RB_OBJ_WRITTEN(args[0], Qundef, (VALUE)*key); RB_OBJ_WRITE(args[0], (VALUE *)val, args[1]); return ST_CONTINUE; } /* * add +key+ to +val+ pair if +hash+ does not contain +key+. * returns non-zero if +key+ was contained. */ int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val) { st_table *tbl = rb_hash_tbl_raw(hash); VALUE args[2]; args[0] = hash; args[1] = val; return st_update(tbl, (st_data_t)key, add_new_i, (st_data_t)args); } static int path_tainted = -1; static char **origenviron; #ifdef _WIN32 #define GET_ENVIRON(e) ((e) = rb_w32_get_environ()) #define FREE_ENVIRON(e) rb_w32_free_environ(e) static char **my_environ; #undef environ #define environ my_environ #undef getenv static char *(*w32_getenv)(const char*); static char * w32_getenv_unknown(const char *name) { char *(*func)(const char*); if (rb_locale_encindex() == rb_ascii8bit_encindex()) { func = rb_w32_getenv; } else { func = rb_w32_ugetenv; } /* atomic assignment in flat memory model */ return (w32_getenv = func)(name); } static char *(*w32_getenv)(const char*) = w32_getenv_unknown; #define getenv(n) w32_getenv(n) #elif defined(__APPLE__) #undef environ #define environ (*_NSGetEnviron()) #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #else extern char **environ; #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #endif #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0) #define ENVNMATCH(s1, s2, n) (STRNCASECMP((s1), (s2), (n)) == 0) #else #define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0) #define ENVNMATCH(s1, s2, n) (memcmp((s1), (s2), (n)) == 0) #endif static VALUE env_enc_str_new(const char *ptr, long len, rb_encoding *enc) { #ifdef _WIN32 rb_encoding *internal = rb_default_internal_encoding(); const int ecflags = ECONV_INVALID_REPLACE | ECONV_UNDEF_REPLACE; rb_encoding *utf8 = rb_utf8_encoding(); VALUE str = rb_enc_str_new(NULL, 0, (internal ? internal : enc)); if (NIL_P(rb_str_cat_conv_enc_opts(str, 0, ptr, len, utf8, ecflags, Qnil))) { rb_str_initialize(str, ptr, len, utf8); } #else VALUE str = rb_external_str_new_with_enc(ptr, len, enc); #endif OBJ_TAINT(str); rb_obj_freeze(str); return str; } static VALUE env_enc_str_new_cstr(const char *ptr, rb_encoding *enc) { return env_enc_str_new(ptr, strlen(ptr), enc); } static VALUE env_str_new(const char *ptr, long len) { return env_enc_str_new(ptr, len, rb_locale_encoding()); } static VALUE env_str_new2(const char *ptr) { if (!ptr) return Qnil; return env_str_new(ptr, strlen(ptr)); } static int env_path_tainted(const char *); static rb_encoding * env_encoding_for(const char *name, const char *ptr) { if (ENVMATCH(name, PATH_ENV) && !env_path_tainted(ptr)) { return rb_filesystem_encoding(); } else { return rb_locale_encoding(); } } static VALUE env_name_new(const char *name, const char *ptr) { return env_enc_str_new_cstr(ptr, env_encoding_for(name, ptr)); } static void * get_env_cstr( #ifdef _WIN32 volatile VALUE *pstr, #else VALUE str, #endif const char *name) { #ifdef _WIN32 VALUE str = *pstr; #endif char *var; rb_encoding *enc = rb_enc_get(str); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "bad environment variable %s: ASCII incompatible encoding: %s", name, rb_enc_name(enc)); } #ifdef _WIN32 if (!rb_enc_str_asciionly_p(str)) { *pstr = str = rb_str_conv_enc(str, NULL, rb_utf8_encoding()); } #endif var = RSTRING_PTR(str); if (memchr(var, '\0', RSTRING_LEN(str))) { rb_raise(rb_eArgError, "bad environment variable %s: contains null byte", name); } return rb_str_fill_terminator(str, 1); /* ASCII compatible */ } #ifdef _WIN32 #define get_env_ptr(var, val) \ (var = get_env_cstr(&(val), #var)) #else #define get_env_ptr(var, val) \ (var = get_env_cstr(val, #var)) #endif static inline const char * env_name(volatile VALUE *s) { const char *name; SafeStringValue(*s); get_env_ptr(name, *s); return name; } #define env_name(s) env_name(&(s)) static VALUE env_delete(VALUE obj, VALUE name) { const char *nam, *val; nam = env_name(name); val = getenv(nam); if (val) { VALUE value = env_str_new2(val); ruby_setenv(nam, 0); if (ENVMATCH(nam, PATH_ENV)) { RB_GC_GUARD(name); path_tainted = 0; } return value; } return Qnil; } /* * call-seq: * ENV.delete(name) -> value * ENV.delete(name) { |name| } -> value * * Deletes the environment variable with +name+ and returns the value of the * variable. If a block is given it will be called when the named environment * does not exist. */ static VALUE env_delete_m(VALUE obj, VALUE name) { VALUE val; val = env_delete(obj, name); if (NIL_P(val) && rb_block_given_p()) rb_yield(name); return val; } /* * call-seq: * ENV[name] -> value * * Retrieves the +value+ for environment variable +name+ as a String. Returns * +nil+ if the named variable does not exist. */ static VALUE rb_f_getenv(VALUE obj, VALUE name) { const char *nam, *env; nam = env_name(name); env = getenv(nam); if (env) { return env_name_new(nam, env); } return Qnil; } /* * :yield: missing_name * call-seq: * ENV.fetch(name) -> value * ENV.fetch(name, default) -> value * ENV.fetch(name) { |missing_name| ... } -> value * * Retrieves the environment variable +name+. * * If the given name does not exist and neither +default+ nor a block a * provided an KeyError is raised. If a block is given it is called with * the missing name to provide a value. If a default value is given it will * be returned when no block is given. */ static VALUE env_fetch(int argc, VALUE *argv) { VALUE key; long block_given; const char *nam, *env; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } nam = env_name(key); env = getenv(nam); if (!env) { if (block_given) return rb_yield(key); if (argc == 1) { rb_key_err_raise(rb_sprintf("key not found: \"%"PRIsVALUE"\"", key), envtbl, key); } return argv[1]; } return env_name_new(nam, env); } static void path_tainted_p(const char *path) { path_tainted = rb_path_check(path)?0:1; } static int env_path_tainted(const char *path) { if (path_tainted < 0) { path_tainted_p(path); } return path_tainted; } int rb_env_path_tainted(void) { if (path_tainted < 0) { path_tainted_p(getenv(PATH_ENV)); } return path_tainted; } #if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV)) #elif defined __sun static int in_origenv(const char *str) { char **env; for (env = origenviron; *env; ++env) { if (*env == str) return 1; } return 0; } #else static int envix(const char *nam) { register int i, len = strlen(nam); char **env; env = GET_ENVIRON(environ); for (i = 0; env[i]; i++) { if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=') break; /* memcmp must come first to avoid */ } /* potential SEGV's */ FREE_ENVIRON(environ); return i; } #endif #if defined(_WIN32) static size_t getenvsize(const WCHAR* p) { const WCHAR* porg = p; while (*p++) p += lstrlenW(p) + 1; return p - porg + 1; } static size_t getenvblocksize(void) { return 32767; } #endif #if defined(_WIN32) || \ (defined(__sun) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV))) NORETURN(static void invalid_envname(const char *name)); static void invalid_envname(const char *name) { rb_syserr_fail_str(EINVAL, rb_sprintf("ruby_setenv(%s)", name)); } static const char * check_envname(const char *name) { if (strchr(name, '=')) { invalid_envname(name); } return name; } #endif void ruby_setenv(const char *name, const char *value) { #if defined(_WIN32) # if defined(MINGW_HAS_SECURE_API) || RUBY_MSVCRT_VERSION >= 80 # define HAVE__WPUTENV_S 1 # endif VALUE buf; WCHAR *wname; WCHAR *wvalue = 0; int failed = 0; int len; check_envname(name); len = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0); if (value) { WCHAR* p = GetEnvironmentStringsW(); size_t n; int len2; if (!p) goto fail; /* never happen */ n = lstrlen(name) + 2 + strlen(value) + getenvsize(p); FreeEnvironmentStringsW(p); if (n >= getenvblocksize()) { goto fail; /* 2 for '=' & '\0' */ } len2 = MultiByteToWideChar(CP_UTF8, 0, value, -1, NULL, 0); wname = ALLOCV_N(WCHAR, buf, len + len2); wvalue = wname + len; MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); MultiByteToWideChar(CP_UTF8, 0, value, -1, wvalue, len2); #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } else { wname = ALLOCV_N(WCHAR, buf, len + 1); MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); wvalue = wname + len; *wvalue = L'\0'; #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } #ifndef HAVE__WPUTENV_S failed = _wputenv(wname); #else failed = _wputenv_s(wname, wvalue); #endif ALLOCV_END(buf); /* even if putenv() failed, clean up and try to delete the * variable from the system area. */ if (!value || !*value) { /* putenv() doesn't handle empty value */ if (!SetEnvironmentVariable(name, value) && GetLastError() != ERROR_ENVVAR_NOT_FOUND) goto fail; } if (failed) { fail: invalid_envname(name); } #elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV) if (value) { if (setenv(name, value, 1)) rb_sys_fail_str(rb_sprintf("setenv(%s)", name)); } else { #ifdef VOID_UNSETENV unsetenv(name); #else if (unsetenv(name)) rb_sys_fail_str(rb_sprintf("unsetenv(%s)", name)); #endif } #elif defined __sun /* Solaris 9 (or earlier) does not have setenv(3C) and unsetenv(3C). */ /* The below code was tested on Solaris 10 by: % ./configure ac_cv_func_setenv=no ac_cv_func_unsetenv=no */ size_t len, mem_size; char **env_ptr, *str, *mem_ptr; check_envname(name); len = strlen(name); if (value) { mem_size = len + strlen(value) + 2; mem_ptr = malloc(mem_size); if (mem_ptr == NULL) rb_sys_fail_str(rb_sprintf("malloc("PRIuSIZE")", mem_size)); snprintf(mem_ptr, mem_size, "%s=%s", name, value); } for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) { if (!strncmp(str, name, len) && str[len] == '=') { if (!in_origenv(str)) free(str); while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++; break; } } if (value) { if (putenv(mem_ptr)) { free(mem_ptr); rb_sys_fail_str(rb_sprintf("putenv(%s)", name)); } } #else /* WIN32 */ size_t len; int i; i=envix(name); /* where does it go? */ if (environ == origenviron) { /* need we copy environment? */ int j; int max; char **tmpenv; for (max = i; environ[max]; max++) ; tmpenv = ALLOC_N(char*, max+2); for (j=0; j value * * Sets the environment variable +name+ to +value+. If the value given is * +nil+ the environment variable is deleted. * +name+ must be a string. * */ static VALUE env_aset(VALUE obj, VALUE nm, VALUE val) { char *name, *value; if (NIL_P(val)) { env_delete(obj, nm); return Qnil; } SafeStringValue(nm); SafeStringValue(val); /* nm can be modified in `val.to_str`, don't get `name` before * check for `val` */ get_env_ptr(name, nm); get_env_ptr(value, val); ruby_setenv(name, value); if (ENVMATCH(name, PATH_ENV)) { RB_GC_GUARD(nm); if (OBJ_TAINTED(val)) { /* already tainted, no check */ path_tainted = 1; return val; } else { path_tainted_p(value); } } return val; } /* * call-seq: * ENV.keys -> Array * * Returns every environment variable name in an Array */ static VALUE env_keys(void) { char **env; VALUE ary; ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); } env++; } FREE_ENVIRON(environ); return ary; } static VALUE rb_env_size(VALUE ehash, VALUE args, VALUE eobj) { char **env; long cnt = 0; env = GET_ENVIRON(environ); for (; *env ; ++env) { if (strchr(*env, '=')) { cnt++; } } FREE_ENVIRON(environ); return LONG2FIX(cnt); } /* * call-seq: * ENV.each_key { |name| } -> Hash * ENV.each_key -> Enumerator * * Yields each environment variable name. * * An Enumerator is returned if no block is given. */ static VALUE env_each_key(VALUE ehash) { VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(); for (i=0; i Array * * Returns every environment variable value as an Array */ static VALUE env_values(void) { VALUE ary; char **env; ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.each_value { |value| } -> Hash * ENV.each_value -> Enumerator * * Yields each environment variable +value+. * * An Enumerator is returned if no block was given. */ static VALUE env_each_value(VALUE ehash) { VALUE values; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); values = env_values(); for (i=0; i Hash * ENV.each -> Enumerator * ENV.each_pair { |name, value| } -> Hash * ENV.each_pair -> Enumerator * * Yields each environment variable +name+ and +value+. * * If no block is given an Enumerator is returned. */ static VALUE env_each_pair(VALUE ehash) { char **env; VALUE ary; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); rb_ary_push(ary, env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); if (rb_block_arity() > 1) { for (i=0; i ENV or nil * ENV.reject! -> Enumerator * * Equivalent to ENV#delete_if but returns +nil+ if no changes were made. * * Returns an Enumerator if no block was given. */ static VALUE env_reject_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(); RBASIC_CLEAR_CLASS(keys); for (i=0; i Hash * ENV.delete_if -> Enumerator * * Deletes every environment variable for which the block evaluates to +true+. * * If no block is given an enumerator is returned instead. */ static VALUE env_delete_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_reject_bang(ehash); return envtbl; } /* * call-seq: * ENV.values_at(name, ...) -> Array * * Returns an array containing the environment variable values associated with * the given names. See also ENV.select. */ static VALUE env_values_at(int argc, VALUE *argv) { VALUE result; long i; result = rb_ary_new(); for (i=0; i Hash * ENV.select -> Enumerator * * Returns a copy of the environment for entries where the block returns true. * * Returns an Enumerator if no block was given. */ static VALUE env_select(VALUE ehash) { VALUE result; VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); result = rb_hash_new(); keys = env_keys(); for (i = 0; i < RARRAY_LEN(keys); ++i) { VALUE key = RARRAY_AREF(keys, i); VALUE val = rb_f_getenv(Qnil, key); if (!NIL_P(val)) { if (RTEST(rb_yield_values(2, key, val))) { rb_hash_aset(result, key, val); } } } RB_GC_GUARD(keys); return result; } /* * call-seq: * ENV.select! { |name, value| } -> ENV or nil * ENV.select! -> Enumerator * * Equivalent to ENV#keep_if but returns +nil+ if no changes were made. */ static VALUE env_select_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(); RBASIC_CLEAR_CLASS(keys); for (i=0; i Hash * ENV.keep_if -> Enumerator * * Deletes every environment variable where the block evaluates to +false+. * * Returns an enumerator if no block was given. */ static VALUE env_keep_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_select_bang(ehash); return envtbl; } /* * call-seq: * ENV.clear * * Removes every environment variable. */ VALUE rb_env_clear(void) { VALUE keys; long i; keys = env_keys(); for (i=0; i "ENV" * * Returns "ENV" */ static VALUE env_to_s(void) { return rb_usascii_str_new2("ENV"); } /* * call-seq: * ENV.inspect -> string * * Returns the contents of the environment as a String. */ static VALUE env_inspect(void) { char **env; VALUE str, i; str = rb_str_buf_new2("{"); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (env != environ) { rb_str_buf_cat2(str, ", "); } if (s) { rb_str_buf_cat2(str, "\""); rb_str_buf_cat(str, *env, s-*env); rb_str_buf_cat2(str, "\"=>"); i = rb_inspect(rb_str_new2(s+1)); rb_str_buf_append(str, i); } env++; } FREE_ENVIRON(environ); rb_str_buf_cat2(str, "}"); OBJ_TAINT(str); return str; } /* * call-seq: * ENV.to_a -> Array * * Converts the environment variables into an array of names and value arrays. * * ENV.to_a # => [["TERM", "xterm-color"], ["SHELL", "/bin/bash"], ...] * */ static VALUE env_to_a(void) { char **env; VALUE ary; ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env), env_str_new2(s+1))); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.rehash * * Re-hashing the environment variables does nothing. It is provided for * compatibility with Hash. */ static VALUE env_none(void) { return Qnil; } /* * call-seq: * ENV.length * ENV.size * * Returns the number of environment variables. */ static VALUE env_size(void) { int i; char **env; env = GET_ENVIRON(environ); for (i=0; env[i]; i++) ; FREE_ENVIRON(environ); return INT2FIX(i); } /* * call-seq: * ENV.empty? -> true or false * * Returns true when there are no environment variables */ static VALUE env_empty_p(void) { char **env; env = GET_ENVIRON(environ); if (env[0] == 0) { FREE_ENVIRON(environ); return Qtrue; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.key?(name) -> true or false * ENV.include?(name) -> true or false * ENV.has_key?(name) -> true or false * ENV.member?(name) -> true or false * * Returns +true+ if there is an environment variable with the given +name+. */ static VALUE env_has_key(VALUE env, VALUE key) { const char *s; s = env_name(key); if (getenv(s)) return Qtrue; return Qfalse; } /* * call-seq: * ENV.assoc(name) -> Array or nil * * Returns an Array of the name and value of the environment variable with * +name+ or +nil+ if the name cannot be found. */ static VALUE env_assoc(VALUE env, VALUE key) { const char *s, *e; s = env_name(key); e = getenv(s); if (e) return rb_assoc_new(key, env_str_new2(e)); return Qnil; } /* * call-seq: * ENV.value?(value) -> true or false * ENV.has_value?(value) -> true or false * * Returns +true+ if there is an environment variable with the given +value+. */ static VALUE env_has_value(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; rb_check_safe_obj(obj); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { FREE_ENVIRON(environ); return Qtrue; } } env++; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.rassoc(value) * * Returns an Array of the name and value of the environment variable with * +value+ or +nil+ if the value cannot be found. */ static VALUE env_rassoc(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; rb_check_safe_obj(obj); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { VALUE result = rb_assoc_new(rb_tainted_str_new(*env, s-*env-1), obj); FREE_ENVIRON(environ); return result; } } env++; } FREE_ENVIRON(environ); return Qnil; } /* * call-seq: * ENV.key(value) -> name * * Returns the name of the environment variable with +value+. If the value is * not found +nil+ is returned. */ static VALUE env_key(VALUE dmy, VALUE value) { char **env; VALUE str; SafeStringValue(value); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) { str = env_str_new(*env, s-*env-1); FREE_ENVIRON(environ); return str; } } env++; } FREE_ENVIRON(environ); return Qnil; } /* * call-seq: * ENV.index(value) -> key * * Deprecated method that is equivalent to ENV.key */ static VALUE env_index(VALUE dmy, VALUE value) { rb_warn("ENV.index is deprecated; use ENV.key"); return env_key(dmy, value); } /* * call-seq: * ENV.to_hash -> hash * ENV.to_h -> hash * * Creates a hash with a copy of the environment variables. * */ static VALUE env_to_hash(void) { char **env; VALUE hash; hash = rb_hash_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_hash_aset(hash, env_str_new(*env, s-*env), env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return hash; } /* * call-seq: * ENV.reject { |name, value| } -> Hash * ENV.reject -> Enumerator * * Same as ENV#delete_if, but works on (and returns) a copy of the * environment. */ static VALUE env_reject(void) { return rb_hash_delete_if(env_to_hash()); } /* * call-seq: * ENV.shift -> Array or nil * * Removes an environment variable name-value pair from ENV and returns it as * an Array. Returns +nil+ if when the environment is empty. */ static VALUE env_shift(void) { char **env; VALUE result = Qnil; env = GET_ENVIRON(environ); if (*env) { char *s = strchr(*env, '='); if (s) { VALUE key = env_str_new(*env, s-*env); VALUE val = env_str_new2(getenv(RSTRING_PTR(key))); env_delete(Qnil, key); result = rb_assoc_new(key, val); } } FREE_ENVIRON(environ); return result; } /* * call-seq: * ENV.invert -> Hash * * Returns a new hash created by using environment variable names as values * and values as names. */ static VALUE env_invert(void) { return rb_hash_invert(env_to_hash()); } static int env_replace_i(VALUE key, VALUE val, VALUE keys) { env_aset(Qnil, key, val); if (rb_ary_includes(keys, key)) { rb_ary_delete(keys, key); } return ST_CONTINUE; } /* * call-seq: * ENV.replace(hash) -> env * * Replaces the contents of the environment variables with the contents of * +hash+. */ static VALUE env_replace(VALUE env, VALUE hash) { VALUE keys; long i; keys = env_keys(); if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_replace_i, keys); for (i=0; i Hash * ENV.update(hash) { |name, old_value, new_value| } -> Hash * * Adds the contents of +hash+ to the environment variables. If no block is * specified entries with duplicate keys are overwritten, otherwise the value * of each duplicate name is determined by calling the block with the key, its * value from the environment and its value from the hash. */ static VALUE env_update(VALUE env, VALUE hash) { if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_update_i, 0); return env; } /* * A Hash is a dictionary-like collection of unique keys and their values. * Also called associative arrays, they are similar to Arrays, but where an * Array uses integers as its index, a Hash allows you to use any object * type. * * Hashes enumerate their values in the order that the corresponding keys * were inserted. * * A Hash can be easily created by using its implicit form: * * grades = { "Jane Doe" => 10, "Jim Doe" => 6 } * * Hashes allow an alternate syntax for keys that are symbols. * Instead of * * options = { :font_size => 10, :font_family => "Arial" } * * You could write it as: * * options = { font_size: 10, font_family: "Arial" } * * Each named key is a symbol you can access in hash: * * options[:font_size] # => 10 * * A Hash can also be created through its ::new method: * * grades = Hash.new * grades["Dorothy Doe"] = 9 * * Hashes have a default value that is returned when accessing * keys that do not exist in the hash. If no default is set +nil+ is used. * You can set the default value by sending it as an argument to Hash.new: * * grades = Hash.new(0) * * Or by using the #default= method: * * grades = {"Timmy Doe" => 8} * grades.default = 0 * * Accessing a value in a Hash requires using its key: * * puts grades["Jane Doe"] # => 0 * * === Common Uses * * Hashes are an easy way to represent data structures, such as * * books = {} * books[:matz] = "The Ruby Programming Language" * books[:black] = "The Well-Grounded Rubyist" * * Hashes are also commonly used as a way to have named parameters in * functions. Note that no brackets are used below. If a hash is the last * argument on a method call, no braces are needed, thus creating a really * clean interface: * * Person.create(name: "John Doe", age: 27) * * def self.create(params) * @name = params[:name] * @age = params[:age] * end * * === Hash Keys * * Two objects refer to the same hash key when their hash value * is identical and the two objects are eql? to each other. * * A user-defined class may be used as a hash key if the hash * and eql? methods are overridden to provide meaningful * behavior. By default, separate instances refer to separate hash keys. * * A typical implementation of hash is based on the * object's data while eql? is usually aliased to the overridden * == method: * * class Book * attr_reader :author, :title * * def initialize(author, title) * @author = author * @title = title * end * * def ==(other) * self.class === other and * other.author == @author and * other.title == @title * end * * alias eql? == * * def hash * @author.hash ^ @title.hash # XOR * end * end * * book1 = Book.new 'matz', 'Ruby in a Nutshell' * book2 = Book.new 'matz', 'Ruby in a Nutshell' * * reviews = {} * * reviews[book1] = 'Great reference!' * reviews[book2] = 'Nice and compact!' * * reviews.length #=> 1 * * See also Object#hash and Object#eql? */ void Init_Hash(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_hash = rb_intern("hash"); id_yield = rb_intern("yield"); id_default = rb_intern("default"); id_flatten_bang = rb_intern("flatten!"); rb_cHash = rb_define_class("Hash", rb_cObject); rb_include_module(rb_cHash, rb_mEnumerable); rb_define_alloc_func(rb_cHash, empty_hash_alloc); rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1); rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1); rb_define_method(rb_cHash, "initialize", rb_hash_initialize, -1); rb_define_method(rb_cHash, "initialize_copy", rb_hash_initialize_copy, 1); rb_define_method(rb_cHash, "rehash", rb_hash_rehash, 0); rb_define_method(rb_cHash, "to_hash", rb_hash_to_hash, 0); rb_define_method(rb_cHash, "to_h", rb_hash_to_h, 0); rb_define_method(rb_cHash, "to_a", rb_hash_to_a, 0); rb_define_method(rb_cHash, "inspect", rb_hash_inspect, 0); rb_define_alias(rb_cHash, "to_s", "inspect"); rb_define_method(rb_cHash, "to_proc", rb_hash_to_proc, 0); rb_define_method(rb_cHash, "==", rb_hash_equal, 1); rb_define_method(rb_cHash, "[]", rb_hash_aref, 1); rb_define_method(rb_cHash, "hash", rb_hash_hash, 0); rb_define_method(rb_cHash, "eql?", rb_hash_eql, 1); rb_define_method(rb_cHash, "fetch", rb_hash_fetch_m, -1); rb_define_method(rb_cHash, "[]=", rb_hash_aset, 2); rb_define_method(rb_cHash, "store", rb_hash_aset, 2); rb_define_method(rb_cHash, "default", rb_hash_default, -1); rb_define_method(rb_cHash, "default=", rb_hash_set_default, 1); rb_define_method(rb_cHash, "default_proc", rb_hash_default_proc, 0); rb_define_method(rb_cHash, "default_proc=", rb_hash_set_default_proc, 1); rb_define_method(rb_cHash, "key", rb_hash_key, 1); rb_define_method(rb_cHash, "index", rb_hash_index, 1); rb_define_method(rb_cHash, "size", rb_hash_size, 0); rb_define_method(rb_cHash, "length", rb_hash_size, 0); rb_define_method(rb_cHash, "empty?", rb_hash_empty_p, 0); rb_define_method(rb_cHash, "each_value", rb_hash_each_value, 0); rb_define_method(rb_cHash, "each_key", rb_hash_each_key, 0); rb_define_method(rb_cHash, "each_pair", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "each", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "transform_keys", rb_hash_transform_keys, 0); rb_define_method(rb_cHash, "transform_keys!", rb_hash_transform_keys_bang, 0); rb_define_method(rb_cHash, "transform_values", rb_hash_transform_values, 0); rb_define_method(rb_cHash, "transform_values!", rb_hash_transform_values_bang, 0); rb_define_method(rb_cHash, "keys", rb_hash_keys, 0); rb_define_method(rb_cHash, "values", rb_hash_values, 0); rb_define_method(rb_cHash, "values_at", rb_hash_values_at, -1); rb_define_method(rb_cHash, "fetch_values", rb_hash_fetch_values, -1); rb_define_method(rb_cHash, "shift", rb_hash_shift, 0); rb_define_method(rb_cHash, "delete", rb_hash_delete_m, 1); rb_define_method(rb_cHash, "delete_if", rb_hash_delete_if, 0); rb_define_method(rb_cHash, "keep_if", rb_hash_keep_if, 0); rb_define_method(rb_cHash, "select", rb_hash_select, 0); rb_define_method(rb_cHash, "select!", rb_hash_select_bang, 0); rb_define_method(rb_cHash, "reject", rb_hash_reject, 0); rb_define_method(rb_cHash, "reject!", rb_hash_reject_bang, 0); rb_define_method(rb_cHash, "slice", rb_hash_slice, -1); rb_define_method(rb_cHash, "clear", rb_hash_clear, 0); rb_define_method(rb_cHash, "invert", rb_hash_invert, 0); rb_define_method(rb_cHash, "update", rb_hash_update, 1); rb_define_method(rb_cHash, "replace", rb_hash_replace, 1); rb_define_method(rb_cHash, "merge!", rb_hash_update, 1); rb_define_method(rb_cHash, "merge", rb_hash_merge, 1); rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1); rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1); rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1); rb_define_method(rb_cHash, "compact", rb_hash_compact, 0); rb_define_method(rb_cHash, "compact!", rb_hash_compact_bang, 0); rb_define_method(rb_cHash, "include?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "member?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "compare_by_identity", rb_hash_compare_by_id, 0); rb_define_method(rb_cHash, "compare_by_identity?", rb_hash_compare_by_id_p, 0); rb_define_method(rb_cHash, "any?", rb_hash_any_p, -1); rb_define_method(rb_cHash, "dig", rb_hash_dig, -1); rb_define_method(rb_cHash, "<=", rb_hash_le, 1); rb_define_method(rb_cHash, "<", rb_hash_lt, 1); rb_define_method(rb_cHash, ">=", rb_hash_ge, 1); rb_define_method(rb_cHash, ">", rb_hash_gt, 1); /* Document-class: ENV * * ENV is a hash-like accessor for environment variables. */ /* * Hack to get RDoc to regard ENV as a class: * envtbl = rb_define_class("ENV", rb_cObject); */ origenviron = environ; envtbl = rb_obj_alloc(rb_cObject); rb_extend_object(envtbl, rb_mEnumerable); rb_define_singleton_method(envtbl, "[]", rb_f_getenv, 1); rb_define_singleton_method(envtbl, "fetch", env_fetch, -1); rb_define_singleton_method(envtbl, "[]=", env_aset, 2); rb_define_singleton_method(envtbl, "store", env_aset, 2); rb_define_singleton_method(envtbl, "each", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_pair", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_key", env_each_key, 0); rb_define_singleton_method(envtbl, "each_value", env_each_value, 0); rb_define_singleton_method(envtbl, "delete", env_delete_m, 1); rb_define_singleton_method(envtbl, "delete_if", env_delete_if, 0); rb_define_singleton_method(envtbl, "keep_if", env_keep_if, 0); rb_define_singleton_method(envtbl, "clear", rb_env_clear, 0); rb_define_singleton_method(envtbl, "reject", env_reject, 0); rb_define_singleton_method(envtbl, "reject!", env_reject_bang, 0); rb_define_singleton_method(envtbl, "select", env_select, 0); rb_define_singleton_method(envtbl, "select!", env_select_bang, 0); rb_define_singleton_method(envtbl, "shift", env_shift, 0); rb_define_singleton_method(envtbl, "invert", env_invert, 0); rb_define_singleton_method(envtbl, "replace", env_replace, 1); rb_define_singleton_method(envtbl, "update", env_update, 1); rb_define_singleton_method(envtbl, "inspect", env_inspect, 0); rb_define_singleton_method(envtbl, "rehash", env_none, 0); rb_define_singleton_method(envtbl, "to_a", env_to_a, 0); rb_define_singleton_method(envtbl, "to_s", env_to_s, 0); rb_define_singleton_method(envtbl, "key", env_key, 1); rb_define_singleton_method(envtbl, "index", env_index, 1); rb_define_singleton_method(envtbl, "size", env_size, 0); rb_define_singleton_method(envtbl, "length", env_size, 0); rb_define_singleton_method(envtbl, "empty?", env_empty_p, 0); rb_define_singleton_method(envtbl, "keys", env_keys, 0); rb_define_singleton_method(envtbl, "values", env_values, 0); rb_define_singleton_method(envtbl, "values_at", env_values_at, -1); rb_define_singleton_method(envtbl, "include?", env_has_key, 1); rb_define_singleton_method(envtbl, "member?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_key?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_value?", env_has_value, 1); rb_define_singleton_method(envtbl, "key?", env_has_key, 1); rb_define_singleton_method(envtbl, "value?", env_has_value, 1); rb_define_singleton_method(envtbl, "to_hash", env_to_hash, 0); rb_define_singleton_method(envtbl, "to_h", env_to_hash, 0); rb_define_singleton_method(envtbl, "assoc", env_assoc, 1); rb_define_singleton_method(envtbl, "rassoc", env_rassoc, 1); /* * ENV is a Hash-like accessor for environment variables. * * See ENV (the class) for more details. */ rb_define_global_const("ENV", envtbl); /* for callcc */ ruby_register_rollback_func_for_ensure(hash_foreach_ensure, hash_foreach_ensure_rollback); }