/********************************************************************** hash.c - $Author$ created at: Mon Nov 22 18:51:18 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/3/config.h" #include #ifdef __APPLE__ # ifdef HAVE_CRT_EXTERNS_H # include # else # include "missing/crt_externs.h" # endif #endif #include "debug_counter.h" #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/bignum.h" #include "internal/class.h" #include "internal/cont.h" #include "internal/error.h" #include "internal/hash.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/symbol.h" #include "internal/time.h" #include "internal/vm.h" #include "probes.h" #include "ruby/st.h" #include "ruby/util.h" #include "ruby_assert.h" #include "symbol.h" #include "transient_heap.h" #ifndef HASH_DEBUG #define HASH_DEBUG 0 #endif #if HASH_DEBUG #include "gc.h" #endif #define HAS_EXTRA_STATES(hash, klass) ( \ ((klass = has_extra_methods(rb_obj_class(hash))) != 0) || \ FL_TEST((hash), FL_EXIVAR|RHASH_PROC_DEFAULT) || \ !NIL_P(RHASH_IFNONE(hash))) #define SET_DEFAULT(hash, ifnone) ( \ FL_UNSET_RAW(hash, RHASH_PROC_DEFAULT), \ RHASH_SET_IFNONE(hash, ifnone)) #define SET_PROC_DEFAULT(hash, proc) set_proc_default(hash, proc) #define COPY_DEFAULT(hash, hash2) copy_default(RHASH(hash), RHASH(hash2)) static inline void copy_default(struct RHash *hash, const struct RHash *hash2) { hash->basic.flags &= ~RHASH_PROC_DEFAULT; hash->basic.flags |= hash2->basic.flags & RHASH_PROC_DEFAULT; RHASH_SET_IFNONE(hash, RHASH_IFNONE((VALUE)hash2)); } static VALUE has_extra_methods(VALUE klass) { const VALUE base = rb_cHash; VALUE c = klass; while (c != base) { if (rb_class_has_methods(c)) return klass; c = RCLASS_SUPER(c); } return 0; } static VALUE rb_hash_s_try_convert(VALUE, VALUE); /* * Hash WB strategy: * 1. Check mutate st_* functions * * st_insert() * * st_insert2() * * st_update() * * st_add_direct() * 2. Insert WBs */ VALUE rb_hash_freeze(VALUE hash) { return rb_obj_freeze(hash); } VALUE rb_cHash; static VALUE envtbl; static ID id_hash, id_default, id_flatten_bang; static ID id_hash_iter_lev; VALUE rb_hash_set_ifnone(VALUE hash, VALUE ifnone) { RB_OBJ_WRITE(hash, (&RHASH(hash)->ifnone), ifnone); return hash; } static int rb_any_cmp(VALUE a, VALUE b) { if (a == b) return 0; if (RB_TYPE_P(a, T_STRING) && RBASIC(a)->klass == rb_cString && RB_TYPE_P(b, T_STRING) && RBASIC(b)->klass == rb_cString) { return rb_str_hash_cmp(a, b); } if (a == Qundef || b == Qundef) return -1; if (SYMBOL_P(a) && SYMBOL_P(b)) { return a != b; } return !rb_eql(a, b); } static VALUE hash_recursive(VALUE obj, VALUE arg, int recurse) { if (recurse) return INT2FIX(0); return rb_funcallv(obj, id_hash, 0, 0); } VALUE rb_hash(VALUE obj) { VALUE hval = rb_exec_recursive_outer(hash_recursive, obj, 0); while (!FIXNUM_P(hval)) { if (RB_TYPE_P(hval, T_BIGNUM)) { int sign; unsigned long ul; sign = rb_integer_pack(hval, &ul, 1, sizeof(ul), 0, INTEGER_PACK_NATIVE_BYTE_ORDER); if (sign < 0) { hval = LONG2FIX(ul | FIXNUM_MIN); } else { hval = LONG2FIX(ul & FIXNUM_MAX); } } hval = rb_to_int(hval); } return hval; } static long rb_objid_hash(st_index_t index); static st_index_t dbl_to_index(double d) { union {double d; st_index_t i;} u; u.d = d; return u.i; } long rb_dbl_long_hash(double d) { /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; #if SIZEOF_INT == SIZEOF_VOIDP return rb_memhash(&d, sizeof(d)); #else return rb_objid_hash(dbl_to_index(d)); #endif } static inline long any_hash(VALUE a, st_index_t (*other_func)(VALUE)) { VALUE hval; st_index_t hnum; if (SPECIAL_CONST_P(a)) { if (STATIC_SYM_P(a)) { hnum = a >> (RUBY_SPECIAL_SHIFT + ID_SCOPE_SHIFT); hnum = rb_hash_start(hnum); goto out; } else if (FLONUM_P(a)) { /* prevent pathological behavior: [Bug #10761] */ goto flt; } hnum = rb_objid_hash((st_index_t)a); } else if (BUILTIN_TYPE(a) == T_STRING) { hnum = rb_str_hash(a); } else if (BUILTIN_TYPE(a) == T_SYMBOL) { hnum = RSYMBOL(a)->hashval; } else if (BUILTIN_TYPE(a) == T_BIGNUM) { hval = rb_big_hash(a); hnum = FIX2LONG(hval); } else if (BUILTIN_TYPE(a) == T_FLOAT) { flt: hnum = rb_dbl_long_hash(rb_float_value(a)); } else { hnum = other_func(a); } out: #if SIZEOF_LONG < SIZEOF_ST_INDEX_T if (hnum > 0) hnum &= (unsigned long)-1 >> 2; else hnum |= ~((unsigned long)-1 >> 2); #else hnum <<= 1; hnum = RSHIFT(hnum, 1); #endif return (long)hnum; } static st_index_t obj_any_hash(VALUE obj) { obj = rb_hash(obj); return FIX2LONG(obj); } static st_index_t rb_any_hash(VALUE a) { return any_hash(a, obj_any_hash); } /* Here is a hash function for 64-bit key. It is about 5 times faster (2 times faster when uint128 type is absent) on Haswell than tailored Spooky or City hash function can be. */ /* Here we two primes with random bit generation. */ static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5; static const uint32_t prime2 = 0x830fcab9; static inline uint64_t mult_and_mix(uint64_t m1, uint64_t m2) { #if defined HAVE_UINT128_T uint128_t r = (uint128_t) m1 * (uint128_t) m2; return (uint64_t) (r >> 64) ^ (uint64_t) r; #else uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32; uint64_t lm1 = m1, lm2 = m2; uint64_t v64_128 = hm1 * hm2; uint64_t v32_96 = hm1 * lm2 + lm1 * hm2; uint64_t v1_32 = lm1 * lm2; return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32); #endif } static inline uint64_t key64_hash(uint64_t key, uint32_t seed) { return mult_and_mix(key + seed, prime1); } /* Should cast down the result for each purpose */ #define st_index_hash(index) key64_hash(rb_hash_start(index), prime2) static long rb_objid_hash(st_index_t index) { return (long)st_index_hash(index); } static st_index_t objid_hash(VALUE obj) { VALUE object_id = rb_obj_id(obj); if (!FIXNUM_P(object_id)) object_id = rb_big_hash(object_id); #if SIZEOF_LONG == SIZEOF_VOIDP return (st_index_t)st_index_hash((st_index_t)NUM2LONG(object_id)); #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP return (st_index_t)st_index_hash((st_index_t)NUM2LL(object_id)); #endif } /** * call-seq: * obj.hash -> integer * * Generates an Integer hash value for this object. This function must have the * property that a.eql?(b) implies a.hash == b.hash. * * The hash value is used along with #eql? by the Hash class to determine if * two objects reference the same hash key. Any hash value that exceeds the * capacity of an Integer will be truncated before being used. * * The hash value for an object may not be identical across invocations or * implementations of Ruby. If you need a stable identifier across Ruby * invocations and implementations you will need to generate one with a custom * method. *-- * \private *++ */ VALUE rb_obj_hash(VALUE obj) { long hnum = any_hash(obj, objid_hash); return ST2FIX(hnum); } static const struct st_hash_type objhash = { rb_any_cmp, rb_any_hash, }; #define rb_ident_cmp st_numcmp static st_index_t rb_ident_hash(st_data_t n) { #ifdef USE_FLONUM /* RUBY */ /* * - flonum (on 64-bit) is pathologically bad, mix the actual * float value in, but do not use the float value as-is since * many integers get interpreted as 2.0 or -2.0 [Bug #10761] */ if (FLONUM_P(n)) { n ^= dbl_to_index(rb_float_value(n)); } #endif return (st_index_t)st_index_hash((st_index_t)n); } #define identhash rb_hashtype_ident const struct st_hash_type rb_hashtype_ident = { rb_ident_cmp, rb_ident_hash, }; typedef st_index_t st_hash_t; /* * RHASH_AR_TABLE_P(h): * * as.ar == NULL or * as.ar points ar_table. * * as.ar is allocated by transient heap or xmalloc. * * !RHASH_AR_TABLE_P(h): * * as.st points st_table. */ #define RHASH_AR_TABLE_MAX_BOUND RHASH_AR_TABLE_MAX_SIZE #define RHASH_AR_TABLE_REF(hash, n) (&RHASH_AR_TABLE(hash)->pairs[n]) #define RHASH_AR_CLEARED_HINT 0xff typedef struct ar_table_pair_struct { VALUE key; VALUE val; } ar_table_pair; typedef struct ar_table_struct { /* 64bit CPU: 8B * 2 * 8 = 128B */ ar_table_pair pairs[RHASH_AR_TABLE_MAX_SIZE]; } ar_table; size_t rb_hash_ar_table_size(void) { return sizeof(ar_table); } static inline st_hash_t ar_do_hash(st_data_t key) { return (st_hash_t)rb_any_hash(key); } static inline ar_hint_t ar_do_hash_hint(st_hash_t hash_value) { return (ar_hint_t)hash_value; } static inline ar_hint_t ar_hint(VALUE hash, unsigned int index) { return RHASH(hash)->ar_hint.ary[index]; } static inline void ar_hint_set_hint(VALUE hash, unsigned int index, ar_hint_t hint) { RHASH(hash)->ar_hint.ary[index] = hint; } static inline void ar_hint_set(VALUE hash, unsigned int index, st_hash_t hash_value) { ar_hint_set_hint(hash, index, ar_do_hash_hint(hash_value)); } static inline void ar_clear_entry(VALUE hash, unsigned int index) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); pair->key = Qundef; ar_hint_set_hint(hash, index, RHASH_AR_CLEARED_HINT); } static inline int ar_cleared_entry(VALUE hash, unsigned int index) { if (ar_hint(hash, index) == RHASH_AR_CLEARED_HINT) { /* RHASH_AR_CLEARED_HINT is only a hint, not mean cleared entry, * so you need to check key == Qundef */ ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); return pair->key == Qundef; } else { return FALSE; } } static inline void ar_set_entry(VALUE hash, unsigned int index, st_data_t key, st_data_t val, st_hash_t hash_value) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); pair->key = key; pair->val = val; ar_hint_set(hash, index, hash_value); } #define RHASH_AR_TABLE_SIZE(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \ RHASH_AR_TABLE_SIZE_RAW(h)) #define RHASH_AR_TABLE_BOUND_RAW(h) \ ((unsigned int)((RBASIC(h)->flags >> RHASH_AR_TABLE_BOUND_SHIFT) & \ (RHASH_AR_TABLE_BOUND_MASK >> RHASH_AR_TABLE_BOUND_SHIFT))) #define RHASH_AR_TABLE_BOUND(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \ RHASH_AR_TABLE_BOUND_RAW(h)) #define RHASH_ST_TABLE_SET(h, s) rb_hash_st_table_set(h, s) #define RHASH_TYPE(hash) (RHASH_AR_TABLE_P(hash) ? &objhash : RHASH_ST_TABLE(hash)->type) #define HASH_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(HASH_DEBUG, expr, #expr) #if HASH_DEBUG #define hash_verify(hash) hash_verify_(hash, __FILE__, __LINE__) void rb_hash_dump(VALUE hash) { rb_obj_info_dump(hash); if (RHASH_AR_TABLE_P(hash)) { unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash); fprintf(stderr, " size:%u bound:%u\n", RHASH_AR_TABLE_SIZE(hash), RHASH_AR_TABLE_BOUND(hash)); for (i=0; ikey; v = pair->val; fprintf(stderr, " %d key:%s val:%s hint:%02x\n", i, rb_raw_obj_info(b1, 0x100, k), rb_raw_obj_info(b2, 0x100, v), ar_hint(hash, i)); n++; } else { fprintf(stderr, " %d empty\n", i); } } } } static VALUE hash_verify_(VALUE hash, const char *file, int line) { HASH_ASSERT(RB_TYPE_P(hash, T_HASH)); if (RHASH_AR_TABLE_P(hash)) { unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash); for (i=0; ikey; v = pair->val; HASH_ASSERT(k != Qundef); HASH_ASSERT(v != Qundef); n++; } } if (n != RHASH_AR_TABLE_SIZE(hash)) { rb_bug("n:%u, RHASH_AR_TABLE_SIZE:%u", n, RHASH_AR_TABLE_SIZE(hash)); } } else { HASH_ASSERT(RHASH_ST_TABLE(hash) != NULL); HASH_ASSERT(RHASH_AR_TABLE_SIZE_RAW(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND_RAW(hash) == 0); } #if USE_TRANSIENT_HEP if (RHASH_TRANSIENT_P(hash)) { volatile st_data_t MAYBE_UNUSED(key) = RHASH_AR_TABLE_REF(hash, 0)->key; /* read */ HASH_ASSERT(RHASH_AR_TABLE(hash) != NULL); HASH_ASSERT(rb_transient_heap_managed_ptr_p(RHASH_AR_TABLE(hash))); } #endif return hash; } #else #define hash_verify(h) ((void)0) #endif static inline int RHASH_TABLE_NULL_P(VALUE hash) { if (RHASH(hash)->as.ar == NULL) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); return TRUE; } else { return FALSE; } } static inline int RHASH_TABLE_EMPTY_P(VALUE hash) { return RHASH_SIZE(hash) == 0; } int rb_hash_ar_table_p(VALUE hash) { if (FL_TEST_RAW((hash), RHASH_ST_TABLE_FLAG)) { HASH_ASSERT(RHASH(hash)->as.st != NULL); return FALSE; } else { return TRUE; } } ar_table * rb_hash_ar_table(VALUE hash) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); return RHASH(hash)->as.ar; } st_table * rb_hash_st_table(VALUE hash) { HASH_ASSERT(!RHASH_AR_TABLE_P(hash)); return RHASH(hash)->as.st; } void rb_hash_st_table_set(VALUE hash, st_table *st) { HASH_ASSERT(st != NULL); FL_SET_RAW((hash), RHASH_ST_TABLE_FLAG); RHASH(hash)->as.st = st; } static void hash_ar_table_set(VALUE hash, ar_table *ar) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); HASH_ASSERT((RHASH_TRANSIENT_P(hash) && ar == NULL) ? FALSE : TRUE); RHASH(hash)->as.ar = ar; hash_verify(hash); } #define RHASH_SET_ST_FLAG(h) FL_SET_RAW(h, RHASH_ST_TABLE_FLAG) #define RHASH_UNSET_ST_FLAG(h) FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG) static inline void RHASH_AR_TABLE_BOUND_SET(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_BOUND); RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK; RBASIC(h)->flags |= n << RHASH_AR_TABLE_BOUND_SHIFT; } static inline void RHASH_AR_TABLE_SIZE_SET(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_SIZE); RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK; RBASIC(h)->flags |= n << RHASH_AR_TABLE_SIZE_SHIFT; } static inline void HASH_AR_TABLE_SIZE_ADD(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); RHASH_AR_TABLE_SIZE_SET(h, RHASH_AR_TABLE_SIZE(h) + n); hash_verify(h); } #define RHASH_AR_TABLE_SIZE_INC(h) HASH_AR_TABLE_SIZE_ADD(h, 1) static inline void RHASH_AR_TABLE_SIZE_DEC(VALUE h) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); int new_size = RHASH_AR_TABLE_SIZE(h) - 1; if (new_size != 0) { RHASH_AR_TABLE_SIZE_SET(h, new_size); } else { RHASH_AR_TABLE_SIZE_SET(h, 0); RHASH_AR_TABLE_BOUND_SET(h, 0); } hash_verify(h); } static inline void RHASH_AR_TABLE_CLEAR(VALUE h) { RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK; RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK; hash_ar_table_set(h, NULL); } static ar_table* ar_alloc_table(VALUE hash) { ar_table *tab = (ar_table*)rb_transient_heap_alloc(hash, sizeof(ar_table)); if (tab != NULL) { RHASH_SET_TRANSIENT_FLAG(hash); } else { RHASH_UNSET_TRANSIENT_FLAG(hash); tab = (ar_table*)ruby_xmalloc(sizeof(ar_table)); } RHASH_AR_TABLE_SIZE_SET(hash, 0); RHASH_AR_TABLE_BOUND_SET(hash, 0); hash_ar_table_set(hash, tab); return tab; } NOINLINE(static int ar_equal(VALUE x, VALUE y)); static int ar_equal(VALUE x, VALUE y) { return rb_any_cmp(x, y) == 0; } static unsigned ar_find_entry_hint(VALUE hash, ar_hint_t hint, st_data_t key) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); const ar_hint_t *hints = RHASH(hash)->ar_hint.ary; /* if table is NULL, then bound also should be 0 */ for (i = 0; i < bound; i++) { if (hints[i] == hint) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); if (ar_equal(key, pair->key)) { RB_DEBUG_COUNTER_INC(artable_hint_hit); return i; } else { #if 0 static int pid; static char fname[256]; static FILE *fp; if (pid != getpid()) { snprintf(fname, sizeof(fname), "/tmp/ruby-armiss.%d", pid = getpid()); if ((fp = fopen(fname, "w")) == NULL) rb_bug("fopen"); } st_hash_t h1 = ar_do_hash(key); st_hash_t h2 = ar_do_hash(pair->key); fprintf(fp, "miss: hash_eq:%d hints[%d]:%02x hint:%02x\n" " key :%016lx %s\n" " pair->key:%016lx %s\n", h1 == h2, i, hints[i], hint, h1, rb_obj_info(key), h2, rb_obj_info(pair->key)); #endif RB_DEBUG_COUNTER_INC(artable_hint_miss); } } } RB_DEBUG_COUNTER_INC(artable_hint_notfound); return RHASH_AR_TABLE_MAX_BOUND; } static unsigned ar_find_entry(VALUE hash, st_hash_t hash_value, st_data_t key) { ar_hint_t hint = ar_do_hash_hint(hash_value); return ar_find_entry_hint(hash, hint, key); } static inline void ar_free_and_clear_table(VALUE hash) { ar_table *tab = RHASH_AR_TABLE(hash); if (tab) { if (RHASH_TRANSIENT_P(hash)) { RHASH_UNSET_TRANSIENT_FLAG(hash); } else { ruby_xfree(RHASH_AR_TABLE(hash)); } RHASH_AR_TABLE_CLEAR(hash); } HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0); HASH_ASSERT(RHASH_TRANSIENT_P(hash) == 0); } static void ar_try_convert_table(VALUE hash) { if (!RHASH_AR_TABLE_P(hash)) return; const unsigned size = RHASH_AR_TABLE_SIZE(hash); st_table *new_tab; st_index_t i; if (size < RHASH_AR_TABLE_MAX_SIZE) { return; } new_tab = st_init_table_with_size(&objhash, size * 2); for (i = 0; i < RHASH_AR_TABLE_MAX_BOUND; i++) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); st_add_direct(new_tab, pair->key, pair->val); } ar_free_and_clear_table(hash); RHASH_ST_TABLE_SET(hash, new_tab); return; } static st_table * ar_force_convert_table(VALUE hash, const char *file, int line) { st_table *new_tab; if (RHASH_ST_TABLE_P(hash)) { return RHASH_ST_TABLE(hash); } if (RHASH_AR_TABLE(hash)) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); #if RHASH_CONVERT_TABLE_DEBUG rb_obj_info_dump(hash); fprintf(stderr, "force_convert: %s:%d\n", file, line); RB_DEBUG_COUNTER_INC(obj_hash_force_convert); #endif new_tab = st_init_table_with_size(&objhash, RHASH_AR_TABLE_SIZE(hash)); for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); st_add_direct(new_tab, pair->key, pair->val); } ar_free_and_clear_table(hash); } else { new_tab = st_init_table(&objhash); } RHASH_ST_TABLE_SET(hash, new_tab); return new_tab; } static ar_table * hash_ar_table(VALUE hash) { if (RHASH_TABLE_NULL_P(hash)) { ar_alloc_table(hash); } return RHASH_AR_TABLE(hash); } static int ar_compact_table(VALUE hash) { const unsigned bound = RHASH_AR_TABLE_BOUND(hash); const unsigned size = RHASH_AR_TABLE_SIZE(hash); if (size == bound) { return size; } else { unsigned i, j=0; ar_table_pair *pairs = RHASH_AR_TABLE(hash)->pairs; for (i=0; i= RHASH_AR_TABLE_MAX_SIZE) { return 1; } else { if (UNLIKELY(bin >= RHASH_AR_TABLE_MAX_BOUND)) { bin = ar_compact_table(hash); hash_ar_table(hash); } HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); ar_set_entry(hash, bin, key, val, hash_value); RHASH_AR_TABLE_BOUND_SET(hash, bin+1); RHASH_AR_TABLE_SIZE_INC(hash); return 0; } } static int ar_general_foreach(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); enum st_retval retval = (*func)(pair->key, pair->val, arg, 0); /* pair may be not valid here because of theap */ switch (retval) { case ST_CONTINUE: break; case ST_CHECK: case ST_STOP: return 0; case ST_REPLACE: if (replace) { VALUE key = pair->key; VALUE val = pair->val; retval = (*replace)(&key, &val, arg, TRUE); // TODO: pair should be same as pair before. ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); pair->key = key; pair->val = val; } break; case ST_DELETE: ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); break; } } } return 0; } static int ar_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { return ar_general_foreach(hash, func, replace, arg); } struct functor { st_foreach_callback_func *func; st_data_t arg; }; static int apply_functor(st_data_t k, st_data_t v, st_data_t d, int _) { const struct functor *f = (void *)d; return f->func(k, v, f->arg); } static int ar_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg) { const struct functor f = { func, arg }; return ar_general_foreach(hash, apply_functor, NULL, (st_data_t)&f); } static int ar_foreach_check(VALUE hash, st_foreach_check_callback_func *func, st_data_t arg, st_data_t never) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, ret = 0, bound = RHASH_AR_TABLE_BOUND(hash); enum st_retval retval; st_data_t key; ar_table_pair *pair; ar_hint_t hint; for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; pair = RHASH_AR_TABLE_REF(hash, i); key = pair->key; hint = ar_hint(hash, i); retval = (*func)(key, pair->val, arg, 0); hash_verify(hash); switch (retval) { case ST_CHECK: { pair = RHASH_AR_TABLE_REF(hash, i); if (pair->key == never) break; ret = ar_find_entry_hint(hash, hint, key); if (ret == RHASH_AR_TABLE_MAX_BOUND) { retval = (*func)(0, 0, arg, 1); return 2; } } case ST_CONTINUE: break; case ST_STOP: case ST_REPLACE: return 0; case ST_DELETE: { if (!ar_cleared_entry(hash, i)) { ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); } break; } } } } return 0; } static int ar_update(VALUE hash, st_data_t key, st_update_callback_func *func, st_data_t arg) { int retval, existing; unsigned bin = RHASH_AR_TABLE_MAX_BOUND; st_data_t value = 0, old_key; st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return -1; } if (RHASH_AR_TABLE_SIZE(hash) > 0) { bin = ar_find_entry(hash, hash_value, key); existing = (bin != RHASH_AR_TABLE_MAX_BOUND) ? TRUE : FALSE; } else { hash_ar_table(hash); /* allocate ltbl if needed */ existing = FALSE; } if (existing) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); key = pair->key; value = pair->val; } old_key = key; retval = (*func)(&key, &value, arg, existing); /* pair can be invalid here because of theap */ switch (retval) { case ST_CONTINUE: if (!existing) { if (ar_add_direct_with_hash(hash, key, value, hash_value)) { return -1; } } else { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); if (old_key != key) { pair->key = key; } pair->val = value; } break; case ST_DELETE: if (existing) { ar_clear_entry(hash, bin); RHASH_AR_TABLE_SIZE_DEC(hash); } break; } return existing; } static int ar_insert(VALUE hash, st_data_t key, st_data_t value) { unsigned bin = RHASH_AR_TABLE_BOUND(hash); st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return -1; } hash_ar_table(hash); /* prepare ltbl */ bin = ar_find_entry(hash, hash_value, key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) { return -1; } else if (bin >= RHASH_AR_TABLE_MAX_BOUND) { bin = ar_compact_table(hash); hash_ar_table(hash); } HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); ar_set_entry(hash, bin, key, value, hash_value); RHASH_AR_TABLE_BOUND_SET(hash, bin+1); RHASH_AR_TABLE_SIZE_INC(hash); return 0; } else { RHASH_AR_TABLE_REF(hash, bin)->val = value; return 1; } } static int ar_lookup(VALUE hash, st_data_t key, st_data_t *value) { if (RHASH_AR_TABLE_SIZE(hash) == 0) { return 0; } else { st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return st_lookup(RHASH_ST_TABLE(hash), key, value); } unsigned bin = ar_find_entry(hash, hash_value, key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { return 0; } else { HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); if (value != NULL) { *value = RHASH_AR_TABLE_REF(hash, bin)->val; } return 1; } } } static int ar_delete(VALUE hash, st_data_t *key, st_data_t *value) { unsigned bin; st_hash_t hash_value = ar_do_hash(*key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return st_delete(RHASH_ST_TABLE(hash), key, value); } bin = ar_find_entry(hash, hash_value, *key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { if (value != 0) *value = 0; return 0; } else { if (value != 0) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); *value = pair->val; } ar_clear_entry(hash, bin); RHASH_AR_TABLE_SIZE_DEC(hash); return 1; } } static int ar_shift(VALUE hash, st_data_t *key, st_data_t *value) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); for (i = 0; i < bound; i++) { if (!ar_cleared_entry(hash, i)) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); if (value != 0) *value = pair->val; *key = pair->key; ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); return 1; } } } if (value != NULL) *value = 0; return 0; } static long ar_keys(VALUE hash, st_data_t *keys, st_index_t size) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); st_data_t *keys_start = keys, *keys_end = keys + size; for (i = 0; i < bound; i++) { if (keys == keys_end) { break; } else { if (!ar_cleared_entry(hash, i)) { *keys++ = RHASH_AR_TABLE_REF(hash, i)->key; } } } return keys - keys_start; } static long ar_values(VALUE hash, st_data_t *values, st_index_t size) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); st_data_t *values_start = values, *values_end = values + size; for (i = 0; i < bound; i++) { if (values == values_end) { break; } else { if (!ar_cleared_entry(hash, i)) { *values++ = RHASH_AR_TABLE_REF(hash, i)->val; } } } return values - values_start; } static ar_table* ar_copy(VALUE hash1, VALUE hash2) { ar_table *old_tab = RHASH_AR_TABLE(hash2); if (old_tab != NULL) { ar_table *new_tab = RHASH_AR_TABLE(hash1); if (new_tab == NULL) { new_tab = (ar_table*) rb_transient_heap_alloc(hash1, sizeof(ar_table)); if (new_tab != NULL) { RHASH_SET_TRANSIENT_FLAG(hash1); } else { RHASH_UNSET_TRANSIENT_FLAG(hash1); new_tab = (ar_table*)ruby_xmalloc(sizeof(ar_table)); } } *new_tab = *old_tab; RHASH(hash1)->ar_hint.word = RHASH(hash2)->ar_hint.word; RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2)); RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2)); hash_ar_table_set(hash1, new_tab); rb_gc_writebarrier_remember(hash1); return new_tab; } else { RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2)); RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2)); if (RHASH_TRANSIENT_P(hash1)) { RHASH_UNSET_TRANSIENT_FLAG(hash1); } else if (RHASH_AR_TABLE(hash1)) { ruby_xfree(RHASH_AR_TABLE(hash1)); } hash_ar_table_set(hash1, NULL); rb_gc_writebarrier_remember(hash1); return old_tab; } } static void ar_clear(VALUE hash) { if (RHASH_AR_TABLE(hash) != NULL) { RHASH_AR_TABLE_SIZE_SET(hash, 0); RHASH_AR_TABLE_BOUND_SET(hash, 0); } else { HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0); } } #if USE_TRANSIENT_HEAP void rb_hash_transient_heap_evacuate(VALUE hash, int promote) { if (RHASH_TRANSIENT_P(hash)) { ar_table *new_tab; ar_table *old_tab = RHASH_AR_TABLE(hash); if (UNLIKELY(old_tab == NULL)) { rb_gc_force_recycle(hash); return; } HASH_ASSERT(old_tab != NULL); if (promote) { promote: new_tab = ruby_xmalloc(sizeof(ar_table)); RHASH_UNSET_TRANSIENT_FLAG(hash); } else { new_tab = rb_transient_heap_alloc(hash, sizeof(ar_table)); if (new_tab == NULL) goto promote; } *new_tab = *old_tab; hash_ar_table_set(hash, new_tab); } hash_verify(hash); } #endif typedef int st_foreach_func(st_data_t, st_data_t, st_data_t); struct foreach_safe_arg { st_table *tbl; st_foreach_func *func; st_data_t arg; }; static int foreach_safe_i(st_data_t key, st_data_t value, st_data_t args, int error) { int status; struct foreach_safe_arg *arg = (void *)args; if (error) return ST_STOP; status = (*arg->func)(key, value, arg->arg); if (status == ST_CONTINUE) { return ST_CHECK; } return status; } void st_foreach_safe(st_table *table, st_foreach_func *func, st_data_t a) { struct foreach_safe_arg arg; arg.tbl = table; arg.func = (st_foreach_func *)func; arg.arg = a; if (st_foreach_check(table, foreach_safe_i, (st_data_t)&arg, 0)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } typedef int rb_foreach_func(VALUE, VALUE, VALUE); struct hash_foreach_arg { VALUE hash; rb_foreach_func *func; VALUE arg; }; static int hash_ar_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error) { struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp; int status; if (error) return ST_STOP; status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); /* TODO: rehash check? rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); */ switch (status) { case ST_DELETE: return ST_DELETE; case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static int hash_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error) { struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp; int status; st_table *tbl; if (error) return ST_STOP; tbl = RHASH_ST_TABLE(arg->hash); status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); if (RHASH_ST_TABLE(arg->hash) != tbl) { rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); } switch (status) { case ST_DELETE: return ST_DELETE; case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static int iter_lev_in_ivar(VALUE hash) { VALUE levval = rb_ivar_get(hash, id_hash_iter_lev); HASH_ASSERT(FIXNUM_P(levval)); return FIX2INT(levval); } void rb_ivar_set_internal(VALUE obj, ID id, VALUE val); static void iter_lev_in_ivar_set(VALUE hash, int lev) { rb_ivar_set_internal(hash, id_hash_iter_lev, INT2FIX(lev)); } static int iter_lev_in_flags(VALUE hash) { unsigned int u = (unsigned int)((RBASIC(hash)->flags >> RHASH_LEV_SHIFT) & RHASH_LEV_MAX); return (int)u; } static int RHASH_ITER_LEV(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { return iter_lev_in_ivar(hash); } else { return lev; } } static void hash_iter_lev_inc(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { lev = iter_lev_in_ivar(hash); iter_lev_in_ivar_set(hash, lev+1); } else { lev += 1; RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((VALUE)lev << RHASH_LEV_SHIFT)); if (lev == RHASH_LEV_MAX) { iter_lev_in_ivar_set(hash, lev); } } } static void hash_iter_lev_dec(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { lev = iter_lev_in_ivar(hash); HASH_ASSERT(lev > 0); iter_lev_in_ivar_set(hash, lev-1); } else { HASH_ASSERT(lev > 0); RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((lev-1) << RHASH_LEV_SHIFT)); } } static VALUE hash_foreach_ensure_rollback(VALUE hash) { hash_iter_lev_inc(hash); return 0; } static VALUE hash_foreach_ensure(VALUE hash) { hash_iter_lev_dec(hash); return 0; } int rb_hash_stlike_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { return ar_foreach(hash, func, arg); } else { return st_foreach(RHASH_ST_TABLE(hash), func, arg); } } int rb_hash_stlike_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { return ar_foreach_with_replace(hash, func, replace, arg); } else { return st_foreach_with_replace(RHASH_ST_TABLE(hash), func, replace, arg); } } static VALUE hash_foreach_call(VALUE arg) { VALUE hash = ((struct hash_foreach_arg *)arg)->hash; int ret = 0; if (RHASH_AR_TABLE_P(hash)) { ret = ar_foreach_check(hash, hash_ar_foreach_iter, (st_data_t)arg, (st_data_t)Qundef); } else if (RHASH_ST_TABLE_P(hash)) { ret = st_foreach_check(RHASH_ST_TABLE(hash), hash_foreach_iter, (st_data_t)arg, (st_data_t)Qundef); } if (ret) { rb_raise(rb_eRuntimeError, "ret: %d, hash modified during iteration", ret); } return Qnil; } void rb_hash_foreach(VALUE hash, rb_foreach_func *func, VALUE farg) { struct hash_foreach_arg arg; if (RHASH_TABLE_EMPTY_P(hash)) return; hash_iter_lev_inc(hash); arg.hash = hash; arg.func = (rb_foreach_func *)func; arg.arg = farg; rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash); hash_verify(hash); } static VALUE hash_alloc_flags(VALUE klass, VALUE flags, VALUE ifnone) { const VALUE wb = (RGENGC_WB_PROTECTED_HASH ? FL_WB_PROTECTED : 0); NEWOBJ_OF(hash, struct RHash, klass, T_HASH | wb | flags); RHASH_SET_IFNONE((VALUE)hash, ifnone); return (VALUE)hash; } static VALUE hash_alloc(VALUE klass) { return hash_alloc_flags(klass, 0, Qnil); } static VALUE empty_hash_alloc(VALUE klass) { RUBY_DTRACE_CREATE_HOOK(HASH, 0); return hash_alloc(klass); } VALUE rb_hash_new(void) { return hash_alloc(rb_cHash); } MJIT_FUNC_EXPORTED VALUE rb_hash_new_with_size(st_index_t size) { VALUE ret = rb_hash_new(); if (size == 0) { /* do nothing */ } else if (size <= RHASH_AR_TABLE_MAX_SIZE) { ar_alloc_table(ret); } else { RHASH_ST_TABLE_SET(ret, st_init_table_with_size(&objhash, size)); } return ret; } static VALUE hash_copy(VALUE ret, VALUE hash) { if (!RHASH_EMPTY_P(hash)) { if (RHASH_AR_TABLE_P(hash)) ar_copy(ret, hash); else if (RHASH_ST_TABLE_P(hash)) RHASH_ST_TABLE_SET(ret, st_copy(RHASH_ST_TABLE(hash))); } return ret; } static VALUE hash_dup(VALUE hash, VALUE klass, VALUE flags) { return hash_copy(hash_alloc_flags(klass, flags, RHASH_IFNONE(hash)), hash); } VALUE rb_hash_dup(VALUE hash) { const VALUE flags = RBASIC(hash)->flags; VALUE ret = hash_dup(hash, rb_obj_class(hash), flags & (FL_EXIVAR|RHASH_PROC_DEFAULT)); if (flags & FL_EXIVAR) rb_copy_generic_ivar(ret, hash); return ret; } MJIT_FUNC_EXPORTED VALUE rb_hash_resurrect(VALUE hash) { VALUE ret = hash_dup(hash, rb_cHash, 0); return ret; } static void rb_hash_modify_check(VALUE hash) { rb_check_frozen(hash); } MJIT_FUNC_EXPORTED struct st_table * #if RHASH_CONVERT_TABLE_DEBUG rb_hash_tbl_raw(VALUE hash, const char *file, int line) { return ar_force_convert_table(hash, file, line); } #else rb_hash_tbl_raw(VALUE hash) { return ar_force_convert_table(hash, NULL, 0); } #endif struct st_table * rb_hash_tbl(VALUE hash, const char *file, int line) { OBJ_WB_UNPROTECT(hash); return RHASH_TBL_RAW(hash); } static void rb_hash_modify(VALUE hash) { rb_hash_modify_check(hash); } NORETURN(static void no_new_key(void)); static void no_new_key(void) { rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration"); } struct update_callback_arg { VALUE hash; st_data_t arg; }; #define NOINSERT_UPDATE_CALLBACK(func) \ static int \ func##_noinsert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ if (!existing) no_new_key(); \ return func(key, val, (struct update_arg *)arg, existing); \ } \ \ static int \ func##_insert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ return func(key, val, (struct update_arg *)arg, existing); \ } struct update_arg { st_data_t arg; VALUE hash; VALUE new_key; VALUE old_key; VALUE new_value; VALUE old_value; }; typedef int (*tbl_update_func)(st_data_t *, st_data_t *, st_data_t, int); int rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func *func, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { int result = ar_update(hash, (st_data_t)key, func, arg); if (result == -1) { ar_try_convert_table(hash); } else { return result; } } return st_update(RHASH_ST_TABLE(hash), (st_data_t)key, func, arg); } static int tbl_update(VALUE hash, VALUE key, tbl_update_func func, st_data_t optional_arg) { struct update_arg arg; int result; arg.arg = optional_arg; arg.hash = hash; arg.new_key = 0; arg.old_key = Qundef; arg.new_value = 0; arg.old_value = Qundef; result = rb_hash_stlike_update(hash, key, func, (st_data_t)&arg); /* write barrier */ if (arg.new_key) RB_OBJ_WRITTEN(hash, arg.old_key, arg.new_key); if (arg.new_value) RB_OBJ_WRITTEN(hash, arg.old_value, arg.new_value); return result; } #define UPDATE_CALLBACK(iter_lev, func) ((iter_lev) > 0 ? func##_noinsert : func##_insert) #define RHASH_UPDATE_ITER(h, iter_lev, key, func, a) do { \ tbl_update((h), (key), UPDATE_CALLBACK((iter_lev), func), (st_data_t)(a)); \ } while (0) #define RHASH_UPDATE(hash, key, func, arg) \ RHASH_UPDATE_ITER(hash, RHASH_ITER_LEV(hash), key, func, arg) static void set_proc_default(VALUE hash, VALUE proc) { if (rb_proc_lambda_p(proc)) { int n = rb_proc_arity(proc); if (n != 2 && (n >= 0 || n < -3)) { if (n < 0) n = -n-1; rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n); } } FL_SET_RAW(hash, RHASH_PROC_DEFAULT); RHASH_SET_IFNONE(hash, proc); } /* * call-seq: * Hash.new -> new_hash * Hash.new(default_value) -> new_hash * Hash.new {|hash, key| block } -> new_hash * * Returns a new empty Hash object. * * The initial default value and initial default proc for the new hash * depend on which form above was used. See {Default Values}[#class-Hash-label-Default+Values]. * * If neither argument nor block given, * initializes both the default value and the default proc to nil: * h = Hash.new * h # => {} * h.class # => Hash * h.default # => nil * h.default_proc # => nil * h[:nosuch] # => nil * * If argument default_value given but no block given, * initializes the default value to the given default_value * and the default proc to nil: * * h = Hash.new(false) * h # => {} * h.default # => false * h.default_proc # => nil * h[:nosuch] # => false * * If block given but no argument given, stores the block as the default proc, * and sets the default value to nil: * * h = Hash.new { |hash, key| "Default value for #{key}" } * h # => {} * h.default # => nil * h.default_proc.class # => Proc * h[:nosuch] # => "Default value for nosuch" * * Raises an exception if both argument default_value and a block are given: * * Hash.new(0) { } # Raises ArgumentError (wrong number of arguments (given 1, expected 0)) * */ static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { rb_check_arity(argc, 0, 0); ifnone = rb_block_proc(); SET_PROC_DEFAULT(hash, ifnone); } else { rb_check_arity(argc, 0, 1); ifnone = argc == 0 ? Qnil : argv[0]; RHASH_SET_IFNONE(hash, ifnone); } return hash; } /* * call-seq: * Hash[] -> new_empty_hash * Hash[ [*2_element_arrays] ] -> new_hash * Hash[*objects] -> new_hash * Hash[hash_convertible_object] -> new_hash * * Returns a new \Hash object populated with the given objects, if any. * * The initial default value and default proc are set to nil * (see {Default Values}[#class-Hash-label-Default+Values]): * * h = Hash[] * h # => {} * h.class # => Hash * h.default # => nil * h.default_proc # => nil * * When argument [*2_element_arrays] is given, * each element of the outer array must be a 2-element array; * returns a new \Hash object wherein each 2-element array forms a key-value entry: * * Hash[ [ [:foo, 0], [:bar, 1] ] ] # => {:foo=>0, :bar=>1} * * When arguments *objects are given, * the argument count must be an even number; * returns a new \Hash object wherein each successive pair of arguments has become a key-value entry: * * Hash[] # => {} * Hash[:foo, 0, :bar, 1] # => {:foo=>0, :bar=>1} * * When argument hash_convertible_object is given, * the argument must be a * {Hash-convertible object}[doc/implicit_conversion_rdoc.html#label-Hash-Convertible+Objects]; * converts the object and returns the resulting \Hash object: * * class Foo * def to_hash * {foo: 0, bar: 1} * end * end * Hash[Foo.new] # => {:foo=>0, :bar=>1} * * --- * * Raises an exception if the argument count is 1, * but the argument is not an array of 2-element arrays or a * {Hash-convertible object}[doc/implicit_conversion_rdoc.html#label-Hash-Convertible+Objects]: * * Hash[:foo] # Raises ArgumentError (odd number of arguments * Hash[ [ [:foo, 0, 1] ] ] # Raises ArgumentError (invalid number of elements (3 for 1..2)) * * Raises an exception if the argument count is odd and greater than 1: * * Hash[0, 1, 2] # Raises ArgumentError (odd number of arguments for Hash) * * Raises an exception if the argument is an array containing an element * that is not a 2-element array: * * Hash[ [ :foo ] ] # Raises ArgumentError (wrong element type Symbol at 0 (expected array)) * * Raises an exception if the argument is an array containing an element * that is an array of size different from 2: * * Hash[ [ [0, 1, 2] ] ] # Raises ArgumentError (invalid number of elements (3 for 1..2)) * * Raises an exception if any proposed key is not a valid key: * * Hash[:foo, 0, BasicObject.new, 1] # Raises NoMethodError (undefined method `hash' for #) * Hash[ [ [:foo, 0], [BasicObject.new, 1] ] ] # Raises NoMethodError (undefined method `hash' for #) */ static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); hash_copy(hash, tmp); return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE e = RARRAY_AREF(tmp, i); VALUE v = rb_check_array_type(e); VALUE key, val = Qnil; if (NIL_P(v)) { rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); } switch (RARRAY_LEN(v)) { default: rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)", RARRAY_LEN(v)); case 2: val = RARRAY_AREF(v, 1); case 1: key = RARRAY_AREF(v, 0); rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); rb_hash_bulk_insert(argc, argv, hash); hash_verify(hash); return hash; } MJIT_FUNC_EXPORTED VALUE rb_to_hash_type(VALUE hash) { return rb_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } #define to_hash rb_to_hash_type VALUE rb_check_hash_type(VALUE hash) { return rb_check_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } /* * call-seq: * Hash.try_convert(obj) -> new_hash or nil * * Returns the Hash object created by calling obj.to_hash: * require 'csv' # => true * row = CSV::Row.new(['Name', 'Age'], ['Bob', 45]) * row.respond_to?(:to_hash) # => true * Hash.try_convert(row) # => {"Name"=>"Bob", "Age"=>45} * * Returns the given obj if it is a Hash: * h = {} * h1 = Hash.try_convert(h) * h1.equal?(h) # => true # Identity check * * Returns nil unless obj.respond_to?(:to_hash): * s = 'foo' * s.respond_to?(:to_hash) # => false * Hash.try_convert(s) # => nil * * Raises an exception unless obj.to_hash returns a Hash object: * class BadToHash * def to_hash * 1 * end * end * bad = BadToHash.new * Hash.try_convert(bad) # Raises TypeError (can't convert BadToHash to Hash (BadToHash#to_hash gives Integer)) */ static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_hash_type(hash); } /* * call-seq: * Hash.ruby2_keywords_hash?(hash) -> true or false * * Checks if a given hash is flagged by Module#ruby2_keywords (or * Proc#ruby2_keywords). * This method is not for casual use; debugging, researching, and * some truly necessary cases like serialization of arguments. * * ruby2_keywords def foo(*args) * Hash.ruby2_keywords_hash?(args.last) * end * foo(k: 1) #=> true * foo({k: 1}) #=> false */ static VALUE rb_hash_s_ruby2_keywords_hash_p(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); return (RHASH(hash)->basic.flags & RHASH_PASS_AS_KEYWORDS) ? Qtrue : Qfalse; } /* * call-seq: * Hash.ruby2_keywords_hash(hash) -> hash * * Duplicates a given hash and adds a ruby2_keywords flag. * This method is not for casual use; debugging, researching, and * some truly necessary cases like deserialization of arguments. * * h = {k: 1} * h = Hash.ruby2_keywords_hash(h) * def foo(k: 42) * k * end * foo(*[h]) #=> 1 with neither a warning or an error */ static VALUE rb_hash_s_ruby2_keywords_hash(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); hash = rb_hash_dup(hash); RHASH(hash)->basic.flags |= RHASH_PASS_AS_KEYWORDS; return hash; } struct rehash_arg { VALUE hash; st_table *tbl; }; static int rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg) { if (RHASH_AR_TABLE_P(arg)) { ar_insert(arg, (st_data_t)key, (st_data_t)value); } else { st_insert(RHASH_ST_TABLE(arg), (st_data_t)key, (st_data_t)value); } return ST_CONTINUE; } /* * call-seq: * hsh.rehash -> hsh * * Rebuilds the hash based on the current hash values for each key. If * values of key objects have changed since they were inserted, this * method will reindex hsh. If Hash#rehash is * called while an iterator is traversing the hash, a * RuntimeError will be raised in the iterator. * * a = [ "a", "b" ] * c = [ "c", "d" ] * h = { a => 100, c => 300 } * h[a] #=> 100 * a[0] = "z" * h[a] #=> nil * h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300} * h[a] #=> 100 */ VALUE rb_hash_rehash(VALUE hash) { VALUE tmp; st_table *tbl; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { tmp = hash_alloc(0); ar_alloc_table(tmp); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); ar_free_and_clear_table(hash); ar_copy(hash, tmp); ar_free_and_clear_table(tmp); } else if (RHASH_ST_TABLE_P(hash)) { st_table *old_tab = RHASH_ST_TABLE(hash); tmp = hash_alloc(0); tbl = st_init_table_with_size(old_tab->type, old_tab->num_entries); RHASH_ST_TABLE_SET(tmp, tbl); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(old_tab); RHASH_ST_TABLE_SET(hash, tbl); RHASH_ST_CLEAR(tmp); } hash_verify(hash); return hash; } static VALUE call_default_proc(VALUE proc, VALUE hash, VALUE key) { VALUE args[2] = {hash, key}; return rb_proc_call_with_block(proc, 2, args, Qnil); } VALUE rb_hash_default_value(VALUE hash, VALUE key) { if (LIKELY(rb_method_basic_definition_p(CLASS_OF(hash), id_default))) { VALUE ifnone = RHASH_IFNONE(hash); if (!FL_TEST(hash, RHASH_PROC_DEFAULT)) return ifnone; if (key == Qundef) return Qnil; return call_default_proc(ifnone, hash, key); } else { return rb_funcall(hash, id_default, 1, key); } } static inline int hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval) { hash_verify(hash); if (RHASH_AR_TABLE_P(hash)) { return ar_lookup(hash, key, pval); } else { return st_lookup(RHASH_ST_TABLE(hash), key, pval); } } MJIT_FUNC_EXPORTED int rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval) { return hash_stlike_lookup(hash, key, pval); } /* * call-seq: * hsh[key] -> value * * Element Reference---Retrieves the value object corresponding * to the key object. If not found, returns the default value (see * Hash::new for details). * * h = { "a" => 100, "b" => 200 } * h["a"] #=> 100 * h["c"] #=> nil * */ VALUE rb_hash_aref(VALUE hash, VALUE key) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return rb_hash_default_value(hash, key); } } VALUE rb_hash_lookup2(VALUE hash, VALUE key, VALUE def) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return def; /* without Hash#default */ } } VALUE rb_hash_lookup(VALUE hash, VALUE key) { return rb_hash_lookup2(hash, key, Qnil); } /* * call-seq: * hsh.fetch(key [, default] ) -> obj * hsh.fetch(key) {| key | block } -> obj * * Returns a value from the hash for the given key. If the key can't be * found, there are several options: With no other arguments, it will * raise a KeyError exception; if default is given, * then that will be returned; if the optional code block is specified, * then that will be run and its result returned. * * h = { "a" => 100, "b" => 200 } * h.fetch("a") #=> 100 * h.fetch("z", "go fish") #=> "go fish" * h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z" * * The following example shows that an exception is raised if the key * is not found and a default value is not supplied. * * h = { "a" => 100, "b" => 200 } * h.fetch("z") * * produces: * * prog.rb:2:in `fetch': key not found (KeyError) * from prog.rb:2 * */ static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key; st_data_t val; long block_given; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { if (block_given) { return rb_yield(key); } else if (argc == 1) { VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc)) { desc = rb_any_to_s(key); } desc = rb_str_ellipsize(desc, 65); rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key); } else { return argv[1]; } } } VALUE rb_hash_fetch(VALUE hash, VALUE key) { return rb_hash_fetch_m(1, &key, hash); } /* * call-seq: * hsh.default(key=nil) -> obj * * Returns the default value, the value that would be returned by * hsh[key] if key did not exist in hsh. * See also Hash::new and Hash#default=. * * h = Hash.new #=> {} * h.default #=> nil * h.default(2) #=> nil * * h = Hash.new("cat") #=> {} * h.default #=> "cat" * h.default(2) #=> "cat" * * h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {} * h.default #=> nil * h.default(2) #=> 20 */ static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_check_arity(argc, 0, 1); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return call_default_proc(ifnone, hash, argv[0]); } return ifnone; } /* * call-seq: * hsh.default = obj -> obj * * Sets the default value, the value returned for a key that does not * exist in the hash. It is not possible to set the default to a * Proc that will be executed on each key lookup. * * h = { "a" => 100, "b" => 200 } * h.default = "Go fish" * h["a"] #=> 100 * h["z"] #=> "Go fish" * # This doesn't do what you might hope... * h.default = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> # * h["cat"] #=> # */ static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify_check(hash); SET_DEFAULT(hash, ifnone); return ifnone; } /* * call-seq: * hsh.default_proc -> anObject * * If Hash::new was invoked with a block, return that * block, otherwise return nil. * * h = Hash.new {|h,k| h[k] = k*k } #=> {} * p = h.default_proc #=> # * a = [] #=> [] * p.call(a, 2) * a #=> [nil, nil, 4] */ static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; } /* * call-seq: * hsh.default_proc = proc_obj or nil * * Sets the default proc to be executed on each failed key lookup. * * h.default_proc = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> 4 * h["cat"] #=> "catcat" */ VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify_check(hash); if (NIL_P(proc)) { SET_DEFAULT(hash, proc); return proc; } b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; SET_PROC_DEFAULT(hash, proc); return proc; } static int key_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; if (rb_equal(value, args[0])) { args[1] = key; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.key(value) -> key * * Returns the key of an occurrence of a given value. If the value is * not found, returns nil. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 300 } * h.key(200) #=> "b" * h.key(300) #=> "c" * h.key(999) #=> nil * */ static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; } /* :nodoc: */ static VALUE rb_hash_index(VALUE hash, VALUE value) { rb_warn_deprecated("Hash#index", "Hash#key"); return rb_hash_key(hash, value); } int rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval) { if (RHASH_AR_TABLE_P(hash)) { return ar_delete(hash, pkey, pval); } else { return st_delete(RHASH_ST_TABLE(hash), pkey, pval); } } /* * delete a specified entry a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qundef. */ VALUE rb_hash_delete_entry(VALUE hash, VALUE key) { st_data_t ktmp = (st_data_t)key, val; if (rb_hash_stlike_delete(hash, &ktmp, &val)) { return (VALUE)val; } else { return Qundef; } } /* * delete a specified entry by a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qnil. */ VALUE rb_hash_delete(VALUE hash, VALUE key) { VALUE deleted_value = rb_hash_delete_entry(hash, key); if (deleted_value != Qundef) { /* likely pass */ return deleted_value; } else { return Qnil; } } /* * call-seq: * hsh.delete(key) -> value * hsh.delete(key) {| key | block } -> value * * Deletes the key-value pair and returns the value from hsh whose * key is equal to key. If the key is not found, it returns * nil. If the optional code block is given and the * key is not found, pass in the key and return the result of * block. * * h = { "a" => 100, "b" => 200 } * h.delete("a") #=> 100 * h.delete("z") #=> nil * h.delete("z") { |el| "#{el} not found" } #=> "z not found" * */ static VALUE rb_hash_delete_m(VALUE hash, VALUE key) { VALUE val; rb_hash_modify_check(hash); val = rb_hash_delete_entry(hash, key); if (val != Qundef) { return val; } else { if (rb_block_given_p()) { return rb_yield(key); } else { return Qnil; } } } struct shift_var { VALUE key; VALUE val; }; static int shift_i_safe(VALUE key, VALUE value, VALUE arg) { struct shift_var *var = (struct shift_var *)arg; var->key = key; var->val = value; return ST_STOP; } /* * call-seq: * hsh.shift -> anArray or obj * * Removes a key-value pair from hsh and returns it as the * two-item array [ key, value ], or * the hash's default value if the hash is empty. * * h = { 1 => "a", 2 => "b", 3 => "c" } * h.shift #=> [1, "a"] * h #=> {2=>"b", 3=>"c"} */ static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (ar_shift(hash, &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } if (RHASH_ST_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } return rb_hash_default_value(hash, Qnil); } static int delete_if_i(VALUE key, VALUE value, VALUE hash) { if (RTEST(rb_yield_values(2, key, value))) { return ST_DELETE; } return ST_CONTINUE; } static VALUE hash_enum_size(VALUE hash, VALUE args, VALUE eobj) { return rb_hash_size(hash); } /* * call-seq: * hsh.delete_if {| key, value | block } -> hsh * hsh.delete_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.delete_if {|key, value| key >= "b" } #=> {"a"=>100} * */ VALUE rb_hash_delete_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, delete_if_i, hash); } return hash; } /* * call-seq: * hsh.reject! {| key, value | block } -> hsh or nil * hsh.reject! -> an_enumerator * * Equivalent to Hash#delete_if, but returns * nil if no changes were made. */ VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; } static int reject_i(VALUE key, VALUE value, VALUE result) { if (!RTEST(rb_yield_values(2, key, value))) { rb_hash_aset(result, key, value); } return ST_CONTINUE; } /* * call-seq: * hsh.reject {|key, value| block} -> a_hash * hsh.reject -> an_enumerator * * Returns a new hash consisting of entries for which the block returns false. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.reject {|k,v| k < "b"} #=> {"b" => 200, "c" => 300} * h.reject {|k,v| v > 100} #=> {"a" => 100} */ VALUE rb_hash_reject(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (RTEST(ruby_verbose)) { VALUE klass; if (HAS_EXTRA_STATES(hash, klass)) { rb_warn("extra states are no longer copied: %+"PRIsVALUE, hash); } } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, reject_i, result); } return result; } /* * call-seq: * hsh.slice(*keys) -> a_hash * * Returns a hash containing only the given keys and their values. * * h = { a: 100, b: 200, c: 300 } * h.slice(:a) #=> {:a=>100} * h.slice(:b, :c, :d) #=> {:b=>200, :c=>300} */ static VALUE rb_hash_slice(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, value, result; if (argc == 0 || RHASH_EMPTY_P(hash)) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_hash_lookup2(hash, key, Qundef); if (value != Qundef) rb_hash_aset(result, key, value); } return result; } /* * call-seq: * hsh.values_at(key, ...) -> array * * Return an array containing the values associated with the given keys. * Also see Hash.select. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * h.values_at("cow", "cat") #=> ["bovine", "feline"] */ VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i array * hsh.fetch_values(key, ...) { |key| block } -> array * * Returns an array containing the values associated with the given keys * but also raises KeyError when one of keys can't be found. * Also see Hash#values_at and Hash#fetch. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * * h.fetch_values("cow", "cat") #=> ["bovine", "feline"] * h.fetch_values("cow", "bird") # raises KeyError * h.fetch_values("cow", "bird") { |k| k.upcase } #=> ["bovine", "BIRD"] */ VALUE rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i a_hash * hsh.select -> an_enumerator * hsh.filter {|key, value| block} -> a_hash * hsh.filter -> an_enumerator * * Returns a new hash consisting of entries for which the block returns true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300} * h.select {|k,v| v < 200} #=> {"a" => 100} * * Hash#filter is an alias for Hash#select. */ VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, select_i, result); } return result; } static int keep_if_i(VALUE key, VALUE value, VALUE hash) { if (!RTEST(rb_yield_values(2, key, value))) { return ST_DELETE; } return ST_CONTINUE; } /* * call-seq: * hsh.select! {| key, value | block } -> hsh or nil * hsh.select! -> an_enumerator * hsh.filter! {| key, value | block } -> hsh or nil * hsh.filter! -> an_enumerator * * Equivalent to Hash#keep_if, but returns * +nil+ if no changes were made. * * Hash#filter! is an alias for Hash#select!. */ VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; } /* * call-seq: * hsh.keep_if {| key, value | block } -> hsh * hsh.keep_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to +false+. * * If no block is given, an enumerator is returned instead. * * See also Hash#select!. */ VALUE rb_hash_keep_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, keep_if_i, hash); } return hash; } static int clear_i(VALUE key, VALUE value, VALUE dummy) { return ST_DELETE; } /* * call-seq: * hsh.clear -> hsh * * Removes all key-value pairs from hsh. * * h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200} * h.clear #=> {} * */ VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (RHASH_ITER_LEV(hash) > 0) { rb_hash_foreach(hash, clear_i, 0); } else if (RHASH_AR_TABLE_P(hash)) { ar_clear(hash); } else { st_clear(RHASH_ST_TABLE(hash)); } return hash; } static int hash_aset(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { if (existing) { arg->new_value = arg->arg; arg->old_value = *val; } else { arg->new_key = *key; arg->new_value = arg->arg; } *val = arg->arg; return ST_CONTINUE; } VALUE rb_hash_key_str(VALUE key) { if (!RB_FL_ANY_RAW(key, FL_EXIVAR) && RBASIC_CLASS(key) == rb_cString) { return rb_fstring(key); } else { return rb_str_new_frozen(key); } } static int hash_aset_str(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { if (!existing && !RB_OBJ_FROZEN(*key)) { *key = rb_hash_key_str(*key); } return hash_aset(key, val, arg, existing); } NOINSERT_UPDATE_CALLBACK(hash_aset) NOINSERT_UPDATE_CALLBACK(hash_aset_str) /* * call-seq: * hsh[key] = value -> value * hsh.store(key, value) -> value * * == Element Assignment * * Associates the value given by +value+ with the key given by +key+. * * h = { "a" => 100, "b" => 200 } * h["a"] = 9 * h["c"] = 4 * h #=> {"a"=>9, "b"=>200, "c"=>4} * h.store("d", 42) #=> 42 * h #=> {"a"=>9, "b"=>200, "c"=>4, "d"=>42} * * +key+ should not have its value changed while it is in use as a key (an * unfrozen String passed as a key will be duplicated and frozen). * * a = "a" * b = "b".freeze * h = { a => 100, b => 200 } * h.key(100).equal? a #=> false * h.key(200).equal? b #=> true * */ VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { int iter_lev = RHASH_ITER_LEV(hash); rb_hash_modify(hash); if (RHASH_TABLE_NULL_P(hash)) { if (iter_lev > 0) no_new_key(); ar_alloc_table(hash); } if (RHASH_TYPE(hash) == &identhash || rb_obj_class(key) != rb_cString) { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val); } else { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val); } return val; } /* * call-seq: * hsh.replace(other_hash) -> hsh * * Replaces the contents of hsh with the contents of * other_hash. * * h = { "a" => 100, "b" => 200 } * h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400} * */ static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { rb_hash_modify_check(hash); if (hash == hash2) return hash; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "can't replace hash during iteration"); } hash2 = to_hash(hash2); COPY_DEFAULT(hash, hash2); if (RHASH_AR_TABLE_P(hash)) { if (RHASH_AR_TABLE_P(hash2)) { ar_clear(hash); } else { ar_free_and_clear_table(hash); RHASH_ST_TABLE_SET(hash, st_init_table_with_size(RHASH_TYPE(hash2), RHASH_SIZE(hash2))); } } else { if (RHASH_AR_TABLE_P(hash2)) { st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_CLEAR(hash); } else { st_clear(RHASH_ST_TABLE(hash)); RHASH_TBL_RAW(hash)->type = RHASH_ST_TABLE(hash2)->type; } } rb_hash_foreach(hash2, rb_hash_rehash_i, (VALUE)hash); rb_gc_writebarrier_remember(hash); return hash; } /* * call-seq: * hsh.length -> integer * hsh.size -> integer * * Returns the number of key-value pairs in the hash. * * h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 } * h.size #=> 4 * h.delete("a") #=> 200 * h.size #=> 3 * h.length #=> 3 * * Hash#length is an alias for Hash#size. */ VALUE rb_hash_size(VALUE hash) { return INT2FIX(RHASH_SIZE(hash)); } size_t rb_hash_size_num(VALUE hash) { return (long)RHASH_SIZE(hash); } /* * call-seq: * hsh.empty? -> true or false * * Returns true if hsh contains no key-value pairs. * * {}.empty? #=> true * */ static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; } static int each_value_i(VALUE key, VALUE value, VALUE _) { rb_yield(value); return ST_CONTINUE; } /* * call-seq: * hsh.each_value {| value | block } -> hsh * hsh.each_value -> an_enumerator * * Calls block once for each key in hsh, passing the * value as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_value {|value| puts value } * * produces: * * 100 * 200 */ static VALUE rb_hash_each_value(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_value_i, 0); return hash; } static int each_key_i(VALUE key, VALUE value, VALUE _) { rb_yield(key); return ST_CONTINUE; } /* * call-seq: * hsh.each_key {| key | block } -> hsh * hsh.each_key -> an_enumerator * * Calls block once for each key in hsh, passing the key * as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_key {|key| puts key } * * produces: * * a * b */ static VALUE rb_hash_each_key(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_key_i, 0); return hash; } static int each_pair_i(VALUE key, VALUE value, VALUE _) { rb_yield(rb_assoc_new(key, value)); return ST_CONTINUE; } static int each_pair_i_fast(VALUE key, VALUE value, VALUE _) { VALUE argv[2]; argv[0] = key; argv[1] = value; rb_yield_values2(2, argv); return ST_CONTINUE; } /* * call-seq: * hsh.each {| key, value | block } -> hsh * hsh.each_pair {| key, value | block } -> hsh * hsh.each -> an_enumerator * hsh.each_pair -> an_enumerator * * Calls block once for each key in hsh, passing the key-value * pair as parameters. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each {|key, value| puts "#{key} is #{value}" } * * produces: * * a is 100 * b is 200 * */ static VALUE rb_hash_each_pair(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, each_pair_i_fast, 0); else rb_hash_foreach(hash, each_pair_i, 0); return hash; } struct transform_keys_args{ VALUE trans; VALUE result; int block_given; }; static int transform_keys_hash_i(VALUE key, VALUE value, VALUE transarg) { struct transform_keys_args *p = (void *)transarg; VALUE trans = p->trans, result = p->result; VALUE new_key = rb_hash_lookup2(trans, key, Qundef); if (new_key == Qundef) { if (p->block_given) new_key = rb_yield(key); else new_key = key; } rb_hash_aset(result, new_key, value); return ST_CONTINUE; } static int transform_keys_i(VALUE key, VALUE value, VALUE result) { VALUE new_key = rb_yield(key); rb_hash_aset(result, new_key, value); return ST_CONTINUE; } /* * call-seq: * hsh.transform_keys {|key| block } -> new_hash * hsh.transform_keys -> an_enumerator * * Returns a new hash with the results of running the block once for * every key. * This method does not change the values. * * h = { a: 1, b: 2, c: 3 } * h.transform_keys {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys(&:to_s) #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys.with_index {|k, i| "#{k}.#{i}" } * #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_keys(int argc, VALUE *argv, VALUE hash) { VALUE result; struct transform_keys_args transarg = {0}; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { transarg.trans = to_hash(argv[0]); transarg.block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { if (transarg.trans) { transarg.result = result; rb_hash_foreach(hash, transform_keys_hash_i, (VALUE)&transarg); } else { rb_hash_foreach(hash, transform_keys_i, result); } } return result; } static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash); /* * call-seq: * hsh.transform_keys! {|key| block } -> hsh * hsh.transform_keys! -> an_enumerator * * Invokes the given block once for each key in hsh, replacing it * with the new key returned by the block, and then returns hsh. * This method does not change the values. * * h = { a: 1, b: 2, c: 3 } * h.transform_keys! {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 } * h.transform_keys!(&:to_sym) #=> { a: 1, b: 2, c: 3 } * h.transform_keys!.with_index {|k, i| "#{k}.#{i}" } * #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_keys_bang(int argc, VALUE *argv, VALUE hash) { VALUE trans = 0; int block_given = 0; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { trans = to_hash(argv[0]); block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { long i; VALUE pairs = rb_hash_flatten(0, NULL, hash); rb_hash_clear(hash); for (i = 0; i < RARRAY_LEN(pairs); i += 2) { VALUE key = RARRAY_AREF(pairs, i), new_key, val; if (!trans) { new_key = rb_yield(key); } else if ((new_key = rb_hash_lookup2(trans, key, Qundef)) != Qundef) { /* use the transformed key */ } else if (block_given) { new_key = rb_yield(key); } else { new_key = key; } val = RARRAY_AREF(pairs, i+1); rb_hash_aset(hash, new_key, val); } } return hash; } static int transform_values_foreach_func(st_data_t key, st_data_t value, st_data_t argp, int error) { return ST_REPLACE; } static int transform_values_foreach_replace(st_data_t *key, st_data_t *value, st_data_t argp, int existing) { VALUE new_value = rb_yield((VALUE)*value); VALUE hash = (VALUE)argp; RB_OBJ_WRITE(hash, value, new_value); return ST_CONTINUE; } /* * call-seq: * hsh.transform_values {|value| block } -> new_hash * hsh.transform_values -> an_enumerator * * Returns a new hash with the results of running the block once for * every value. * This method does not change the keys. * * h = { a: 1, b: 2, c: 3 } * h.transform_values {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 } * h.transform_values(&:to_s) #=> { a: "1", b: "2", c: "3" } * h.transform_values.with_index {|v, i| "#{v}.#{i}" } * #=> { a: "1.0", b: "2.1", c: "3.2" } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_values(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_copy(hash_alloc(rb_cHash), hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(result, transform_values_foreach_func, transform_values_foreach_replace, result); } return result; } /* * call-seq: * hsh.transform_values! {|value| block } -> hsh * hsh.transform_values! -> an_enumerator * * Invokes the given block once for each value in hsh, replacing it * with the new value returned by the block, and then returns hsh. * This method does not change the keys. * * h = { a: 1, b: 2, c: 3 } * h.transform_values! {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 } * h.transform_values!(&:to_s) #=> { a: "2", b: "5", c: "10" } * h.transform_values!.with_index {|v, i| "#{v}.#{i}" } * #=> { a: "2.0", b: "5.1", c: "10.2" } * * If no block is given, an enumerator is returned instead. */ static VALUE rb_hash_transform_values_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(hash, transform_values_foreach_func, transform_values_foreach_replace, hash); } return hash; } static int to_a_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.to_a -> array * * Converts hsh to a nested array of [ key, * value ] arrays. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_a #=> [["c", 300], ["a", 100], ["d", 400]] */ static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new_capa(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_a_i, ary); return ary; } static int inspect_i(VALUE key, VALUE value, VALUE str) { VALUE str2; str2 = rb_inspect(key); if (RSTRING_LEN(str) > 1) { rb_str_buf_cat_ascii(str, ", "); } else { rb_enc_copy(str, str2); } rb_str_buf_append(str, str2); rb_str_buf_cat_ascii(str, "=>"); str2 = rb_inspect(value); rb_str_buf_append(str, str2); return ST_CONTINUE; } static VALUE inspect_hash(VALUE hash, VALUE dummy, int recur) { VALUE str; if (recur) return rb_usascii_str_new2("{...}"); str = rb_str_buf_new2("{"); rb_hash_foreach(hash, inspect_i, str); rb_str_buf_cat2(str, "}"); return str; } /* * call-seq: * hsh.to_s -> string * hsh.inspect -> string * * Return the contents of this hash as a string. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}" */ static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); } /* * call-seq: * hsh.to_hash => hsh * * Returns +self+. */ static VALUE rb_hash_to_hash(VALUE hash) { return hash; } VALUE rb_hash_set_pair(VALUE hash, VALUE arg) { VALUE pair; pair = rb_check_array_type(arg); if (NIL_P(pair)) { rb_raise(rb_eTypeError, "wrong element type %s (expected array)", rb_builtin_class_name(arg)); } if (RARRAY_LEN(pair) != 2) { rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)", RARRAY_LEN(pair)); } rb_hash_aset(hash, RARRAY_AREF(pair, 0), RARRAY_AREF(pair, 1)); return hash; } static int to_h_i(VALUE key, VALUE value, VALUE hash) { rb_hash_set_pair(hash, rb_yield_values(2, key, value)); return ST_CONTINUE; } static VALUE rb_hash_to_h_block(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_h_i, h); return h; } /* * call-seq: * hsh.to_h -> hsh or new_hash * hsh.to_h {|key, value| block } -> new_hash * * Returns +self+. If called on a subclass of Hash, converts * the receiver to a Hash object. * * If a block is given, the results of the block on each pair of * the receiver will be used as pairs. */ static VALUE rb_hash_to_h(VALUE hash) { if (rb_block_given_p()) { return rb_hash_to_h_block(hash); } if (rb_obj_class(hash) != rb_cHash) { const VALUE flags = RBASIC(hash)->flags; hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT); } return hash; } static int keys_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, key); return ST_CONTINUE; } /* * call-seq: * hsh.keys -> array * * Returns a new array populated with the keys from this hash. See also * Hash#values. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 } * h.keys #=> ["a", "b", "c", "d"] * */ MJIT_FUNC_EXPORTED VALUE rb_hash_keys(VALUE hash) { st_index_t size = RHASH_SIZE(hash); VALUE keys = rb_ary_new_capa(size); if (size == 0) return keys; if (ST_DATA_COMPATIBLE_P(VALUE)) { RARRAY_PTR_USE_TRANSIENT(keys, ptr, { if (RHASH_AR_TABLE_P(hash)) { size = ar_keys(hash, ptr, size); } else { st_table *table = RHASH_ST_TABLE(hash); size = st_keys(table, ptr, size); } }); rb_gc_writebarrier_remember(keys); rb_ary_set_len(keys, size); } else { rb_hash_foreach(hash, keys_i, keys); } return keys; } static int values_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, value); return ST_CONTINUE; } /* * call-seq: * hsh.values -> array * * Returns a new array populated with the values from hsh. See * also Hash#keys. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.values #=> [100, 200, 300] * */ VALUE rb_hash_values(VALUE hash) { VALUE values; st_index_t size = RHASH_SIZE(hash); values = rb_ary_new_capa(size); if (size == 0) return values; if (ST_DATA_COMPATIBLE_P(VALUE)) { if (RHASH_AR_TABLE_P(hash)) { rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = ar_values(hash, ptr, size); }); } else if (RHASH_ST_TABLE_P(hash)) { st_table *table = RHASH_ST_TABLE(hash); rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = st_values(table, ptr, size); }); } rb_ary_set_len(values, size); } else { rb_hash_foreach(hash, values_i, values); } return values; } /* * call-seq: * hsh.has_key?(key) -> true or false * hsh.include?(key) -> true or false * hsh.key?(key) -> true or false * hsh.member?(key) -> true or false * * Returns true if the given key is present in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_key?("a") #=> true * h.has_key?("z") #=> false * * Note that #include? and #member? do not test member * equality using == as do other Enumerables. * * See also Enumerable#include? */ MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (hash_stlike_lookup(hash, key, NULL)) { return Qtrue; } else { return Qfalse; } } static int rb_hash_search_value(VALUE key, VALUE value, VALUE arg) { VALUE *data = (VALUE *)arg; if (rb_equal(value, data[1])) { data[0] = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.has_value?(value) -> true or false * hsh.value?(value) -> true or false * * Returns true if the given value is present for some key * in hsh. * * h = { "a" => 100, "b" => 200 } * h.value?(100) #=> true * h.value?(999) #=> false */ static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data); return data[0]; } struct equal_data { VALUE result; VALUE hash; int eql; }; static int eql_i(VALUE key, VALUE val1, VALUE arg) { struct equal_data *data = (struct equal_data *)arg; st_data_t val2; if (!hash_stlike_lookup(data->hash, key, &val2)) { data->result = Qfalse; return ST_STOP; } else { if (!(data->eql ? rb_eql(val1, (VALUE)val2) : (int)rb_equal(val1, (VALUE)val2))) { data->result = Qfalse; return ST_STOP; } return ST_CONTINUE; } } static VALUE recursive_eql(VALUE hash, VALUE dt, int recur) { struct equal_data *data; if (recur) return Qtrue; /* Subtle! */ data = (struct equal_data*)dt; data->result = Qtrue; rb_hash_foreach(hash, eql_i, dt); return data->result; } static VALUE hash_equal(VALUE hash1, VALUE hash2, int eql) { struct equal_data data; if (hash1 == hash2) return Qtrue; if (!RB_TYPE_P(hash2, T_HASH)) { if (!rb_respond_to(hash2, idTo_hash)) { return Qfalse; } if (eql) { if (rb_eql(hash2, hash1)) { return Qtrue; } else { return Qfalse; } } else { return rb_equal(hash2, hash1); } } if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2)) return Qfalse; if (!RHASH_TABLE_EMPTY_P(hash1) && !RHASH_TABLE_EMPTY_P(hash2)) { if (RHASH_TYPE(hash1) != RHASH_TYPE(hash2)) { return Qfalse; } else { data.hash = hash2; data.eql = eql; return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data); } } #if 0 if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) && FL_TEST(hash1, RHASH_PROC_DEFAULT) == FL_TEST(hash2, RHASH_PROC_DEFAULT))) return Qfalse; #endif return Qtrue; } /* * call-seq: * hsh == other_hash -> true or false * * Equality---Two hashes are equal if they each contain the same number * of keys and if each key-value pair is equal to (according to * Object#==) the corresponding elements in the other hash. * * h1 = { "a" => 1, "c" => 2 } * h2 = { 7 => 35, "c" => 2, "a" => 1 } * h3 = { "a" => 1, "c" => 2, 7 => 35 } * h4 = { "a" => 1, "d" => 2, "f" => 35 } * h1 == h2 #=> false * h2 == h3 #=> true * h3 == h4 #=> false * * The orders of each hashes are not compared. * * h1 = { "a" => 1, "c" => 2 } * h2 = { "c" => 2, "a" => 1 } * h1 == h2 #=> true * */ static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); } /* * call-seq: * hash.eql?(other) -> true or false * * Returns true if hash and other are * both hashes with the same content. * The orders of each hashes are not compared. */ static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); } static int hash_i(VALUE key, VALUE val, VALUE arg) { st_index_t *hval = (st_index_t *)arg; st_index_t hdata[2]; hdata[0] = rb_hash(key); hdata[1] = rb_hash(val); *hval ^= st_hash(hdata, sizeof(hdata), 0); return ST_CONTINUE; } /* * call-seq: * hsh.hash -> integer * * Compute a hash-code for this hash. Two hashes with the same content * will have the same hash code (and will compare using eql?). * * See also Object#hash. */ static VALUE rb_hash_hash(VALUE hash) { st_index_t size = RHASH_SIZE(hash); st_index_t hval = rb_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash); if (size) { rb_hash_foreach(hash, hash_i, (VALUE)&hval); } hval = rb_hash_end(hval); return ST2FIX(hval); } static int rb_hash_invert_i(VALUE key, VALUE value, VALUE hash) { rb_hash_aset(hash, value, key); return ST_CONTINUE; } /* * call-seq: * hsh.invert -> new_hash * * Returns a new hash created by using hsh's values as keys, and * the keys as values. * If a key with the same value already exists in the hsh, then * the last one defined will be used, the earlier value(s) will be discarded. * * h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 } * h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"} * * If there is no key with the same value, Hash#invert is involutive. * * h = { a: 1, b: 3, c: 4 } * h.invert.invert == h #=> true * * The condition, no key with the same value, can be tested by comparing * the size of inverted hash. * * # no key with the same value * h = { a: 1, b: 3, c: 4 } * h.size == h.invert.size #=> true * * # two (or more) keys has the same value * h = { a: 1, b: 3, c: 1 } * h.size == h.invert.size #=> false * */ static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; } static int rb_hash_update_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { if (existing) { arg->old_value = *value; arg->new_value = arg->arg; } else { arg->new_key = *key; arg->new_value = arg->arg; } *value = arg->arg; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_callback) static int rb_hash_update_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_callback, value); return ST_CONTINUE; } static int rb_hash_update_block_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { VALUE newvalue = (VALUE)arg->arg; if (existing) { newvalue = rb_yield_values(3, (VALUE)*key, (VALUE)*value, newvalue); arg->old_value = *value; } else { arg->new_key = *key; } arg->new_value = newvalue; *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_block_callback) static int rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_block_callback, value); return ST_CONTINUE; } /* * call-seq: * hsh.merge!(other_hash1, other_hash2, ...) -> hsh * hsh.update(other_hash1, other_hash2, ...) -> hsh * hsh.merge!(other_hash1, other_hash2, ...) {|key, oldval, newval| block} * -> hsh * hsh.update(other_hash1, other_hash2, ...) {|key, oldval, newval| block} * -> hsh * * Adds the contents of the given hashes to the receiver. * * If no block is given, entries with duplicate keys are overwritten * with the values from each +other_hash+ successively, * otherwise the value for each duplicate key is determined by * calling the block with the key, its value in the receiver and * its value in each +other_hash+. * * h1 = { "a" => 100, "b" => 200 } * h1.merge! #=> {"a"=>100, "b"=>200} * h1 #=> {"a"=>100, "b"=>200} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 246, "c" => 300 } * h1.merge!(h2) #=> {"a"=>100, "b"=>246, "c"=>300} * h1 #=> {"a"=>100, "b"=>246, "c"=>300} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 246, "c" => 300 } * h3 = { "b" => 357, "d" => 400 } * h1.merge!(h2, h3) * #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400} * h1 #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 246, "c" => 300 } * h3 = { "b" => 357, "d" => 400 } * h1.merge!(h2, h3) {|key, v1, v2| v1 } * #=> {"a"=>100, "b"=>200, "c"=>300, "d"=>400} * h1 #=> {"a"=>100, "b"=>200, "c"=>300, "d"=>400} * * Hash#update is an alias for Hash#merge!. */ static VALUE rb_hash_update(int argc, VALUE *argv, VALUE self) { int i; bool block_given = rb_block_given_p(); rb_hash_modify(self); for (i = 0; i < argc; i++){ VALUE hash = to_hash(argv[i]); if (block_given) { rb_hash_foreach(hash, rb_hash_update_block_i, self); } else { rb_hash_foreach(hash, rb_hash_update_i, self); } } return self; } struct update_func_arg { VALUE hash; VALUE value; rb_hash_update_func *func; }; static int rb_hash_update_func_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { struct update_func_arg *uf_arg = (struct update_func_arg *)arg->arg; VALUE newvalue = uf_arg->value; if (existing) { newvalue = (*uf_arg->func)((VALUE)*key, (VALUE)*value, newvalue); arg->old_value = *value; } else { arg->new_key = *key; } arg->new_value = newvalue; *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_func_callback) static int rb_hash_update_func_i(VALUE key, VALUE value, VALUE arg0) { struct update_func_arg *arg = (struct update_func_arg *)arg0; VALUE hash = arg->hash; arg->value = value; RHASH_UPDATE(hash, key, rb_hash_update_func_callback, (VALUE)arg); return ST_CONTINUE; } VALUE rb_hash_update_by(VALUE hash1, VALUE hash2, rb_hash_update_func *func) { rb_hash_modify(hash1); hash2 = to_hash(hash2); if (func) { struct update_func_arg arg; arg.hash = hash1; arg.func = func; rb_hash_foreach(hash2, rb_hash_update_func_i, (VALUE)&arg); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } /* * call-seq: * hsh.merge(other_hash1, other_hash2, ...) -> new_hash * hsh.merge(other_hash1, other_hash2, ...) {|key, oldval, newval| block} * -> new_hash * * Returns a new hash that combines the contents of the receiver and * the contents of the given hashes. * * If no block is given, entries with duplicate keys are overwritten * with the values from each +other_hash+ successively, * otherwise the value for each duplicate key is determined by * calling the block with the key, its value in the receiver and * its value in each +other_hash+. * * When called without any argument, returns a copy of the receiver. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 246, "c" => 300 } * h3 = { "b" => 357, "d" => 400 } * h1.merge #=> {"a"=>100, "b"=>200} * h1.merge(h2) #=> {"a"=>100, "b"=>246, "c"=>300} * h1.merge(h2, h3) #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400} * h1.merge(h2) {|key, oldval, newval| newval - oldval} * #=> {"a"=>100, "b"=>46, "c"=>300} * h1.merge(h2, h3) {|key, oldval, newval| newval - oldval} * #=> {"a"=>100, "b"=>311, "c"=>300, "d"=>400} * h1 #=> {"a"=>100, "b"=>200} * */ static VALUE rb_hash_merge(int argc, VALUE *argv, VALUE self) { return rb_hash_update(argc, argv, rb_hash_dup(self)); } static int assoc_cmp(VALUE a, VALUE b) { return !RTEST(rb_equal(a, b)); } static VALUE lookup2_call(VALUE arg) { VALUE *args = (VALUE *)arg; return rb_hash_lookup2(args[0], args[1], Qundef); } struct reset_hash_type_arg { VALUE hash; const struct st_hash_type *orighash; }; static VALUE reset_hash_type(VALUE arg) { struct reset_hash_type_arg *p = (struct reset_hash_type_arg *)arg; HASH_ASSERT(RHASH_ST_TABLE_P(p->hash)); RHASH_ST_TABLE(p->hash)->type = p->orighash; return Qundef; } static int assoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], key))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.assoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the key using ==. * Returns the key-value pair (two elements array) or +nil+ * if no match is found. See Array#assoc. * * h = {"colors" => ["red", "blue", "green"], * "letters" => ["a", "b", "c" ]} * h.assoc("letters") #=> ["letters", ["a", "b", "c"]] * h.assoc("foo") #=> nil */ VALUE rb_hash_assoc(VALUE hash, VALUE key) { st_table *table; const struct st_hash_type *orighash; VALUE args[2]; if (RHASH_EMPTY_P(hash)) return Qnil; ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); table = RHASH_ST_TABLE(hash); orighash = table->type; if (orighash != &identhash) { VALUE value; struct reset_hash_type_arg ensure_arg; struct st_hash_type assochash; assochash.compare = assoc_cmp; assochash.hash = orighash->hash; table->type = &assochash; args[0] = hash; args[1] = key; ensure_arg.hash = hash; ensure_arg.orighash = orighash; value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg); if (value != Qundef) return rb_assoc_new(key, value); } args[0] = key; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; } static int rassoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], val))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.rassoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the value using ==. * Returns the first key-value pair (two-element array) that matches. See * also Array#rassoc. * * a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"} * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; } static int flatten_i(VALUE key, VALUE val, VALUE ary) { VALUE pair[2]; pair[0] = key; pair[1] = val; rb_ary_cat(ary, pair, 2); return ST_CONTINUE; } /* * call-seq: * hash.flatten -> an_array * hash.flatten(level) -> an_array * * Returns a new array that is a one-dimensional flattening of this * hash. That is, for every key or value that is an array, extract * its elements into the new array. Unlike Array#flatten, this * method does not flatten recursively by default. The optional * level argument determines the level of recursion to flatten. * * a = {1=> "one", 2 => [2,"two"], 3 => "three"} * a.flatten # => [1, "one", 2, [2, "two"], 3, "three"] * a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"] */ static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary; rb_check_arity(argc, 0, 1); if (argc) { int level = NUM2INT(argv[0]); if (level == 0) return rb_hash_to_a(hash); ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); level--; if (level > 0) { VALUE ary_flatten_level = INT2FIX(level); rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level); } else if (level < 0) { /* flatten recursively */ rb_funcallv(ary, id_flatten_bang, 0, 0); } } else { ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); } return ary; } static int delete_if_nil(VALUE key, VALUE value, VALUE hash) { if (NIL_P(value)) { return ST_DELETE; } return ST_CONTINUE; } static int set_if_not_nil(VALUE key, VALUE value, VALUE hash) { if (!NIL_P(value)) { rb_hash_aset(hash, key, value); } return ST_CONTINUE; } /* * call-seq: * hsh.compact -> new_hash * * Returns a new hash with the nil values/key pairs removed * * h = { a: 1, b: false, c: nil } * h.compact #=> { a: 1, b: false } * h #=> { a: 1, b: false, c: nil } * */ static VALUE rb_hash_compact(VALUE hash) { VALUE result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, set_if_not_nil, result); } return result; } /* * call-seq: * hsh.compact! -> hsh or nil * * Removes all nil values from the hash. * Returns nil if no changes were made, otherwise returns the hash. * * h = { a: 1, b: false, c: nil } * h.compact! #=> { a: 1, b: false } * */ static VALUE rb_hash_compact_bang(VALUE hash) { st_index_t n; rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (n) { rb_hash_foreach(hash, delete_if_nil, hash); if (n != RHASH_SIZE(hash)) return hash; } return Qnil; } static st_table *rb_init_identtable_with_size(st_index_t size); /* * call-seq: * hsh.compare_by_identity -> hsh * * Makes hsh compare its keys by their identity, i.e. it * will consider exact same objects as same keys. * * h1 = { "a" => 100, "b" => 200, :c => "c" } * h1["a"] #=> 100 * h1.compare_by_identity * h1.compare_by_identity? #=> true * h1["a".dup] #=> nil # different objects. * h1[:c] #=> "c" # same symbols are all same. * */ static VALUE rb_hash_compare_by_id(VALUE hash) { VALUE tmp; st_table *identtable; if (rb_hash_compare_by_id_p(hash)) return hash; rb_hash_modify_check(hash); ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); tmp = hash_alloc(0); identtable = rb_init_identtable_with_size(RHASH_SIZE(hash)); RHASH_ST_TABLE_SET(tmp, identtable); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_TABLE_SET(hash, identtable); RHASH_ST_CLEAR(tmp); rb_gc_force_recycle(tmp); return hash; } /* * call-seq: * hsh.compare_by_identity? -> true or false * * Returns true if hsh will compare its keys by * their identity. Also see Hash#compare_by_identity. * */ MJIT_FUNC_EXPORTED VALUE rb_hash_compare_by_id_p(VALUE hash) { if (RHASH_ST_TABLE_P(hash) && RHASH_ST_TABLE(hash)->type == &identhash) { return Qtrue; } else { return Qfalse; } } VALUE rb_ident_hash_new(void) { VALUE hash = rb_hash_new(); RHASH_ST_TABLE_SET(hash, st_init_table(&identhash)); return hash; } st_table * rb_init_identtable(void) { return st_init_table(&identhash); } static st_table * rb_init_identtable_with_size(st_index_t size) { return st_init_table_with_size(&identhash, size); } static int any_p_i(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield(rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_fast(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield_values(2, key, value); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_pattern(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_funcall(((VALUE *)arg)[1], idEqq, 1, rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.any? [{ |(key, value)| block }] -> true or false * hsh.any?(pattern) -> true or false * * See also Enumerable#any? */ static VALUE rb_hash_any_p(int argc, VALUE *argv, VALUE hash) { VALUE args[2]; args[0] = Qfalse; rb_check_arity(argc, 0, 1); if (RHASH_EMPTY_P(hash)) return Qfalse; if (argc) { if (rb_block_given_p()) { rb_warn("given block not used"); } args[1] = argv[0]; rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args); } else { if (!rb_block_given_p()) { /* yields pairs, never false */ return Qtrue; } if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, any_p_i_fast, (VALUE)args); else rb_hash_foreach(hash, any_p_i, (VALUE)args); } return args[0]; } /* * call-seq: * hsh.dig(key, ...) -> object * * Extracts the nested value specified by the sequence of key * objects by calling +dig+ at each step, returning +nil+ if any * intermediate step is +nil+. * * h = { foo: {bar: {baz: 1}}} * * h.dig(:foo, :bar, :baz) #=> 1 * h.dig(:foo, :zot, :xyz) #=> nil * * g = { foo: [10, 11, 12] } * g.dig(:foo, 1) #=> 11 * g.dig(:foo, 1, 0) #=> TypeError: Integer does not have #dig method * g.dig(:foo, :bar) #=> TypeError: no implicit conversion of Symbol into Integer */ static VALUE rb_hash_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_hash_aref(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); } static int hash_le_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; VALUE v = rb_hash_lookup2(args[0], key, Qundef); if (v != Qundef && rb_equal(value, v)) return ST_CONTINUE; args[1] = Qfalse; return ST_STOP; } static VALUE hash_le(VALUE hash1, VALUE hash2) { VALUE args[2]; args[0] = hash2; args[1] = Qtrue; rb_hash_foreach(hash1, hash_le_i, (VALUE)args); return args[1]; } /* * call-seq: * hash <= other -> true or false * * Returns true if hash is subset of * other or equals to other. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 <= h2 #=> true * h2 <= h1 #=> false * h1 <= h1 #=> true */ static VALUE rb_hash_le(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash < other -> true or false * * Returns true if hash is subset of * other. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 < h2 #=> true * h2 < h1 #=> false * h1 < h1 #=> false */ static VALUE rb_hash_lt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash >= other -> true or false * * Returns true if other is subset of * hash or equals to hash. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 >= h2 #=> false * h2 >= h1 #=> true * h1 >= h1 #=> true */ static VALUE rb_hash_ge(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } /* * call-seq: * hash > other -> true or false * * Returns true if other is subset of * hash. * * h1 = {a:1, b:2} * h2 = {a:1, b:2, c:3} * h1 > h2 #=> false * h2 > h1 #=> true * h1 > h1 #=> false */ static VALUE rb_hash_gt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } static VALUE hash_proc_call(RB_BLOCK_CALL_FUNC_ARGLIST(key, hash)) { rb_check_arity(argc, 1, 1); return rb_hash_aref(hash, *argv); } /* * call-seq: * hash.to_proc -> proc * * Returns a Proc which maps keys to values. * * h = {a:1, b:2} * hp = h.to_proc * hp.call(:a) #=> 1 * hp.call(:b) #=> 2 * hp.call(:c) #=> nil * [:a, :b, :c].map(&h) #=> [1, 2, nil] */ static VALUE rb_hash_to_proc(VALUE hash) { return rb_func_proc_new(hash_proc_call, hash); } static VALUE rb_hash_deconstruct_keys(VALUE hash, VALUE keys) { return hash; } static int add_new_i(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { VALUE *args = (VALUE *)arg; if (existing) return ST_STOP; RB_OBJ_WRITTEN(args[0], Qundef, (VALUE)*key); RB_OBJ_WRITE(args[0], (VALUE *)val, args[1]); return ST_CONTINUE; } /* * add +key+ to +val+ pair if +hash+ does not contain +key+. * returns non-zero if +key+ was contained. */ int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val) { st_table *tbl; int ret = 0; VALUE args[2]; args[0] = hash; args[1] = val; if (RHASH_AR_TABLE_P(hash)) { hash_ar_table(hash); ret = ar_update(hash, (st_data_t)key, add_new_i, (st_data_t)args); if (ret != -1) { return ret; } ar_try_convert_table(hash); } tbl = RHASH_TBL_RAW(hash); return st_update(tbl, (st_data_t)key, add_new_i, (st_data_t)args); } static st_data_t key_stringify(VALUE key) { return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ? rb_hash_key_str(key) : key; } static void ar_bulk_insert(VALUE hash, long argc, const VALUE *argv) { long i; for (i = 0; i < argc; ) { st_data_t k = key_stringify(argv[i++]); st_data_t v = argv[i++]; ar_insert(hash, k, v); RB_OBJ_WRITTEN(hash, Qundef, k); RB_OBJ_WRITTEN(hash, Qundef, v); } } void rb_hash_bulk_insert(long argc, const VALUE *argv, VALUE hash) { HASH_ASSERT(argc % 2 == 0); if (argc > 0) { st_index_t size = argc / 2; if (RHASH_TABLE_NULL_P(hash)) { if (size <= RHASH_AR_TABLE_MAX_SIZE) { hash_ar_table(hash); } else { RHASH_TBL_RAW(hash); } } if (RHASH_AR_TABLE_P(hash) && (RHASH_AR_TABLE_SIZE(hash) + size <= RHASH_AR_TABLE_MAX_SIZE)) { ar_bulk_insert(hash, argc, argv); } else { rb_hash_bulk_insert_into_st_table(argc, argv, hash); } } } static char **origenviron; #ifdef _WIN32 #define GET_ENVIRON(e) ((e) = rb_w32_get_environ()) #define FREE_ENVIRON(e) rb_w32_free_environ(e) static char **my_environ; #undef environ #define environ my_environ #undef getenv static char *(*w32_getenv)(const char*); static char * w32_getenv_unknown(const char *name) { char *(*func)(const char*); if (rb_locale_encindex() == rb_ascii8bit_encindex()) { func = rb_w32_getenv; } else { func = rb_w32_ugetenv; } /* atomic assignment in flat memory model */ return (w32_getenv = func)(name); } static char *(*w32_getenv)(const char*) = w32_getenv_unknown; #define getenv(n) w32_getenv(n) #elif defined(__APPLE__) #undef environ #define environ (*_NSGetEnviron()) #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #else extern char **environ; #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #endif #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0) #define ENVNMATCH(s1, s2, n) (STRNCASECMP((s1), (s2), (n)) == 0) #else #define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0) #define ENVNMATCH(s1, s2, n) (memcmp((s1), (s2), (n)) == 0) #endif static VALUE env_enc_str_new(const char *ptr, long len, rb_encoding *enc) { #ifdef _WIN32 rb_encoding *internal = rb_default_internal_encoding(); const int ecflags = ECONV_INVALID_REPLACE | ECONV_UNDEF_REPLACE; rb_encoding *utf8 = rb_utf8_encoding(); VALUE str = rb_enc_str_new(NULL, 0, (internal ? internal : enc)); if (NIL_P(rb_str_cat_conv_enc_opts(str, 0, ptr, len, utf8, ecflags, Qnil))) { rb_str_initialize(str, ptr, len, NULL); } #else VALUE str = rb_external_str_new_with_enc(ptr, len, enc); #endif rb_obj_freeze(str); return str; } static VALUE env_enc_str_new_cstr(const char *ptr, rb_encoding *enc) { return env_enc_str_new(ptr, strlen(ptr), enc); } static VALUE env_str_new(const char *ptr, long len) { return env_enc_str_new(ptr, len, rb_locale_encoding()); } static VALUE env_str_new2(const char *ptr) { if (!ptr) return Qnil; return env_str_new(ptr, strlen(ptr)); } static const char TZ_ENV[] = "TZ"; static rb_encoding * env_encoding_for(const char *name, const char *ptr) { if (ENVMATCH(name, PATH_ENV)) { return rb_filesystem_encoding(); } else { return rb_locale_encoding(); } } static VALUE env_name_new(const char *name, const char *ptr) { return env_enc_str_new_cstr(ptr, env_encoding_for(name, ptr)); } static void * get_env_cstr( #ifdef _WIN32 volatile VALUE *pstr, #else VALUE str, #endif const char *name) { #ifdef _WIN32 VALUE str = *pstr; #endif char *var; rb_encoding *enc = rb_enc_get(str); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "bad environment variable %s: ASCII incompatible encoding: %s", name, rb_enc_name(enc)); } #ifdef _WIN32 if (!rb_enc_str_asciionly_p(str)) { *pstr = str = rb_str_conv_enc(str, NULL, rb_utf8_encoding()); } #endif var = RSTRING_PTR(str); if (memchr(var, '\0', RSTRING_LEN(str))) { rb_raise(rb_eArgError, "bad environment variable %s: contains null byte", name); } return rb_str_fill_terminator(str, 1); /* ASCII compatible */ } #ifdef _WIN32 #define get_env_ptr(var, val) \ (var = get_env_cstr(&(val), #var)) #else #define get_env_ptr(var, val) \ (var = get_env_cstr(val, #var)) #endif static inline const char * env_name(volatile VALUE *s) { const char *name; SafeStringValue(*s); get_env_ptr(name, *s); return name; } #define env_name(s) env_name(&(s)) static VALUE env_aset(VALUE nm, VALUE val); static void reset_by_modified_env(const char *nam) { /* * ENV['TZ'] = nil has a special meaning. * TZ is no longer considered up-to-date and ruby call tzset() as needed. * It could be useful if sysadmin change /etc/localtime. * This hack might works only on Linux glibc. */ if (ENVMATCH(nam, TZ_ENV)) { ruby_reset_timezone(); } } static VALUE env_delete(VALUE name) { const char *nam = env_name(name); const char *val = getenv(nam); reset_by_modified_env(nam); if (val) { VALUE value = env_str_new2(val); ruby_setenv(nam, 0); if (ENVMATCH(nam, PATH_ENV)) { RB_GC_GUARD(name); } return value; } return Qnil; } /* * call-seq: * ENV.delete(name) -> value * ENV.delete(name) { |name| block } -> value * * Deletes the environment variable with +name+ if it exists and returns its value: * ENV['foo'] = '0' * ENV.delete('foo') # => '0' * Returns +nil+ if the named environment variable does not exist: * ENV.delete('foo') # => nil * If a block given and the environment variable does not exist, * yields +name+ to the block and returns +nil+: * ENV.delete('foo') { |name| puts name } # => nil * foo * If a block given and the environment variable exists, * deletes the environment variable and returns its value (ignoring the block): * ENV['foo'] = '0' * ENV.delete('foo') { |name| fail 'ignored' } # => "0" * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_delete_m(VALUE obj, VALUE name) { VALUE val; val = env_delete(name); if (NIL_P(val) && rb_block_given_p()) rb_yield(name); return val; } /* * call-seq: * ENV[name] -> value * * Returns the value for the environment variable +name+ if it exists: * ENV['foo'] = '0' * ENV['foo'] # => "0" * Returns nil if the named variable does not exist: * ENV.clear * ENV['foo'] # => nil * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE rb_f_getenv(VALUE obj, VALUE name) { const char *nam, *env; nam = env_name(name); env = getenv(nam); if (env) { return env_name_new(nam, env); } return Qnil; } /* * call-seq: * ENV.fetch(name) -> value * ENV.fetch(name, default) -> value * ENV.fetch(name) { |name| block } -> value * * If +name+ is the name of an environment variable, returns its value: * ENV['foo'] = '0' * ENV.fetch('foo') # => '0' * Otherwise if a block is given (but not a default value), * yields +name+ to the block and returns the block's return value: * ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string * Otherwise if a default value is given (but not a block), returns the default value: * ENV.delete('foo') * ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string * If the environment variable does not exist and both default and block are given, * issues a warning ("warning: block supersedes default value argument"), * yields +name+ to the block, and returns the block's return value: * ENV.fetch('foo', :default) { |name| :block_return } # => :block_return * Raises KeyError if +name+ is valid, but not found, * and neither default value nor block is given: * ENV.fetch('foo') # Raises KeyError (key not found: "foo") * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_fetch(int argc, VALUE *argv, VALUE _) { VALUE key; long block_given; const char *nam, *env; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } nam = env_name(key); env = getenv(nam); if (!env) { if (block_given) return rb_yield(key); if (argc == 1) { rb_key_err_raise(rb_sprintf("key not found: \"%"PRIsVALUE"\"", key), envtbl, key); } return argv[1]; } return env_name_new(nam, env); } int rb_env_path_tainted(void) { rb_warn_deprecated_to_remove("rb_env_path_tainted", "3.2"); return 0; } #if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV)) #elif defined __sun static int in_origenv(const char *str) { char **env; for (env = origenviron; *env; ++env) { if (*env == str) return 1; } return 0; } #else static int envix(const char *nam) { register int i, len = strlen(nam); char **env; env = GET_ENVIRON(environ); for (i = 0; env[i]; i++) { if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=') break; /* memcmp must come first to avoid */ } /* potential SEGV's */ FREE_ENVIRON(environ); return i; } #endif #if defined(_WIN32) static size_t getenvsize(const WCHAR* p) { const WCHAR* porg = p; while (*p++) p += lstrlenW(p) + 1; return p - porg + 1; } static size_t getenvblocksize(void) { #ifdef _MAX_ENV return _MAX_ENV; #else return 32767; #endif } static int check_envsize(size_t n) { if (_WIN32_WINNT < 0x0600 && rb_w32_osver() < 6) { /* https://msdn.microsoft.com/en-us/library/windows/desktop/ms682653(v=vs.85).aspx */ /* Windows Server 2003 and Windows XP: The maximum size of the * environment block for the process is 32,767 characters. */ WCHAR* p = GetEnvironmentStringsW(); if (!p) return -1; /* never happen */ n += getenvsize(p); FreeEnvironmentStringsW(p); if (n >= getenvblocksize()) { return -1; } } return 0; } #endif #if defined(_WIN32) || \ (defined(__sun) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV))) NORETURN(static void invalid_envname(const char *name)); static void invalid_envname(const char *name) { rb_syserr_fail_str(EINVAL, rb_sprintf("ruby_setenv(%s)", name)); } static const char * check_envname(const char *name) { if (strchr(name, '=')) { invalid_envname(name); } return name; } #endif void ruby_setenv(const char *name, const char *value) { #if defined(_WIN32) # if defined(MINGW_HAS_SECURE_API) || RUBY_MSVCRT_VERSION >= 80 # define HAVE__WPUTENV_S 1 # endif VALUE buf; WCHAR *wname; WCHAR *wvalue = 0; int failed = 0; int len; check_envname(name); len = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0); if (value) { int len2; len2 = MultiByteToWideChar(CP_UTF8, 0, value, -1, NULL, 0); if (check_envsize((size_t)len + len2)) { /* len and len2 include '\0' */ goto fail; /* 2 for '=' & '\0' */ } wname = ALLOCV_N(WCHAR, buf, len + len2); wvalue = wname + len; MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); MultiByteToWideChar(CP_UTF8, 0, value, -1, wvalue, len2); #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } else { wname = ALLOCV_N(WCHAR, buf, len + 1); MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); wvalue = wname + len; *wvalue = L'\0'; #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } #ifndef HAVE__WPUTENV_S failed = _wputenv(wname); #else failed = _wputenv_s(wname, wvalue); #endif ALLOCV_END(buf); /* even if putenv() failed, clean up and try to delete the * variable from the system area. */ if (!value || !*value) { /* putenv() doesn't handle empty value */ if (!SetEnvironmentVariable(name, value) && GetLastError() != ERROR_ENVVAR_NOT_FOUND) goto fail; } if (failed) { fail: invalid_envname(name); } #elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV) if (value) { if (setenv(name, value, 1)) rb_sys_fail_str(rb_sprintf("setenv(%s)", name)); } else { #ifdef VOID_UNSETENV unsetenv(name); #else if (unsetenv(name)) rb_sys_fail_str(rb_sprintf("unsetenv(%s)", name)); #endif } #elif defined __sun /* Solaris 9 (or earlier) does not have setenv(3C) and unsetenv(3C). */ /* The below code was tested on Solaris 10 by: % ./configure ac_cv_func_setenv=no ac_cv_func_unsetenv=no */ size_t len, mem_size; char **env_ptr, *str, *mem_ptr; check_envname(name); len = strlen(name); if (value) { mem_size = len + strlen(value) + 2; mem_ptr = malloc(mem_size); if (mem_ptr == NULL) rb_sys_fail_str(rb_sprintf("malloc("PRIuSIZE")", mem_size)); snprintf(mem_ptr, mem_size, "%s=%s", name, value); } for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) { if (!strncmp(str, name, len) && str[len] == '=') { if (!in_origenv(str)) free(str); while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++; break; } } if (value) { if (putenv(mem_ptr)) { free(mem_ptr); rb_sys_fail_str(rb_sprintf("putenv(%s)", name)); } } #else /* WIN32 */ size_t len; int i; i=envix(name); /* where does it go? */ if (environ == origenviron) { /* need we copy environment? */ int j; int max; char **tmpenv; for (max = i; environ[max]; max++) ; tmpenv = ALLOC_N(char*, max+2); for (j=0; j value * ENV.store(name, value) -> value * * ENV.store is an alias for ENV.[]=. * * Creates, updates, or deletes the named environment variable, returning the value. * Both +name+ and +value+ may be instances of String. * See {Valid Names and Values}[#class-ENV-label-Valid+Names+and+Values]. * * - If the named environment variable does not exist: * - If +value+ is +nil+, does nothing. * ENV.clear * ENV['foo'] = nil # => nil * ENV.include?('foo') # => false * ENV.store('bar', nil) # => nil * ENV.include?('bar') # => false * - If +value+ is not +nil+, creates the environment variable with +name+ and +value+: * # Create 'foo' using ENV.[]=. * ENV['foo'] = '0' # => '0' * ENV['foo'] # => '0' * # Create 'bar' using ENV.store. * ENV.store('bar', '1') # => '1' * ENV['bar'] # => '1' * - If the named environment variable exists: * - If +value+ is not +nil+, updates the environment variable with value +value+: * # Update 'foo' using ENV.[]=. * ENV['foo'] = '2' # => '2' * ENV['foo'] # => '2' * # Update 'bar' using ENV.store. * ENV.store('bar', '3') # => '3' * ENV['bar'] # => '3' * - If +value+ is +nil+, deletes the environment variable: * # Delete 'foo' using ENV.[]=. * ENV['foo'] = nil # => nil * ENV.include?('foo') # => false * # Delete 'bar' using ENV.store. * ENV.store('bar', nil) # => nil * ENV.include?('bar') # => false * * Raises an exception if +name+ or +value+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_aset_m(VALUE obj, VALUE nm, VALUE val) { return env_aset(nm, val); } static VALUE env_aset(VALUE nm, VALUE val) { char *name, *value; if (NIL_P(val)) { env_delete(nm); return Qnil; } SafeStringValue(nm); SafeStringValue(val); /* nm can be modified in `val.to_str`, don't get `name` before * check for `val` */ get_env_ptr(name, nm); get_env_ptr(value, val); ruby_setenv(name, value); if (ENVMATCH(name, PATH_ENV)) { RB_GC_GUARD(nm); } reset_by_modified_env(name); return val; } static VALUE env_keys(int raw) { char **env; VALUE ary; rb_encoding *enc = raw ? 0 : rb_locale_encoding(); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { const char *p = *env; size_t l = s - p; VALUE e = raw ? rb_utf8_str_new(p, l) : env_enc_str_new(p, l, enc); rb_ary_push(ary, e); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.keys -> array of names * * Returns all variable names in an Array: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.keys # => ['bar', 'foo'] * The order of the names is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns the empty Array if ENV is empty: * ENV.clear * ENV.keys # => [] */ static VALUE env_f_keys(VALUE _) { return env_keys(FALSE); } static VALUE rb_env_size(VALUE ehash, VALUE args, VALUE eobj) { char **env; long cnt = 0; env = GET_ENVIRON(environ); for (; *env ; ++env) { if (strchr(*env, '=')) { cnt++; } } FREE_ENVIRON(environ); return LONG2FIX(cnt); } /* * call-seq: * ENV.each_key { |name| block } -> ENV * ENV.each_key -> an_enumerator * * Yields each environment variable name: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * names = [] * ENV.each_key { |name| names.push(name) } # => ENV * names # => ["bar", "foo"] * * Returns an Enumerator if no block given: * e = ENV.each_key # => #"1", "foo"=>"0"}:each_key> * names = [] * e.each { |name| names.push(name) } # => ENV * names # => ["bar", "foo"] */ static VALUE env_each_key(VALUE ehash) { VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); for (i=0; i '0', 'bar' => '1') * ENV.values # => ['1', '0'] * The order of the values is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns the empty Array if ENV is empty: * ENV.clear * ENV.values # => [] */ static VALUE env_f_values(VALUE _) { return env_values(); } /* * call-seq: * ENV.each_value { |value| block } -> ENV * ENV.each_value -> an_enumerator * * Yields each environment variable value: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * values = [] * ENV.each_value { |value| values.push(value) } # => ENV * values # => ["1", "0"] * * Returns an Enumerator if no block given: * e = ENV.each_value # => #"1", "foo"=>"0"}:each_value> * values = [] * e.each { |value| values.push(value) } # => ENV * values # => ["1", "0"] */ static VALUE env_each_value(VALUE ehash) { VALUE values; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); values = env_values(); for (i=0; i ENV * ENV.each -> an_enumerator * ENV.each_pair { |name, value| block } -> ENV * ENV.each_pair -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array: * h = {} * ENV.each_pair { |name, value| h[name] = value } # => ENV * h # => {"bar"=>"1", "foo"=>"0"} * * Returns an Enumerator if no block given: * h = {} * e = ENV.each_pair # => #"1", "foo"=>"0"}:each_pair> * e.each { |name, value| h[name] = value } # => ENV * h # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_each_pair(VALUE ehash) { char **env; VALUE ary; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); rb_ary_push(ary, env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); if (rb_block_pair_yield_optimizable()) { for (i=0; i ENV or nil * ENV.reject! -> an_enumerator * * Similar to ENV.delete_if, but returns +nil+ if no changes were made. * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns a truthy value, * and returning ENV (if any deletions) or +nil+ (if not): * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.reject! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * ENV.reject! { |name, value| name.start_with?('b') } # => nil * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.reject! # => #"1", "baz"=>"2", "foo"=>"0"}:reject!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * e.each { |name, value| name.start_with?('b') } # => nil */ static VALUE env_reject_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); RBASIC_CLEAR_CLASS(keys); for (i=0; i ENV * ENV.delete_if -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns a truthy value, * and returning ENV (regardless of whether any deletions): * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.delete_if { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * ENV.delete_if { |name, value| name.start_with?('b') } # => ENV * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.delete_if # => #"1", "baz"=>"2", "foo"=>"0"}:delete_if!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * e.each { |name, value| name.start_with?('b') } # => ENV */ static VALUE env_delete_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_reject_bang(ehash); return envtbl; } /* * call-seq: * ENV.values_at(*names) -> array of values * * Returns an Array containing the environment variable values associated with * the given names: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.values_at('foo', 'baz') # => ["0", "2"] * * Returns +nil+ in the Array for each name that is not an ENV name: * ENV.values_at('foo', 'bat', 'bar', 'bam') # => ["0", nil, "1", nil] * * Returns an empty Array if no names given: * ENV.values_at() # => [] * * Raises an exception if any name is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_values_at(int argc, VALUE *argv, VALUE _) { VALUE result; long i; result = rb_ary_new(); for (i=0; i hash of name/value pairs * ENV.select -> an_enumerator * ENV.filter { |name, value| block } -> hash of name/value pairs * ENV.filter -> an_enumerator * * ENV.filter is an alias for ENV.select. * * Yields each environment variable name and its value as a 2-element Array, * returning a Hash of the names and values for which the block returns a truthy value: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.select { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * ENV.filter { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * * Returns an Enumerator if no block given: * e = ENV.select # => #"1", "baz"=>"2", "foo"=>"0"}:select> * e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * e = ENV.filter # => #"1", "baz"=>"2", "foo"=>"0"}:filter> * e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} */ static VALUE env_select(VALUE ehash) { VALUE result; VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); result = rb_hash_new(); keys = env_keys(FALSE); for (i = 0; i < RARRAY_LEN(keys); ++i) { VALUE key = RARRAY_AREF(keys, i); VALUE val = rb_f_getenv(Qnil, key); if (!NIL_P(val)) { if (RTEST(rb_yield_values(2, key, val))) { rb_hash_aset(result, key, val); } } } RB_GC_GUARD(keys); return result; } /* * call-seq: * ENV.select! { |name, value| block } -> ENV or nil * ENV.select! -> an_enumerator * ENV.filter! { |name, value| block } -> ENV or nil * ENV.filter! -> an_enumerator * * ENV.filter! is an alias for ENV.select!. * * Yields each environment variable name and its value as a 2-element Array, * deleting each entry for which the block returns +false+ or +nil+, * and returning ENV if any deletions made, or +nil+ otherwise: * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.select! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * ENV.select! { |name, value| true } # => nil * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.filter! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * ENV.filter! { |name, value| true } # => nil * * Returns an Enumerator if no block given: * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.select! # => #"1", "baz"=>"2"}:select!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * e.each { |name, value| true } # => nil * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.filter! # => #"1", "baz"=>"2"}:filter!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * e.each { |name, value| true } # => nil */ static VALUE env_select_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); RBASIC_CLEAR_CLASS(keys); for (i=0; i ENV * ENV.keep_if -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns +false+ or +nil+, * and returning ENV: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.keep_if { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.keep_if # => #"1", "baz"=>"2", "foo"=>"0"}:keep_if> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} */ static VALUE env_keep_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_select_bang(ehash); return envtbl; } /* * call-seq: * ENV.slice(*names) -> hash of name/value pairs * * Returns a Hash of the given ENV names and their corresponding values: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2', 'bat' => '3') * ENV.slice('foo', 'baz') # => {"foo"=>"0", "baz"=>"2"} * ENV.slice('baz', 'foo') # => {"baz"=>"2", "foo"=>"0"} * Raises an exception if any of the +names+ is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.slice('foo', 'bar', :bat) # Raises TypeError (no implicit conversion of Symbol into String) */ static VALUE env_slice(int argc, VALUE *argv, VALUE _) { int i; VALUE key, value, result; if (argc == 0) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_f_getenv(Qnil, key); if (value != Qnil) rb_hash_aset(result, key, value); } return result; } VALUE rb_env_clear(void) { VALUE keys; long i; keys = env_keys(TRUE); for (i=0; i ENV * * Removes every environment variable; returns ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.size # => 2 * ENV.clear # => ENV * ENV.size # => 0 */ static VALUE env_clear(VALUE _) { return rb_env_clear(); } /* * call-seq: * ENV.to_s -> "ENV" * * Returns String 'ENV': * ENV.to_s # => "ENV" */ static VALUE env_to_s(VALUE _) { return rb_usascii_str_new2("ENV"); } /* * call-seq: * ENV.inspect -> a_string * * Returns the contents of the environment as a String: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.inspect # => "{\"bar\"=>\"1\", \"foo\"=>\"0\"}" */ static VALUE env_inspect(VALUE _) { char **env; VALUE str, i; str = rb_str_buf_new2("{"); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (env != environ) { rb_str_buf_cat2(str, ", "); } if (s) { rb_str_buf_cat2(str, "\""); rb_str_buf_cat(str, *env, s-*env); rb_str_buf_cat2(str, "\"=>"); i = rb_inspect(rb_str_new2(s+1)); rb_str_buf_append(str, i); } env++; } FREE_ENVIRON(environ); rb_str_buf_cat2(str, "}"); return str; } /* * call-seq: * ENV.to_a -> array of 2-element arrays * * Returns the contents of ENV as an Array of 2-element Arrays, * each of which is a name/value pair: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_a # => [["bar", "1"], ["foo", "0"]] */ static VALUE env_to_a(VALUE _) { char **env; VALUE ary; ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env), env_str_new2(s+1))); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.rehash -> nil * * (Provided for compatibility with Hash.) * * Does not modify ENV; returns +nil+: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.rehash # => nil * ENV # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_none(VALUE _) { return Qnil; } /* * call-seq: * ENV.length -> an_integer * ENV.size -> an_integer * * Returns the count of environment variables: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.length # => 2 * ENV.size # => 2 */ static VALUE env_size(VALUE _) { int i; char **env; env = GET_ENVIRON(environ); for (i=0; env[i]; i++) ; FREE_ENVIRON(environ); return INT2FIX(i); } /* * call-seq: * ENV.empty? -> true or false * * Returns +true+ when there are no environment variables, +false+ otherwise: * ENV.clear * ENV.empty? # => true * ENV['foo'] = '0' * ENV.empty? # => false */ static VALUE env_empty_p(VALUE _) { char **env; env = GET_ENVIRON(environ); if (env[0] == 0) { FREE_ENVIRON(environ); return Qtrue; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.include?(name) -> true or false * ENV.has_key?(name) -> true or false * ENV.member?(name) -> true or false * ENV.key?(name) -> true or false * * ENV.has_key?, ENV.member?, and ENV.key? are aliases for ENV.include?. * * Returns +true+ if there is an environment variable with the given +name+: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.include?('foo') # => true * Returns +false+ if +name+ is a valid String and there is no such environment variable: * ENV.include?('baz') # => false * Returns +false+ if +name+ is the empty String or is a String containing character '=': * ENV.include?('') # => false * ENV.include?('=') # => false * Raises an exception if +name+ is a String containing the NUL character "\0": * ENV.include?("\0") # Raises ArgumentError (bad environment variable name: contains null byte) * Raises an exception if +name+ has an encoding that is not ASCII-compatible: * ENV.include?("\xa1\xa1".force_encoding(Encoding::UTF_16LE)) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE) * Raises an exception if +name+ is not a String: * ENV.include?(Object.new) # TypeError (no implicit conversion of Object into String) */ static VALUE env_has_key(VALUE env, VALUE key) { const char *s; s = env_name(key); if (getenv(s)) return Qtrue; return Qfalse; } /* * call-seq: * ENV.assoc(name) -> [name, value] or nil * * Returns a 2-element Array containing the name and value of the environment variable * for +name+ if it exists: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.assoc('foo') # => ['foo', '0'] * Returns +nil+ if +name+ is a valid String and there is no such environment variable: * ENV.assoc('baz') # => nil * Returns +nil+ if +name+ is the empty String or is a String containing character '=': * ENV.assoc('') # => nil * ENV.assoc('=') # => nil * Raises an exception if +name+ is a String containing the NUL character "\0": * ENV.assoc("\0") # Raises ArgumentError (bad environment variable name: contains null byte) * Raises an exception if +name+ has an encoding that is not ASCII-compatible: * ENV.assoc("\xa1\xa1".force_encoding(Encoding::UTF_16LE)) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE) * Raises an exception if +name+ is not a String: * ENV.assoc(Object.new) # TypeError (no implicit conversion of Object into String) */ static VALUE env_assoc(VALUE env, VALUE key) { const char *s, *e; s = env_name(key); e = getenv(s); if (e) return rb_assoc_new(key, env_str_new2(e)); return Qnil; } /* * call-seq: * ENV.value?(value) -> true or false * ENV.has_value?(value) -> true or false * * Returns +true+ if +value+ is the value for some environment variable name, +false+ otherwise: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.value?('0') # => true * ENV.has_value?('0') # => true * ENV.value?('2') # => false * ENV.has_value?('2') # => false */ static VALUE env_has_value(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { FREE_ENVIRON(environ); return Qtrue; } } env++; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.rassoc(value) -> [name, value] or nil * * Returns a 2-element Array containing the name and value of the * *first* *found* environment variable that has value +value+, if one * exists: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.rassoc('0') # => ["bar", "0"] * The order in which environment variables are examined is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if there is no such environment variable: * ENV.rassoc('2') # => nil * ENV.rassoc('') # => nil * ENV.rassoc('=') # => nil * ENV.rassoc("\0") # => nil * ENV.rassoc(Object.new) # => nil * ENV.rassoc("\xa1\xa1".force_encoding(Encoding::UTF_16LE)) # => nil */ static VALUE env_rassoc(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { VALUE result = rb_assoc_new(rb_str_new(*env, s-*env-1), obj); FREE_ENVIRON(environ); return result; } } env++; } FREE_ENVIRON(environ); return Qnil; } /* * call-seq: * ENV.key(value) -> name or nil * * Returns the name of the first environment variable with +value+, if it exists: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.key('0') # => "foo" * The order in which environment variables are examined is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if there is no such value: * ENV.key('2') # => nil * Raises an exception if +value+ is invalid: * ENV.key(Object.new) # raises TypeError (no implicit conversion of Object into String) * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_key(VALUE dmy, VALUE value) { char **env; VALUE str; SafeStringValue(value); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) { str = env_str_new(*env, s-*env-1); FREE_ENVIRON(environ); return str; } } env++; } FREE_ENVIRON(environ); return Qnil; } /* * call-seq: * ENV.index(value) -> name * * Deprecated method that is equivalent to ENV.key. */ static VALUE env_index(VALUE dmy, VALUE value) { rb_warn_deprecated("ENV.index", "ENV.key"); return env_key(dmy, value); } static VALUE env_to_hash(void) { char **env; VALUE hash; hash = rb_hash_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_hash_aset(hash, env_str_new(*env, s-*env), env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return hash; } /* * call-seq: * ENV.to_hash -> hash of name/value pairs * * Returns a Hash containing all name/value pairs from ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_f_to_hash(VALUE _) { return env_to_hash(); } /* * call-seq: * ENV.to_h -> hash of name/value pairs * ENV.to_h {|name, value| block } -> hash of name/value pairs * * With no block, returns a Hash containing all name/value pairs from ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_h # => {"bar"=>"1", "foo"=>"0"} * With a block, returns a Hash whose items are determined by the block. * Each name/value pair in ENV is yielded to the block. * The block must return a 2-element Array (name/value pair) * that is added to the return Hash as a key and value: * ENV.to_h { |name, value| [name.to_sym, value.to_i] } # => {:bar=>1, :foo=>0} * Raises an exception if the block does not return an Array: * ENV.to_h { |name, value| name } # Raises TypeError (wrong element type String (expected array)) * Raises an exception if the block returns an Array of the wrong size: * ENV.to_h { |name, value| [name] } # Raises ArgumentError (element has wrong array length (expected 2, was 1)) */ static VALUE env_to_h(VALUE _) { VALUE hash = env_to_hash(); if (rb_block_given_p()) { hash = rb_hash_to_h_block(hash); } return hash; } /* * call-seq: * ENV.reject { |name, value| block } -> hash of name/value pairs * ENV.reject -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array. * Returns a Hash whose items are determined by the block. * When the block returns a truthy value, the name/value pair is added to the return Hash; * otherwise the pair is ignored: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.reject { |name, value| name.start_with?('b') } # => {"foo"=>"0"} * Returns an Enumerator if no block given: * e = ENV.reject * e.each { |name, value| name.start_with?('b') } # => {"foo"=>"0"} */ static VALUE env_reject(VALUE _) { return rb_hash_delete_if(env_to_hash()); } /* * call-seq: * ENV.freeze * * Raises an exception: * ENV.freeze # Raises TypeError (cannot freeze ENV) */ static VALUE env_freeze(VALUE self) { rb_raise(rb_eTypeError, "cannot freeze ENV"); return self; /* Not reached */ } /* * call-seq: * ENV.shift -> [name, value] or nil * * Removes the first environment variable from ENV and returns * a 2-element Array containing its name and value: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_hash # => {'bar' => '1', 'foo' => '0'} * ENV.shift # => ['bar', '1'] * ENV.to_hash # => {'foo' => '0'} * Exactly which environment variable is "first" is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if the environment is empty: * ENV.clear * ENV.shift # => nil */ static VALUE env_shift(VALUE _) { char **env; VALUE result = Qnil; env = GET_ENVIRON(environ); if (*env) { char *s = strchr(*env, '='); if (s) { VALUE key = env_str_new(*env, s-*env); VALUE val = env_str_new2(getenv(RSTRING_PTR(key))); env_delete(key); result = rb_assoc_new(key, val); } } FREE_ENVIRON(environ); return result; } /* * call-seq: * ENV.invert -> hash of value/name pairs * * Returns a Hash whose keys are the ENV values, * and whose values are the corresponding ENV names: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.invert # => {"1"=>"bar", "0"=>"foo"} * For a duplicate ENV value, overwrites the hash entry: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.invert # => {"0"=>"foo"} * Note that the order of the ENV processing is OS-dependent, * which means that the order of overwriting is also OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. */ static VALUE env_invert(VALUE _) { return rb_hash_invert(env_to_hash()); } static void keylist_delete(VALUE keys, VALUE key) { long keylen, elen; const char *keyptr, *eptr; RSTRING_GETMEM(key, keyptr, keylen); for (long i=0; i ENV * * Replaces the entire content of the environment variables * with the name/value pairs in the given +hash+; * returns ENV. * * Replaces the content of ENV with the given pairs: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} * * Raises an exception if a name or value is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.replace('foo' => '0', :bar => '1') # Raises TypeError (no implicit conversion of Symbol into String) * ENV.replace('foo' => '0', 'bar' => 1) # Raises TypeError (no implicit conversion of Integer into String) * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_replace(VALUE env, VALUE hash) { VALUE keys; long i; keys = env_keys(TRUE); if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_replace_i, keys); for (i=0; i ENV * ENV.update(hash) { |name, env_val, hash_val| block } -> ENV * ENV.merge!(hash) -> ENV * ENV.merge!(hash) { |name, env_val, hash_val| block } -> ENV * * ENV.update is an alias for ENV.merge!. * * Adds to ENV each key/value pair in the given +hash+; returns ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.merge!('baz' => '2', 'bat' => '3') # => {"bar"=>"1", "bat"=>"3", "baz"=>"2", "foo"=>"0"} * Deletes the ENV entry for a hash value that is +nil+: * ENV.merge!('baz' => nil, 'bat' => nil) # => {"bar"=>"1", "foo"=>"0"} * For an already-existing name, if no block given, overwrites the ENV value: * ENV.merge!('foo' => '4') # => {"bar"=>"1", "foo"=>"4"} * For an already-existing name, if block given, * yields the name, its ENV value, and its hash value; * the block's return value becomes the new name: * ENV.merge!('foo' => '5') { |name, env_val, hash_val | env_val + hash_val } # => {"bar"=>"1", "foo"=>"45"} * Raises an exception if a name or value is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]); * ENV.replace('foo' => '0', 'bar' => '1') * ENV.merge!('foo' => '6', :bar => '7', 'baz' => '9') # Raises TypeError (no implicit conversion of Symbol into String) * ENV # => {"bar"=>"1", "foo"=>"6"} * ENV.merge!('foo' => '7', 'bar' => 8, 'baz' => '9') # Raises TypeError (no implicit conversion of Integer into String) * ENV # => {"bar"=>"1", "foo"=>"7"} * Raises an exception if the block returns an invalid name: * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.merge!('bat' => '8', 'foo' => '9') { |name, env_val, hash_val | 10 } # Raises TypeError (no implicit conversion of Integer into String) * ENV # => {"bar"=>"1", "bat"=>"8", "foo"=>"7"} * * Note that for the exceptions above, * hash pairs preceding an invalid name or value are processed normally; * those following are ignored. */ static VALUE env_update(VALUE env, VALUE hash) { if (env == hash) return env; hash = to_hash(hash); rb_foreach_func *func = rb_block_given_p() ? env_update_block_i : env_update_i; rb_hash_foreach(hash, func, 0); return env; } /* * A Hash is a dictionary-like collection of unique keys and their values. * Also called associative arrays, they are similar to Arrays, but where an * Array uses integers as its index, a Hash allows you to use any object * type. * * Hashes enumerate their values in the order that the corresponding keys * were inserted. * * A Hash can be easily created by using its implicit form: * * grades = { "Jane Doe" => 10, "Jim Doe" => 6 } * * Hashes allow an alternate syntax for keys that are symbols. * Instead of * * options = { :font_size => 10, :font_family => "Arial" } * * You could write it as: * * options = { font_size: 10, font_family: "Arial" } * * Each named key is a symbol you can access in hash: * * options[:font_size] # => 10 * * A Hash can also be created through its ::new method: * * grades = Hash.new * grades["Dorothy Doe"] = 9 * * Accessing a value in a Hash requires using its key: * * puts grades["Jane Doe"] # => 0 * * === Common Uses * * Hashes are an easy way to represent data structures, such as * * books = {} * books[:matz] = "The Ruby Programming Language" * books[:black] = "The Well-Grounded Rubyist" * * Hashes are also commonly used as a way to have named parameters in * functions. Note that no brackets are used below. If a hash is the last * argument on a method call, no braces are needed, thus creating a really * clean interface: * * Person.create(name: "John Doe", age: 27) * * def self.create(params) * @name = params[:name] * @age = params[:age] * end * * === Hash Keys * * Two objects refer to the same hash key when their hash value * is identical and the two objects are eql? to each other. * * A user-defined class may be used as a hash key if the hash * and eql? methods are overridden to provide meaningful * behavior. By default, separate instances refer to separate hash keys. * * A typical implementation of hash is based on the * object's data while eql? is usually aliased to the overridden * == method: * * class Book * attr_reader :author, :title * * def initialize(author, title) * @author = author * @title = title * end * * def ==(other) * self.class === other and * other.author == @author and * other.title == @title * end * * alias eql? == * * def hash * @author.hash ^ @title.hash # XOR * end * end * * book1 = Book.new 'matz', 'Ruby in a Nutshell' * book2 = Book.new 'matz', 'Ruby in a Nutshell' * * reviews = {} * * reviews[book1] = 'Great reference!' * reviews[book2] = 'Nice and compact!' * * reviews.length #=> 1 * * See also Object#hash and Object#eql? * * === Default Values * * For a key that is not found, * method #[] returns a default value * determined by: * * - Its default proc, if the default proc is not +nil+. * - Its default value, otherwise. * * ==== Default Value * * A \Hash object's default value is relevant only * when its default proc is +nil+. (Initially, both are +nil+). * * You can retrieve the default value with method #default: * * h = Hash.new * h.default # => nil * * You can initialize the default value by passing an argument to method Hash.new: * * h = Hash.new(false) * h.default # => false * * You can update the default value with method #default=: * * h.default = false * h.default # => false * * Incidentally, updating the default value (even to +nil+) * also sets the default proc to +nil+: * * h.default_proc = proc { } * h.default = nil * h.default_proc # => nil * * When the default proc is +nil+, * method #[] returns the value of method #default: * * h = Hash.new * h.default_proc # => nil * h.default # => nil * h[:nosuch] # => nil * h.default = false * h[:nosuch] # => false * * For certain kinds of default values, the default value can be modified thus: * * h = Hash.new('Foo') * h[:nosuch] # => "Foo" * h[:nosuch].upcase! # => "FOO" * h[:nosuch] # => "FOO" * h.default = [0, 1] * h[:nosuch] # => [0, 1] * h[:nosuch].reverse! # => [1, 0] * h[:nosuch] # => [1, 0] * * ==== Default \Proc * * When the default proc for a \Hash is set (i.e., not +nil+), * the default value returned by method #[] is determined by the default proc alone. * * You can retrieve the default proc with method #default_proc: * * h = Hash.new * h.default_proc # => nil * * You can initialize the default proc by calling Hash.new with a block: * * h = Hash.new { |hash, key| "Default value for #{key}" } * h.default_proc.class # => Proc * * You can update the default proc with method #default_proc=: * * h = Hash.new * h.default_proc = proc { |hash, key| "Default value for #{key}" } * h.default_proc.class # => Proc * * Incidentally, updating the default proc (even to +nil+) * also sets the default value to +nil+: * * h.default = false * h.default_proc = nil * h.default # => nil * * When the default proc is set (i.e., not +nil+) * and method #[] is called with with a non-existent key, * #[] calls the default proc with both the \Hash object itself and the missing key, * then returns the proc's return value: * * h = Hash.new { |hash, key| "Default value for #{key}" } * h[:nosuch] # => "Default value for nosuch" * * Note that in the example above no entry for key +:nosuch+ is created: * * h.include?(:nosuch) # => false * * However, the proc itself can add a new entry: * * h = Hash.new { |hash, key| hash[key] = "Subsequent value for #{key}"; "First value for #{key}" } * h.include?(:nosuch) # => false * h[:nosuch] # => "First value for nosuch" * h.include?(:nosuch) # => true * h[:nosuch] # => "Subsequent value for nosuch" * h[:nosuch] # => "Subsequent value for nosuch" * * You can set the default proc to +nil+, which restores control to the default value: * * h.default_proc = nil * h.default = false * h[:nosuch] # => false */ void Init_Hash(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_hash = rb_intern("hash"); id_default = rb_intern("default"); id_flatten_bang = rb_intern("flatten!"); id_hash_iter_lev = rb_make_internal_id(); rb_cHash = rb_define_class("Hash", rb_cObject); rb_include_module(rb_cHash, rb_mEnumerable); rb_define_alloc_func(rb_cHash, empty_hash_alloc); rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1); rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1); rb_define_method(rb_cHash, "initialize", rb_hash_initialize, -1); rb_define_method(rb_cHash, "initialize_copy", rb_hash_replace, 1); rb_define_method(rb_cHash, "rehash", rb_hash_rehash, 0); rb_define_method(rb_cHash, "to_hash", rb_hash_to_hash, 0); rb_define_method(rb_cHash, "to_h", rb_hash_to_h, 0); rb_define_method(rb_cHash, "to_a", rb_hash_to_a, 0); rb_define_method(rb_cHash, "inspect", rb_hash_inspect, 0); rb_define_alias(rb_cHash, "to_s", "inspect"); rb_define_method(rb_cHash, "to_proc", rb_hash_to_proc, 0); rb_define_method(rb_cHash, "==", rb_hash_equal, 1); rb_define_method(rb_cHash, "[]", rb_hash_aref, 1); rb_define_method(rb_cHash, "hash", rb_hash_hash, 0); rb_define_method(rb_cHash, "eql?", rb_hash_eql, 1); rb_define_method(rb_cHash, "fetch", rb_hash_fetch_m, -1); rb_define_method(rb_cHash, "[]=", rb_hash_aset, 2); rb_define_method(rb_cHash, "store", rb_hash_aset, 2); rb_define_method(rb_cHash, "default", rb_hash_default, -1); rb_define_method(rb_cHash, "default=", rb_hash_set_default, 1); rb_define_method(rb_cHash, "default_proc", rb_hash_default_proc, 0); rb_define_method(rb_cHash, "default_proc=", rb_hash_set_default_proc, 1); rb_define_method(rb_cHash, "key", rb_hash_key, 1); rb_define_method(rb_cHash, "index", rb_hash_index, 1); rb_define_method(rb_cHash, "size", rb_hash_size, 0); rb_define_method(rb_cHash, "length", rb_hash_size, 0); rb_define_method(rb_cHash, "empty?", rb_hash_empty_p, 0); rb_define_method(rb_cHash, "each_value", rb_hash_each_value, 0); rb_define_method(rb_cHash, "each_key", rb_hash_each_key, 0); rb_define_method(rb_cHash, "each_pair", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "each", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "transform_keys", rb_hash_transform_keys, -1); rb_define_method(rb_cHash, "transform_keys!", rb_hash_transform_keys_bang, -1); rb_define_method(rb_cHash, "transform_values", rb_hash_transform_values, 0); rb_define_method(rb_cHash, "transform_values!", rb_hash_transform_values_bang, 0); rb_define_method(rb_cHash, "keys", rb_hash_keys, 0); rb_define_method(rb_cHash, "values", rb_hash_values, 0); rb_define_method(rb_cHash, "values_at", rb_hash_values_at, -1); rb_define_method(rb_cHash, "fetch_values", rb_hash_fetch_values, -1); rb_define_method(rb_cHash, "shift", rb_hash_shift, 0); rb_define_method(rb_cHash, "delete", rb_hash_delete_m, 1); rb_define_method(rb_cHash, "delete_if", rb_hash_delete_if, 0); rb_define_method(rb_cHash, "keep_if", rb_hash_keep_if, 0); rb_define_method(rb_cHash, "select", rb_hash_select, 0); rb_define_method(rb_cHash, "select!", rb_hash_select_bang, 0); rb_define_method(rb_cHash, "filter", rb_hash_select, 0); rb_define_method(rb_cHash, "filter!", rb_hash_select_bang, 0); rb_define_method(rb_cHash, "reject", rb_hash_reject, 0); rb_define_method(rb_cHash, "reject!", rb_hash_reject_bang, 0); rb_define_method(rb_cHash, "slice", rb_hash_slice, -1); rb_define_method(rb_cHash, "clear", rb_hash_clear, 0); rb_define_method(rb_cHash, "invert", rb_hash_invert, 0); rb_define_method(rb_cHash, "update", rb_hash_update, -1); rb_define_method(rb_cHash, "replace", rb_hash_replace, 1); rb_define_method(rb_cHash, "merge!", rb_hash_update, -1); rb_define_method(rb_cHash, "merge", rb_hash_merge, -1); rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1); rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1); rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1); rb_define_method(rb_cHash, "compact", rb_hash_compact, 0); rb_define_method(rb_cHash, "compact!", rb_hash_compact_bang, 0); rb_define_method(rb_cHash, "include?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "member?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "compare_by_identity", rb_hash_compare_by_id, 0); rb_define_method(rb_cHash, "compare_by_identity?", rb_hash_compare_by_id_p, 0); rb_define_method(rb_cHash, "any?", rb_hash_any_p, -1); rb_define_method(rb_cHash, "dig", rb_hash_dig, -1); rb_define_method(rb_cHash, "<=", rb_hash_le, 1); rb_define_method(rb_cHash, "<", rb_hash_lt, 1); rb_define_method(rb_cHash, ">=", rb_hash_ge, 1); rb_define_method(rb_cHash, ">", rb_hash_gt, 1); rb_define_method(rb_cHash, "deconstruct_keys", rb_hash_deconstruct_keys, 1); rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash?", rb_hash_s_ruby2_keywords_hash_p, 1); rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash", rb_hash_s_ruby2_keywords_hash, 1); /* Document-class: ENV * * ENV is a hash-like accessor for environment variables. * * === Interaction with the Operating System * * The ENV object interacts with the operating system's environment variables: * * - When you get the value for a name in ENV, the value is retrieved from among the current environment variables. * - When you create or set a name-value pair in ENV, the name and value are immediately set in the environment variables. * - When you delete a name-value pair in ENV, it is immediately deleted from the environment variables. * * === Names and Values * * Generally, a name or value is a String. * * ==== Valid Names and Values * * Each name or value must be one of the following: * * - A String. * - An object that responds to \#to_str by returning a String, in which case that String will be used as the name or value. * * ==== Invalid Names and Values * * A new name: * * - May not be the empty string: * ENV[''] = '0' * # Raises Errno::EINVAL (Invalid argument - ruby_setenv()) * * - May not contain character "=": * ENV['='] = '0' * # Raises Errno::EINVAL (Invalid argument - ruby_setenv(=)) * * A new name or value: * * - May not be a non-String that does not respond to \#to_str: * * ENV['foo'] = Object.new * # Raises TypeError (no implicit conversion of Object into String) * ENV[Object.new] = '0' * # Raises TypeError (no implicit conversion of Object into String) * * - May not contain the NUL character "\0": * * ENV['foo'] = "\0" * # Raises ArgumentError (bad environment variable value: contains null byte) * ENV["\0"] == '0' * # Raises ArgumentError (bad environment variable name: contains null byte) * * - May not have an ASCII-incompatible encoding such as UTF-16LE or ISO-2022-JP: * * ENV['foo'] = '0'.force_encoding(Encoding::ISO_2022_JP) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP) * ENV["foo".force_encoding(Encoding::ISO_2022_JP)] = '0' * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP) * * === About Ordering * * ENV enumerates its name/value pairs in the order found * in the operating system's environment variables. * Therefore the ordering of ENV content is OS-dependent, and may be indeterminate. * * This will be seen in: * - A Hash returned by an ENV method. * - An Enumerator returned by an ENV method. * - An Array returned by ENV.keys, ENV.values, or ENV.to_a. * - The String returned by ENV.inspect. * - The Array returned by ENV.shift. * - The name returned by ENV.key. * * === About the Examples * Some methods in ENV return ENV itself. Typically, there are many environment variables. * It's not useful to display a large ENV in the examples here, * so most example snippets begin by resetting the contents of ENV: * - ENV.replace replaces ENV with a new collection of entries. * - ENV.clear empties ENV. */ /* * Hack to get RDoc to regard ENV as a class: * envtbl = rb_define_class("ENV", rb_cObject); */ origenviron = environ; envtbl = rb_obj_alloc(rb_cObject); rb_extend_object(envtbl, rb_mEnumerable); rb_define_singleton_method(envtbl, "[]", rb_f_getenv, 1); rb_define_singleton_method(envtbl, "fetch", env_fetch, -1); rb_define_singleton_method(envtbl, "[]=", env_aset_m, 2); rb_define_singleton_method(envtbl, "store", env_aset_m, 2); rb_define_singleton_method(envtbl, "each", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_pair", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_key", env_each_key, 0); rb_define_singleton_method(envtbl, "each_value", env_each_value, 0); rb_define_singleton_method(envtbl, "delete", env_delete_m, 1); rb_define_singleton_method(envtbl, "delete_if", env_delete_if, 0); rb_define_singleton_method(envtbl, "keep_if", env_keep_if, 0); rb_define_singleton_method(envtbl, "slice", env_slice, -1); rb_define_singleton_method(envtbl, "clear", env_clear, 0); rb_define_singleton_method(envtbl, "reject", env_reject, 0); rb_define_singleton_method(envtbl, "reject!", env_reject_bang, 0); rb_define_singleton_method(envtbl, "select", env_select, 0); rb_define_singleton_method(envtbl, "select!", env_select_bang, 0); rb_define_singleton_method(envtbl, "filter", env_select, 0); rb_define_singleton_method(envtbl, "filter!", env_select_bang, 0); rb_define_singleton_method(envtbl, "shift", env_shift, 0); rb_define_singleton_method(envtbl, "freeze", env_freeze, 0); rb_define_singleton_method(envtbl, "invert", env_invert, 0); rb_define_singleton_method(envtbl, "replace", env_replace, 1); rb_define_singleton_method(envtbl, "update", env_update, 1); rb_define_singleton_method(envtbl, "merge!", env_update, 1); rb_define_singleton_method(envtbl, "inspect", env_inspect, 0); rb_define_singleton_method(envtbl, "rehash", env_none, 0); rb_define_singleton_method(envtbl, "to_a", env_to_a, 0); rb_define_singleton_method(envtbl, "to_s", env_to_s, 0); rb_define_singleton_method(envtbl, "key", env_key, 1); rb_define_singleton_method(envtbl, "index", env_index, 1); rb_define_singleton_method(envtbl, "size", env_size, 0); rb_define_singleton_method(envtbl, "length", env_size, 0); rb_define_singleton_method(envtbl, "empty?", env_empty_p, 0); rb_define_singleton_method(envtbl, "keys", env_f_keys, 0); rb_define_singleton_method(envtbl, "values", env_f_values, 0); rb_define_singleton_method(envtbl, "values_at", env_values_at, -1); rb_define_singleton_method(envtbl, "include?", env_has_key, 1); rb_define_singleton_method(envtbl, "member?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_key?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_value?", env_has_value, 1); rb_define_singleton_method(envtbl, "key?", env_has_key, 1); rb_define_singleton_method(envtbl, "value?", env_has_value, 1); rb_define_singleton_method(envtbl, "to_hash", env_f_to_hash, 0); rb_define_singleton_method(envtbl, "to_h", env_to_h, 0); rb_define_singleton_method(envtbl, "assoc", env_assoc, 1); rb_define_singleton_method(envtbl, "rassoc", env_rassoc, 1); /* * ENV is a Hash-like accessor for environment variables. * * See ENV (the class) for more details. */ rb_define_global_const("ENV", envtbl); /* for callcc */ ruby_register_rollback_func_for_ensure(hash_foreach_ensure, hash_foreach_ensure_rollback); HASH_ASSERT(sizeof(ar_hint_t) * RHASH_AR_TABLE_MAX_SIZE == sizeof(VALUE)); }