/********************************************************************** gc.c - $Author$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/re.h" #include "ruby/io.h" #include "ruby/thread.h" #include "ruby/util.h" #include "ruby/debug.h" #include "eval_intern.h" #include "vm_core.h" #include "internal.h" #include "gc.h" #include "constant.h" #include "ruby_atomic.h" #include "probes.h" #include #include #include #include #include #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_RESOURCE_H #include #endif #if defined(__native_client__) && defined(NACL_NEWLIB) # include "nacl/resource.h" # undef HAVE_POSIX_MEMALIGN # undef HAVE_MEMALIGN #endif #if defined _WIN32 || defined __CYGWIN__ #include #elif defined(HAVE_POSIX_MEMALIGN) #elif defined(HAVE_MEMALIGN) #include #endif #define rb_setjmp(env) RUBY_SETJMP(env) #define rb_jmp_buf rb_jmpbuf_t #if defined(HAVE_RB_GC_GUARDED_PTR) && HAVE_RB_GC_GUARDED_PTR volatile VALUE * rb_gc_guarded_ptr(volatile VALUE *ptr) { return ptr; } #endif #ifndef GC_MALLOC_LIMIT #define GC_MALLOC_LIMIT 8000000 #endif #define HEAP_MIN_SLOTS 10000 #define FREE_MIN 4096 #define HEAP_GROWTH_FACTOR 1.8 typedef struct { unsigned int initial_malloc_limit; unsigned int initial_heap_min_slots; unsigned int initial_free_min; double initial_growth_factor; #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE VALUE gc_stress; #endif } ruby_gc_params_t; static ruby_gc_params_t initial_params = { GC_MALLOC_LIMIT, HEAP_MIN_SLOTS, FREE_MIN, HEAP_GROWTH_FACTOR, #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE FALSE, #endif }; #if USE_RGENGC /* RGENGC_DEBUG: * 1: basic information * 2: remember set operation * 3: mark * 4: * 5: sweep */ #ifndef RGENGC_DEBUG #define RGENGC_DEBUG 0 #endif /* RGENGC_CHECK_MODE * 0: disable all assertions * 1: enable assertions (to debug RGenGC) * 2: enable bits check (for debugging) * 3: show all references */ #ifndef RGENGC_CHECK_MODE #define RGENGC_CHECK_MODE 0 #endif /* RGENGC_PROFILE * 0: disable RGenGC profiling * 1: enable profiling for basic information * 2: enable profiling for each types */ #ifndef RGENGC_PROFILE #define RGENGC_PROFILE 0 #endif #else /* USE_RGENGC */ #define RGENGC_DEBUG 0 #define RGENGC_CHECK_MODE 0 #define RGENGC_PROFILE 0 #endif #ifndef GC_PROFILE_MORE_DETAIL #define GC_PROFILE_MORE_DETAIL 0 #endif #ifndef GC_ENABLE_LAZY_SWEEP #define GC_ENABLE_LAZY_SWEEP 1 #endif #ifndef CALC_EXACT_MALLOC_SIZE #define CALC_EXACT_MALLOC_SIZE 0 #endif typedef enum { GPR_FLAG_NONE = 0x000, /* major reason */ GPR_FLAG_MAJOR_BY_NOFREE = 0x001, GPR_FLAG_MAJOR_BY_OLDGEN = 0x002, GPR_FLAG_MAJOR_BY_SHADY = 0x004, GPR_FLAG_MAJOR_BY_RESCAN = 0x008, GPR_FLAG_MAJOR_BY_STRESS = 0x010, GPR_FLAG_MAJOR_MASK = 0x01f, /* gc reason */ GPR_FLAG_NEWOBJ = 0x020, GPR_FLAG_MALLOC = 0x040, GPR_FLAG_METHOD = 0x080, GPR_FLAG_CAPI = 0x100, GPR_FLAG_STRESS = 0x200, /* others */ GPR_FLAG_IMMEDIATE_SWEEP = 0x400, GPR_FLAG_HAVE_FINALIZE = 0x800 } gc_profile_record_flag; typedef struct gc_profile_record { int flags; double gc_time; double gc_invoke_time; size_t heap_total_objects; size_t heap_use_size; size_t heap_total_size; #if GC_PROFILE_MORE_DETAIL double gc_mark_time; double gc_sweep_time; size_t heap_use_slots; size_t heap_live_objects; size_t heap_free_objects; size_t allocate_increase; size_t allocate_limit; #if CALC_EXACT_MALLOC_SIZE size_t allocated_size; #endif double prepare_time; size_t removing_objects; size_t empty_objects; #endif #if RGENGC_PROFILE > 0 size_t oldgen_objects; size_t remembered_normal_objects; size_t remembered_shady_objects; #endif } gc_profile_record; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */ #endif typedef struct RVALUE { union { struct { VALUE flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RTypedData typeddata; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RNode node; struct RMatch match; struct RRational rational; struct RComplex complex; struct { struct RBasic basic; VALUE v1; VALUE v2; VALUE v3; } values; } as; #ifdef GC_DEBUG const char *file; int line; #endif } RVALUE; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(pop) #endif typedef uintptr_t bits_t; enum { BITS_SIZE = sizeof(bits_t), BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT ) }; struct heap_slot_header { struct heap_slot *slot; }; struct heap_slot_body { struct heap_slot_header header; /* char gap[]; */ /* RVALUE values[]; */ }; struct gc_list { VALUE *varptr; struct gc_list *next; }; #define STACK_CHUNK_SIZE 500 typedef struct stack_chunk { VALUE data[STACK_CHUNK_SIZE]; struct stack_chunk *next; } stack_chunk_t; typedef struct mark_stack { stack_chunk_t *chunk; stack_chunk_t *cache; size_t index; size_t limit; size_t cache_size; size_t unused_cache_size; } mark_stack_t; typedef struct rb_objspace { struct { size_t limit; size_t increase; size_t increase2; #if CALC_EXACT_MALLOC_SIZE size_t allocated_size; size_t allocations; #endif } malloc_params; struct { size_t increment; struct heap_slot *slots; struct heap_slot *sweep_slots; struct heap_slot *free_slots; struct heap_slot *using_slot; struct heap_slot **sorted; size_t length; size_t used; RVALUE *range[2]; size_t free_num; size_t free_min; size_t final_num; size_t do_heap_free; } heap; struct { int dont_gc; int dont_lazy_sweep; int during_gc; rb_atomic_t finalizing; } flags; struct { st_table *table; RVALUE *deferred; } final; mark_stack_t mark_stack; struct { int run; gc_profile_record *records; gc_profile_record *current_record; size_t next_index; size_t size; #if GC_PROFILE_MORE_DETAIL double prepare_time; #endif double invoke_time; #if USE_RGENGC size_t minor_gc_count; size_t major_gc_count; #ifdef RGENGC_PROFILE size_t generated_normal_object_count; size_t generated_shady_object_count; size_t shade_operation_count; size_t promote_operation_count; size_t remembered_normal_object_count; size_t remembered_shady_object_count; #if RGENGC_PROFILE >= 2 size_t generated_normal_object_count_types[RUBY_T_MASK]; size_t generated_shady_object_count_types[RUBY_T_MASK]; size_t shade_operation_count_types[RUBY_T_MASK]; size_t promote_operation_count_types[RUBY_T_MASK]; size_t remembered_normal_object_count_types[RUBY_T_MASK]; size_t remembered_shady_object_count_types[RUBY_T_MASK]; #endif #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ /* temporary profiling space */ double gc_sweep_start_time; size_t total_allocated_object_num_at_gc_start; size_t heap_used_at_gc_start; } profile; struct gc_list *global_list; size_t count; size_t total_allocated_object_num; size_t total_freed_object_num; rb_event_flag_t hook_events; /* this place may be affinity with memory cache */ VALUE gc_stress; RVALUE *freelist; struct mark_func_data_struct { void *data; void (*mark_func)(VALUE v, void *data); } *mark_func_data; #if USE_RGENGC struct { int during_minor_gc; int parent_object_is_promoted; /* for check mode */ VALUE parent_object; unsigned int monitor_level; st_table *monitored_object_table; int need_major_gc; size_t remembered_shady_object_count; size_t remembered_shady_object_limit; size_t oldgen_object_count; size_t oldgen_object_limit; #if RGENGC_CHECK_MODE >= 2 int have_saved_bitmaps; #endif } rgengc; #endif /* USE_RGENGC */ } rb_objspace_t; #ifndef HEAP_ALIGN_LOG /* default tiny heap size: 16KB */ #define HEAP_ALIGN_LOG 14 #endif #define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod)) enum { HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG), HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)), REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5), HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC), HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heap_slot_header))/sizeof(struct RVALUE)), HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH), HEAP_BITMAP_SIZE = ( BITS_SIZE * HEAP_BITMAP_LIMIT), HEAP_BITMAP_PLANES = USE_RGENGC ? 3 : 1 /* RGENGC: mark bits, rememberset bits and oldgen bits */ }; struct heap_slot { struct heap_slot_body *body; RVALUE *start; size_t limit; RVALUE *freelist; struct heap_slot *next; struct heap_slot *prev; struct heap_slot *free_next; bits_t mark_bits[HEAP_BITMAP_LIMIT]; #if USE_RGENGC bits_t rememberset_bits[HEAP_BITMAP_LIMIT]; bits_t oldgen_bits[HEAP_BITMAP_LIMIT]; #if RGENGC_CHECK_MODE >= 2 bits_t saved_mark_bits[HEAP_BITMAP_LIMIT]; bits_t saved_rememberset_bits[HEAP_BITMAP_LIMIT]; bits_t saved_oldgen_bits[HEAP_BITMAP_LIMIT]; #endif #endif }; #define GET_SLOT_BODY(x) ((struct heap_slot_body *)((bits_t)(x) & ~(HEAP_ALIGN_MASK))) #define GET_SLOT_HEADER(x) (&GET_SLOT_BODY(x)->header) #define GET_HEAP_SLOT(x) (GET_SLOT_HEADER(x)->slot) #define GET_HEAP_MARK_BITS(x) (&GET_HEAP_SLOT(x)->mark_bits[0]) #define GET_HEAP_REMEMBERSET_BITS(x) (&GET_HEAP_SLOT(x)->rememberset_bits[0]) #define GET_HEAP_OLDGEN_BITS(x) (&GET_HEAP_SLOT(x)->oldgen_bits[0]) #define NUM_IN_SLOT(p) (((bits_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE)) #define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / BITS_BITLENGTH ) #define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & (BITS_BITLENGTH-1)) #define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p)) /* Bitmap Operations */ #define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p)) #define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p)) #define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p)) /* Aliases */ #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE #define rb_objspace (*GET_VM()->objspace) #define ruby_initial_gc_stress initial_params.gc_stress VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress; #else static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}}; VALUE *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress; #endif #define malloc_limit objspace->malloc_params.limit #define malloc_increase objspace->malloc_params.increase #define malloc_increase2 objspace->malloc_params.increase2 #define malloc_allocated_size objspace->malloc_params.allocated_size #define heap_slots objspace->heap.slots #define heap_length objspace->heap.length #define heap_used objspace->heap.used #define lomem objspace->heap.range[0] #define himem objspace->heap.range[1] #define heap_inc objspace->heap.increment #define dont_gc objspace->flags.dont_gc #define during_gc objspace->flags.during_gc #define finalizing objspace->flags.finalizing #define finalizer_table objspace->final.table #define deferred_final_list objspace->final.deferred #define global_List objspace->global_list #define ruby_gc_stress objspace->gc_stress #define initial_malloc_limit initial_params.initial_malloc_limit #define initial_heap_min_slots initial_params.initial_heap_min_slots #define initial_free_min initial_params.initial_free_min #define initial_growth_factor initial_params.initial_growth_factor #define monitor_level objspace->rgengc.monitor_level #define monitored_object_table objspace->rgengc.monitored_object_table #define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0) #if SIZEOF_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG) # define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */ #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2) # define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \ ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1)) #else # error not supported #endif #define RANY(o) ((RVALUE*)(o)) #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory] int ruby_gc_debug_indent = 0; VALUE rb_mGC; extern st_table *rb_class_tbl; int ruby_disable_gc_stress = 0; void rb_gcdebug_print_obj_condition(VALUE obj); static void rb_objspace_call_finalizer(rb_objspace_t *objspace); static VALUE define_final0(VALUE obj, VALUE block); VALUE rb_define_final(VALUE obj, VALUE block); VALUE rb_undefine_final(VALUE obj); static void run_final(rb_objspace_t *objspace, VALUE obj); static void negative_size_allocation_error(const char *); static void *aligned_malloc(size_t, size_t); static void aligned_free(void *); static void init_mark_stack(mark_stack_t *stack); static VALUE lazy_sweep_enable(void); static int ready_to_gc(rb_objspace_t *objspace); static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_sweep, int reason); static int garbage_collect_body(rb_objspace_t *, int full_mark, int immediate_sweep, int reason); static int gc_lazy_sweep(rb_objspace_t *objspace); static void gc_rest_sweep(rb_objspace_t *objspace); static void gc_mark_stacked_objects(rb_objspace_t *); static void gc_mark(rb_objspace_t *objspace, VALUE ptr); static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr); static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr); static double getrusage_time(void); static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason); static inline void gc_prof_timer_start(rb_objspace_t *); static inline void gc_prof_timer_stop(rb_objspace_t *); static inline void gc_prof_mark_timer_start(rb_objspace_t *); static inline void gc_prof_mark_timer_stop(rb_objspace_t *); static inline void gc_prof_sweep_timer_start(rb_objspace_t *); static inline void gc_prof_sweep_timer_stop(rb_objspace_t *); static inline void gc_prof_set_malloc_info(rb_objspace_t *); static inline void gc_prof_set_heap_info(rb_objspace_t *); #define gc_prof_record(objspace) (objspace)->profile.current_record #define rgengc_report if (RGENGC_DEBUG) rgengc_report_body static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...); static const char * type_name(int type, VALUE obj); static const char *obj_type_name(VALUE obj); #if USE_RGENGC static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj); static int rgengc_remember(rb_objspace_t *objspace, VALUE obj); static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace); static void rgengc_rememberset_mark(rb_objspace_t *objspace); #define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST"), 0) : FL_TEST_RAW((x),(f)) != 0) #define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0) #define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0) #define RVALUE_SHADY(obj) (!FL_TEST2((check_bitmap_consistency((VALUE)obj)), FL_WB_PROTECTED)) #define RVALUE_PROMOTED(obj) FL_TEST2(check_bitmap_consistency((VALUE)obj), FL_OLDGEN) #define RVALUE_PROMOTED_FROM_BITMAP(x) MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(x),x) static inline VALUE check_bitmap_consistency(VALUE obj) { #if RUBY_CHECK_MODE > 0 int oldgen_bitmap = MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj) != 0; if (FL_TEST2((obj), FL_OLDGEN) != oldgen_bitmap) { rb_bug("check_bitmap_consistency: oldgen flag of %p (%s) is %d, but bitmap is %d", (void *)obj, obj_type_name(obj), FL_TEST2((obj), FL_OLDGEN), oldgen_bitmap); } if (FL_TEST2((obj), FL_WB_PROTECTED)) { /* non-shady */ } else { /* shady */ if (oldgen_bitmap) { rb_bug("check_bitmap_consistency: %p (%s) is shady, but bitmap specifies oldgen", (void *)obj, obj_type_name(obj)); } } #endif return obj; } static inline void RVALUE_PROMOTE(VALUE obj) { check_bitmap_consistency(obj); MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj); FL_SET2(obj, FL_OLDGEN); #if RGENGC_PROFILE >= 1 { rb_objspace_t *objspace = &rb_objspace; objspace->profile.promote_operation_count++; #if RGENGC_PROFILE >= 2 objspace->profile.promote_operation_count_types[BUILTIN_TYPE(obj)]++; #endif } #endif } static inline int is_before_sweep(VALUE obj) { struct heap_slot *slot; rb_objspace_t *objspace = &rb_objspace; if (is_lazy_sweeping(objspace)) { slot = objspace->heap.sweep_slots; while (slot) { if (slot->body == GET_SLOT_BODY(obj)) { return TRUE; } slot = slot->next; } } return FALSE; } static inline void RVALUE_DEMOTE(VALUE obj) { check_bitmap_consistency(obj); FL_UNSET2(obj, FL_OLDGEN); CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj); } #endif /* --------------------------- ObjectSpace ----------------------------- */ #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE rb_objspace_t * rb_objspace_alloc(void) { rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t)); memset(objspace, 0, sizeof(*objspace)); malloc_limit = initial_malloc_limit; ruby_gc_stress = ruby_initial_gc_stress; return objspace; } #endif #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE static void free_stack_chunks(mark_stack_t *); static void free_heap_slot(rb_objspace_t *objspace, struct heap_slot *slot); void rb_objspace_free(rb_objspace_t *objspace) { gc_rest_sweep(objspace); if (objspace->profile.records) { free(objspace->profile.records); objspace->profile.records = 0; } if (global_List) { struct gc_list *list, *next; for (list = global_List; list; list = next) { next = list->next; xfree(list); } } if (objspace->heap.sorted) { size_t i; for (i = 0; i < heap_used; ++i) { free_heap_slot(objspace, objspace->heap.sorted[i]); } free(objspace->heap.sorted); heap_used = 0; heap_slots = 0; } free_stack_chunks(&objspace->mark_stack); free(objspace); } #endif static void heap_allocate_sorted_array(rb_objspace_t *objspace, size_t next_heap_length) { struct heap_slot **p; size_t size; size = next_heap_length * sizeof(struct heap_slot *); if (heap_used > 0) { p = (struct heap_slot **)realloc(objspace->heap.sorted, size); if (p) objspace->heap.sorted = p; } else { p = objspace->heap.sorted = (struct heap_slot **)malloc(size); } if (p == 0) { during_gc = 0; rb_memerror(); } } static inline void heap_slot_add_freeobj(rb_objspace_t *objspace, struct heap_slot *slot, VALUE obj) { RVALUE *p = (RVALUE *)obj; p->as.free.flags = 0; p->as.free.next = slot->freelist; slot->freelist = p; rgengc_report(3, objspace, "heap_slot_add_freeobj: %p (%s) is added to freelist\n", p, obj_type_name(obj)); } static inline void heap_add_freeslot(rb_objspace_t *objspace, struct heap_slot *slot) { if (slot->freelist) { slot->free_next = objspace->heap.free_slots; objspace->heap.free_slots = slot; } } static void heap_assign_slot(rb_objspace_t *objspace) { RVALUE *start, *end, *p; struct heap_slot *slot; struct heap_slot_body *slot_body = 0; size_t hi, lo, mid; size_t limit = HEAP_OBJ_LIMIT; /* assign heap_slot body (contains heap_slot_header and RVALUEs) */ slot_body = (struct heap_slot_body *)aligned_malloc(HEAP_ALIGN, HEAP_SIZE); if (slot_body == 0) { during_gc = 0; rb_memerror(); } /* assign heap_slot entry */ slot = (struct heap_slot *)malloc(sizeof(struct heap_slot)); if (slot == 0) { aligned_free(slot_body); during_gc = 0; rb_memerror(); } MEMZERO((void*)slot, struct heap_slot, 1); slot->body = slot_body; slot->next = objspace->heap.slots; if (objspace->heap.slots) objspace->heap.slots->prev = slot; objspace->heap.slots = slot; /* adjust obj_limit (object number available in this slot) */ start = (RVALUE*)((VALUE)slot_body + sizeof(struct heap_slot_header)); if ((VALUE)start % sizeof(RVALUE) != 0) { int delta = (int)(sizeof(RVALUE) - ((VALUE)start % sizeof(RVALUE))); start = (RVALUE*)((VALUE)start + delta); limit = (HEAP_SIZE - (size_t)((VALUE)start - (VALUE)slot_body))/sizeof(RVALUE); } end = start + limit; /* setup objspace->heap.sorted */ lo = 0; hi = heap_used; while (lo < hi) { struct heap_slot *mid_slot; mid = (lo + hi) / 2; mid_slot = objspace->heap.sorted[mid]; if (mid_slot->body < slot_body) { lo = mid + 1; } else if (mid_slot->body > slot_body) { hi = mid; } else { rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)slot_body, (VALUE)mid); } } if (hi < heap_used) { MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct heap_slot_header*, heap_used - hi); } /* setup slot */ slot->start = start; slot->limit = limit; slot_body->header.slot = objspace->heap.sorted[hi] = slot; if (lomem == 0 || lomem > start) lomem = start; if (himem < end) himem = end; heap_used++; for (p = start; p != end; p++) { rgengc_report(3, objspace, "assign_heap_slot: %p is added to freelist\n"); heap_slot_add_freeobj(objspace, slot, (VALUE)p); } heap_add_freeslot(objspace, slot); } static void heap_add_slots(rb_objspace_t *objspace, size_t add) { size_t i; size_t next_heap_length; next_heap_length = heap_used + add; if (next_heap_length > heap_length) { heap_allocate_sorted_array(objspace, next_heap_length); heap_length = next_heap_length; } for (i = 0; i < add; i++) { heap_assign_slot(objspace); } heap_inc = 0; } static void heap_init(rb_objspace_t *objspace) { heap_add_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT); init_mark_stack(&objspace->mark_stack); #ifdef USE_SIGALTSTACK { /* altstack of another threads are allocated in another place */ rb_thread_t *th = GET_THREAD(); void *tmp = th->altstack; th->altstack = malloc(rb_sigaltstack_size()); free(tmp); /* free previously allocated area */ } #endif objspace->profile.invoke_time = getrusage_time(); finalizer_table = st_init_numtable(); } static void heap_set_increment(rb_objspace_t *objspace) { size_t next_heap_length = (size_t)(heap_used * initial_growth_factor); if (next_heap_length == heap_used) { next_heap_length++; } heap_inc = next_heap_length - heap_used; rgengc_report(5, objspace, "heap_set_increment: heap_length: %d, next_heap_length: %d, heap_inc: %d\n", heap_length, next_heap_length, heap_inc); if (next_heap_length > heap_length) { heap_allocate_sorted_array(objspace, next_heap_length); heap_length = next_heap_length; } } static int heap_increment(rb_objspace_t *objspace) { rgengc_report(5, objspace, "heap_increment: heap_inc: %d\n", heap_inc); if (heap_inc > 0) { heap_assign_slot(objspace); heap_inc--; return TRUE; } return FALSE; } static struct heap_slot * heap_prepare_freeslot(rb_objspace_t *objspace) { if (!GC_ENABLE_LAZY_SWEEP && objspace->flags.dont_lazy_sweep) { if (heap_increment(objspace) == 0 && garbage_collect(objspace, FALSE, TRUE, GPR_FLAG_NEWOBJ) == 0) { goto err; } goto ok; } if (!ready_to_gc(objspace)) return objspace->heap.free_slots; during_gc++; if ((is_lazy_sweeping(objspace) && gc_lazy_sweep(objspace)) || heap_increment(objspace)) { goto ok; } #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = 0; #endif if (garbage_collect_body(objspace, 0, 0, GPR_FLAG_NEWOBJ) == 0) { err: during_gc = 0; rb_memerror(); } ok: during_gc = 0; return objspace->heap.free_slots; } static inline struct heap_slot * heap_get_freeslot(rb_objspace_t *objspace) { struct heap_slot *slot; slot = objspace->heap.free_slots; while (slot == NULL) { slot = heap_prepare_freeslot(objspace); } objspace->heap.free_slots = slot->free_next; return slot; } static inline VALUE heap_get_freeobj(rb_objspace_t *objspace) { RVALUE *p = objspace->freelist; while (UNLIKELY(p == NULL)) { struct heap_slot *slot = heap_get_freeslot(objspace); objspace->heap.using_slot = slot; p = objspace->freelist = slot->freelist; slot->freelist = NULL; } objspace->freelist = p->as.free.next; return (VALUE)p; } void rb_objspace_set_event_hook(const rb_event_flag_t event) { rb_objspace_t *objspace = &rb_objspace; objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK; } static void gc_event_hook_body(rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data) { rb_thread_t *th = GET_THREAD(); EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data); } #define gc_event_hook(objspace, event, data) do { \ if (UNLIKELY((objspace)->hook_events & (event))) { \ gc_event_hook_body((objspace), (event), (data)); \ } \ } while (0) static VALUE newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3) { rb_objspace_t *objspace = &rb_objspace; VALUE obj; if (UNLIKELY(during_gc)) { dont_gc = 1; during_gc = 0; rb_bug("object allocation during garbage collection phase"); } if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) { if (!garbage_collect(objspace, FALSE, FALSE, GPR_FLAG_NEWOBJ)) { during_gc = 0; rb_memerror(); } } obj = heap_get_freeobj(objspace); /* OBJSETUP */ RBASIC(obj)->flags = flags; RBASIC_SET_CLASS(obj, klass); if (rb_safe_level() >= 3) FL_SET((obj), FL_TAINT); RANY(obj)->as.values.v1 = v1; RANY(obj)->as.values.v2 = v2; RANY(obj)->as.values.v3 = v3; #ifdef GC_DEBUG RANY(obj)->file = rb_sourcefile(); RANY(obj)->line = rb_sourceline(); #endif #if RGENGC_PROFILE if (flags & FL_WB_PROTECTED) { objspace->profile.generated_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif } else { objspace->profile.generated_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif } #endif rgengc_report(5, objspace, "newobj: %p (%s)\n", (void *)obj, obj_type_name(obj)); #if USE_RGENGC && RGENGC_CHECK_MODE if (RVALUE_PROMOTED(obj)) rb_bug("newobj: %p (%s) is promoted.\n", (void *)obj, obj_type_name(obj)); if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %p (%s) is remembered.\n", (void *)obj, obj_type_name(obj)); #endif objspace->total_allocated_object_num++; gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj); return obj; } VALUE rb_newobj(void) { return newobj_of(0, T_NONE, 0, 0, 0); } VALUE rb_newobj_of(VALUE klass, VALUE flags) { return newobj_of(klass, flags, 0, 0, 0); } NODE* rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2) { NODE *n = (NODE *)newobj_of(0, T_NODE, a0, a1, a2); nd_set_type(n, type); return n; } VALUE rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { if (klass) Check_Type(klass, T_CLASS); return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap); } VALUE rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type) { if (klass) Check_Type(klass, T_CLASS); return newobj_of(klass, T_DATA | type->flags, (VALUE)type, (VALUE)1, (VALUE)datap); } size_t rb_objspace_data_type_memsize(VALUE obj) { if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) { return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj)); } else { return 0; } } const char * rb_objspace_data_type_name(VALUE obj) { if (RTYPEDDATA_P(obj)) { return RTYPEDDATA_TYPE(obj)->wrap_struct_name; } else { return 0; } } static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr) { register RVALUE *p = RANY(ptr); register struct heap_slot *slot; register size_t hi, lo, mid; if (p < lomem || p > himem) return FALSE; if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE; /* check if p looks like a pointer using bsearch*/ lo = 0; hi = heap_used; while (lo < hi) { mid = (lo + hi) / 2; slot = objspace->heap.sorted[mid]; if (slot->start <= p) { if (p < slot->start + slot->limit) { return TRUE; } lo = mid + 1; } else { hi = mid; } } return FALSE; } static int free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data) { if (!me->mark) { rb_free_method_entry(me); } return ST_CONTINUE; } void rb_free_m_table(st_table *tbl) { st_foreach(tbl, free_method_entry_i, 0); st_free_table(tbl); } static int free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data) { xfree(ce); return ST_CONTINUE; } void rb_free_const_table(st_table *tbl) { st_foreach(tbl, free_const_entry_i, 0); st_free_table(tbl); } static void unlink_heap_slot(rb_objspace_t *objspace, struct heap_slot *slot) { if (slot->prev) slot->prev->next = slot->next; if (slot->next) slot->next->prev = slot->prev; if (heap_slots == slot) heap_slots = slot->next; if (objspace->heap.sweep_slots == slot) objspace->heap.sweep_slots = slot->next; slot->prev = NULL; slot->next = NULL; } static void free_heap_slot(rb_objspace_t *objspace, struct heap_slot *slot) { aligned_free(slot->body); free(slot); } static void free_unused_slots(rb_objspace_t *objspace) { size_t i, j; for (i = j = 1; j < heap_used; i++) { struct heap_slot *slot = objspace->heap.sorted[i]; if (slot->limit == 0) { free_heap_slot(objspace, slot); heap_used--; } else { if (i != j) { objspace->heap.sorted[j] = slot; } j++; } } } static inline void make_deferred(RVALUE *p) { p->as.basic.flags = T_ZOMBIE; } static inline void make_io_deferred(RVALUE *p) { rb_io_t *fptr = p->as.file.fptr; make_deferred(p); p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize; p->as.data.data = fptr; } static int obj_free(rb_objspace_t *objspace, VALUE obj) { gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj); switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); FL_UNSET(obj, FL_EXIVAR); } #if USE_RGENGC if (MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj)) CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj); #endif switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) && RANY(obj)->as.object.as.heap.ivptr) { xfree(RANY(obj)->as.object.as.heap.ivptr); } break; case T_MODULE: case T_CLASS: rb_clear_cache_by_class((VALUE)obj); if (RCLASS_M_TBL(obj)) { rb_free_m_table(RCLASS_M_TBL(obj)); } if (RCLASS_IV_TBL(obj)) { st_free_table(RCLASS_IV_TBL(obj)); } if (RCLASS_CONST_TBL(obj)) { rb_free_const_table(RCLASS_CONST_TBL(obj)); } if (RCLASS_IV_INDEX_TBL(obj)) { st_free_table(RCLASS_IV_INDEX_TBL(obj)); } xfree(RANY(obj)->as.klass.ptr); break; case T_STRING: rb_str_free(obj); break; case T_ARRAY: rb_ary_free(obj); break; case T_HASH: if (RANY(obj)->as.hash.ntbl) { st_free_table(RANY(obj)->as.hash.ntbl); } break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) { onig_free(RANY(obj)->as.regexp.ptr); } break; case T_DATA: if (DATA_PTR(obj)) { if (RTYPEDDATA_P(obj)) { RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree; } if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) { xfree(DATA_PTR(obj)); } else if (RANY(obj)->as.data.dfree) { make_deferred(RANY(obj)); return 1; } } break; case T_MATCH: if (RANY(obj)->as.match.rmatch) { struct rmatch *rm = RANY(obj)->as.match.rmatch; onig_region_free(&rm->regs, 0); if (rm->char_offset) xfree(rm->char_offset); xfree(rm); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { make_io_deferred(RANY(obj)); return 1; } break; case T_RATIONAL: case T_COMPLEX: break; case T_ICLASS: /* iClass shares table with the module */ xfree(RANY(obj)->as.klass.ptr); break; case T_FLOAT: break; case T_BIGNUM: if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) { xfree(RBIGNUM_DIGITS(obj)); } break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RANY(obj)->as.node.u1.tbl) { xfree(RANY(obj)->as.node.u1.tbl); } break; case NODE_ARGS: if (RANY(obj)->as.node.u3.args) { xfree(RANY(obj)->as.node.u3.args); } break; case NODE_ALLOCA: xfree(RANY(obj)->as.node.u1.node); break; } break; /* no need to free iv_tbl */ case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && RANY(obj)->as.rstruct.as.heap.ptr) { xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr); } break; default: rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE, BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags); } return 0; } void Init_heap(void) { heap_init(&rb_objspace); } typedef int each_obj_callback(void *, void *, size_t, void *); struct each_obj_args { each_obj_callback *callback; void *data; }; static VALUE objspace_each_objects(VALUE arg) { size_t i; struct heap_slot_body *last_body = 0; struct heap_slot *slot; RVALUE *pstart, *pend; rb_objspace_t *objspace = &rb_objspace; struct each_obj_args *args = (struct each_obj_args *)arg; volatile VALUE v; i = 0; while (i < heap_used) { while (0 < i && last_body < objspace->heap.sorted[i-1]->body) i--; while (i < heap_used && objspace->heap.sorted[i]->body <= last_body) i++; if (heap_used <= i) break; slot = objspace->heap.sorted[i]; last_body = slot->body; pstart = slot->start; pend = pstart + slot->limit; for (; pstart != pend; pstart++) { if (pstart->as.basic.flags) { v = (VALUE)pstart; /* acquire to save this object */ break; } } if (pstart != pend) { if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) { break; } } } RB_GC_GUARD(v); return Qnil; } /* * rb_objspace_each_objects() is special C API to walk through * Ruby object space. This C API is too difficult to use it. * To be frank, you should not use it. Or you need to read the * source code of this function and understand what this function does. * * 'callback' will be called several times (the number of heap slot, * at current implementation) with: * vstart: a pointer to the first living object of the heap_slot. * vend: a pointer to next to the valid heap_slot area. * stride: a distance to next VALUE. * * If callback() returns non-zero, the iteration will be stopped. * * This is a sample callback code to iterate liveness objects: * * int * sample_callback(void *vstart, void *vend, int stride, void *data) { * VALUE v = (VALUE)vstart; * for (; v != (VALUE)vend; v += stride) { * if (RBASIC(v)->flags) { // liveness check * // do something with live object 'v' * } * return 0; // continue to iteration * } * * Note: 'vstart' is not a top of heap_slot. This point the first * living object to grasp at least one object to avoid GC issue. * This means that you can not walk through all Ruby object slot * including freed object slot. * * Note: On this implementation, 'stride' is same as sizeof(RVALUE). * However, there are possibilities to pass variable values with * 'stride' with some reasons. You must use stride instead of * use some constant value in the iteration. */ void rb_objspace_each_objects(each_obj_callback *callback, void *data) { struct each_obj_args args; rb_objspace_t *objspace = &rb_objspace; gc_rest_sweep(objspace); objspace->flags.dont_lazy_sweep = TRUE; args.callback = callback; args.data = data; rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil); } struct os_each_struct { size_t num; VALUE of; }; static int internal_object_p(VALUE obj) { RVALUE *p = (RVALUE *)obj; if (p->as.basic.flags) { switch (BUILTIN_TYPE(p)) { case T_NONE: case T_ICLASS: case T_NODE: case T_ZOMBIE: break; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) break; default: if (!p->as.basic.klass) break; return 0; } } return 1; } int rb_objspace_internal_object_p(VALUE obj) { return internal_object_p(obj); } static int os_obj_of_i(void *vstart, void *vend, size_t stride, void *data) { struct os_each_struct *oes = (struct os_each_struct *)data; RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend; for (; p != pend; p++) { volatile VALUE v = (VALUE)p; if (!internal_object_p(v)) { if (!oes->of || rb_obj_is_kind_of(v, oes->of)) { rb_yield(v); oes->num++; } } } return 0; } static VALUE os_obj_of(VALUE of) { struct os_each_struct oes; oes.num = 0; oes.of = of; rb_objspace_each_objects(os_obj_of_i, &oes); return SIZET2NUM(oes.num); } /* * call-seq: * ObjectSpace.each_object([module]) {|obj| ... } -> fixnum * ObjectSpace.each_object([module]) -> an_enumerator * * Calls the block once for each living, nonimmediate object in this * Ruby process. If module is specified, calls the block * for only those classes or modules that match (or are a subclass of) * module. Returns the number of objects found. Immediate * objects (Fixnums, Symbols * true, false, and nil) are * never returned. In the example below, each_object * returns both the numbers we defined and several constants defined in * the Math module. * * If no block is given, an enumerator is returned instead. * * a = 102.7 * b = 95 # Won't be returned * c = 12345678987654321 * count = ObjectSpace.each_object(Numeric) {|x| p x } * puts "Total count: #{count}" * * produces: * * 12345678987654321 * 102.7 * 2.71828182845905 * 3.14159265358979 * 2.22044604925031e-16 * 1.7976931348623157e+308 * 2.2250738585072e-308 * Total count: 7 * */ static VALUE os_each_obj(int argc, VALUE *argv, VALUE os) { VALUE of; if (argc == 0) { of = 0; } else { rb_scan_args(argc, argv, "01", &of); } RETURN_ENUMERATOR(os, 1, &of); return os_obj_of(of); } /* * call-seq: * ObjectSpace.undefine_finalizer(obj) * * Removes all finalizers for obj. * */ static VALUE undefine_final(VALUE os, VALUE obj) { return rb_undefine_final(obj); } VALUE rb_undefine_final(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; st_data_t data = obj; rb_check_frozen(obj); st_delete(finalizer_table, &data, 0); FL_UNSET(obj, FL_FINALIZE); return obj; } /* * call-seq: * ObjectSpace.define_finalizer(obj, aProc=proc()) * * Adds aProc as a finalizer, to be called after obj * was destroyed. * */ static VALUE define_final(int argc, VALUE *argv, VALUE os) { VALUE obj, block; rb_scan_args(argc, argv, "11", &obj, &block); rb_check_frozen(obj); if (argc == 1) { block = rb_block_proc(); } else if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } return define_final0(obj, block); } static VALUE define_final0(VALUE obj, VALUE block) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_ABLE(obj)) { rb_raise(rb_eArgError, "cannot define finalizer for %s", rb_obj_classname(obj)); } RBASIC(obj)->flags |= FL_FINALIZE; block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block); OBJ_FREEZE(block); if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; rb_ary_push(table, block); } else { table = rb_ary_new3(1, block); RBASIC_CLEAR_CLASS(table); st_add_direct(finalizer_table, obj, table); } return block; } VALUE rb_define_final(VALUE obj, VALUE block) { rb_check_frozen(obj); if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } return define_final0(obj, block); } void rb_gc_copy_finalizer(VALUE dest, VALUE obj) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_TEST(obj, FL_FINALIZE)) return; if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; st_insert(finalizer_table, dest, table); } FL_SET(dest, FL_FINALIZE); } static VALUE run_single_final(VALUE arg) { VALUE *args = (VALUE *)arg; rb_eval_cmd(args[0], args[1], (int)args[2]); return Qnil; } static void run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table) { long i; int status; VALUE args[3]; VALUE objid = nonspecial_obj_id(obj); if (RARRAY_LEN(table) > 0) { args[1] = rb_obj_freeze(rb_ary_new3(1, objid)); } else { args[1] = 0; } args[2] = (VALUE)rb_safe_level(); for (i=0; iheap.final_num--; RBASIC_CLEAR_CLASS(obj); if (RTYPEDDATA_P(obj)) { free_func = RTYPEDDATA_TYPE(obj)->function.dfree; } else { free_func = RDATA(obj)->dfree; } if (free_func) { (*free_func)(DATA_PTR(obj)); } key = (st_data_t)obj; if (st_delete(finalizer_table, &key, &table)) { run_finalizer(objspace, obj, (VALUE)table); } } static void finalize_list(rb_objspace_t *objspace, RVALUE *p) { while (p) { RVALUE *tmp = p->as.free.next; run_final(objspace, (VALUE)p); objspace->total_freed_object_num++; if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */ heap_slot_add_freeobj(objspace, GET_HEAP_SLOT(p), (VALUE)p); objspace->heap.free_num++; } else { struct heap_slot *slot = (struct heap_slot *)(VALUE)RDATA(p)->dmark; slot->limit--; } p = tmp; } } static void finalize_deferred(rb_objspace_t *objspace) { RVALUE *p = deferred_final_list; deferred_final_list = 0; if (p) { finalize_list(objspace, p); } } static void gc_finalize_deferred(void *dmy) { rb_objspace_t *objspace = &rb_objspace; if (ATOMIC_EXCHANGE(finalizing, 1)) return; finalize_deferred(objspace); ATOMIC_SET(finalizing, 0); } /* TODO: to keep compatibility, maybe unused. */ void rb_gc_finalize_deferred(void) { gc_finalize_deferred(0); } static void gc_finalize_deferred_register() { rb_postponed_job_register_one(0, gc_finalize_deferred, 0); } struct force_finalize_list { VALUE obj; VALUE table; struct force_finalize_list *next; }; static int force_chain_object(st_data_t key, st_data_t val, st_data_t arg) { struct force_finalize_list **prev = (struct force_finalize_list **)arg; struct force_finalize_list *curr = ALLOC(struct force_finalize_list); curr->obj = key; curr->table = val; curr->next = *prev; *prev = curr; return ST_CONTINUE; } void rb_gc_call_finalizer_at_exit(void) { rb_objspace_call_finalizer(&rb_objspace); } static void rb_objspace_call_finalizer(rb_objspace_t *objspace) { RVALUE *p, *pend; RVALUE *final_list = 0; size_t i; gc_rest_sweep(objspace); if (ATOMIC_EXCHANGE(finalizing, 1)) return; /* run finalizers */ finalize_deferred(objspace); assert(deferred_final_list == 0); /* force to run finalizer */ while (finalizer_table->num_entries) { struct force_finalize_list *list = 0; st_foreach(finalizer_table, force_chain_object, (st_data_t)&list); while (list) { struct force_finalize_list *curr = list; st_data_t obj = (st_data_t)curr->obj; run_finalizer(objspace, curr->obj, curr->table); st_delete(finalizer_table, &obj, 0); list = curr->next; xfree(curr); } } /* finalizers are part of garbage collection */ during_gc++; /* run data object's finalizers */ for (i = 0; i < heap_used; i++) { p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit; while (p < pend) { if (BUILTIN_TYPE(p) == T_DATA && DATA_PTR(p) && RANY(p)->as.data.dfree && !rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) && !rb_obj_is_fiber((VALUE)p)) { p->as.free.flags = 0; if (RTYPEDDATA_P(p)) { RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree; } if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) { xfree(DATA_PTR(p)); } else if (RANY(p)->as.data.dfree) { make_deferred(RANY(p)); RANY(p)->as.free.next = final_list; final_list = p; } } else if (BUILTIN_TYPE(p) == T_FILE) { if (RANY(p)->as.file.fptr) { make_io_deferred(RANY(p)); RANY(p)->as.free.next = final_list; final_list = p; } } p++; } } during_gc = 0; if (final_list) { finalize_list(objspace, final_list); } st_free_table(finalizer_table); finalizer_table = 0; ATOMIC_SET(finalizing, 0); } static inline int is_id_value(rb_objspace_t *objspace, VALUE ptr) { if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE; if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE; if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE; return TRUE; } static inline int is_swept_object(rb_objspace_t *objspace, VALUE ptr) { struct heap_slot *slot = objspace->heap.sweep_slots; while (slot) { if ((VALUE)slot->start <= ptr && ptr < (VALUE)(slot->start + slot->limit)) return FALSE; slot = slot->next; } return TRUE; } static inline int is_dead_object(rb_objspace_t *objspace, VALUE ptr) { if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) return FALSE; if (!is_swept_object(objspace, ptr)) return TRUE; return FALSE; } static inline int is_live_object(rb_objspace_t *objspace, VALUE ptr) { if (BUILTIN_TYPE(ptr) == 0) return FALSE; if (RBASIC(ptr)->klass == 0) return FALSE; if (is_dead_object(objspace, ptr)) return FALSE; return TRUE; } static inline int is_markable_object(rb_objspace_t *objspace, VALUE obj) { if (rb_special_const_p(obj)) return 0; /* special const is not markable */ if (RGENGC_CHECK_MODE) { if (!is_pointer_to_heap(objspace, (void *)obj)) rb_bug("is_markable_object: %p is not pointer to heap", (void *)obj); if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("is_markable_object: %p is T_NONE", (void *)obj); if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("is_markable_object: %p is T_ZOMBIE", (void *)obj); } return 1; } int rb_objspace_markable_object_p(VALUE obj) { return is_markable_object(&rb_objspace, obj); } /* * call-seq: * ObjectSpace._id2ref(object_id) -> an_object * * Converts an object id to a reference to the object. May not be * called on an object id passed as a parameter to a finalizer. * * s = "I am a string" #=> "I am a string" * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" * r == s #=> true * */ static VALUE id2ref(VALUE obj, VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif rb_objspace_t *objspace = &rb_objspace; VALUE ptr; void *p0; ptr = NUM2PTR(objid); p0 = (void *)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; if (FLONUM_P(ptr)) return (VALUE)ptr; ptr = obj_id_to_ref(objid); if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); if (rb_id2name(symid) == 0) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } if (!is_id_value(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is not id value", p0); } if (!is_live_object(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is recycled object", p0); } return (VALUE)ptr; } /* * Document-method: __id__ * Document-method: object_id * * call-seq: * obj.__id__ -> integer * obj.object_id -> integer * * Returns an integer identifier for +obj+. * * The same number will be returned on all calls to +id+ for a given object, * and no two active objects will share an id. * * Object#object_id is a different concept from the +:name+ notation, which * returns the symbol id of +name+. * * Replaces the deprecated Object#id. */ /* * call-seq: * obj.hash -> fixnum * * Generates a Fixnum hash value for this object. * * This function must have the property that a.eql?(b) implies * a.hash == b.hash. * * The hash value is used by Hash class. * * Any hash value that exceeds the capacity of a Fixnum will be truncated * before being used. */ VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (SYMBOL_P(obj)) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } else if (FLONUM_P(obj)) { #if SIZEOF_LONG == SIZEOF_VOIDP return LONG2NUM((SIGNED_VALUE)obj); #else return LL2NUM((SIGNED_VALUE)obj); #endif } else if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return nonspecial_obj_id(obj); } static int set_zero(st_data_t key, st_data_t val, st_data_t arg) { VALUE k = (VALUE)key; VALUE hash = (VALUE)arg; rb_hash_aset(hash, k, INT2FIX(0)); return ST_CONTINUE; } /* * call-seq: * ObjectSpace.count_objects([result_hash]) -> hash * * Counts objects for each type. * * It returns a hash, such as: * { * :TOTAL=>10000, * :FREE=>3011, * :T_OBJECT=>6, * :T_CLASS=>404, * # ... * } * * The contents of the returned hash are implementation specific. * It may be changed in future. * * If the optional argument +result_hash+ is given, * it is overwritten and returned. This is intended to avoid probe effect. * * This method is only expected to work on C Ruby. * */ static VALUE count_objects(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; size_t counts[T_MASK+1]; size_t freed = 0; size_t total = 0; size_t i; VALUE hash; if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (!RB_TYPE_P(hash, T_HASH)) rb_raise(rb_eTypeError, "non-hash given"); } for (i = 0; i <= T_MASK; i++) { counts[i] = 0; } for (i = 0; i < heap_used; i++) { struct heap_slot *slot = objspace->heap.sorted[i]; RVALUE *p, *pend; p = slot->start; pend = p + slot->limit; for (;p < pend; p++) { if (p->as.basic.flags) { counts[BUILTIN_TYPE(p)]++; } else { freed++; } } total += slot->limit; } if (hash == Qnil) { hash = rb_hash_new(); } else if (!RHASH_EMPTY_P(hash)) { st_foreach(RHASH_TBL_RAW(hash), set_zero, hash); } rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); for (i = 0; i <= T_MASK; i++) { VALUE type; switch (i) { #define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break; COUNT_TYPE(T_NONE); COUNT_TYPE(T_OBJECT); COUNT_TYPE(T_CLASS); COUNT_TYPE(T_MODULE); COUNT_TYPE(T_FLOAT); COUNT_TYPE(T_STRING); COUNT_TYPE(T_REGEXP); COUNT_TYPE(T_ARRAY); COUNT_TYPE(T_HASH); COUNT_TYPE(T_STRUCT); COUNT_TYPE(T_BIGNUM); COUNT_TYPE(T_FILE); COUNT_TYPE(T_DATA); COUNT_TYPE(T_MATCH); COUNT_TYPE(T_COMPLEX); COUNT_TYPE(T_RATIONAL); COUNT_TYPE(T_NIL); COUNT_TYPE(T_TRUE); COUNT_TYPE(T_FALSE); COUNT_TYPE(T_SYMBOL); COUNT_TYPE(T_FIXNUM); COUNT_TYPE(T_UNDEF); COUNT_TYPE(T_NODE); COUNT_TYPE(T_ICLASS); COUNT_TYPE(T_ZOMBIE); #undef COUNT_TYPE default: type = INT2NUM(i); break; } if (counts[i]) rb_hash_aset(hash, type, SIZET2NUM(counts[i])); } return hash; } /* ------------------------ Garbage Collection ------------------------ */ /* Sweeping */ static VALUE lazy_sweep_enable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->flags.dont_lazy_sweep = FALSE; return Qnil; } static size_t objspace_live_num(rb_objspace_t *objspace) { return objspace->total_allocated_object_num - objspace->total_freed_object_num; } static void gc_setup_mark_bits(struct heap_slot *slot) { #if USE_RGENGC /* copy oldgen bitmap to mark bitmap */ memcpy(&slot->mark_bits[0], &slot->oldgen_bits[0], HEAP_BITMAP_SIZE); #else /* clear mark bitmap */ memset(&slot->mark_bits[0], 0, HEAP_BITMAP_SIZE); #endif } static inline void gc_slot_sweep(rb_objspace_t *objspace, struct heap_slot *sweep_slot) { int i; size_t empty_num = 0, freed_num = 0, final_num = 0; RVALUE *p, *pend,*offset; RVALUE *final = deferred_final_list; int deferred; bits_t *bits, bitset; rgengc_report(1, objspace, "slot_sweep: start.\n"); p = sweep_slot->start; pend = p + sweep_slot->limit; offset = p - NUM_IN_SLOT(p); bits = GET_HEAP_MARK_BITS(p); /* create guard : fill 1 out-of-range */ bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1; bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1); for (i=0; i < HEAP_BITMAP_LIMIT; i++) { bitset = ~bits[i]; if (bitset) { p = offset + i * BITS_BITLENGTH; do { if ((bitset & 1) && BUILTIN_TYPE(p) != T_ZOMBIE) { if (p->as.basic.flags) { rgengc_report(3, objspace, "slot_sweep: free %p (%s)\n", p, obj_type_name((VALUE)p)); #if USE_RGENGC && RGENGC_CHECK_MODE if (objspace->rgengc.during_minor_gc && RVALUE_PROMOTED(p)) rb_bug("slot_sweep: %p (%s) is promoted.\n", p, obj_type_name((VALUE)p)); if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("slot_sweep: %p (%s) is remembered.\n", p, obj_type_name((VALUE)p)); #endif if ((deferred = obj_free(objspace, (VALUE)p)) || (FL_TEST(p, FL_FINALIZE))) { if (!deferred) { p->as.free.flags = T_ZOMBIE; RDATA(p)->dfree = 0; } p->as.free.next = deferred_final_list; deferred_final_list = p; assert(BUILTIN_TYPE(p) == T_ZOMBIE); final_num++; } else { (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); heap_slot_add_freeobj(objspace, sweep_slot, (VALUE)p); rgengc_report(3, objspace, "slot_sweep: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p)); freed_num++; } } else { empty_num++; } } p++; bitset >>= 1; } while (bitset); } } gc_setup_mark_bits(sweep_slot); #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->removing_objects += final_num + freed_num; record->empty_objects += empty_num; } #endif if (final_num + freed_num + empty_num == sweep_slot->limit && objspace->heap.free_num > objspace->heap.do_heap_free) { RVALUE *pp; for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) { RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot; pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */ } sweep_slot->limit = final_num; unlink_heap_slot(objspace, sweep_slot); } else { if (freed_num + empty_num > 0) { heap_add_freeslot(objspace, sweep_slot); } else { sweep_slot->free_next = NULL; } objspace->heap.free_num += freed_num + empty_num; } objspace->total_freed_object_num += freed_num; objspace->heap.final_num += final_num; if (deferred_final_list && !finalizing) { rb_thread_t *th = GET_THREAD(); if (th) { gc_finalize_deferred_register(); } } rgengc_report(1, objspace, "slot_sweep: end.\n"); } #if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4 __attribute__((noinline)) #endif static void gc_before_sweep(rb_objspace_t *objspace) { rgengc_report(1, objspace, "before_gc_sweep\n"); objspace->heap.do_heap_free = (size_t)((heap_used * HEAP_OBJ_LIMIT) * 0.65); objspace->heap.free_min = (size_t)((heap_used * HEAP_OBJ_LIMIT) * 0.2); if (objspace->heap.free_min < initial_free_min) { objspace->heap.free_min = initial_free_min; if (objspace->heap.do_heap_free < initial_free_min) objspace->heap.do_heap_free = initial_free_min; } objspace->heap.sweep_slots = heap_slots; objspace->heap.free_num = 0; objspace->heap.free_slots = NULL; if (objspace->heap.using_slot) { objspace->heap.using_slot->freelist = objspace->freelist; objspace->heap.using_slot = NULL; } objspace->freelist = NULL; malloc_increase2 += ATOMIC_SIZE_EXCHANGE(malloc_increase,0); /* sweep unlinked method entries */ if (GET_VM()->unlinked_method_entry_list) { rb_sweep_method_entry(GET_VM()); } } static void gc_after_sweep(rb_objspace_t *objspace) { size_t inc; rgengc_report(1, objspace, "after_gc_sweep: objspace->heap.free_num: %d, objspace->heap.free_min: %d\n", objspace->heap.free_num, objspace->heap.free_min); if (objspace->heap.free_num < objspace->heap.free_min) { heap_set_increment(objspace); heap_increment(objspace); #if USE_RGENGC if (objspace->rgengc.remembered_shady_object_count + objspace->rgengc.oldgen_object_count > (heap_length * HEAP_OBJ_LIMIT) / 2) { /* if [oldgen]+[remembered shady] > [all object count]/2, then do major GC */ objspace->rgengc.need_major_gc = TRUE; } #endif } gc_prof_set_malloc_info(objspace); gc_prof_set_heap_info(objspace); inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0); inc += malloc_increase2; malloc_increase2 = 0; if (inc > malloc_limit) { malloc_limit += (size_t)((inc - malloc_limit) * (double)objspace_live_num(objspace) / (heap_used * HEAP_OBJ_LIMIT)); if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit; } free_unused_slots(objspace); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END, 0 /* TODO: pass minor/immediate flag? */); } static int gc_lazy_sweep(rb_objspace_t *objspace) { struct heap_slot *slot, *next; int result = FALSE; gc_prof_sweep_timer_start(objspace); heap_increment(objspace); slot = objspace->heap.sweep_slots; while (slot) { objspace->heap.sweep_slots = next = slot->next; gc_slot_sweep(objspace, slot); if (!next) gc_after_sweep(objspace); if (objspace->heap.free_slots) { result = TRUE; break; } slot = next; } gc_prof_sweep_timer_stop(objspace); return result; } static void gc_rest_sweep(rb_objspace_t *objspace) { if (is_lazy_sweeping(objspace)) { during_gc++; while (is_lazy_sweeping(objspace)) { gc_lazy_sweep(objspace); } during_gc = 0; } } static void gc_sweep(rb_objspace_t *objspace, int immediate_sweep) { if (immediate_sweep) { struct heap_slot *next; gc_prof_sweep_timer_start(objspace); gc_before_sweep(objspace); while (objspace->heap.sweep_slots) { next = objspace->heap.sweep_slots->next; gc_slot_sweep(objspace, objspace->heap.sweep_slots); objspace->heap.sweep_slots = next; } gc_after_sweep(objspace); gc_prof_sweep_timer_stop(objspace); } else { gc_before_sweep(objspace); gc_lazy_sweep(objspace); } if (!objspace->heap.free_slots) { /* there is no free after slot_sweep() */ heap_set_increment(objspace); if (!heap_increment(objspace)) { /* can't allocate additional free objects */ during_gc = 0; rb_memerror(); } } } /* Marking - Marking stack */ static void push_mark_stack(mark_stack_t *, VALUE); static int pop_mark_stack(mark_stack_t *, VALUE *); static void shrink_stack_chunk_cache(mark_stack_t *stack); static stack_chunk_t * stack_chunk_alloc(void) { stack_chunk_t *res; res = malloc(sizeof(stack_chunk_t)); if (!res) rb_memerror(); return res; } static inline int is_mark_stask_empty(mark_stack_t *stack) { return stack->chunk == NULL; } static void add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk) { chunk->next = stack->cache; stack->cache = chunk; stack->cache_size++; } static void shrink_stack_chunk_cache(mark_stack_t *stack) { stack_chunk_t *chunk; if (stack->unused_cache_size > (stack->cache_size/2)) { chunk = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; free(chunk); } stack->unused_cache_size = stack->cache_size; } static void push_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *next; assert(stack->index == stack->limit); if (stack->cache_size > 0) { next = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; if (stack->unused_cache_size > stack->cache_size) stack->unused_cache_size = stack->cache_size; } else { next = stack_chunk_alloc(); } next->next = stack->chunk; stack->chunk = next; stack->index = 0; } static void pop_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *prev; prev = stack->chunk->next; assert(stack->index == 0); add_stack_chunk_cache(stack, stack->chunk); stack->chunk = prev; stack->index = stack->limit; } #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE static void free_stack_chunks(mark_stack_t *stack) { stack_chunk_t *chunk = stack->chunk; stack_chunk_t *next = NULL; while (chunk != NULL) { next = chunk->next; free(chunk); chunk = next; } } #endif static void push_mark_stack(mark_stack_t *stack, VALUE data) { if (stack->index == stack->limit) { push_mark_stack_chunk(stack); } stack->chunk->data[stack->index++] = data; } static int pop_mark_stack(mark_stack_t *stack, VALUE *data) { if (is_mark_stask_empty(stack)) { return FALSE; } if (stack->index == 1) { *data = stack->chunk->data[--stack->index]; pop_mark_stack_chunk(stack); return TRUE; } *data = stack->chunk->data[--stack->index]; return TRUE; } static void init_mark_stack(mark_stack_t *stack) { int i; push_mark_stack_chunk(stack); stack->limit = STACK_CHUNK_SIZE; for (i=0; i < 4; i++) { add_stack_chunk_cache(stack, stack_chunk_alloc()); } stack->unused_cache_size = stack->cache_size; } /* Marking */ #ifdef __ia64 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp()) #else #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end) #endif #define STACK_START (th->machine_stack_start) #define STACK_END (th->machine_stack_end) #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE)) #if STACK_GROW_DIRECTION < 0 # define STACK_LENGTH (size_t)(STACK_START - STACK_END) #elif STACK_GROW_DIRECTION > 0 # define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1) #else # define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \ : (size_t)(STACK_END - STACK_START + 1)) #endif #if !STACK_GROW_DIRECTION int ruby_stack_grow_direction; int ruby_get_stack_grow_direction(volatile VALUE *addr) { VALUE *end; SET_MACHINE_STACK_END(&end); if (end > addr) return ruby_stack_grow_direction = 1; return ruby_stack_grow_direction = -1; } #endif size_t ruby_stack_length(VALUE **p) { rb_thread_t *th = GET_THREAD(); SET_STACK_END; if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END); return STACK_LENGTH; } #if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)) static int stack_check(int water_mark) { int ret; rb_thread_t *th = GET_THREAD(); SET_STACK_END; ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark; #ifdef __ia64 if (!ret) { ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start > th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark; } #endif return ret; } #endif #define STACKFRAME_FOR_CALL_CFUNC 512 int ruby_stack_check(void) { #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) return 0; #else return stack_check(STACKFRAME_FOR_CALL_CFUNC); #endif } static void mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n) { VALUE v; while (n--) { v = *x; gc_mark_maybe(objspace, v); x++; } } static void gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end) { long n; if (end <= start) return; n = end - start; mark_locations_array(objspace, start, n); } void rb_gc_mark_locations(VALUE *start, VALUE *end) { gc_mark_locations(&rb_objspace, start, end); } #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end)) struct mark_tbl_arg { rb_objspace_t *objspace; }; static int mark_entry(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)value); return ST_CONTINUE; } static void mark_tbl(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl || tbl->num_entries == 0) return; arg.objspace = objspace; st_foreach(tbl, mark_entry, (st_data_t)&arg); } static int mark_key(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key); return ST_CONTINUE; } static void mark_set(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_key, (st_data_t)&arg); } void rb_mark_set(st_table *tbl) { mark_set(&rb_objspace, tbl); } static int mark_keyvalue(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key); gc_mark(arg->objspace, (VALUE)value); return ST_CONTINUE; } static void mark_hash(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_keyvalue, (st_data_t)&arg); } void rb_mark_hash(st_table *tbl) { mark_hash(&rb_objspace, tbl); } static void mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me) { const rb_method_definition_t *def = me->def; gc_mark(objspace, me->klass); again: if (!def) return; switch (def->type) { case VM_METHOD_TYPE_ISEQ: gc_mark(objspace, def->body.iseq->self); break; case VM_METHOD_TYPE_BMETHOD: gc_mark(objspace, def->body.proc); break; case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: gc_mark(objspace, def->body.attr.location); break; case VM_METHOD_TYPE_REFINED: if (def->body.orig_me) { def = def->body.orig_me->def; goto again; } break; default: break; /* ignore */ } } void rb_mark_method_entry(const rb_method_entry_t *me) { mark_method_entry(&rb_objspace, me); } static int mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; mark_method_entry(arg->objspace, me); return ST_CONTINUE; } static void mark_m_tbl(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg); } static int mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, ce->value); gc_mark(arg->objspace, ce->file); return ST_CONTINUE; } static void mark_const_tbl(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg); } #if STACK_GROW_DIRECTION < 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START) #elif STACK_GROW_DIRECTION > 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix)) #else #define GET_STACK_BOUNDS(start, end, appendix) \ ((STACK_END < STACK_START) ? \ ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix))) #endif static void mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th) { union { rb_jmp_buf j; VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)]; } save_regs_gc_mark; VALUE *stack_start, *stack_end; FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf (and stack) */ rb_setjmp(save_regs_gc_mark.j); GET_STACK_BOUNDS(stack_start, stack_end, 1); mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v)); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif #if defined(__mc68000__) mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2), (STACK_START - STACK_END)); #endif } void rb_gc_mark_machine_stack(rb_thread_t *th) { rb_objspace_t *objspace = &rb_objspace; VALUE *stack_start, *stack_end; GET_STACK_BOUNDS(stack_start, stack_end, 0); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif } void rb_mark_tbl(st_table *tbl) { mark_tbl(&rb_objspace, tbl); } static void gc_mark_maybe(rb_objspace_t *objspace, VALUE obj) { (void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj)); if (is_pointer_to_heap(objspace, (void *)obj)) { int type = BUILTIN_TYPE(obj); if (type != T_ZOMBIE && type != T_NONE) { gc_mark(objspace, obj); } } } void rb_gc_mark_maybe(VALUE obj) { gc_mark_maybe(&rb_objspace, obj); } static int gc_marked(rb_objspace_t *objspace, VALUE ptr) { register bits_t *bits = GET_HEAP_MARK_BITS(ptr); if (MARKED_IN_BITMAP(bits, ptr)) return 1; return 0; } static int gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr) { register bits_t *bits = GET_HEAP_MARK_BITS(ptr); if (gc_marked(objspace, ptr)) return 0; MARK_IN_BITMAP(bits, ptr); return 1; } static void rgengc_check_shady(rb_objspace_t *objspace, VALUE obj) { #if USE_RGENGC #if RGENGC_CHECK_MODE >= 2 #define SAVED_OLD(x) MARKED_IN_BITMAP(GET_HEAP_SLOT(x)->saved_oldgen_bits, (x)) #define SAVED_REM(x) MARKED_IN_BITMAP(GET_HEAP_SLOT(x)->saved_rememberset_bits, (x)) VALUE parent = objspace->rgengc.parent_object; if (objspace->rgengc.have_saved_bitmaps && !monitor_level) { /* check WB sanity */ if (!SAVED_OLD(obj) && /* obj is young object (newly created or shady) */ (!FIXNUM_P(parent) && SAVED_OLD(parent)) && /* parent was old */ !SAVED_REM(parent) && /* parent was not remembered */ !SAVED_REM(obj)) { /* obj was not remembered */ fprintf(stderr, "rgengc_check_shady: !!! WB miss: %p (%s) -> %p (%s)\n", (void *)parent, obj_type_name(parent), (void *)obj, obj_type_name(obj)); if(!st_lookup(monitored_object_table, (st_data_t)obj, NULL)) { st_insert(monitored_object_table, (st_data_t)obj, 1); } } } else if (monitor_level) { st_data_t v; if (st_lookup(monitored_object_table, (st_data_t)obj, &v)) { if (v == monitor_level) { if (FIXNUM_P(parent)) { fprintf(stderr, "rgengc_check_shady: %14s [line %d] -> %p (%s) %d\n", "",FIX2INT(parent), (void *)obj, obj_type_name(obj),monitor_level); } else { if (st_lookup(monitored_object_table, (st_data_t)parent, &v)) { if(parent == obj) { /* skip self reference infomation */ } else fprintf(stderr, "rgengc_check_shady: %14u %p (%-8s) -> %p (%-8s) %d\n",(unsigned int)v, (void *)parent, obj_type_name(parent), (void *)obj, obj_type_name(obj),monitor_level); } else { char const *marker = NULL; if (SAVED_REM(parent)) { if (SAVED_OLD(parent)) marker = "REMEMBERED OLD"; else marker = "REMEMBERED"; } else { if (SAVED_OLD(parent)) marker = "!!!!!!!!!!!!! NO REMEMBERED OLD !!!!!!!!!!!!! "; else { marker = "NO PROMOTED"; st_insert(monitored_object_table, (st_data_t)parent, v+1); } } fprintf(stderr, "rgengc_check_shady: %-14s %p (%-8s) -> %p (%-8s) %d\n", marker, (void *)parent, obj_type_name(parent), (void *)obj, obj_type_name(obj),monitor_level); } } } } } #undef SAVED_OLD #undef SAVED_REM #endif /* RGENGC_CHECK_MODE >= 2 */ if (objspace->rgengc.parent_object_is_promoted && RVALUE_SHADY(obj)) { if (rgengc_remember(objspace, obj)) { objspace->rgengc.remembered_shady_object_count++; } } #endif } static void gc_mark(rb_objspace_t *objspace, VALUE ptr) { if (!is_markable_object(objspace, ptr)) return; if (LIKELY(objspace->mark_func_data == 0)) { rgengc_check_shady(objspace, ptr); if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */ push_mark_stack(&objspace->mark_stack, ptr); } else { objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data); } } void rb_gc_mark(VALUE ptr) { gc_mark(&rb_objspace, ptr); } static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr) { register RVALUE *obj = RANY(ptr); #if RGENGC_CHECK_MODE >= 2 objspace->rgengc.parent_object = (VALUE)ptr; #endif goto marking; /* skip */ again: if (LIKELY(objspace->mark_func_data == 0)) { obj = RANY(ptr); if (!is_markable_object(objspace, ptr)) return; rgengc_check_shady(objspace, ptr); if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */ #if RGENGC_CHECK_MODE >= 2 objspace->rgengc.parent_object = (VALUE)ptr; #endif } else { gc_mark(objspace, ptr); return; } #if USE_RGENGC if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED(obj)) { rb_bug("gc_mark_children: (0) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj)); } #endif /* USE_RGENGC */ marking: #if USE_RGENGC if (LIKELY(objspace->mark_func_data == 0)) { if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED(obj)) { rb_bug("gc_mark_children: (1) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj)); } /* minor/major common */ if (!RVALUE_SHADY(obj)) { objspace->rgengc.parent_object_is_promoted = TRUE; if (!RVALUE_PROMOTED(obj)) { RVALUE_PROMOTE((VALUE)obj); /* non-shady object can be promoted to OLDGEN object */ rgengc_report(3, objspace, "gc_mark_children: promote %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj)); objspace->rgengc.oldgen_object_count++; } else if (!objspace->rgengc.during_minor_gc) { /* major/full GC */ objspace->rgengc.oldgen_object_count++; } } else { rgengc_report(3, objspace, "gc_mark_children: do not promote shady %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj)); objspace->rgengc.parent_object_is_promoted = FALSE; } if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED(obj)) { rb_bug("gc_mark_children: (2) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj)); } } #endif /* USE_RGENGC */ if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar(ptr); } switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: switch (nd_type(obj)) { case NODE_IF: /* 1,2,3 */ case NODE_FOR: case NODE_ITER: case NODE_WHEN: case NODE_MASGN: case NODE_RESCUE: case NODE_RESBODY: case NODE_CLASS: case NODE_BLOCK_PASS: gc_mark(objspace, (VALUE)obj->as.node.u2.node); /* fall through */ case NODE_BLOCK: /* 1,3 */ case NODE_ARRAY: case NODE_DSTR: case NODE_DXSTR: case NODE_DREGX: case NODE_DREGX_ONCE: case NODE_ENSURE: case NODE_CALL: case NODE_DEFS: case NODE_OP_ASGN1: gc_mark(objspace, (VALUE)obj->as.node.u1.node); /* fall through */ case NODE_SUPER: /* 3 */ case NODE_FCALL: case NODE_DEFN: case NODE_ARGS_AUX: ptr = (VALUE)obj->as.node.u3.node; goto again; case NODE_WHILE: /* 1,2 */ case NODE_UNTIL: case NODE_AND: case NODE_OR: case NODE_CASE: case NODE_SCLASS: case NODE_DOT2: case NODE_DOT3: case NODE_FLIP2: case NODE_FLIP3: case NODE_MATCH2: case NODE_MATCH3: case NODE_OP_ASGN_OR: case NODE_OP_ASGN_AND: case NODE_MODULE: case NODE_ALIAS: case NODE_VALIAS: case NODE_ARGSCAT: gc_mark(objspace, (VALUE)obj->as.node.u1.node); /* fall through */ case NODE_GASGN: /* 2 */ case NODE_LASGN: case NODE_DASGN: case NODE_DASGN_CURR: case NODE_IASGN: case NODE_IASGN2: case NODE_CVASGN: case NODE_COLON3: case NODE_OPT_N: case NODE_EVSTR: case NODE_UNDEF: case NODE_POSTEXE: ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_HASH: /* 1 */ case NODE_LIT: case NODE_STR: case NODE_XSTR: case NODE_DEFINED: case NODE_MATCH: case NODE_RETURN: case NODE_BREAK: case NODE_NEXT: case NODE_YIELD: case NODE_COLON2: case NODE_SPLAT: case NODE_TO_ARY: ptr = (VALUE)obj->as.node.u1.node; goto again; case NODE_SCOPE: /* 2,3 */ case NODE_CDECL: case NODE_OPT_ARG: gc_mark(objspace, (VALUE)obj->as.node.u3.node); ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ARGS: /* custom */ { struct rb_args_info *args = obj->as.node.u3.args; if (args) { if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init); if (args->post_init) gc_mark(objspace, (VALUE)args->post_init); if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args); if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args); if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg); } } ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ZARRAY: /* - */ case NODE_ZSUPER: case NODE_VCALL: case NODE_GVAR: case NODE_LVAR: case NODE_DVAR: case NODE_IVAR: case NODE_CVAR: case NODE_NTH_REF: case NODE_BACK_REF: case NODE_REDO: case NODE_RETRY: case NODE_SELF: case NODE_NIL: case NODE_TRUE: case NODE_FALSE: case NODE_ERRINFO: case NODE_BLOCK_ARG: break; case NODE_ALLOCA: mark_locations_array(objspace, (VALUE*)obj->as.node.u1.value, obj->as.node.u3.cnt); gc_mark(objspace, (VALUE)obj->as.node.u2.node); break; case NODE_CREF: gc_mark(objspace, obj->as.node.nd_refinements); gc_mark(objspace, (VALUE)obj->as.node.u1.node); ptr = (VALUE)obj->as.node.u3.node; goto again; default: /* unlisted NODE */ gc_mark_maybe(objspace, (VALUE)obj->as.node.u1.node); gc_mark_maybe(objspace, (VALUE)obj->as.node.u2.node); gc_mark_maybe(objspace, (VALUE)obj->as.node.u3.node); } return; /* no need to mark class. */ } gc_mark(objspace, obj->as.basic.klass); switch (BUILTIN_TYPE(obj)) { case T_ICLASS: case T_CLASS: case T_MODULE: mark_m_tbl(objspace, RCLASS_M_TBL(obj)); if (!RCLASS_EXT(obj)) break; mark_tbl(objspace, RCLASS_IV_TBL(obj)); mark_const_tbl(objspace, RCLASS_CONST_TBL(obj)); ptr = RCLASS_SUPER((VALUE)obj); goto again; case T_ARRAY: if (FL_TEST(obj, ELTS_SHARED)) { ptr = obj->as.array.as.heap.aux.shared; goto again; } else { long i, len = RARRAY_LEN(obj); const VALUE *ptr = RARRAY_RAWPTR(obj); for (i=0; i < len; i++) { gc_mark(objspace, *ptr++); } } break; case T_HASH: mark_hash(objspace, obj->as.hash.ntbl); ptr = obj->as.hash.ifnone; goto again; case T_STRING: #define STR_ASSOC FL_USER3 /* copied from string.c */ if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) { ptr = obj->as.string.as.heap.aux.shared; goto again; } break; case T_DATA: if (RTYPEDDATA_P(obj)) { RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark; if (mark_func) (*mark_func)(DATA_PTR(obj)); } else { if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj)); } break; case T_OBJECT: { long i, len = ROBJECT_NUMIV(obj); VALUE *ptr = ROBJECT_IVPTR(obj); for (i = 0; i < len; i++) { gc_mark(objspace, *ptr++); } } break; case T_FILE: if (obj->as.file.fptr) { gc_mark(objspace, obj->as.file.fptr->pathv); gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing); gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat); gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts); gc_mark(objspace, obj->as.file.fptr->encs.ecopts); gc_mark(objspace, obj->as.file.fptr->write_lock); } break; case T_REGEXP: ptr = obj->as.regexp.src; goto again; case T_FLOAT: case T_BIGNUM: break; case T_MATCH: gc_mark(objspace, obj->as.match.regexp); if (obj->as.match.str) { ptr = obj->as.match.str; goto again; } break; case T_RATIONAL: gc_mark(objspace, obj->as.rational.num); ptr = obj->as.rational.den; goto again; case T_COMPLEX: gc_mark(objspace, obj->as.complex.real); ptr = obj->as.complex.imag; goto again; case T_STRUCT: { long len = RSTRUCT_LEN(obj); const VALUE *ptr = RSTRUCT_RAWPTR(obj); while (len--) { gc_mark(objspace, *ptr++); } } break; default: #ifdef GC_DEBUG rb_gcdebug_print_obj_condition((VALUE)obj); #endif if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj); if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj); rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", BUILTIN_TYPE(obj), (void *)obj, is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object"); } } static void gc_mark_stacked_objects(rb_objspace_t *objspace) { mark_stack_t *mstack = &objspace->mark_stack; VALUE obj = 0; if (!mstack->index) return; while (pop_mark_stack(mstack, &obj)) { gc_mark_children(objspace, obj); } shrink_stack_chunk_cache(mstack); } static void gc_marks_body(rb_objspace_t *objspace, int minor_gc) { struct gc_list *list; rb_thread_t *th = GET_THREAD(); /* start marking */ rgengc_report(1, objspace, "gc_marks_body: start (%s)\n", minor_gc ? "minor" : "major"); #if USE_RGENGC objspace->rgengc.parent_object_is_promoted = FALSE; objspace->rgengc.parent_object = Qundef; objspace->rgengc.during_minor_gc = minor_gc; if (objspace->rgengc.during_minor_gc) { objspace->profile.minor_gc_count++; rgengc_rememberset_mark(objspace); } else { objspace->profile.major_gc_count++; rgengc_mark_and_rememberset_clear(objspace); } #endif #if RGENGC_CHECK_MODE > 1 #define MARK_CHECKPOINT do {objspace->rgengc.parent_object = INT2FIX(__LINE__);} while (0) #else #define MARK_CHECKPOINT #endif MARK_CHECKPOINT; SET_STACK_END; th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm); MARK_CHECKPOINT; mark_tbl(objspace, finalizer_table); MARK_CHECKPOINT; mark_current_machine_context(objspace, th); MARK_CHECKPOINT; rb_gc_mark_symbols(); MARK_CHECKPOINT; rb_gc_mark_encodings(); /* mark protected global variables */ MARK_CHECKPOINT; for (list = global_List; list; list = list->next) { rb_gc_mark_maybe(*list->varptr); } MARK_CHECKPOINT; rb_mark_end_proc(); MARK_CHECKPOINT; rb_gc_mark_global_tbl(); MARK_CHECKPOINT; mark_tbl(objspace, rb_class_tbl); /* mark generic instance variables for special constants */ MARK_CHECKPOINT; rb_mark_generic_ivar_tbl(); MARK_CHECKPOINT; rb_gc_mark_parser(); MARK_CHECKPOINT; rb_gc_mark_unlinked_live_method_entries(th->vm); /* marking-loop */ gc_mark_stacked_objects(objspace); #undef MARK_CHECKPOINT /* cleanup */ rgengc_report(1, objspace, "gc_marks_body: end (%s)\n", minor_gc ? "minor" : "major"); } #if RGENGC_CHECK_MODE >= 2 static void gc_oldgen_bitmap2flag(struct heap_slot *slot) { bits_t *oldgen_bits = &slot->oldgen_bits[0]; RVALUE *p = slot->start; RVALUE *pend = p + slot->limit; while (p < pend) { if (MARKED_IN_BITMAP(oldgen_bits, p)) FL_SET2(p, FL_OLDGEN); else FL_UNSET2(p, FL_OLDGEN); p++; } } static bits_t * gc_export_bitmaps(rb_objspace_t *objspace) { bits_t *exported_bitmaps = (bits_t *)malloc(HEAP_BITMAP_SIZE * heap_used * 3); size_t i; if (exported_bitmaps == 0) rb_bug("gc_store_bitmaps: not enough memory to test.\n"); for (i=0; iheap.sorted[i]; memcpy(&exported_bitmaps[(3*i+0)*HEAP_BITMAP_LIMIT], &slot->mark_bits[0], HEAP_BITMAP_SIZE); memcpy(&exported_bitmaps[(3*i+1)*HEAP_BITMAP_LIMIT], &slot->rememberset_bits[0], HEAP_BITMAP_SIZE); memcpy(&exported_bitmaps[(3*i+2)*HEAP_BITMAP_LIMIT], &slot->oldgen_bits[0], HEAP_BITMAP_SIZE); } return exported_bitmaps; } static void gc_restore_exported_bitmaps(rb_objspace_t *objspace, bits_t *exported_bitmaps) { size_t i; for (i=0; iheap.sorted[i]; /* restore bitmaps */ memcpy(&slot->mark_bits[0], &exported_bitmaps[(3*i+0)*HEAP_BITMAP_LIMIT], HEAP_BITMAP_SIZE); memcpy(&slot->rememberset_bits[0], &exported_bitmaps[(3*i+1)*HEAP_BITMAP_LIMIT], HEAP_BITMAP_SIZE); memcpy(&slot->oldgen_bits[0], &exported_bitmaps[(3*i+2)*HEAP_BITMAP_LIMIT], HEAP_BITMAP_SIZE); /* restore oldgen flags */ gc_oldgen_bitmap2flag(slot); } } static void gc_free_exported_bitmaps(rb_objspace_t *objspace, bits_t *exported_bitmaps) { free(exported_bitmaps); } static void gc_save_bitmaps(rb_objspace_t *objspace) { size_t i; for (i=0; iheap.sorted[i]; /* save bitmaps */ memcpy(&slot->saved_mark_bits[0], &slot->mark_bits[0], HEAP_BITMAP_SIZE); memcpy(&slot->saved_rememberset_bits[0], &slot->rememberset_bits[0], HEAP_BITMAP_SIZE); memcpy(&slot->saved_oldgen_bits[0], &slot->oldgen_bits[0], HEAP_BITMAP_SIZE); } objspace->rgengc.have_saved_bitmaps = TRUE; } static void gc_load_bitmaps(rb_objspace_t *objspace) { size_t i; for (i=0; iheap.sorted[i]; /* load bitmaps */ memcpy(&slot->mark_bits[0], &slot->saved_mark_bits[0], HEAP_BITMAP_SIZE); memcpy(&slot->rememberset_bits[0], &slot->saved_rememberset_bits[0], HEAP_BITMAP_SIZE); memcpy(&slot->oldgen_bits[0], &slot->saved_oldgen_bits[0], HEAP_BITMAP_SIZE); gc_oldgen_bitmap2flag(slot); } } static void gc_marks_test(rb_objspace_t *objspace) { bits_t *exported_bitmaps; size_t i; size_t stored_oldgen, stored_shady; /* * Now, we have 2 types bitmaps: * saved_bitmap: before minor marking * exported_bitmap: after minor marking */ if(!monitored_object_table) monitored_object_table = st_init_numtable(); gc_save_bitmaps(objspace); rgengc_report(1, objspace, "gc_marks_test: minor gc\n"); { gc_marks_body(objspace, TRUE); } exported_bitmaps = gc_export_bitmaps(objspace); rgengc_report(1, objspace, "gc_marks_test: test-full-gc\n"); /* run major (full) gc with temporary mark/rememberset */ stored_oldgen = objspace->rgengc.oldgen_object_count; stored_shady = objspace->rgengc.remembered_shady_object_count; { gc_marks_body(objspace, FALSE); } objspace->rgengc.during_minor_gc = TRUE; objspace->rgengc.oldgen_object_count = stored_oldgen; objspace->rgengc.remembered_shady_object_count = stored_shady; /* check */ for (i=0; iheap.sorted[i]->mark_bits; RVALUE *p = objspace->heap.sorted[i]->start; RVALUE *pend = p + objspace->heap.sorted[i]->limit; while (p < pend) { if (MARKED_IN_BITMAP(major_mark_bits, p) && /* should be lived */ !MARKED_IN_BITMAP(minor_mark_bits, p)) { /* not marked -> BUG! */ fprintf(stderr, "gc_marks_test: %p (%s) is living, but not marked && not promoted.\n", p, obj_type_name((VALUE)p)); st_insert(monitored_object_table, (st_data_t)p, 1); } p++; } } if (monitored_object_table->num_entries) { if (RGENGC_CHECK_MODE >= 3) { st_index_t old_num; do { old_num = monitored_object_table->num_entries; monitor_level ++; fprintf(stderr, "!!!! restart major gc for get more information !!!!\n"); gc_load_bitmaps(objspace); gc_marks_body(objspace, FALSE); } while (old_num != monitored_object_table->num_entries); } rb_bug("WriteBarrier Error\n"); } else { gc_restore_exported_bitmaps(objspace, exported_bitmaps); gc_free_exported_bitmaps(objspace, exported_bitmaps); objspace->rgengc.have_saved_bitmaps = FALSE; } } #endif /* RGENGC_CHECK_MODE >= 2 */ static void gc_marks(rb_objspace_t *objspace, int minor_gc) { struct mark_func_data_struct *prev_mark_func_data; gc_prof_mark_timer_start(objspace); { /* setup marking */ prev_mark_func_data = objspace->mark_func_data; objspace->mark_func_data = 0; #if USE_RGENGC if (minor_gc == FALSE) { /* major/full GC */ objspace->rgengc.remembered_shady_object_count = 0; objspace->rgengc.oldgen_object_count = 0; gc_marks_body(objspace, FALSE); /* Do full GC if old/remembered_shady object counts is greater than counts two times at last full GC counts */ objspace->rgengc.remembered_shady_object_limit = objspace->rgengc.remembered_shady_object_count * 2; objspace->rgengc.oldgen_object_limit = objspace->rgengc.oldgen_object_count * 2; } else { /* minor GC */ #if RGENGC_CHECK_MODE >= 2 gc_marks_test(objspace); #else gc_marks_body(objspace, TRUE); #endif } #if RGENGC_PROFILE > 0 if (gc_prof_record(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->oldgen_objects = objspace->rgengc.oldgen_object_count; } #endif #else /* USE_RGENGC */ gc_marks_body(objspace, FALSE); #endif objspace->mark_func_data = prev_mark_func_data; } gc_prof_mark_timer_stop(objspace); } /* RGENGC */ static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...) { if (level <= RGENGC_DEBUG) { char buf[1024]; FILE *out = stderr; va_list args; const char *status = " "; #if USE_RGENGC if (during_gc) { status = objspace->rgengc.during_minor_gc ? "-" : "+"; } #endif va_start(args, fmt); vsnprintf(buf, 1024, fmt, args); va_end(args); fprintf(out, "%s|", status); fputs(buf, out); } } #if USE_RGENGC /* bit operations */ static int rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj) { bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj); return MARKED_IN_BITMAP(bits, obj) ? 1 : 0; } static int rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj) { bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj); if (MARKED_IN_BITMAP(bits, obj)) { return FALSE; } else { MARK_IN_BITMAP(bits, obj); return TRUE; } } /* wb, etc */ /* return FALSE if already remembered */ static int rgengc_remember(rb_objspace_t *objspace, VALUE obj) { rgengc_report(2, objspace, "rgengc_remember: %p (%s, %s) %s\n", (void *)obj, obj_type_name(obj), RVALUE_SHADY(obj) ? "shady" : "non-shady", rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now"); #if RGENGC_CHECK_MODE > 0 { switch (BUILTIN_TYPE(obj)) { case T_NONE: case T_ZOMBIE: rb_bug("rgengc_remember: should not remember %p (%s)\n", (void *)obj, obj_type_name(obj)); default: ; } } #endif if (RGENGC_PROFILE) { if (!rgengc_remembered(objspace, obj)) { if (!RVALUE_SHADY(obj)) { objspace->profile.remembered_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif } else { objspace->profile.remembered_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif } } } return rgengc_remembersetbits_set(objspace, obj); } static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj) { int result = rgengc_remembersetbits_get(objspace, obj); check_bitmap_consistency(obj); rgengc_report(6, objspace, "gc_remembered: %p (%s) => %d\n", (void *)obj, obj_type_name(obj), result); return result; } static void rgengc_rememberset_mark(rb_objspace_t *objspace) { size_t i, j; RVALUE *p, *offset; bits_t *bits, bitset; #if RGENGC_PROFILE > 0 size_t shady_object_count = 0, clear_count = 0; #endif for (i=0; iheap.sorted[i]->start; bits = GET_HEAP_REMEMBERSET_BITS(p); offset = p - NUM_IN_SLOT(p); for (j=0; j < HEAP_BITMAP_LIMIT; j++) { if (bits[j]) { p = offset + j * BITS_BITLENGTH; bitset = bits[j]; do { if (bitset & 1) { rgengc_report(2, objspace, "rgengc_rememberset_mark: mark %p (%s)\n", p, obj_type_name((VALUE)p)); gc_mark_ptr(objspace, (VALUE)p); gc_mark_children(objspace, (VALUE) p); if (!RVALUE_SHADY(p)) { rgengc_report(2, objspace, "rgengc_rememberset_mark: clear %p (%s)\n", p, obj_type_name((VALUE)p)); CLEAR_IN_BITMAP(bits, p); #if RGENGC_PROFILE > 0 clear_count++; #endif } else { #if RGENGC_PROFILE > 0 shady_object_count++; #endif } } p++; bitset >>= 1; } while (bitset); } } } rgengc_report(2, objspace, "rgengc_rememberset_mark: finished"); #if RGENGC_PROFILE > 0 rgengc_report(2, objspace, "rgengc_rememberset_mark: clear_count: %"PRIdSIZE", shady_object_count: %"PRIdSIZE"\n", clear_count, shady_object_count); if (gc_prof_record(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->remembered_normal_objects = clear_count; record->remembered_shady_objects = shady_object_count; } #endif } static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace) { size_t i; for (i=0; iheap.sorted[i]; memset(&slot->mark_bits[0], 0, HEAP_BITMAP_SIZE); memset(&slot->rememberset_bits[0], 0, HEAP_BITMAP_SIZE); } } /* RGENGC: APIs */ void rb_gc_writebarrier(VALUE a, VALUE b) { rb_objspace_t *objspace = &rb_objspace; int type; if (RGENGC_CHECK_MODE) { if (!RVALUE_PROMOTED(a)) rb_bug("rb_gc_wb: referer object %p (%s) is not promoted.\n", (void *)a, obj_type_name(a)); if (RVALUE_PROMOTED(b)) rb_bug("rb_gc_wb: refered object %p (%s) is promoted.\n", (void *)b, obj_type_name(b)); } if (!rgengc_remembered(objspace, a)) { type = BUILTIN_TYPE(a); /* TODO: 2 << 16 is just a magic number. */ if ((type == T_ARRAY && RARRAY_LEN(a) >= 2 << 16) || (type == T_HASH && RHASH_SIZE(a) >= 2 << 16)) { if (!rgengc_remembered(objspace, b)) { rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n", (void *)a, obj_type_name(a), (void *)b, obj_type_name(b)); rgengc_remember(objspace, b); } } else { rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n", (void *)a, obj_type_name(a), (void *)b, obj_type_name(b)); rgengc_remember(objspace, a); } } } void rb_gc_writebarrier_unprotect_promoted(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; if (RGENGC_CHECK_MODE) { if (!RVALUE_PROMOTED(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on non-promoted object"); if (!RVALUE_SHADY(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on non-shady object"); } rgengc_report(2, objspace, "rb_gc_writebarrier_unprotect_promoted: %p (%s)%s\n", (void *)obj, obj_type_name(obj), rgengc_remembered(objspace, obj) ? " (already remembered)" : ""); RVALUE_DEMOTE(obj); rgengc_remember(objspace, obj); objspace->rgengc.remembered_shady_object_count++; #if RGENGC_PROFILE objspace->profile.shade_operation_count++; #if RGENGC_PROFILE >= 2 objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++; #endif /* RGENGC_PROFILE >= 2 */ #endif } void rb_gc_writebarrier_remember_promoted(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; rgengc_remember(objspace, obj); } static st_table *rgengc_unprotect_logging_table; static int rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val) { fprintf(stderr, "%s\t%d\n", (char *)key, (int)val); return ST_CONTINUE; } static void rgengc_unprotect_logging_exit_func(void) { st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0); } void rb_gc_unprotect_logging(void *objptr, const char *filename, int line) { VALUE obj = (VALUE)objptr; if (rgengc_unprotect_logging_table == 0) { rgengc_unprotect_logging_table = st_init_strtable(); atexit(rgengc_unprotect_logging_exit_func); } if (OBJ_WB_PROTECTED(obj)) { char buff[0x100]; st_data_t cnt = 1; char *ptr = buff; snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_type_name(obj), filename, line); if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) { cnt++; } else { ptr = (char *)malloc(strlen(buff) + 1); strcpy(ptr, buff); } st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt); } } #endif /* USE_RGENGC */ /* RGENGC analysis information */ VALUE rb_obj_rgengc_writebarrier_protected_p(VALUE obj) { return OBJ_WB_PROTECTED(obj) ? Qtrue : Qfalse; } VALUE rb_obj_rgengc_promoted_p(VALUE obj) { return OBJ_PROMOTED(obj) ? Qtrue : Qfalse; } /* GC */ void rb_gc_force_recycle(VALUE p) { rb_objspace_t *objspace = &rb_objspace; #if USE_RGENGC CLEAR_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(p), p); CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(p), p); if (!is_before_sweep(p)) { CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(p), p); } #endif objspace->total_freed_object_num++; heap_slot_add_freeobj(objspace, GET_HEAP_SLOT(p), p); if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) { objspace->heap.free_num++; } } void rb_gc_register_mark_object(VALUE obj) { VALUE ary = GET_THREAD()->vm->mark_object_ary; rb_ary_push(ary, obj); } void rb_gc_register_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = global_List; tmp->varptr = addr; global_List = tmp; } void rb_gc_unregister_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp = global_List; if (tmp->varptr == addr) { global_List = tmp->next; xfree(tmp); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; xfree(t); break; } tmp = tmp->next; } } void rb_global_variable(VALUE *var) { rb_gc_register_address(var); } #define GC_NOTIFY 0 static int garbage_collect_body(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (ruby_gc_stress && !ruby_disable_gc_stress) { int flag = FIXNUM_P(ruby_gc_stress) ? FIX2INT(ruby_gc_stress) : 0; if (flag & 0x01) reason &= ~GPR_FLAG_MAJOR_MASK; else reason |= GPR_FLAG_MAJOR_BY_STRESS; immediate_sweep = !(flag & 0x02); } #if USE_RGENGC else { if (full_mark) reason |= GPR_FLAG_MAJOR_BY_NOFREE; if (objspace->rgengc.need_major_gc) { objspace->rgengc.need_major_gc = FALSE; reason |= GPR_FLAG_MAJOR_BY_RESCAN; } if (objspace->rgengc.remembered_shady_object_count > objspace->rgengc.remembered_shady_object_limit) reason |= GPR_FLAG_MAJOR_BY_SHADY; if (objspace->rgengc.oldgen_object_count > objspace->rgengc.oldgen_object_limit) reason |= GPR_FLAG_MAJOR_BY_OLDGEN; if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) { immediate_sweep = TRUE; } } #endif if(immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP; if (GC_NOTIFY) fprintf(stderr, "start garbage_collect(%d, %d, %d)\n", full_mark, immediate_sweep, reason); objspace->count++; gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */); objspace->profile.total_allocated_object_num_at_gc_start = objspace->total_allocated_object_num; objspace->profile.heap_used_at_gc_start = heap_used; gc_prof_setup_new_record(objspace, reason); gc_prof_timer_start(objspace); { assert(during_gc > 0); gc_marks(objspace, (reason & GPR_FLAG_MAJOR_MASK) ? FALSE : TRUE); gc_sweep(objspace, immediate_sweep); during_gc = 0; } gc_prof_timer_stop(objspace); if (GC_NOTIFY) fprintf(stderr, "end garbage_collect()\n"); return TRUE; } static int ready_to_gc(rb_objspace_t *objspace) { if (dont_gc || during_gc) { if (!objspace->freelist && !objspace->heap.free_slots) { if (!heap_increment(objspace)) { heap_set_increment(objspace); heap_increment(objspace); } } return FALSE; } return TRUE; } static int garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (!heap_slots) { during_gc = 0; return FALSE; } if (!ready_to_gc(objspace)) { during_gc = 0; return TRUE; } #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time(); #endif gc_rest_sweep(objspace); #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time; #endif during_gc++; return garbage_collect_body(objspace, full_mark, immediate_sweep, reason); } struct objspace_and_reason { rb_objspace_t *objspace; int reason; int full_mark; int immediate_sweep; }; static void * gc_with_gvl(void *ptr) { struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr; return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_sweep, oar->reason); } static int garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (dont_gc) return TRUE; if (ruby_thread_has_gvl_p()) { return garbage_collect(objspace, full_mark, immediate_sweep, reason); } else { if (ruby_native_thread_p()) { struct objspace_and_reason oar; oar.objspace = objspace; oar.reason = reason; oar.full_mark = full_mark; oar.immediate_sweep = immediate_sweep; return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } int rb_garbage_collect(void) { return garbage_collect(&rb_objspace, TRUE, TRUE, GPR_FLAG_CAPI); } #undef Init_stack void Init_stack(volatile VALUE *addr) { ruby_init_stack(addr); } /* * call-seq: * GC.start -> nil * gc.garbage_collect -> nil * ObjectSpace.garbage_collect -> nil * * Initiates garbage collection, unless manually disabled. * */ VALUE rb_gc_start(void) { rb_gc(); return Qnil; } void rb_gc(void) { rb_objspace_t *objspace = &rb_objspace; garbage_collect(objspace, TRUE, TRUE, GPR_FLAG_METHOD); if (!finalizing) finalize_deferred(objspace); free_unused_slots(objspace); } int rb_during_gc(void) { rb_objspace_t *objspace = &rb_objspace; return during_gc; } #if RGENGC_PROFILE >= 2 static void gc_count_add_each_types(VALUE hash, const char *name, const size_t *types) { VALUE result = rb_hash_new(); int i; for (i=0; i Integer * * The number of times GC occurred. * * It returns the number of times GC occurred since the process started. * */ static VALUE gc_count(VALUE self) { return SIZET2NUM(rb_gc_count()); } /* * call-seq: * GC.stat -> Hash * * Returns a Hash containing information about the GC. * * The hash includes information about internal statistics about GC such as: * * { * :count=>0, * :heap_used=>12, * :heap_length=>12, * :heap_increment=>0, * :heap_live_num=>7539, * :heap_free_num=>88, * :heap_final_num=>0, * :total_allocated_object=>7630, * :total_freed_object=>88 * } * * The contents of the hash are implementation specific and may be changed in * the future. * * This method is only expected to work on C Ruby. * */ static VALUE gc_stat(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; VALUE hash; static VALUE sym_count; static VALUE sym_heap_used, sym_heap_length, sym_heap_increment; static VALUE sym_heap_live_num, sym_heap_free_num, sym_heap_final_num; static VALUE sym_total_allocated_object, sym_total_freed_object; #if USE_RGENGC static VALUE sym_minor_gc_count, sym_major_gc_count; #if RGENGC_PROFILE static VALUE sym_generated_normal_object_count, sym_generated_shady_object_count; static VALUE sym_shade_operation_count, sym_promote_operation_count; static VALUE sym_remembered_normal_object_count, sym_remembered_shady_object_count; #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ if (sym_count == 0) { #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(count); S(heap_used); S(heap_length); S(heap_increment); S(heap_live_num); S(heap_free_num); S(heap_final_num); S(total_allocated_object); S(total_freed_object); #if USE_RGENGC S(minor_gc_count); S(major_gc_count); #if RGENGC_PROFILE S(generated_normal_object_count); S(generated_shady_object_count); S(shade_operation_count); S(promote_operation_count); S(remembered_normal_object_count); S(remembered_shady_object_count); #endif /* USE_RGENGC */ #endif /* RGENGC_PROFILE */ #undef S } if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (!RB_TYPE_P(hash, T_HASH)) { rb_raise(rb_eTypeError, "non-hash given"); } } if (hash == Qnil) { hash = rb_hash_new(); } rb_hash_aset(hash, sym_count, SIZET2NUM(objspace->count)); /* implementation dependent counters */ rb_hash_aset(hash, sym_heap_used, SIZET2NUM(objspace->heap.used)); rb_hash_aset(hash, sym_heap_length, SIZET2NUM(objspace->heap.length)); rb_hash_aset(hash, sym_heap_increment, SIZET2NUM(objspace->heap.increment)); rb_hash_aset(hash, sym_heap_live_num, SIZET2NUM(objspace_live_num(objspace))); rb_hash_aset(hash, sym_heap_free_num, SIZET2NUM(objspace->heap.free_num)); rb_hash_aset(hash, sym_heap_final_num, SIZET2NUM(objspace->heap.final_num)); rb_hash_aset(hash, sym_total_allocated_object, SIZET2NUM(objspace->total_allocated_object_num)); rb_hash_aset(hash, sym_total_freed_object, SIZET2NUM(objspace->total_freed_object_num)); #if USE_RGENGC rb_hash_aset(hash, sym_minor_gc_count, SIZET2NUM(objspace->profile.minor_gc_count)); rb_hash_aset(hash, sym_major_gc_count, SIZET2NUM(objspace->profile.major_gc_count)); #if RGENGC_PROFILE rb_hash_aset(hash, sym_generated_normal_object_count, SIZET2NUM(objspace->profile.generated_normal_object_count)); rb_hash_aset(hash, sym_generated_shady_object_count, SIZET2NUM(objspace->profile.generated_shady_object_count)); rb_hash_aset(hash, sym_shade_operation_count, SIZET2NUM(objspace->profile.shade_operation_count)); rb_hash_aset(hash, sym_promote_operation_count, SIZET2NUM(objspace->profile.promote_operation_count)); rb_hash_aset(hash, sym_remembered_normal_object_count, SIZET2NUM(objspace->profile.remembered_normal_object_count)); rb_hash_aset(hash, sym_remembered_shady_object_count, SIZET2NUM(objspace->profile.remembered_shady_object_count)); #if RGENGC_PROFILE >= 2 { gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types); gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types); gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types); gc_count_add_each_types(hash, "promote_operation_count_types", objspace->profile.promote_operation_count_types); gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types); gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types); } #endif #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ return hash; } /* * call-seq: * GC.stress -> fixnum, true or false * * Returns current status of GC stress mode. */ static VALUE gc_stress_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return ruby_gc_stress; } /* * call-seq: * GC.stress = bool -> bool * * Updates the GC stress mode. * * When stress mode is enabled, the GC is invoked at every GC opportunity: * all memory and object allocations. * * Enabling stress mode will degrade performance, it is only for debugging. */ static VALUE gc_stress_set(VALUE self, VALUE flag) { rb_objspace_t *objspace = &rb_objspace; rb_secure(2); ruby_gc_stress = FIXNUM_P(flag) ? flag : (RTEST(flag) ? Qtrue : Qfalse); return flag; } /* * call-seq: * GC.enable -> true or false * * Enables garbage collection, returning +true+ if garbage * collection was previously disabled. * * GC.disable #=> false * GC.enable #=> true * GC.enable #=> false * */ VALUE rb_gc_enable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; dont_gc = FALSE; return old ? Qtrue : Qfalse; } /* * call-seq: * GC.disable -> true or false * * Disables garbage collection, returning +true+ if garbage * collection was already disabled. * * GC.disable #=> false * GC.disable #=> true * */ VALUE rb_gc_disable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; dont_gc = TRUE; return old ? Qtrue : Qfalse; } void rb_gc_set_params(void) { char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr, *growth_factor_ptr; if (rb_safe_level() > 0) return; malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT"); if (malloc_limit_ptr != NULL) { int malloc_limit_i = atoi(malloc_limit_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "malloc_limit=%d (%d)\n", malloc_limit_i, initial_malloc_limit); if (malloc_limit_i > 0) { initial_malloc_limit = malloc_limit_i; } } heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS"); if (heap_min_slots_ptr != NULL) { int heap_min_slots_i = atoi(heap_min_slots_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "heap_min_slots=%d (%d)\n", heap_min_slots_i, initial_heap_min_slots); if (heap_min_slots_i > 0) { size_t min_size; rb_objspace_t *objspace = &rb_objspace; initial_heap_min_slots = heap_min_slots_i; min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT; if (min_size > heap_used) { heap_add_slots(objspace, min_size - heap_used); } } } growth_factor_ptr = getenv("RUBY_HEAP_SLOTS_GROWTH_FACTOR"); if (growth_factor_ptr != NULL) { double growth_factor_f = strtod(growth_factor_ptr, NULL); if (RTEST(ruby_verbose)) fprintf(stderr, "heap_slots_growth_factor=%f (%f)\n", growth_factor_f, initial_growth_factor); if (growth_factor_f > 1) { initial_growth_factor = growth_factor_f; } } free_min_ptr = getenv("RUBY_FREE_MIN"); if (free_min_ptr != NULL) { int free_min_i = atoi(free_min_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min); if (free_min_i > 0) { initial_free_min = free_min_i; } } } void rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data) { rb_objspace_t *objspace = &rb_objspace; if (is_markable_object(objspace, obj)) { struct mark_func_data_struct mfd; mfd.mark_func = func; mfd.data = data; objspace->mark_func_data = &mfd; gc_mark_children(objspace, obj); objspace->mark_func_data = 0; } } /* ------------------------ Extended allocator ------------------------ */ static void vm_xfree(rb_objspace_t *objspace, void *ptr); static void * negative_size_allocation_error_with_gvl(void *ptr) { rb_raise(rb_eNoMemError, "%s", (const char *)ptr); return 0; /* should not be reached */ } static void negative_size_allocation_error(const char *msg) { if (ruby_thread_has_gvl_p()) { rb_raise(rb_eNoMemError, "%s", msg); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg); } else { fprintf(stderr, "[FATAL] %s\n", msg); exit(EXIT_FAILURE); } } } static void * ruby_memerror_body(void *dummy) { rb_memerror(); return 0; } static void ruby_memerror(void) { if (ruby_thread_has_gvl_p()) { rb_memerror(); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(ruby_memerror_body, 0); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } void rb_memerror(void) { rb_thread_t *th = GET_THREAD(); if (!nomem_error || (rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } if (rb_thread_raised_p(th, RAISED_NOMEMORY)) { rb_thread_raised_clear(th); GET_THREAD()->errinfo = nomem_error; JUMP_TAG(TAG_RAISE); } rb_thread_raised_set(th, RAISED_NOMEMORY); rb_exc_raise(nomem_error); } static void * aligned_malloc(size_t alignment, size_t size) { void *res; #if defined __MINGW32__ res = __mingw_aligned_malloc(size, alignment); #elif defined _WIN32 && !defined __CYGWIN__ void *_aligned_malloc(size_t, size_t); res = _aligned_malloc(size, alignment); #elif defined(HAVE_POSIX_MEMALIGN) if (posix_memalign(&res, alignment, size) == 0) { return res; } else { return NULL; } #elif defined(HAVE_MEMALIGN) res = memalign(alignment, size); #else char* aligned; res = malloc(alignment + size + sizeof(void*)); aligned = (char*)res + alignment + sizeof(void*); aligned -= ((VALUE)aligned & (alignment - 1)); ((void**)aligned)[-1] = res; res = (void*)aligned; #endif #if defined(_DEBUG) || defined(GC_DEBUG) /* alignment must be a power of 2 */ assert((alignment - 1) & alignment == 0); assert(alignment % sizeof(void*) == 0); #endif return res; } static void aligned_free(void *ptr) { #if defined __MINGW32__ __mingw_aligned_free(ptr); #elif defined _WIN32 && !defined __CYGWIN__ _aligned_free(ptr); #elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN) free(ptr); #else free(((void**)ptr)[-1]); #endif } static inline size_t vm_malloc_prepare(rb_objspace_t *objspace, size_t size) { if ((ssize_t)size < 0) { negative_size_allocation_error("negative allocation size (or too big)"); } if (size == 0) size = 1; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif ATOMIC_SIZE_ADD(malloc_increase, size); if ((ruby_gc_stress && !ruby_disable_gc_stress) || malloc_increase > malloc_limit) { garbage_collect_with_gvl(objspace, 0, 0, GPR_FLAG_MALLOC); } return size; } static inline void * vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size) { #if CALC_EXACT_MALLOC_SIZE ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size); ATOMIC_SIZE_INC(objspace->malloc_params.allocations); ((size_t *)mem)[0] = size; mem = (size_t *)mem + 1; #endif return mem; } #define TRY_WITH_GC(alloc) do { \ if (!(alloc) && \ (!garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC) || /* full mark && immediate sweep */ \ !(alloc))) { \ ruby_memerror(); \ } \ } while (0) static void * vm_xmalloc(rb_objspace_t *objspace, size_t size) { void *mem; size = vm_malloc_prepare(objspace, size); TRY_WITH_GC(mem = malloc(size)); return vm_malloc_fixup(objspace, mem, size); } static void * vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size) { void *mem; #if CALC_EXACT_MALLOC_SIZE size_t oldsize; #endif if ((ssize_t)size < 0) { negative_size_allocation_error("negative re-allocation size"); } if (!ptr) return vm_xmalloc(objspace, size); /* * The behavior of realloc(ptr, 0) is implementation defined. * Therefore we don't use realloc(ptr, 0) for portability reason. * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm */ if (size == 0) { vm_xfree(objspace, ptr); return 0; } if (ruby_gc_stress && !ruby_disable_gc_stress) garbage_collect_with_gvl(objspace, 0, 0, GPR_FLAG_MALLOC); #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); ptr = (size_t *)ptr - 1; oldsize = ((size_t *)ptr)[0]; #endif mem = realloc(ptr, size); if (!mem) { if (garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC)) { mem = realloc(ptr, size); } if (!mem) { ruby_memerror(); } } ATOMIC_SIZE_ADD(malloc_increase, size); #if CALC_EXACT_MALLOC_SIZE ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size - oldsize); ((size_t *)mem)[0] = size; mem = (size_t *)mem + 1; #endif return mem; } static void vm_xfree(rb_objspace_t *objspace, void *ptr) { #if CALC_EXACT_MALLOC_SIZE size_t size; ptr = ((size_t *)ptr) - 1; size = ((size_t*)ptr)[0]; if (size) { ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, size); ATOMIC_SIZE_DEC(objspace->malloc_params.allocations); } #endif free(ptr); } void * ruby_xmalloc(size_t size) { return vm_xmalloc(&rb_objspace, size); } static inline size_t xmalloc2_size(size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "malloc: possible integer overflow"); } return len; } void * ruby_xmalloc2(size_t n, size_t size) { return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size)); } static void * vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize) { void *mem; size_t size; size = xmalloc2_size(count, elsize); size = vm_malloc_prepare(objspace, size); TRY_WITH_GC(mem = calloc(1, size)); return vm_malloc_fixup(objspace, mem, size); } void * ruby_xcalloc(size_t n, size_t size) { return vm_xcalloc(&rb_objspace, n, size); } void * ruby_xrealloc(void *ptr, size_t size) { return vm_xrealloc(&rb_objspace, ptr, size); } void * ruby_xrealloc2(void *ptr, size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "realloc: possible integer overflow"); } return ruby_xrealloc(ptr, len); } void ruby_xfree(void *x) { if (x) vm_xfree(&rb_objspace, x); } /* Mimic ruby_xmalloc, but need not rb_objspace. * should return pointer suitable for ruby_xfree */ void * ruby_mimmalloc(size_t size) { void *mem; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif mem = malloc(size); #if CALC_EXACT_MALLOC_SIZE /* set 0 for consistency of allocated_size/allocations */ ((size_t *)mem)[0] = 0; mem = (size_t *)mem + 1; #endif return mem; } #if CALC_EXACT_MALLOC_SIZE /* * call-seq: * GC.malloc_allocated_size -> Integer * * Returns the size of memory allocated by malloc(). * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocated_size(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocated_size); } /* * call-seq: * GC.malloc_allocations -> Integer * * Returns the number of malloc() allocations. * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocations(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocations); } #endif /* ------------------------------ WeakMap ------------------------------ */ struct weakmap { st_table *obj2wmap; /* obj -> [ref,...] */ st_table *wmap2obj; /* ref -> obj */ VALUE final; }; static int wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg) { gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val); return ST_CONTINUE; } static void wmap_mark(void *ptr) { struct weakmap *w = ptr; if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace); rb_gc_mark(w->final); } static int wmap_free_map(st_data_t key, st_data_t val, st_data_t arg) { rb_ary_resize((VALUE)val, 0); return ST_CONTINUE; } static void wmap_free(void *ptr) { struct weakmap *w = ptr; st_foreach(w->obj2wmap, wmap_free_map, 0); st_free_table(w->obj2wmap); st_free_table(w->wmap2obj); } size_t rb_ary_memsize(VALUE ary); static int wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg) { *(size_t *)arg += rb_ary_memsize((VALUE)val); return ST_CONTINUE; } static size_t wmap_memsize(const void *ptr) { size_t size; const struct weakmap *w = ptr; if (!w) return 0; size = sizeof(*w); size += st_memsize(w->obj2wmap); size += st_memsize(w->wmap2obj); st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size); return size; } static const rb_data_type_t weakmap_type = { "weakmap", { wmap_mark, wmap_free, wmap_memsize, } }; static VALUE wmap_allocate(VALUE klass) { struct weakmap *w; VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w); w->obj2wmap = st_init_numtable(); w->wmap2obj = st_init_numtable(); w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize"))); return obj; } static int wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) { VALUE wmap, ary; if (!existing) return ST_STOP; wmap = (VALUE)arg, ary = (VALUE)*value; rb_ary_delete_same(ary, wmap); if (!RARRAY_LEN(ary)) return ST_DELETE; return ST_CONTINUE; } static VALUE wmap_finalize(VALUE self, VALUE objid) { st_data_t orig, wmap, data; VALUE obj, rids; long i; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); /* Get reference from object id. */ obj = obj_id_to_ref(objid); /* obj is original referenced object and/or weak reference. */ orig = (st_data_t)obj; if (st_delete(w->obj2wmap, &orig, &data)) { rids = (VALUE)data; for (i = 0; i < RARRAY_LEN(rids); ++i) { wmap = (st_data_t)RARRAY_AREF(rids, i); st_delete(w->wmap2obj, &wmap, NULL); } } wmap = (st_data_t)obj; if (st_delete(w->wmap2obj, &wmap, &orig)) { wmap = (st_data_t)obj; st_update(w->obj2wmap, orig, wmap_final_func, wmap); } return self; } /* Creates a weak reference from the given key to the given value */ static VALUE wmap_aset(VALUE self, VALUE wmap, VALUE orig) { st_data_t data; VALUE rids; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); rb_define_final(orig, w->final); rb_define_final(wmap, w->final); if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) { rids = (VALUE)data; } else { rids = rb_ary_tmp_new(1); st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids); } rb_ary_push(rids, wmap); st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig); return nonspecial_obj_id(orig); } /* Retrieves a weakly referenced object with the given key */ static VALUE wmap_aref(VALUE self, VALUE wmap) { st_data_t data; VALUE obj; struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil; obj = (VALUE)data; if (!is_id_value(objspace, obj)) return Qnil; if (!is_live_object(objspace, obj)) return Qnil; return obj; } /* ------------------------------ GC profiler ------------------------------ */ #define GC_PROFILE_RECORD_DEFAULT_SIZE 100 static double getrusage_time(void) { #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) struct timespec ts; if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) { return ts.tv_sec + ts.tv_nsec * 1e-9; } return 0.0; #elif defined RUSAGE_SELF struct rusage usage; struct timeval time; getrusage(RUSAGE_SELF, &usage); time = usage.ru_utime; return time.tv_sec + time.tv_usec * 1e-6; #elif defined _WIN32 FILETIME creation_time, exit_time, kernel_time, user_time; ULARGE_INTEGER ui; LONG_LONG q; double t; if (GetProcessTimes(GetCurrentProcess(), &creation_time, &exit_time, &kernel_time, &user_time) == 0) { return 0.0; } memcpy(&ui, &user_time, sizeof(FILETIME)); q = ui.QuadPart / 10L; t = (DWORD)(q % 1000000L) * 1e-6; q /= 1000000L; #ifdef __GNUC__ t += q; #else t += (double)(DWORD)(q >> 16) * (1 << 16); t += (DWORD)q & ~(~0 << 16); #endif return t; #else return 0.0; #endif } static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason) { if (objspace->profile.run) { size_t index = objspace->profile.next_index; gc_profile_record *record; /* create new record */ objspace->profile.next_index++; if (!objspace->profile.records) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE; objspace->profile.records = malloc(sizeof(gc_profile_record) * objspace->profile.size); } if (index >= objspace->profile.size) { objspace->profile.size += 1000; objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size); } if (!objspace->profile.records) { rb_bug("gc_profile malloc or realloc miss"); } record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1]; MEMZERO(record, gc_profile_record, 1); /* setup before-GC parameter */ record->flags = reason | ((ruby_gc_stress && !ruby_disable_gc_stress) ? GPR_FLAG_STRESS : 0); #if CALC_EXACT_MALLOC_SIZE record->allocated_size = malloc_allocated_size; #endif } } static inline void gc_prof_timer_start(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); #if GC_PROFILE_MORE_DETAIL record->prepare_time = objspace->profile.prepare_time; #endif record->gc_time = 0; record->gc_invoke_time = getrusage_time(); } } static double elapsed_time_from(double time) { double now = getrusage_time(); if (now > time) { return now - time; } else { return 0; } } static inline void gc_prof_timer_stop(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->gc_time = elapsed_time_from(record->gc_invoke_time); record->gc_invoke_time -= objspace->profile.invoke_time; } } static inline void gc_prof_mark_timer_start(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) { RUBY_DTRACE_GC_MARK_BEGIN(); } #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_prof_record(objspace)->gc_mark_time = getrusage_time(); } #endif } static inline void gc_prof_mark_timer_stop(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_MARK_END_ENABLED()) { RUBY_DTRACE_GC_MARK_END(); } #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->gc_mark_time = elapsed_time_from(record->gc_mark_time); } #endif } static inline void gc_prof_sweep_timer_start(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) { RUBY_DTRACE_GC_SWEEP_BEGIN(); } if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) { objspace->profile.gc_sweep_start_time = getrusage_time(); } } } static inline void gc_prof_sweep_timer_stop(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) { RUBY_DTRACE_GC_SWEEP_END(); } if (objspace->profile.run) { double sweep_time; gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); /* need to accumulate GC time for lazy sweep after gc() */ record->gc_time += sweep_time; } else if (GC_PROFILE_MORE_DETAIL) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); } #if GC_PROFILE_MORE_DETAIL record->gc_sweep_time += sweep_time; if (deferred_final_list) record->flags |= GPR_FLAG_HAVE_FINALIZE; #endif } } static inline void gc_prof_set_malloc_info(rb_objspace_t *objspace) { #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->allocate_increase = malloc_increase + malloc_increase2; record->allocate_limit = malloc_limit; } #endif } static inline void gc_prof_set_heap_info(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); size_t live = objspace->profile.total_allocated_object_num_at_gc_start - objspace->total_freed_object_num; size_t total = objspace->profile.heap_used_at_gc_start * HEAP_OBJ_LIMIT; #if GC_PROFILE_MORE_DETAIL record->heap_use_slots = objspace->profile.heap_used_at_gc_start; record->heap_live_objects = live; record->heap_free_objects = total - live; #endif record->heap_total_objects = total; record->heap_use_size = live * sizeof(RVALUE); record->heap_total_size = total * sizeof(RVALUE); } } /* * call-seq: * GC::Profiler.clear -> nil * * Clears the GC profiler data. * */ static VALUE gc_profile_clear(void) { rb_objspace_t *objspace = &rb_objspace; if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2; objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size); if (!objspace->profile.records) { rb_memerror(); } } MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size); objspace->profile.next_index = 0; objspace->profile.current_record = 0; return Qnil; } static VALUE gc_profile_flags(int flags) { VALUE result = rb_ary_new(); rb_ary_push(result, ID2SYM(rb_intern(flags & GPR_FLAG_MAJOR_MASK ? "major_gc" : "minor_gc"))); if (flags & GPR_FLAG_HAVE_FINALIZE) rb_ary_push(result, ID2SYM(rb_intern("HAVE_FINALIZE"))); if (flags & GPR_FLAG_NEWOBJ) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_NEWOBJ"))); if (flags & GPR_FLAG_MALLOC) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_MALLOC"))); if (flags & GPR_FLAG_METHOD) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_METHOD"))); if (flags & GPR_FLAG_STRESS) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_STRESS"))); return result; } /* * call-seq: * GC::Profiler.raw_data -> [Hash, ...] * * Returns an Array of individual raw profile data Hashes ordered * from earliest to latest by +:GC_INVOKE_TIME+. * * For example: * * [ * { * :GC_TIME=>1.3000000000000858e-05, * :GC_INVOKE_TIME=>0.010634999999999999, * :HEAP_USE_SIZE=>289640, * :HEAP_TOTAL_SIZE=>588960, * :HEAP_TOTAL_OBJECTS=>14724, * :GC_IS_MARKED=>false * }, * # ... * ] * * The keys mean: * * +:GC_TIME+:: * Time elapsed in seconds for this GC run * +:GC_INVOKE_TIME+:: * Time elapsed in seconds from startup to when the GC was invoked * +:HEAP_USE_SIZE+:: * Total bytes of heap used * +:HEAP_TOTAL_SIZE+:: * Total size of heap in bytes * +:HEAP_TOTAL_OBJECTS+:: * Total number of objects * +:GC_IS_MARKED+:: * Returns +true+ if the GC is in mark phase * * If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access * to the following hash keys: * * +:GC_MARK_TIME+:: * +:GC_SWEEP_TIME+:: * +:ALLOCATE_INCREASE+:: * +:ALLOCATE_LIMIT+:: * +:HEAP_USE_SLOTS+:: * +:HEAP_LIVE_OBJECTS+:: * +:HEAP_FREE_OBJECTS+:: * +:HAVE_FINALIZE+:: * */ static VALUE gc_profile_record_get(void) { VALUE prof; VALUE gc_profile = rb_ary_new(); size_t i; rb_objspace_t *objspace = (&rb_objspace); if (!objspace->profile.run) { return Qnil; } for (i =0; i < objspace->profile.next_index; i++) { gc_profile_record *record = &objspace->profile.records[i]; prof = rb_hash_new(); rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_profile_flags(record->flags)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue); #if GC_PROFILE_MORE_DETAIL rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(record->heap_use_slots)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse); #endif #if RGENGC_PROFILE > 0 rb_hash_aset(prof, ID2SYM(rb_intern("OLDGEN_OBJECTS")), SIZET2NUM(record->oldgen_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects)); #endif rb_ary_push(gc_profile, prof); } return gc_profile; } static void gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE)) { rb_objspace_t *objspace = &rb_objspace; size_t count = objspace->profile.next_index; if (objspace->profile.run && count /* > 1 */) { size_t i; const gc_profile_record *record; append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->count)); append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n")); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n", i+1, record->gc_invoke_time, record->heap_use_size, record->heap_total_size, record->heap_total_objects, record->gc_time*1000)); } #if GC_PROFILE_MORE_DETAIL append(out, rb_str_new_cstr("\n\n" \ "More detail.\n" \ "Prepare Time = Previously GC's rest sweep time\n" "Index Flags Allocate Inc. Allocate Limit" #if CALC_EXACT_MALLOC_SIZE " Allocated Size" #endif " Use Slot Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj" #if RGENGC_PROFILE " OldgenObj RemNormObj RemShadObj" #endif "\n")); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIdSIZE" %c/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE #if CALC_EXACT_MALLOC_SIZE " %15"PRIuSIZE #endif " %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #if RGENGC_PROFILE "%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #endif "\n", i+1, "-+O3S567R9abcdef!"[record->flags & GPR_FLAG_MAJOR_MASK], /* Stress,Rescan,Shady,Oldgen,NoFree */ (record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.', (record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" : (record->flags & GPR_FLAG_MALLOC) ? "MALLOC" : (record->flags & GPR_FLAG_METHOD) ? "METHOD" : (record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????", (record->flags & GPR_FLAG_STRESS) ? '!' : ' ', record->allocate_increase, record->allocate_limit, #if CALC_EXACT_MALLOC_SIZE record->allocated_size, #endif record->heap_use_slots, record->gc_mark_time*1000, record->gc_sweep_time*1000, record->prepare_time*1000, record->heap_live_objects, record->heap_free_objects, record->removing_objects, record->empty_objects #if RGENGC_PROFILE , record->oldgen_objects, record->remembered_normal_objects, record->remembered_shady_objects #endif )); } #endif } } /* * call-seq: * GC::Profiler.result -> String * * Returns a profile data report such as: * * GC 1 invokes. * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) * 1 0.012 159240 212940 10647 0.00000000000001530000 */ static VALUE gc_profile_result(void) { VALUE str = rb_str_buf_new(0); gc_profile_dump_on(str, rb_str_buf_append); return str; } /* * call-seq: * GC::Profiler.report * GC::Profiler.report(io) * * Writes the GC::Profiler.result to $stdout or the given IO object. * */ static VALUE gc_profile_report(int argc, VALUE *argv, VALUE self) { VALUE out; if (argc == 0) { out = rb_stdout; } else { rb_scan_args(argc, argv, "01", &out); } gc_profile_dump_on(out, rb_io_write); return Qnil; } /* * call-seq: * GC::Profiler.total_time -> float * * The total time used for garbage collection in seconds */ static VALUE gc_profile_total_time(VALUE self) { double time = 0; rb_objspace_t *objspace = &rb_objspace; if (objspace->profile.run && objspace->profile.next_index > 0) { size_t i; size_t count = objspace->profile.next_index - 1; for (i = 0; i < count; i++) { time += objspace->profile.records[i].gc_time; } } return DBL2NUM(time); } /* * call-seq: * GC::Profiler.enabled? -> true or false * * The current status of GC profile mode. */ static VALUE gc_profile_enable_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return objspace->profile.run ? Qtrue : Qfalse; } /* * call-seq: * GC::Profiler.enable -> nil * * Starts the GC profiler. * */ static VALUE gc_profile_enable(void) { rb_objspace_t *objspace = &rb_objspace; gc_rest_sweep(objspace); objspace->profile.run = TRUE; return Qnil; } /* * call-seq: * GC::Profiler.disable -> nil * * Stops the GC profiler. * */ static VALUE gc_profile_disable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = FALSE; objspace->profile.current_record = 0; return Qnil; } /* ------------------------------ DEBUG ------------------------------ */ static const char * type_name(int type, VALUE obj) { switch (type) { #define TYPE_NAME(t) case (t): return #t; TYPE_NAME(T_NONE); TYPE_NAME(T_OBJECT); TYPE_NAME(T_CLASS); TYPE_NAME(T_MODULE); TYPE_NAME(T_FLOAT); TYPE_NAME(T_STRING); TYPE_NAME(T_REGEXP); TYPE_NAME(T_ARRAY); TYPE_NAME(T_HASH); TYPE_NAME(T_STRUCT); TYPE_NAME(T_BIGNUM); TYPE_NAME(T_FILE); TYPE_NAME(T_MATCH); TYPE_NAME(T_COMPLEX); TYPE_NAME(T_RATIONAL); TYPE_NAME(T_NIL); TYPE_NAME(T_TRUE); TYPE_NAME(T_FALSE); TYPE_NAME(T_SYMBOL); TYPE_NAME(T_FIXNUM); TYPE_NAME(T_UNDEF); TYPE_NAME(T_NODE); TYPE_NAME(T_ICLASS); TYPE_NAME(T_ZOMBIE); case T_DATA: if (obj && rb_objspace_data_type_name(obj)) { return rb_objspace_data_type_name(obj); } return "T_DATA"; #undef TYPE_NAME } return "unknown"; } static const char * obj_type_name(VALUE obj) { return type_name(TYPE(obj), obj); } #ifdef GC_DEBUG void rb_gcdebug_print_obj_condition(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; if (is_pointer_to_heap(objspace, (void *)obj)) { fprintf(stderr, "pointer to heap?: true\n"); } else { fprintf(stderr, "pointer to heap?: false\n"); return; } fprintf(stderr, "marked?: %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false"); if (is_lazy_sweeping(objspace)) { fprintf(stderr, "lazy sweeping?: true\n"); fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet"); } else { fprintf(stderr, "lazy sweeping?: false\n"); } } static VALUE gcdebug_sential(VALUE obj, VALUE name) { fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj); return Qnil; } void rb_gcdebug_sentinel(VALUE obj, const char *name) { rb_define_final(obj, rb_proc_new(gcdebug_sential, (VALUE)name)); } #endif /* GC_DEBUG */ /* * Document-module: ObjectSpace * * The ObjectSpace module contains a number of routines * that interact with the garbage collection facility and allow you to * traverse all living objects with an iterator. * * ObjectSpace also provides support for object finalizers, procs that will be * called when a specific object is about to be destroyed by garbage * collection. * * a = "A" * b = "B" * * ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) * ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) * * _produces:_ * * Finalizer two on 537763470 * Finalizer one on 537763480 */ /* * Document-class: ObjectSpace::WeakMap * * An ObjectSpace::WeakMap object holds references to * any objects, but those objects can get garbage collected. * * This class is mostly used internally by WeakRef, please use * +lib/weakref.rb+ for the public interface. */ /* Document-class: GC::Profiler * * The GC profiler provides access to information on GC runs including time, * length and object space size. * * Example: * * GC::Profiler.enable * * require 'rdoc/rdoc' * * GC::Profiler.report * * GC::Profiler.disable * * See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations */ /* * The GC module provides an interface to Ruby's mark and * sweep garbage collection mechanism. * * Some of the underlying methods are also available via the ObjectSpace * module. * * You may obtain information about the operation of the GC through * GC::Profiler. */ void Init_GC(void) { VALUE rb_mObjSpace; VALUE rb_mProfiler; rb_mGC = rb_define_module("GC"); rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0); rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0); rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0); rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0); rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1); rb_define_singleton_method(rb_mGC, "count", gc_count, 0); rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1); rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0); rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler"); rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0); rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0); rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0); rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0); rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0); rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0); rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1); rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0); rb_mObjSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObjSpace, "garbage_collect", rb_gc_start, 0); rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1); nomem_error = rb_exc_new3(rb_eNoMemError, rb_obj_freeze(rb_str_new2("failed to allocate memory"))); OBJ_TAINT(nomem_error); OBJ_FREEZE(nomem_error); rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0); rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1); { VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject); rb_define_alloc_func(rb_cWeakMap, wmap_allocate); rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2); rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1); rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1); } #if CALC_EXACT_MALLOC_SIZE rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0); rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0); #endif }