/********************************************************************** gc.c - $Author$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/re.h" #include "ruby/io.h" #include "ruby/thread.h" #include "ruby/util.h" #include "ruby/debug.h" #include "eval_intern.h" #include "vm_core.h" #include "internal.h" #include "gc.h" #include "constant.h" #include "ruby_atomic.h" #include "probes.h" #include #include #include #include #include #ifndef __has_feature # define __has_feature(x) 0 #endif #ifndef HAVE_MALLOC_USABLE_SIZE # ifdef _WIN32 # define HAVE_MALLOC_USABLE_SIZE # define malloc_usable_size(a) _msize(a) # elif defined HAVE_MALLOC_SIZE # define HAVE_MALLOC_USABLE_SIZE # define malloc_usable_size(a) malloc_size(a) # endif #endif #ifdef HAVE_MALLOC_USABLE_SIZE # ifdef HAVE_MALLOC_H # include # elif defined(HAVE_MALLOC_NP_H) # include # elif defined(HAVE_MALLOC_MALLOC_H) # include # endif #endif #if /* is ASAN enabled? */ \ __has_feature(address_sanitizer) /* Clang */ || \ defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x */ #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \ __attribute__((no_address_safety_analysis)) \ __attribute__((noinline)) #else #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_RESOURCE_H #include #endif #if defined(__native_client__) && defined(NACL_NEWLIB) # include "nacl/resource.h" # undef HAVE_POSIX_MEMALIGN # undef HAVE_MEMALIGN #endif #if defined _WIN32 || defined __CYGWIN__ #include #elif defined(HAVE_POSIX_MEMALIGN) #elif defined(HAVE_MEMALIGN) #include #endif #define rb_setjmp(env) RUBY_SETJMP(env) #define rb_jmp_buf rb_jmpbuf_t #if defined(HAVE_RB_GC_GUARDED_PTR) && HAVE_RB_GC_GUARDED_PTR volatile VALUE * rb_gc_guarded_ptr(volatile VALUE *ptr) { return ptr; } #endif #ifndef GC_HEAP_FREE_SLOTS #define GC_HEAP_FREE_SLOTS 4096 #endif #ifndef GC_HEAP_INIT_SLOTS #define GC_HEAP_INIT_SLOTS 10000 #endif #ifndef GC_HEAP_GROWTH_FACTOR #define GC_HEAP_GROWTH_FACTOR 1.8 #endif #ifndef GC_HEAP_GROWTH_MAX_SLOTS #define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */ #endif #ifndef GC_MALLOC_LIMIT_MIN #define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) #endif #ifndef GC_MALLOC_LIMIT_MAX #define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */) #endif #ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR #define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4 #endif #ifndef GC_OLDMALLOC_LIMIT_MIN #define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) #endif #ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR #define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2 #endif #ifndef GC_OLDMALLOC_LIMIT_MAX #define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */) #endif typedef struct { unsigned int heap_init_slots; unsigned int heap_free_slots; double growth_factor; unsigned int growth_max_slots; unsigned int malloc_limit_min; unsigned int malloc_limit_max; double malloc_limit_growth_factor; unsigned int oldmalloc_limit_min; unsigned int oldmalloc_limit_max; double oldmalloc_limit_growth_factor; #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE VALUE gc_stress; #endif } ruby_gc_params_t; static ruby_gc_params_t gc_params = { GC_HEAP_FREE_SLOTS, GC_HEAP_INIT_SLOTS, GC_HEAP_GROWTH_FACTOR, GC_HEAP_GROWTH_MAX_SLOTS, GC_MALLOC_LIMIT_MIN, GC_MALLOC_LIMIT_MAX, GC_MALLOC_LIMIT_GROWTH_FACTOR, GC_OLDMALLOC_LIMIT_MIN, GC_OLDMALLOC_LIMIT_MAX, GC_OLDMALLOC_LIMIT_GROWTH_FACTOR, #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE FALSE, #endif }; /* GC_DEBUG: * enable to embed GC debugging information. */ #ifndef GC_DEBUG #define GC_DEBUG 0 #endif #if USE_RGENGC /* RGENGC_DEBUG: * 1: basic information * 2: remember set operation * 3: mark * 4: * 5: sweep */ #ifndef RGENGC_DEBUG #define RGENGC_DEBUG 0 #endif /* RGENGC_CHECK_MODE * 0: disable all assertions * 1: enable assertions (to debug RGenGC) * 2: enable generational bits check (for debugging) * 3: enable livness check * 4: show all references */ #ifndef RGENGC_CHECK_MODE #define RGENGC_CHECK_MODE 0 #endif /* RGENGC_PROFILE * 0: disable RGenGC profiling * 1: enable profiling for basic information * 2: enable profiling for each types */ #ifndef RGENGC_PROFILE #define RGENGC_PROFILE 0 #endif /* RGENGC_THREEGEN * Enable/disable three gen GC. * 0: Infant gen -> Old gen * 1: Infant gen -> Young -> Old gen */ #ifndef RGENGC_THREEGEN #define RGENGC_THREEGEN 0 #endif /* RGENGC_ESTIMATE_OLDMALLOC * Enable/disable to estimate increase size of malloc'ed size by old objects. * If estimation exceeds threashold, then will invoke full GC. * 0: disable estimation. * 1: enable estimation. */ #ifndef RGENGC_ESTIMATE_OLDMALLOC #define RGENGC_ESTIMATE_OLDMALLOC 1 #endif #else /* USE_RGENGC */ #define RGENGC_DEBUG 0 #define RGENGC_CHECK_MODE 0 #define RGENGC_PROFILE 0 #define RGENGC_THREEGEN 0 #define RGENGC_ESTIMATE_OLDMALLOC 0 #endif /* USE_RGENGC */ #ifndef GC_PROFILE_MORE_DETAIL #define GC_PROFILE_MORE_DETAIL 0 #endif #ifndef GC_PROFILE_DETAIL_MEMORY #define GC_PROFILE_DETAIL_MEMORY 0 #endif #ifndef GC_ENABLE_LAZY_SWEEP #define GC_ENABLE_LAZY_SWEEP 1 #endif #ifndef CALC_EXACT_MALLOC_SIZE #define CALC_EXACT_MALLOC_SIZE 0 #endif #if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0 #ifndef MALLOC_ALLOCATED_SIZE #define MALLOC_ALLOCATED_SIZE 0 #endif #else #define MALLOC_ALLOCATED_SIZE 0 #endif #ifndef MALLOC_ALLOCATED_SIZE_CHECK #define MALLOC_ALLOCATED_SIZE_CHECK 0 #endif typedef enum { GPR_FLAG_NONE = 0x000, /* major reason */ GPR_FLAG_MAJOR_BY_NOFREE = 0x001, GPR_FLAG_MAJOR_BY_OLDGEN = 0x002, GPR_FLAG_MAJOR_BY_SHADY = 0x004, GPR_FLAG_MAJOR_BY_RESCAN = 0x008, GPR_FLAG_MAJOR_BY_STRESS = 0x010, #if RGENGC_ESTIMATE_OLDMALLOC GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020, #endif GPR_FLAG_MAJOR_MASK = 0x0ff, /* gc reason */ GPR_FLAG_NEWOBJ = 0x100, GPR_FLAG_MALLOC = 0x200, GPR_FLAG_METHOD = 0x400, GPR_FLAG_CAPI = 0x800, GPR_FLAG_STRESS = 0x1000, /* others */ GPR_FLAG_IMMEDIATE_SWEEP = 0x2000, GPR_FLAG_HAVE_FINALIZE = 0x4000 } gc_profile_record_flag; typedef struct gc_profile_record { int flags; double gc_time; double gc_invoke_time; size_t heap_total_objects; size_t heap_use_size; size_t heap_total_size; #if GC_PROFILE_MORE_DETAIL double gc_mark_time; double gc_sweep_time; size_t heap_use_pages; size_t heap_live_objects; size_t heap_free_objects; size_t allocate_increase; size_t allocate_limit; double prepare_time; size_t removing_objects; size_t empty_objects; #if GC_PROFILE_DETAIL_MEMORY long maxrss; long minflt; long majflt; #endif #endif #if MALLOC_ALLOCATED_SIZE size_t allocated_size; #endif #if RGENGC_PROFILE > 0 size_t old_objects; size_t remembered_normal_objects; size_t remembered_shady_objects; #endif } gc_profile_record; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */ #endif typedef struct RVALUE { union { struct { VALUE flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RTypedData typeddata; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RNode node; struct RMatch match; struct RRational rational; struct RComplex complex; struct { struct RBasic basic; VALUE v1; VALUE v2; VALUE v3; } values; } as; #if GC_DEBUG const char *file; VALUE line; #endif } RVALUE; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(pop) #endif typedef uintptr_t bits_t; enum { BITS_SIZE = sizeof(bits_t), BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT ) }; struct heap_page_header { struct heap_page *page; }; struct heap_page_body { struct heap_page_header header; /* char gap[]; */ /* RVALUE values[]; */ }; struct gc_list { VALUE *varptr; struct gc_list *next; }; #define STACK_CHUNK_SIZE 500 typedef struct stack_chunk { VALUE data[STACK_CHUNK_SIZE]; struct stack_chunk *next; } stack_chunk_t; typedef struct mark_stack { stack_chunk_t *chunk; stack_chunk_t *cache; size_t index; size_t limit; size_t cache_size; size_t unused_cache_size; } mark_stack_t; typedef struct rb_heap_struct { struct heap_page *pages; struct heap_page *free_pages; struct heap_page *using_page; struct heap_page *sweep_pages; RVALUE *freelist; size_t page_length; /* total page count in a heap */ size_t total_slots; /* total slot count (page_length * HEAP_OBJ_LIMIT) */ } rb_heap_t; typedef struct rb_objspace { struct { size_t limit; size_t increase; #if MALLOC_ALLOCATED_SIZE size_t allocated_size; size_t allocations; #endif } malloc_params; rb_heap_t eden_heap; rb_heap_t tomb_heap; /* heap for zombies and ghosts */ struct { struct heap_page **sorted; size_t used; size_t length; RVALUE *range[2]; size_t limit; size_t increment; size_t swept_slots; size_t min_free_slots; size_t max_free_slots; /* final */ size_t final_slots; RVALUE *deferred_final; } heap_pages; struct { int dont_gc; int dont_lazy_sweep; int during_gc; rb_atomic_t finalizing; } flags; st_table *finalizer_table; mark_stack_t mark_stack; struct { int run; gc_profile_record *records; gc_profile_record *current_record; size_t next_index; size_t size; #if GC_PROFILE_MORE_DETAIL double prepare_time; #endif double invoke_time; #if USE_RGENGC size_t minor_gc_count; size_t major_gc_count; #if RGENGC_PROFILE > 0 size_t generated_normal_object_count; size_t generated_shady_object_count; size_t shade_operation_count; size_t promote_infant_count; #if RGENGC_THREEGEN size_t promote_young_count; #endif size_t remembered_normal_object_count; size_t remembered_shady_object_count; #if RGENGC_PROFILE >= 2 size_t generated_normal_object_count_types[RUBY_T_MASK]; size_t generated_shady_object_count_types[RUBY_T_MASK]; size_t shade_operation_count_types[RUBY_T_MASK]; size_t promote_infant_types[RUBY_T_MASK]; #if RGENGC_THREEGEN size_t promote_young_types[RUBY_T_MASK]; #endif size_t remembered_normal_object_count_types[RUBY_T_MASK]; size_t remembered_shady_object_count_types[RUBY_T_MASK]; #endif #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ /* temporary profiling space */ double gc_sweep_start_time; size_t total_allocated_object_num_at_gc_start; size_t heap_used_at_gc_start; /* basic statistics */ size_t count; size_t total_allocated_object_num; size_t total_freed_object_num; int latest_gc_info; } profile; struct gc_list *global_list; rb_event_flag_t hook_events; /* this place may be affinity with memory cache */ VALUE gc_stress; struct mark_func_data_struct { void *data; void (*mark_func)(VALUE v, void *data); } *mark_func_data; #if USE_RGENGC struct { int during_minor_gc; int parent_object_is_old; int need_major_gc; size_t remembered_shady_object_count; size_t remembered_shady_object_limit; size_t old_object_count; size_t old_object_limit; #if RGENGC_THREEGEN size_t young_object_count; #endif #if RGENGC_ESTIMATE_OLDMALLOC size_t oldmalloc_increase; size_t oldmalloc_increase_limit; #endif #if RGENGC_CHECK_MODE >= 2 struct st_table *allrefs_table; size_t error_count; #endif } rgengc; #endif /* USE_RGENGC */ } rb_objspace_t; #ifndef HEAP_ALIGN_LOG /* default tiny heap size: 16KB */ #define HEAP_ALIGN_LOG 14 #endif #define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod)) enum { HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG), HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)), REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5), HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC), HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heap_page_header))/sizeof(struct RVALUE)), HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH), HEAP_BITMAP_SIZE = ( BITS_SIZE * HEAP_BITMAP_LIMIT), HEAP_BITMAP_PLANES = USE_RGENGC ? 3 : 1 /* RGENGC: mark bits, rememberset bits and oldgen bits */ }; struct heap_page { struct heap_page_body *body; RVALUE *freelist; RVALUE *start; size_t final_slots; size_t limit; struct heap_page *next; struct heap_page *prev; struct heap_page *free_next; rb_heap_t *heap; int before_sweep; bits_t mark_bits[HEAP_BITMAP_LIMIT]; #if USE_RGENGC bits_t rememberset_bits[HEAP_BITMAP_LIMIT]; bits_t oldgen_bits[HEAP_BITMAP_LIMIT]; #endif }; #define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_ALIGN_MASK))) #define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header) #define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page) #define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0]) #define GET_HEAP_REMEMBERSET_BITS(x) (&GET_HEAP_PAGE(x)->rememberset_bits[0]) #define GET_HEAP_OLDGEN_BITS(x) (&GET_HEAP_PAGE(x)->oldgen_bits[0]) #define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE)) #define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH ) #define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1)) #define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p)) /* Bitmap Operations */ #define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p)) #define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p)) #define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p)) /* Aliases */ #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE #define rb_objspace (*GET_VM()->objspace) #define ruby_initial_gc_stress gc_params.gc_stress VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress; #else static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT_MIN}}; VALUE *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress; #endif #define malloc_limit objspace->malloc_params.limit #define malloc_increase objspace->malloc_params.increase #define malloc_allocated_size objspace->malloc_params.allocated_size #define heap_pages_sorted objspace->heap_pages.sorted #define heap_pages_used objspace->heap_pages.used #define heap_pages_length objspace->heap_pages.length #define heap_pages_lomem objspace->heap_pages.range[0] #define heap_pages_himem objspace->heap_pages.range[1] #define heap_pages_swept_slots objspace->heap_pages.swept_slots #define heap_pages_increment objspace->heap_pages.increment #define heap_pages_min_free_slots objspace->heap_pages.min_free_slots #define heap_pages_max_free_slots objspace->heap_pages.max_free_slots #define heap_pages_final_slots objspace->heap_pages.final_slots #define heap_pages_deferred_final objspace->heap_pages.deferred_final #define heap_eden (&objspace->eden_heap) #define heap_tomb (&objspace->tomb_heap) #define dont_gc objspace->flags.dont_gc #define during_gc objspace->flags.during_gc #define finalizing objspace->flags.finalizing #define finalizer_table objspace->finalizer_table #define global_List objspace->global_list #define ruby_gc_stress objspace->gc_stress #define monitor_level objspace->rgengc.monitor_level #define monitored_object_table objspace->rgengc.monitored_object_table #define is_lazy_sweeping(heap) ((heap)->sweep_pages != 0) #if SIZEOF_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG) # define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */ #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2) # define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \ ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1)) #else # error not supported #endif #define RANY(o) ((RVALUE*)(o)) #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory] int ruby_gc_debug_indent = 0; VALUE rb_mGC; int ruby_disable_gc_stress = 0; void rb_gcdebug_print_obj_condition(VALUE obj); static void rb_objspace_call_finalizer(rb_objspace_t *objspace); static VALUE define_final0(VALUE obj, VALUE block); static void negative_size_allocation_error(const char *); static void *aligned_malloc(size_t, size_t); static void aligned_free(void *); static void init_mark_stack(mark_stack_t *stack); static VALUE lazy_sweep_enable(void); static int ready_to_gc(rb_objspace_t *objspace); static int heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap); static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_sweep, int reason); static int garbage_collect_body(rb_objspace_t *, int full_mark, int immediate_sweep, int reason); static int gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap); static void gc_rest_sweep(rb_objspace_t *objspace); static void gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap); static void gc_mark_stacked_objects(rb_objspace_t *); static void gc_mark(rb_objspace_t *objspace, VALUE ptr); static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr); static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr); static size_t obj_memsize_of(VALUE obj, int use_tdata); static double getrusage_time(void); static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason); static inline void gc_prof_timer_start(rb_objspace_t *); static inline void gc_prof_timer_stop(rb_objspace_t *); static inline void gc_prof_mark_timer_start(rb_objspace_t *); static inline void gc_prof_mark_timer_stop(rb_objspace_t *); static inline void gc_prof_sweep_timer_start(rb_objspace_t *); static inline void gc_prof_sweep_timer_stop(rb_objspace_t *); static inline void gc_prof_set_malloc_info(rb_objspace_t *); static inline void gc_prof_set_heap_info(rb_objspace_t *); #define gc_prof_record(objspace) (objspace)->profile.current_record #define rgengc_report if (RGENGC_DEBUG) rgengc_report_body static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...); static const char * type_name(int type, VALUE obj); static const char *obj_type_name(VALUE obj); #if USE_RGENGC static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj); static int rgengc_remember(rb_objspace_t *objspace, VALUE obj); static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap); static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap); #define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST"), 0) : FL_TEST_RAW((x),(f)) != 0) #define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0) #define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0) #define RVALUE_RAW_SHADY(obj) (!FL_TEST2((obj), FL_WB_PROTECTED)) #define RVALUE_SHADY(obj) RVALUE_RAW_SHADY(check_gen_consistency((VALUE)obj)) #define RVALUE_OLDGEN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), (obj)) static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr); static inline int gc_marked(rb_objspace_t *objspace, VALUE ptr); static inline VALUE check_gen_consistency(VALUE obj) { if (RGENGC_CHECK_MODE > 0) { int old_flag = RVALUE_OLDGEN_BITMAP(obj) != 0; int promoted_flag = FL_TEST2(obj, FL_PROMOTED); rb_objspace_t *objspace = &rb_objspace; obj_memsize_of((VALUE)obj, FALSE); if (!is_pointer_to_heap(objspace, (void *)obj)) { rb_bug("check_gen_consistency: %p (%s) is not Ruby object.", (void *)obj, obj_type_name(obj)); } if (promoted_flag) { if (RVALUE_RAW_SHADY(obj)) { const char *type = old_flag ? "old" : "young"; rb_bug("check_gen_consistency: %p (%s) is shady, but %s object.", (void *)obj, obj_type_name(obj), type); } #if !RGENGC_THREEGEN if (!old_flag) { rb_bug("check_gen_consistency: %p (%s) is not infant, but is not old (on 2gen).", (void *)obj, obj_type_name(obj)); } #endif if (old_flag && objspace->rgengc.during_minor_gc && !gc_marked(objspace, obj)) { rb_bug("check_gen_consistency: %p (%s) is old, but is not marked while minor marking.", (void *)obj, obj_type_name(obj)); } } else { if (old_flag) { rb_bug("check_gen_consistency: %p (%s) is not infant, but is old.", (void *)obj, obj_type_name(obj)); } } } return obj; } static inline VALUE RVALUE_INFANT_P(VALUE obj) { check_gen_consistency(obj); return !FL_TEST2(obj, FL_PROMOTED); } static inline VALUE RVALUE_OLD_BITMAP_P(VALUE obj) { check_gen_consistency(obj); return (RVALUE_OLDGEN_BITMAP(obj) != 0); } static inline VALUE RVALUE_OLD_P(VALUE obj) { check_gen_consistency(obj); #if RGENGC_THREEGEN return FL_TEST2(obj, FL_PROMOTED) && RVALUE_OLD_BITMAP_P(obj); #else return FL_TEST2(obj, FL_PROMOTED); #endif } static inline VALUE RVALUE_PROMOTED_P(VALUE obj) { check_gen_consistency(obj); return FL_TEST2(obj, FL_PROMOTED); } static inline void RVALUE_PROMOTE_INFANT(VALUE obj) { check_gen_consistency(obj); if (RGENGC_CHECK_MODE && !RVALUE_INFANT_P(obj)) rb_bug("RVALUE_PROMOTE_INFANT: %p (%s) is not infant object.", (void *)obj, obj_type_name(obj)); FL_SET2(obj, FL_PROMOTED); #if !RGENGC_THREEGEN MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj); #endif check_gen_consistency(obj); #if RGENGC_PROFILE >= 1 { rb_objspace_t *objspace = &rb_objspace; objspace->profile.promote_infant_count++; #if RGENGC_PROFILE >= 2 objspace->profile.promote_infant_types[BUILTIN_TYPE(obj)]++; #endif } #endif } #if RGENGC_THREEGEN /* * Two gen: Infant -> Old. * Three gen: Infant -> Young -> Old. */ static inline VALUE RVALUE_YOUNG_P(VALUE obj) { check_gen_consistency(obj); return FL_TEST2(obj, FL_PROMOTED) && (RVALUE_OLDGEN_BITMAP(obj) == 0); } static inline void RVALUE_PROMOTE_YOUNG(VALUE obj) { check_gen_consistency(obj); if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj)) rb_bug("RVALUE_PROMOTE_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj)); MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj); check_gen_consistency(obj); #if RGENGC_PROFILE >= 1 { rb_objspace_t *objspace = &rb_objspace; objspace->profile.promote_young_count++; #if RGENGC_PROFILE >= 2 objspace->profile.promote_young_types[BUILTIN_TYPE(obj)]++; #endif } #endif } static inline void RVALUE_DEMOTE_FROM_YOUNG(VALUE obj) { if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj)) rb_bug("RVALUE_DEMOTE_FROM_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj)); check_gen_consistency(obj); FL_UNSET2(obj, FL_PROMOTED); check_gen_consistency(obj); } #endif static inline void RVALUE_DEMOTE_FROM_OLD(VALUE obj) { if (RGENGC_CHECK_MODE && !RVALUE_OLD_P(obj)) rb_bug("RVALUE_DEMOTE_FROM_OLD: %p (%s) is not old object.", (void *)obj, obj_type_name(obj)); check_gen_consistency(obj); FL_UNSET2(obj, FL_PROMOTED); CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj); check_gen_consistency(obj); } #endif /* USE_RGENGC */ /* --------------------------- ObjectSpace ----------------------------- */ #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE rb_objspace_t * rb_objspace_alloc(void) { rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t)); memset(objspace, 0, sizeof(*objspace)); ruby_gc_stress = ruby_initial_gc_stress; malloc_limit = gc_params.malloc_limit_min; return objspace; } #endif #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE static void free_stack_chunks(mark_stack_t *); static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page); void rb_objspace_free(rb_objspace_t *objspace) { gc_rest_sweep(objspace); if (objspace->profile.records) { free(objspace->profile.records); objspace->profile.records = 0; } if (global_List) { struct gc_list *list, *next; for (list = global_List; list; list = next) { next = list->next; xfree(list); } } if (heap_pages_sorted) { size_t i; for (i = 0; i < heap_pages_used; ++i) { heap_page_free(objspace, heap_pages_sorted[i]); } free(heap_pages_sorted); heap_pages_used = 0; heap_pages_length = 0; heap_pages_lomem = 0; heap_pages_himem = 0; objspace->eden_heap.page_length = 0; objspace->eden_heap.total_slots = 0; objspace->eden_heap.pages = NULL; } free_stack_chunks(&objspace->mark_stack); free(objspace); } #endif static void heap_pages_expand_sorted(rb_objspace_t *objspace) { size_t next_length = heap_pages_increment; next_length += heap_eden->page_length; next_length += heap_tomb->page_length; if (next_length > heap_pages_length) { struct heap_page **sorted; size_t size = next_length * sizeof(struct heap_page *); rgengc_report(3, objspace, "heap_pages_expand_sorted: next_length: %d, size: %d\n", (int)next_length, (int)size); if (heap_pages_length > 0) { sorted = (struct heap_page **)realloc(heap_pages_sorted, size); if (sorted) heap_pages_sorted = sorted; } else { sorted = heap_pages_sorted = (struct heap_page **)malloc(size); } if (sorted == 0) { during_gc = 0; rb_memerror(); } heap_pages_length = next_length; } } static inline void heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) { RVALUE *p = (RVALUE *)obj; p->as.free.flags = 0; p->as.free.next = page->freelist; page->freelist = p; rgengc_report(3, objspace, "heap_page_add_freeobj: %p (%s) is added to freelist\n", p, obj_type_name(obj)); } static inline void heap_add_freepage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) { if (page->freelist) { page->free_next = heap->free_pages; heap->free_pages = page; } } static void heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) { if (page->prev) page->prev->next = page->next; if (page->next) page->next->prev = page->prev; if (heap->pages == page) heap->pages = page->next; page->prev = NULL; page->next = NULL; page->heap = NULL; heap->page_length--; heap->total_slots -= page->limit; } static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page) { heap_pages_used--; aligned_free(page->body); free(page); } static void heap_pages_free_unused_pages(rb_objspace_t *objspace) { size_t i, j; for (i = j = 1; j < heap_pages_used; i++) { struct heap_page *page = heap_pages_sorted[i]; if (page->heap == heap_tomb && page->final_slots == 0) { if (heap_pages_swept_slots - page->limit > heap_pages_max_free_slots) { if (0) fprintf(stderr, "heap_pages_free_unused_pages: %d free page %p, heap_pages_swept_slots: %d, heap_pages_max_free_slots: %d\n", (int)i, page, (int)heap_pages_swept_slots, (int)heap_pages_max_free_slots); heap_pages_swept_slots -= page->limit; heap_unlink_page(objspace, heap_tomb, page); heap_page_free(objspace, page); continue; } else { /* fprintf(stderr, "heap_pages_free_unused_pages: remain!!\n"); */ } } if (i != j) { heap_pages_sorted[j] = page; } j++; } assert(j == heap_pages_used); } static struct heap_page * heap_page_allocate(rb_objspace_t *objspace) { RVALUE *start, *end, *p; struct heap_page *page; struct heap_page_body *page_body = 0; size_t hi, lo, mid; size_t limit = HEAP_OBJ_LIMIT; /* assign heap_page body (contains heap_page_header and RVALUEs) */ page_body = (struct heap_page_body *)aligned_malloc(HEAP_ALIGN, HEAP_SIZE); if (page_body == 0) { during_gc = 0; rb_memerror(); } /* assign heap_page entry */ page = (struct heap_page *)malloc(sizeof(struct heap_page)); if (page == 0) { aligned_free(page_body); during_gc = 0; rb_memerror(); } MEMZERO((void*)page, struct heap_page, 1); page->body = page_body; /* setup heap_pages_sorted */ lo = 0; hi = heap_pages_used; while (lo < hi) { struct heap_page *mid_page; mid = (lo + hi) / 2; mid_page = heap_pages_sorted[mid]; if (mid_page->body < page_body) { lo = mid + 1; } else if (mid_page->body > page_body) { hi = mid; } else { rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid); } } if (hi < heap_pages_used) { MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_pages_used - hi); } heap_pages_sorted[hi] = page; heap_pages_used++; assert(heap_pages_used <= heap_pages_length); /* adjust obj_limit (object number available in this page) */ start = (RVALUE*)((VALUE)page_body + sizeof(struct heap_page_header)); if ((VALUE)start % sizeof(RVALUE) != 0) { int delta = (int)(sizeof(RVALUE) - ((VALUE)start % sizeof(RVALUE))); start = (RVALUE*)((VALUE)start + delta); limit = (HEAP_SIZE - (size_t)((VALUE)start - (VALUE)page_body))/sizeof(RVALUE); } end = start + limit; if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start; if (heap_pages_himem < end) heap_pages_himem = end; page->start = start; page->limit = limit; page_body->header.page = page; for (p = start; p != end; p++) { rgengc_report(3, objspace, "assign_heap_page: %p is added to freelist\n"); heap_page_add_freeobj(objspace, page, (VALUE)p); } return page; } static struct heap_page * heap_page_resurrect(rb_objspace_t *objspace) { struct heap_page *page; if ((page = heap_tomb->pages) != NULL) { heap_unlink_page(objspace, heap_tomb, page); return page; } return NULL; } static struct heap_page * heap_page_create(rb_objspace_t *objspace) { struct heap_page *page = heap_page_resurrect(objspace); const char *method = "recycle"; if (page == NULL) { page = heap_page_allocate(objspace); method = "allocate"; } if (0) fprintf(stderr, "heap_page_create: %s - %p, heap_pages_used: %d, heap_pages_used: %d, tomb->page_length: %d\n", method, page, (int)heap_pages_length, (int)heap_pages_used, (int)heap_tomb->page_length); return page; } static void heap_add_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) { page->heap = heap; page->next = heap->pages; if (heap->pages) heap->pages->prev = page; heap->pages = page; heap->page_length++; heap->total_slots += page->limit; } static void heap_assign_page(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page = heap_page_create(objspace); heap_add_page(objspace, heap, page); heap_add_freepage(objspace, heap, page); } static void heap_add_pages(rb_objspace_t *objspace, rb_heap_t *heap, size_t add) { size_t i; heap_pages_increment = add; heap_pages_expand_sorted(objspace); for (i = 0; i < add; i++) { heap_assign_page(objspace, heap); } heap_pages_increment = 0; } static void heap_set_increment(rb_objspace_t *objspace, size_t minimum_limit) { size_t used = heap_pages_used - heap_tomb->page_length; size_t next_used_limit = (size_t)(used * gc_params.growth_factor); if (gc_params.growth_max_slots > 0) { size_t max_used_limit = (size_t)(used + gc_params.growth_max_slots/HEAP_OBJ_LIMIT); if (next_used_limit > max_used_limit) next_used_limit = max_used_limit; } if (next_used_limit == heap_pages_used) next_used_limit++; if (next_used_limit < minimum_limit) { next_used_limit = minimum_limit; } heap_pages_increment = next_used_limit - used; heap_pages_expand_sorted(objspace); if (0) fprintf(stderr, "heap_set_increment: heap_pages_length: %d, heap_pages_used: %d, heap_pages_increment: %d, next_used_limit: %d\n", (int)heap_pages_length, (int)heap_pages_used, (int)heap_pages_increment, (int)next_used_limit); } static int heap_increment(rb_objspace_t *objspace, rb_heap_t *heap) { rgengc_report(5, objspace, "heap_increment: heap_pages_length: %d, heap_pages_inc: %d, heap->page_length: %d\n", (int)heap_pages_length, (int)heap_pages_increment, (int)heap->page_length); if (heap_pages_increment > 0) { heap_pages_increment--; heap_assign_page(objspace, heap); return TRUE; } return FALSE; } static struct heap_page * heap_prepare_freepage(rb_objspace_t *objspace, rb_heap_t *heap) { if (!GC_ENABLE_LAZY_SWEEP && objspace->flags.dont_lazy_sweep) { if (heap_increment(objspace, heap) == 0 && garbage_collect(objspace, FALSE, TRUE, GPR_FLAG_NEWOBJ) == 0) { goto err; } goto ok; } if (!heap_ready_to_gc(objspace, heap)) return heap->free_pages; during_gc++; if ((is_lazy_sweeping(heap) && gc_heap_lazy_sweep(objspace, heap)) || heap_increment(objspace, heap)) { goto ok; } #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = 0; #endif if (garbage_collect_body(objspace, 0, 0, GPR_FLAG_NEWOBJ) == 0) { err: during_gc = 0; rb_memerror(); } ok: during_gc = 0; return heap->free_pages; } static inline struct heap_page * heap_get_freepage(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page; page = heap->free_pages; while (page == NULL) { page = heap_prepare_freepage(objspace, heap); } heap->free_pages = page->free_next; return page; } static inline VALUE heap_get_freeobj(rb_objspace_t *objspace, rb_heap_t *heap) { RVALUE *p = heap->freelist; while (UNLIKELY(p == NULL)) { struct heap_page *page = heap_get_freepage(objspace, heap); heap->using_page = page; p = heap->freelist = page->freelist; page->freelist = NULL; } heap->freelist = p->as.free.next; return (VALUE)p; } void rb_objspace_set_event_hook(const rb_event_flag_t event) { rb_objspace_t *objspace = &rb_objspace; objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK; } static void gc_event_hook_body(rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data) { rb_thread_t *th = GET_THREAD(); EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data); } #define gc_event_hook(objspace, event, data) do { \ if (UNLIKELY((objspace)->hook_events & (event))) { \ gc_event_hook_body((objspace), (event), (data)); \ } \ } while (0) static VALUE newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3) { rb_objspace_t *objspace = &rb_objspace; VALUE obj; if (UNLIKELY(during_gc)) { dont_gc = 1; during_gc = 0; rb_bug("object allocation during garbage collection phase"); } if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) { if (!garbage_collect(objspace, FALSE, FALSE, GPR_FLAG_NEWOBJ)) { during_gc = 0; rb_memerror(); } } obj = heap_get_freeobj(objspace, heap_eden); /* OBJSETUP */ RBASIC(obj)->flags = flags; RBASIC_SET_CLASS(obj, klass); if (rb_safe_level() >= 3) FL_SET((obj), FL_TAINT); RANY(obj)->as.values.v1 = v1; RANY(obj)->as.values.v2 = v2; RANY(obj)->as.values.v3 = v3; #if GC_DEBUG RANY(obj)->file = rb_sourcefile(); RANY(obj)->line = rb_sourceline(); assert(!SPECIAL_CONST_P(obj)); /* check alignment */ #endif #if RGENGC_PROFILE if (flags & FL_WB_PROTECTED) { objspace->profile.generated_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif } else { objspace->profile.generated_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif } #endif rgengc_report(5, objspace, "newobj: %p (%s)\n", (void *)obj, obj_type_name(obj)); #if USE_RGENGC && RGENGC_CHECK_MODE if (RVALUE_PROMOTED_P(obj)) rb_bug("newobj: %p (%s) is promoted.\n", (void *)obj, obj_type_name(obj)); if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %p (%s) is remembered.\n", (void *)obj, obj_type_name(obj)); #endif objspace->profile.total_allocated_object_num++; gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj); return obj; } VALUE rb_newobj(void) { return newobj_of(0, T_NONE, 0, 0, 0); } VALUE rb_newobj_of(VALUE klass, VALUE flags) { return newobj_of(klass, flags, 0, 0, 0); } NODE* rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2) { VALUE flags = (RGENGC_WB_PROTECTED_NODE_CREF && type == NODE_CREF ? FL_WB_PROTECTED : 0); NODE *n = (NODE *)newobj_of(0, T_NODE | flags, a0, a1, a2); nd_set_type(n, type); return n; } VALUE rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { if (klass) Check_Type(klass, T_CLASS); return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap); } VALUE rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type) { if (klass) Check_Type(klass, T_CLASS); return newobj_of(klass, T_DATA | (type->flags & ~T_MASK), (VALUE)type, (VALUE)1, (VALUE)datap); } size_t rb_objspace_data_type_memsize(VALUE obj) { if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) { return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj)); } else { return 0; } } const char * rb_objspace_data_type_name(VALUE obj) { if (RTYPEDDATA_P(obj)) { return RTYPEDDATA_TYPE(obj)->wrap_struct_name; } else { return 0; } } static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr) { register RVALUE *p = RANY(ptr); register struct heap_page *page; register size_t hi, lo, mid; if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE; if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE; /* check if p looks like a pointer using bsearch*/ lo = 0; hi = heap_pages_used; while (lo < hi) { mid = (lo + hi) / 2; page = heap_pages_sorted[mid]; if (page->start <= p) { if (p < page->start + page->limit) { return TRUE; } lo = mid + 1; } else { hi = mid; } } return FALSE; } static int free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data) { if (!me->mark) { rb_free_method_entry(me); } return ST_CONTINUE; } void rb_free_m_tbl(st_table *tbl) { st_foreach(tbl, free_method_entry_i, 0); st_free_table(tbl); } void rb_free_m_tbl_wrapper(struct method_table_wrapper *wrapper) { if (wrapper->tbl) { rb_free_m_tbl(wrapper->tbl); } xfree(wrapper); } static int free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data) { xfree(ce); return ST_CONTINUE; } void rb_free_const_table(st_table *tbl) { st_foreach(tbl, free_const_entry_i, 0); st_free_table(tbl); } static inline void make_deferred(rb_objspace_t *objspace,RVALUE *p) { p->as.basic.flags = T_ZOMBIE; p->as.free.next = heap_pages_deferred_final; heap_pages_deferred_final = p; } static inline void make_io_deferred(rb_objspace_t *objspace,RVALUE *p) { rb_io_t *fptr = p->as.file.fptr; make_deferred(objspace, p); p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize; p->as.data.data = fptr; } static int obj_free(rb_objspace_t *objspace, VALUE obj) { gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj); switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); FL_UNSET(obj, FL_EXIVAR); } #if USE_RGENGC if (MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj)) CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj); #endif switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) && RANY(obj)->as.object.as.heap.ivptr) { xfree(RANY(obj)->as.object.as.heap.ivptr); } break; case T_MODULE: case T_CLASS: if (RCLASS_M_TBL_WRAPPER(obj)) { rb_free_m_tbl_wrapper(RCLASS_M_TBL_WRAPPER(obj)); } if (RCLASS_IV_TBL(obj)) { st_free_table(RCLASS_IV_TBL(obj)); } if (RCLASS_CONST_TBL(obj)) { rb_free_const_table(RCLASS_CONST_TBL(obj)); } if (RCLASS_IV_INDEX_TBL(obj)) { st_free_table(RCLASS_IV_INDEX_TBL(obj)); } if (RCLASS_EXT(obj)->subclasses) { if (BUILTIN_TYPE(obj) == T_MODULE) { rb_class_detach_module_subclasses(obj); } else { rb_class_detach_subclasses(obj); } RCLASS_EXT(obj)->subclasses = NULL; } rb_class_remove_from_module_subclasses(obj); rb_class_remove_from_super_subclasses(obj); if (RANY(obj)->as.klass.ptr) xfree(RANY(obj)->as.klass.ptr); RANY(obj)->as.klass.ptr = NULL; break; case T_STRING: rb_str_free(obj); break; case T_ARRAY: rb_ary_free(obj); break; case T_HASH: if (RANY(obj)->as.hash.ntbl) { st_free_table(RANY(obj)->as.hash.ntbl); } break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) { onig_free(RANY(obj)->as.regexp.ptr); } break; case T_DATA: if (DATA_PTR(obj)) { int free_immediately = FALSE; if (RTYPEDDATA_P(obj)) { free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0; RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree; if (0 && free_immediately == 0) /* to expose non-free-immediate T_DATA */ fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name); } if (RANY(obj)->as.data.dfree == RUBY_DEFAULT_FREE) { xfree(DATA_PTR(obj)); } else if (RANY(obj)->as.data.dfree) { if (free_immediately) { (RDATA(obj)->dfree)(DATA_PTR(obj)); } else { make_deferred(objspace, RANY(obj)); return 1; } } } break; case T_MATCH: if (RANY(obj)->as.match.rmatch) { struct rmatch *rm = RANY(obj)->as.match.rmatch; onig_region_free(&rm->regs, 0); if (rm->char_offset) xfree(rm->char_offset); xfree(rm); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { make_io_deferred(objspace, RANY(obj)); return 1; } break; case T_RATIONAL: case T_COMPLEX: break; case T_ICLASS: /* iClass shares table with the module */ if (RCLASS_EXT(obj)->subclasses) { rb_class_detach_subclasses(obj); RCLASS_EXT(obj)->subclasses = NULL; } rb_class_remove_from_module_subclasses(obj); rb_class_remove_from_super_subclasses(obj); xfree(RANY(obj)->as.klass.ptr); RANY(obj)->as.klass.ptr = NULL; break; case T_FLOAT: break; case T_BIGNUM: if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) { xfree(RBIGNUM_DIGITS(obj)); } break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RANY(obj)->as.node.u1.tbl) { xfree(RANY(obj)->as.node.u1.tbl); } break; case NODE_ARGS: if (RANY(obj)->as.node.u3.args) { xfree(RANY(obj)->as.node.u3.args); } break; case NODE_ALLOCA: xfree(RANY(obj)->as.node.u1.node); break; } break; /* no need to free iv_tbl */ case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && RANY(obj)->as.rstruct.as.heap.ptr) { xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr); } break; default: rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE, BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags); } return 0; } void Init_heap(void) { rb_objspace_t *objspace = &rb_objspace; #if RGENGC_ESTIMATE_OLDMALLOC objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; #endif heap_add_pages(objspace, heap_eden, gc_params.heap_init_slots / HEAP_OBJ_LIMIT); init_mark_stack(&objspace->mark_stack); #ifdef USE_SIGALTSTACK { /* altstack of another threads are allocated in another place */ rb_thread_t *th = GET_THREAD(); void *tmp = th->altstack; th->altstack = malloc(rb_sigaltstack_size()); free(tmp); /* free previously allocated area */ } #endif objspace->profile.invoke_time = getrusage_time(); finalizer_table = st_init_numtable(); } typedef int each_obj_callback(void *, void *, size_t, void *); struct each_obj_args { each_obj_callback *callback; void *data; }; static VALUE objspace_each_objects(VALUE arg) { size_t i; struct heap_page_body *last_body = 0; struct heap_page *page; RVALUE *pstart, *pend; rb_objspace_t *objspace = &rb_objspace; struct each_obj_args *args = (struct each_obj_args *)arg; i = 0; while (i < heap_pages_used) { while (0 < i && last_body < heap_pages_sorted[i-1]->body) i--; while (i < heap_pages_used && heap_pages_sorted[i]->body <= last_body) i++; if (heap_pages_used <= i) break; page = heap_pages_sorted[i]; last_body = page->body; pstart = page->start; pend = pstart + page->limit; if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) { break; } } return Qnil; } /* * rb_objspace_each_objects() is special C API to walk through * Ruby object space. This C API is too difficult to use it. * To be frank, you should not use it. Or you need to read the * source code of this function and understand what this function does. * * 'callback' will be called several times (the number of heap page, * at current implementation) with: * vstart: a pointer to the first living object of the heap_page. * vend: a pointer to next to the valid heap_page area. * stride: a distance to next VALUE. * * If callback() returns non-zero, the iteration will be stopped. * * This is a sample callback code to iterate liveness objects: * * int * sample_callback(void *vstart, void *vend, int stride, void *data) { * VALUE v = (VALUE)vstart; * for (; v != (VALUE)vend; v += stride) { * if (RBASIC(v)->flags) { // liveness check * // do something with live object 'v' * } * return 0; // continue to iteration * } * * Note: 'vstart' is not a top of heap_page. This point the first * living object to grasp at least one object to avoid GC issue. * This means that you can not walk through all Ruby object page * including freed object page. * * Note: On this implementation, 'stride' is same as sizeof(RVALUE). * However, there are possibilities to pass variable values with * 'stride' with some reasons. You must use stride instead of * use some constant value in the iteration. */ void rb_objspace_each_objects(each_obj_callback *callback, void *data) { struct each_obj_args args; rb_objspace_t *objspace = &rb_objspace; gc_rest_sweep(objspace); objspace->flags.dont_lazy_sweep = TRUE; args.callback = callback; args.data = data; rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil); } struct os_each_struct { size_t num; VALUE of; }; static int internal_object_p(VALUE obj) { RVALUE *p = (RVALUE *)obj; if (p->as.basic.flags) { switch (BUILTIN_TYPE(p)) { case T_NONE: case T_ICLASS: case T_NODE: case T_ZOMBIE: break; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) break; default: if (!p->as.basic.klass) break; return 0; } } return 1; } int rb_objspace_internal_object_p(VALUE obj) { return internal_object_p(obj); } static int os_obj_of_i(void *vstart, void *vend, size_t stride, void *data) { struct os_each_struct *oes = (struct os_each_struct *)data; RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend; for (; p != pend; p++) { volatile VALUE v = (VALUE)p; if (!internal_object_p(v)) { if (!oes->of || rb_obj_is_kind_of(v, oes->of)) { rb_yield(v); oes->num++; } } } return 0; } static VALUE os_obj_of(VALUE of) { struct os_each_struct oes; oes.num = 0; oes.of = of; rb_objspace_each_objects(os_obj_of_i, &oes); return SIZET2NUM(oes.num); } /* * call-seq: * ObjectSpace.each_object([module]) {|obj| ... } -> fixnum * ObjectSpace.each_object([module]) -> an_enumerator * * Calls the block once for each living, nonimmediate object in this * Ruby process. If module is specified, calls the block * for only those classes or modules that match (or are a subclass of) * module. Returns the number of objects found. Immediate * objects (Fixnums, Symbols * true, false, and nil) are * never returned. In the example below, each_object * returns both the numbers we defined and several constants defined in * the Math module. * * If no block is given, an enumerator is returned instead. * * a = 102.7 * b = 95 # Won't be returned * c = 12345678987654321 * count = ObjectSpace.each_object(Numeric) {|x| p x } * puts "Total count: #{count}" * * produces: * * 12345678987654321 * 102.7 * 2.71828182845905 * 3.14159265358979 * 2.22044604925031e-16 * 1.7976931348623157e+308 * 2.2250738585072e-308 * Total count: 7 * */ static VALUE os_each_obj(int argc, VALUE *argv, VALUE os) { VALUE of; if (argc == 0) { of = 0; } else { rb_scan_args(argc, argv, "01", &of); } RETURN_ENUMERATOR(os, 1, &of); return os_obj_of(of); } /* * call-seq: * ObjectSpace.undefine_finalizer(obj) * * Removes all finalizers for obj. * */ static VALUE undefine_final(VALUE os, VALUE obj) { return rb_undefine_finalizer(obj); } VALUE rb_undefine_finalizer(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; st_data_t data = obj; rb_check_frozen(obj); st_delete(finalizer_table, &data, 0); FL_UNSET(obj, FL_FINALIZE); return obj; } static void should_be_callable(VALUE block) { if (!rb_obj_respond_to(block, rb_intern("call"), TRUE)) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } } static void should_be_finalizable(VALUE obj) { rb_check_frozen(obj); if (!FL_ABLE(obj)) { rb_raise(rb_eArgError, "cannot define finalizer for %s", rb_obj_classname(obj)); } } /* * call-seq: * ObjectSpace.define_finalizer(obj, aProc=proc()) * * Adds aProc as a finalizer, to be called after obj * was destroyed. * */ static VALUE define_final(int argc, VALUE *argv, VALUE os) { VALUE obj, block; rb_scan_args(argc, argv, "11", &obj, &block); should_be_finalizable(obj); if (argc == 1) { block = rb_block_proc(); } else { should_be_callable(block); } return define_final0(obj, block); } static VALUE define_final0(VALUE obj, VALUE block) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; RBASIC(obj)->flags |= FL_FINALIZE; block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block); OBJ_FREEZE(block); if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; rb_ary_push(table, block); } else { table = rb_ary_new3(1, block); RBASIC_CLEAR_CLASS(table); st_add_direct(finalizer_table, obj, table); } return block; } VALUE rb_define_finalizer(VALUE obj, VALUE block) { should_be_finalizable(obj); should_be_callable(block); return define_final0(obj, block); } void rb_gc_copy_finalizer(VALUE dest, VALUE obj) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_TEST(obj, FL_FINALIZE)) return; if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; st_insert(finalizer_table, dest, table); } FL_SET(dest, FL_FINALIZE); } static VALUE run_single_final(VALUE arg) { VALUE *args = (VALUE *)arg; rb_eval_cmd(args[0], args[1], (int)args[2]); return Qnil; } static void run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table) { long i; int status; VALUE args[3]; VALUE objid = nonspecial_obj_id(obj); if (RARRAY_LEN(table) > 0) { args[1] = rb_obj_freeze(rb_ary_new3(1, objid)); } else { args[1] = 0; } args[2] = (VALUE)rb_safe_level(); for (i=0; ifunction.dfree; } else { free_func = RDATA(obj)->dfree; } if (free_func) { (*free_func)(DATA_PTR(obj)); } key = (st_data_t)obj; if (st_delete(finalizer_table, &key, &table)) { run_finalizer(objspace, obj, (VALUE)table); } } static void finalize_list(rb_objspace_t *objspace, RVALUE *p) { while (p) { RVALUE *tmp = p->as.free.next; struct heap_page *page = GET_HEAP_PAGE(p); run_final(objspace, (VALUE)p); objspace->profile.total_freed_object_num++; page->final_slots--; heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), (VALUE)p); heap_pages_swept_slots++; p = tmp; } } static void finalize_deferred(rb_objspace_t *objspace) { RVALUE *p; while ((p = ATOMIC_PTR_EXCHANGE(heap_pages_deferred_final, 0)) != 0) { finalize_list(objspace, p); } } static void gc_finalize_deferred(void *dmy) { rb_objspace_t *objspace = &rb_objspace; if (ATOMIC_EXCHANGE(finalizing, 1)) return; finalize_deferred(objspace); ATOMIC_SET(finalizing, 0); } /* TODO: to keep compatibility, maybe unused. */ void rb_gc_finalize_deferred(void) { gc_finalize_deferred(0); } static void gc_finalize_deferred_register() { if (rb_postponed_job_register_one(0, gc_finalize_deferred, 0) == 0) { rb_bug("gc_finalize_deferred_register: can't register finalizer."); } } struct force_finalize_list { VALUE obj; VALUE table; struct force_finalize_list *next; }; static int force_chain_object(st_data_t key, st_data_t val, st_data_t arg) { struct force_finalize_list **prev = (struct force_finalize_list **)arg; struct force_finalize_list *curr = ALLOC(struct force_finalize_list); curr->obj = key; curr->table = val; curr->next = *prev; *prev = curr; return ST_CONTINUE; } void rb_gc_call_finalizer_at_exit(void) { rb_objspace_call_finalizer(&rb_objspace); } static void rb_objspace_call_finalizer(rb_objspace_t *objspace) { RVALUE *p, *pend; size_t i; gc_rest_sweep(objspace); if (ATOMIC_EXCHANGE(finalizing, 1)) return; /* run finalizers */ finalize_deferred(objspace); assert(heap_pages_deferred_final == 0); /* force to run finalizer */ while (finalizer_table->num_entries) { struct force_finalize_list *list = 0; st_foreach(finalizer_table, force_chain_object, (st_data_t)&list); while (list) { struct force_finalize_list *curr = list; st_data_t obj = (st_data_t)curr->obj; run_finalizer(objspace, curr->obj, curr->table); st_delete(finalizer_table, &obj, 0); list = curr->next; xfree(curr); } } /* finalizers are part of garbage collection */ during_gc++; /* run data object's finalizers */ for (i = 0; i < heap_pages_used; i++) { p = heap_pages_sorted[i]->start; pend = p + heap_pages_sorted[i]->limit; while (p < pend) { switch (BUILTIN_TYPE(p)) { case T_DATA: if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break; if (rb_obj_is_thread((VALUE)p)) break; if (rb_obj_is_mutex((VALUE)p)) break; if (rb_obj_is_fiber((VALUE)p)) break; p->as.free.flags = 0; if (RTYPEDDATA_P(p)) { RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree; } if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) { xfree(DATA_PTR(p)); } else if (RANY(p)->as.data.dfree) { make_deferred(objspace, RANY(p)); } break; case T_FILE: if (RANY(p)->as.file.fptr) { make_io_deferred(objspace, RANY(p)); } break; } p++; } } during_gc = 0; if (heap_pages_deferred_final) { finalize_list(objspace, heap_pages_deferred_final); } st_free_table(finalizer_table); finalizer_table = 0; ATOMIC_SET(finalizing, 0); } static inline int is_id_value(rb_objspace_t *objspace, VALUE ptr) { if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE; if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE; if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE; return TRUE; } static inline int heap_is_swept_object(rb_objspace_t *objspace, rb_heap_t *heap, VALUE ptr) { struct heap_page *page = GET_HEAP_PAGE(ptr); return page->before_sweep ? FALSE : TRUE; } static inline int is_swept_object(rb_objspace_t *objspace, VALUE ptr) { if (heap_is_swept_object(objspace, heap_eden, ptr)) { return TRUE; } else { return FALSE; } } static inline int is_dead_object(rb_objspace_t *objspace, VALUE ptr) { if (!is_lazy_sweeping(heap_eden) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) return FALSE; if (!is_swept_object(objspace, ptr)) return TRUE; return FALSE; } static inline int is_live_object(rb_objspace_t *objspace, VALUE ptr) { switch (BUILTIN_TYPE(ptr)) { case 0: case T_ZOMBIE: return FALSE; } if (is_dead_object(objspace, ptr)) return FALSE; return TRUE; } static inline int is_markable_object(rb_objspace_t *objspace, VALUE obj) { if (rb_special_const_p(obj)) return 0; /* special const is not markable */ if (RGENGC_CHECK_MODE) { if (!is_pointer_to_heap(objspace, (void *)obj)) rb_bug("is_markable_object: %p is not pointer to heap", (void *)obj); if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("is_markable_object: %p is T_NONE", (void *)obj); if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("is_markable_object: %p is T_ZOMBIE", (void *)obj); } return 1; } int rb_objspace_markable_object_p(VALUE obj) { return is_markable_object(&rb_objspace, obj); } /* * call-seq: * ObjectSpace._id2ref(object_id) -> an_object * * Converts an object id to a reference to the object. May not be * called on an object id passed as a parameter to a finalizer. * * s = "I am a string" #=> "I am a string" * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" * r == s #=> true * */ static VALUE id2ref(VALUE obj, VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif rb_objspace_t *objspace = &rb_objspace; VALUE ptr; void *p0; ptr = NUM2PTR(objid); p0 = (void *)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; if (FLONUM_P(ptr)) return (VALUE)ptr; ptr = obj_id_to_ref(objid); if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); if (rb_id2name(symid) == 0) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } if (!is_id_value(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is not id value", p0); } if (!is_live_object(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is recycled object", p0); } return (VALUE)ptr; } /* * Document-method: __id__ * Document-method: object_id * * call-seq: * obj.__id__ -> integer * obj.object_id -> integer * * Returns an integer identifier for +obj+. * * The same number will be returned on all calls to +id+ for a given object, * and no two active objects will share an id. * * Object#object_id is a different concept from the +:name+ notation, which * returns the symbol id of +name+. * * Replaces the deprecated Object#id. */ /* * call-seq: * obj.hash -> fixnum * * Generates a Fixnum hash value for this object. * * This function must have the property that a.eql?(b) implies * a.hash == b.hash. * * The hash value is used by Hash class. * * Any hash value that exceeds the capacity of a Fixnum will be truncated * before being used. */ VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (SYMBOL_P(obj)) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } else if (FLONUM_P(obj)) { #if SIZEOF_LONG == SIZEOF_VOIDP return LONG2NUM((SIGNED_VALUE)obj); #else return LL2NUM((SIGNED_VALUE)obj); #endif } else if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return nonspecial_obj_id(obj); } size_t rb_str_memsize(VALUE); size_t rb_ary_memsize(VALUE); size_t rb_io_memsize(const rb_io_t *); size_t rb_generic_ivar_memsize(VALUE); #include "regint.h" static size_t obj_memsize_of(VALUE obj, int use_tdata) { size_t size = 0; if (SPECIAL_CONST_P(obj)) { return 0; } if (FL_TEST(obj, FL_EXIVAR)) { size += rb_generic_ivar_memsize(obj); } switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (!(RBASIC(obj)->flags & ROBJECT_EMBED) && ROBJECT(obj)->as.heap.ivptr) { size += ROBJECT(obj)->as.heap.numiv * sizeof(VALUE); } break; case T_MODULE: case T_CLASS: if (RCLASS_M_TBL_WRAPPER(obj)) { size += sizeof(struct method_table_wrapper); } if (RCLASS_M_TBL(obj)) { size += st_memsize(RCLASS_M_TBL(obj)); } if (RCLASS_EXT(obj)) { if (RCLASS_IV_TBL(obj)) { size += st_memsize(RCLASS_IV_TBL(obj)); } if (RCLASS_IV_INDEX_TBL(obj)) { size += st_memsize(RCLASS_IV_INDEX_TBL(obj)); } if (RCLASS(obj)->ptr->iv_tbl) { size += st_memsize(RCLASS(obj)->ptr->iv_tbl); } if (RCLASS(obj)->ptr->const_tbl) { size += st_memsize(RCLASS(obj)->ptr->const_tbl); } size += sizeof(rb_classext_t); } break; case T_STRING: size += rb_str_memsize(obj); break; case T_ARRAY: size += rb_ary_memsize(obj); break; case T_HASH: if (RHASH(obj)->ntbl) { size += st_memsize(RHASH(obj)->ntbl); } break; case T_REGEXP: if (RREGEXP(obj)->ptr) { size += onig_memsize(RREGEXP(obj)->ptr); } break; case T_DATA: if (use_tdata) size += rb_objspace_data_type_memsize(obj); break; case T_MATCH: if (RMATCH(obj)->rmatch) { struct rmatch *rm = RMATCH(obj)->rmatch; size += onig_region_memsize(&rm->regs); size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated; size += sizeof(struct rmatch); } break; case T_FILE: if (RFILE(obj)->fptr) { size += rb_io_memsize(RFILE(obj)->fptr); } break; case T_RATIONAL: case T_COMPLEX: break; case T_ICLASS: /* iClass shares table with the module */ break; case T_FLOAT: break; case T_BIGNUM: if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) { size += RBIGNUM_LEN(obj) * sizeof(BDIGIT); } break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RNODE(obj)->u1.tbl) { /* TODO: xfree(RANY(obj)->as.node.u1.tbl); */ } break; case NODE_ALLOCA: /* TODO: xfree(RANY(obj)->as.node.u1.node); */ ; } break; /* no need to free iv_tbl */ case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && RSTRUCT(obj)->as.heap.ptr) { size += sizeof(VALUE) * RSTRUCT_LEN(obj); } break; case T_ZOMBIE: break; default: rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)", BUILTIN_TYPE(obj), (void*)obj); } return size; } size_t rb_obj_memsize_of(VALUE obj) { return obj_memsize_of(obj, TRUE); } static int set_zero(st_data_t key, st_data_t val, st_data_t arg) { VALUE k = (VALUE)key; VALUE hash = (VALUE)arg; rb_hash_aset(hash, k, INT2FIX(0)); return ST_CONTINUE; } /* * call-seq: * ObjectSpace.count_objects([result_hash]) -> hash * * Counts objects for each type. * * It returns a hash, such as: * { * :TOTAL=>10000, * :FREE=>3011, * :T_OBJECT=>6, * :T_CLASS=>404, * # ... * } * * The contents of the returned hash are implementation specific. * It may be changed in future. * * If the optional argument +result_hash+ is given, * it is overwritten and returned. This is intended to avoid probe effect. * * This method is only expected to work on C Ruby. * */ static VALUE count_objects(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; size_t counts[T_MASK+1]; size_t freed = 0; size_t total = 0; size_t i; VALUE hash; if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (!RB_TYPE_P(hash, T_HASH)) rb_raise(rb_eTypeError, "non-hash given"); } for (i = 0; i <= T_MASK; i++) { counts[i] = 0; } for (i = 0; i < heap_pages_used; i++) { struct heap_page *page = heap_pages_sorted[i]; RVALUE *p, *pend; p = page->start; pend = p + page->limit; for (;p < pend; p++) { if (p->as.basic.flags) { counts[BUILTIN_TYPE(p)]++; } else { freed++; } } total += page->limit; } if (hash == Qnil) { hash = rb_hash_new(); } else if (!RHASH_EMPTY_P(hash)) { st_foreach(RHASH_TBL_RAW(hash), set_zero, hash); } rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); for (i = 0; i <= T_MASK; i++) { VALUE type; switch (i) { #define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break; COUNT_TYPE(T_NONE); COUNT_TYPE(T_OBJECT); COUNT_TYPE(T_CLASS); COUNT_TYPE(T_MODULE); COUNT_TYPE(T_FLOAT); COUNT_TYPE(T_STRING); COUNT_TYPE(T_REGEXP); COUNT_TYPE(T_ARRAY); COUNT_TYPE(T_HASH); COUNT_TYPE(T_STRUCT); COUNT_TYPE(T_BIGNUM); COUNT_TYPE(T_FILE); COUNT_TYPE(T_DATA); COUNT_TYPE(T_MATCH); COUNT_TYPE(T_COMPLEX); COUNT_TYPE(T_RATIONAL); COUNT_TYPE(T_NIL); COUNT_TYPE(T_TRUE); COUNT_TYPE(T_FALSE); COUNT_TYPE(T_SYMBOL); COUNT_TYPE(T_FIXNUM); COUNT_TYPE(T_UNDEF); COUNT_TYPE(T_NODE); COUNT_TYPE(T_ICLASS); COUNT_TYPE(T_ZOMBIE); #undef COUNT_TYPE default: type = INT2NUM(i); break; } if (counts[i]) rb_hash_aset(hash, type, SIZET2NUM(counts[i])); } return hash; } /* ------------------------ Garbage Collection ------------------------ */ /* Sweeping */ static VALUE lazy_sweep_enable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->flags.dont_lazy_sweep = FALSE; return Qnil; } static size_t objspace_live_slot(rb_objspace_t *objspace) { return objspace->profile.total_allocated_object_num - objspace->profile.total_freed_object_num; } static size_t objspace_total_slot(rb_objspace_t *objspace) { return heap_eden->total_slots + heap_tomb->total_slots; } static size_t objspace_free_slot(rb_objspace_t *objspace) { return objspace_total_slot(objspace) - (objspace_live_slot(objspace) - heap_pages_final_slots); } static void gc_setup_mark_bits(struct heap_page *page) { #if USE_RGENGC /* copy oldgen bitmap to mark bitmap */ memcpy(&page->mark_bits[0], &page->oldgen_bits[0], HEAP_BITMAP_SIZE); #else /* clear mark bitmap */ memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE); #endif } static inline void gc_page_sweep(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page) { int i; size_t empty_slots = 0, freed_slots = 0, final_slots = 0; RVALUE *p, *pend,*offset; bits_t *bits, bitset; rgengc_report(1, objspace, "page_sweep: start.\n"); sweep_page->before_sweep = 0; p = sweep_page->start; pend = p + sweep_page->limit; offset = p - NUM_IN_PAGE(p); bits = sweep_page->mark_bits; /* create guard : fill 1 out-of-range */ bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1; bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1); for (i=0; i < HEAP_BITMAP_LIMIT; i++) { bitset = ~bits[i]; if (bitset) { p = offset + i * BITS_BITLENGTH; do { if ((bitset & 1) && BUILTIN_TYPE(p) != T_ZOMBIE) { if (p->as.basic.flags) { rgengc_report(3, objspace, "page_sweep: free %p (%s)\n", p, obj_type_name((VALUE)p)); #if USE_RGENGC && RGENGC_CHECK_MODE if (objspace->rgengc.during_minor_gc && RVALUE_OLD_P((VALUE)p)) rb_bug("page_sweep: %p (%s) is old while minor GC.\n", p, obj_type_name((VALUE)p)); if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("page_sweep: %p (%s) is remembered.\n", p, obj_type_name((VALUE)p)); #endif if (obj_free(objspace, (VALUE)p)) { final_slots++; } else if (FL_TEST(p, FL_FINALIZE)) { RDATA(p)->dfree = 0; make_deferred(objspace,p); final_slots++; } else { (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); heap_page_add_freeobj(objspace, sweep_page, (VALUE)p); rgengc_report(3, objspace, "page_sweep: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p)); freed_slots++; } } else { empty_slots++; } } p++; bitset >>= 1; } while (bitset); } } gc_setup_mark_bits(sweep_page); #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->removing_objects += final_slots + freed_slots; record->empty_objects += empty_slots; } #endif if (final_slots + freed_slots + empty_slots == sweep_page->limit) { /* there are no living objects -> move this page to tomb heap */ heap_unlink_page(objspace, heap, sweep_page); heap_add_page(objspace, heap_tomb, sweep_page); } else { if (freed_slots + empty_slots > 0) { heap_add_freepage(objspace, heap, sweep_page); } else { sweep_page->free_next = NULL; } } heap_pages_swept_slots += freed_slots + empty_slots; objspace->profile.total_freed_object_num += freed_slots; heap_pages_final_slots += final_slots; sweep_page->final_slots = final_slots; if (0) fprintf(stderr, "gc_page_sweep(%d): freed?: %d, limt: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n", (int)rb_gc_count(), final_slots + freed_slots + empty_slots == sweep_page->limit, (int)sweep_page->limit, (int)freed_slots, (int)empty_slots, (int)final_slots); if (heap_pages_deferred_final && !finalizing) { rb_thread_t *th = GET_THREAD(); if (th) { gc_finalize_deferred_register(); } } rgengc_report(1, objspace, "page_sweep: end.\n"); } /* allocate additional minimum page to work */ static void gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_heap_t *heap) { if (!heap->free_pages) { /* there is no free after page_sweep() */ heap_set_increment(objspace, 0); if (!heap_increment(objspace, heap)) { /* can't allocate additional free objects */ during_gc = 0; rb_memerror(); } } } static void gc_before_heap_sweep(rb_objspace_t *objspace, rb_heap_t *heap) { heap->sweep_pages = heap->pages; heap->free_pages = NULL; if (heap->using_page) { RVALUE **p = &heap->using_page->freelist; while (*p) { p = &(*p)->as.free.next; } *p = heap->freelist; heap->using_page = NULL; } heap->freelist = NULL; } #if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4 __attribute__((noinline)) #endif static void gc_before_sweep(rb_objspace_t *objspace) { rb_heap_t *heap; size_t total_limit_slot; rgengc_report(1, objspace, "gc_before_sweep\n"); /* sweep unlinked method entries */ if (GET_VM()->unlinked_method_entry_list) { rb_sweep_method_entry(GET_VM()); } heap_pages_swept_slots = 0; total_limit_slot = objspace_total_slot(objspace); heap_pages_min_free_slots = (size_t)(total_limit_slot * 0.30); if (heap_pages_min_free_slots < gc_params.heap_free_slots) { heap_pages_min_free_slots = gc_params.heap_free_slots; } heap_pages_max_free_slots = (size_t)(total_limit_slot * 0.80); if (heap_pages_max_free_slots < gc_params.heap_init_slots) { heap_pages_max_free_slots = gc_params.heap_init_slots; } if (0) fprintf(stderr, "heap_pages_min_free_slots: %d, heap_pages_max_free_slots: %d\n", (int)heap_pages_min_free_slots, (int)heap_pages_max_free_slots); heap = heap_eden; gc_before_heap_sweep(objspace, heap); gc_prof_set_malloc_info(objspace); /* reset malloc info */ if (0) fprintf(stderr, "%d\t%d\t%d\n", (int)rb_gc_count(), (int)malloc_increase, (int)malloc_limit); { size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0); size_t old_limit = malloc_limit; if (inc > malloc_limit) { malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor); if (gc_params.malloc_limit_max > 0 && /* ignore max-check if 0 */ malloc_limit > gc_params.malloc_limit_max) { malloc_limit = inc; } } else { malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */ if (malloc_limit < gc_params.malloc_limit_min) { malloc_limit = gc_params.malloc_limit_min; } } if (0) { if (old_limit != malloc_limit) { fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n", rb_gc_count(), old_limit, malloc_limit); } else { fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n", rb_gc_count(), malloc_limit); } } } /* reset oldmalloc info */ #if RGENGC_ESTIMATE_OLDMALLOC if (objspace->rgengc.during_minor_gc) { if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) { objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_OLDMALLOC;; objspace->rgengc.oldmalloc_increase_limit = (size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor); if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) { objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max; } } if (0) fprintf(stderr, "%d\t%d\t%u\t%u\t%d\n", (int)rb_gc_count(), objspace->rgengc.need_major_gc, (unsigned int)objspace->rgengc.oldmalloc_increase, (unsigned int)objspace->rgengc.oldmalloc_increase_limit, (unsigned int)gc_params.oldmalloc_limit_max); } else { /* major GC */ objspace->rgengc.oldmalloc_increase = 0; if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) { objspace->rgengc.oldmalloc_increase_limit = (size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1)); if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) { objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; } } } #endif } static void gc_after_sweep(rb_objspace_t *objspace) { rb_heap_t *heap = heap_eden; rgengc_report(1, objspace, "after_gc_sweep: heap->total_slots: %d, heap->swept_slots: %d, min_free_slots: %d\n", (int)heap->total_slots, (int)heap_pages_swept_slots, (int)heap_pages_min_free_slots); if (heap_pages_swept_slots < heap_pages_min_free_slots) { heap_set_increment(objspace, (heap_pages_min_free_slots - heap_pages_swept_slots) / HEAP_OBJ_LIMIT); heap_increment(objspace, heap); #if USE_RGENGC if (objspace->rgengc.remembered_shady_object_count + objspace->rgengc.old_object_count > (heap_pages_length * HEAP_OBJ_LIMIT) / 2) { /* if [old]+[remembered shady] > [all object count]/2, then do major GC */ objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_RESCAN; } #endif } gc_prof_set_heap_info(objspace); heap_pages_free_unused_pages(objspace); /* if heap_pages has unused pages, then assign them to increment */ if (heap_pages_increment < heap_tomb->page_length) { heap_pages_increment = heap_tomb->page_length; heap_pages_expand_sorted(objspace); } #if RGENGC_PROFILE > 0 if (0) { fprintf(stderr, "%d\t%d\t%d\t%d\t%d\t%d\t%d\n", (int)rb_gc_count(), (int)objspace->profile.major_gc_count, (int)objspace->profile.minor_gc_count, (int)objspace->profile.promote_infant_count, #if RGENGC_THREEGEN (int)objspace->profile.promote_young_count, #else 0, #endif (int)objspace->profile.remembered_normal_object_count, (int)objspace->rgengc.remembered_shady_object_count); } #endif gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0); } static int gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page = heap->sweep_pages, *next; int result = FALSE; if (page == NULL) return FALSE; #if GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_start(objspace); #endif while (page) { heap->sweep_pages = next = page->next; gc_page_sweep(objspace, heap, page); if (!next) gc_after_sweep(objspace); if (heap->free_pages) { result = TRUE; break; } page = next; } #if GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_stop(objspace); #endif return result; } static void gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap) { if (is_lazy_sweeping(heap)) { during_gc++; while (is_lazy_sweeping(heap)) { gc_heap_lazy_sweep(objspace, heap); } during_gc = 0; } } static void gc_rest_sweep(rb_objspace_t *objspace) { rb_heap_t *heap = heap_eden; /* lazy sweep only for eden */ gc_heap_rest_sweep(objspace, heap); } static void gc_sweep(rb_objspace_t *objspace, int immediate_sweep) { if (immediate_sweep) { #if !GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_start(objspace); #endif gc_before_sweep(objspace); gc_heap_rest_sweep(objspace, heap_eden); #if !GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_stop(objspace); #endif } else { struct heap_page *page; gc_before_sweep(objspace); page = heap_eden->sweep_pages; while (page) { page->before_sweep = 1; page = page->next; } gc_heap_lazy_sweep(objspace, heap_eden); } gc_heap_prepare_minimum_pages(objspace, heap_eden); } /* Marking - Marking stack */ static void push_mark_stack(mark_stack_t *, VALUE); static int pop_mark_stack(mark_stack_t *, VALUE *); static void shrink_stack_chunk_cache(mark_stack_t *stack); static stack_chunk_t * stack_chunk_alloc(void) { stack_chunk_t *res; res = malloc(sizeof(stack_chunk_t)); if (!res) rb_memerror(); return res; } static inline int is_mark_stack_empty(mark_stack_t *stack) { return stack->chunk == NULL; } static void add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk) { chunk->next = stack->cache; stack->cache = chunk; stack->cache_size++; } static void shrink_stack_chunk_cache(mark_stack_t *stack) { stack_chunk_t *chunk; if (stack->unused_cache_size > (stack->cache_size/2)) { chunk = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; free(chunk); } stack->unused_cache_size = stack->cache_size; } static void push_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *next; assert(stack->index == stack->limit); if (stack->cache_size > 0) { next = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; if (stack->unused_cache_size > stack->cache_size) stack->unused_cache_size = stack->cache_size; } else { next = stack_chunk_alloc(); } next->next = stack->chunk; stack->chunk = next; stack->index = 0; } static void pop_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *prev; prev = stack->chunk->next; assert(stack->index == 0); add_stack_chunk_cache(stack, stack->chunk); stack->chunk = prev; stack->index = stack->limit; } #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE static void free_stack_chunks(mark_stack_t *stack) { stack_chunk_t *chunk = stack->chunk; stack_chunk_t *next = NULL; while (chunk != NULL) { next = chunk->next; free(chunk); chunk = next; } } #endif static void push_mark_stack(mark_stack_t *stack, VALUE data) { if (stack->index == stack->limit) { push_mark_stack_chunk(stack); } stack->chunk->data[stack->index++] = data; } static int pop_mark_stack(mark_stack_t *stack, VALUE *data) { if (is_mark_stack_empty(stack)) { return FALSE; } if (stack->index == 1) { *data = stack->chunk->data[--stack->index]; pop_mark_stack_chunk(stack); } else { *data = stack->chunk->data[--stack->index]; } return TRUE; } static void init_mark_stack(mark_stack_t *stack) { int i; if (0) push_mark_stack_chunk(stack); stack->index = stack->limit = STACK_CHUNK_SIZE; for (i=0; i < 4; i++) { add_stack_chunk_cache(stack, stack_chunk_alloc()); } stack->unused_cache_size = stack->cache_size; } /* Marking */ #ifdef __ia64 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp()) #else #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end) #endif #define STACK_START (th->machine_stack_start) #define STACK_END (th->machine_stack_end) #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE)) #if STACK_GROW_DIRECTION < 0 # define STACK_LENGTH (size_t)(STACK_START - STACK_END) #elif STACK_GROW_DIRECTION > 0 # define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1) #else # define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \ : (size_t)(STACK_END - STACK_START + 1)) #endif #if !STACK_GROW_DIRECTION int ruby_stack_grow_direction; int ruby_get_stack_grow_direction(volatile VALUE *addr) { VALUE *end; SET_MACHINE_STACK_END(&end); if (end > addr) return ruby_stack_grow_direction = 1; return ruby_stack_grow_direction = -1; } #endif size_t ruby_stack_length(VALUE **p) { rb_thread_t *th = GET_THREAD(); SET_STACK_END; if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END); return STACK_LENGTH; } #if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)) static int stack_check(int water_mark) { int ret; rb_thread_t *th = GET_THREAD(); SET_STACK_END; ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark; #ifdef __ia64 if (!ret) { ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start > th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark; } #endif return ret; } #endif #define STACKFRAME_FOR_CALL_CFUNC 512 int ruby_stack_check(void) { #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) return 0; #else return stack_check(STACKFRAME_FOR_CALL_CFUNC); #endif } ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS static void mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n) { VALUE v; while (n--) { v = *x; gc_mark_maybe(objspace, v); x++; } } static void gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end) { long n; if (end <= start) return; n = end - start; mark_locations_array(objspace, start, n); } void rb_gc_mark_locations(VALUE *start, VALUE *end) { gc_mark_locations(&rb_objspace, start, end); } #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end)) struct mark_tbl_arg { rb_objspace_t *objspace; }; static int mark_entry(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)value); return ST_CONTINUE; } static void mark_tbl(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl || tbl->num_entries == 0) return; arg.objspace = objspace; st_foreach(tbl, mark_entry, (st_data_t)&arg); } static int mark_key(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key); return ST_CONTINUE; } static void mark_set(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_key, (st_data_t)&arg); } void rb_mark_set(st_table *tbl) { mark_set(&rb_objspace, tbl); } static int mark_keyvalue(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key); gc_mark(arg->objspace, (VALUE)value); return ST_CONTINUE; } static void mark_hash(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_keyvalue, (st_data_t)&arg); } void rb_mark_hash(st_table *tbl) { mark_hash(&rb_objspace, tbl); } static void mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me) { const rb_method_definition_t *def = me->def; gc_mark(objspace, me->klass); again: if (!def) return; switch (def->type) { case VM_METHOD_TYPE_ISEQ: gc_mark(objspace, def->body.iseq->self); break; case VM_METHOD_TYPE_BMETHOD: gc_mark(objspace, def->body.proc); break; case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: gc_mark(objspace, def->body.attr.location); break; case VM_METHOD_TYPE_REFINED: if (def->body.orig_me) { def = def->body.orig_me->def; goto again; } break; default: break; /* ignore */ } } void rb_mark_method_entry(const rb_method_entry_t *me) { mark_method_entry(&rb_objspace, me); } static int mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; mark_method_entry(arg->objspace, me); return ST_CONTINUE; } static void mark_m_tbl_wrapper(rb_objspace_t *objspace, struct method_table_wrapper *wrapper) { struct mark_tbl_arg arg; if (!wrapper || !wrapper->tbl) return; if (LIKELY(objspace->mark_func_data == 0)) { /* prevent multiple marking during same GC cycle, * since m_tbl is shared between several T_ICLASS */ size_t serial = rb_gc_count(); if (wrapper->serial == serial) return; wrapper->serial = serial; } arg.objspace = objspace; st_foreach(wrapper->tbl, mark_method_entry_i, (st_data_t)&arg); } static int mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, ce->value); gc_mark(arg->objspace, ce->file); return ST_CONTINUE; } static void mark_const_tbl(rb_objspace_t *objspace, st_table *tbl) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg); } #if STACK_GROW_DIRECTION < 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START) #elif STACK_GROW_DIRECTION > 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix)) #else #define GET_STACK_BOUNDS(start, end, appendix) \ ((STACK_END < STACK_START) ? \ ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix))) #endif static void mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th) { union { rb_jmp_buf j; VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)]; } save_regs_gc_mark; VALUE *stack_start, *stack_end; FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf (and stack) */ rb_setjmp(save_regs_gc_mark.j); GET_STACK_BOUNDS(stack_start, stack_end, 1); mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v)); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif #if defined(__mc68000__) mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2), (STACK_START - STACK_END)); #endif } void rb_gc_mark_machine_stack(rb_thread_t *th) { rb_objspace_t *objspace = &rb_objspace; VALUE *stack_start, *stack_end; GET_STACK_BOUNDS(stack_start, stack_end, 0); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif } void rb_mark_tbl(st_table *tbl) { mark_tbl(&rb_objspace, tbl); } static void gc_mark_maybe(rb_objspace_t *objspace, VALUE obj) { (void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj)); if (is_pointer_to_heap(objspace, (void *)obj)) { int type = BUILTIN_TYPE(obj); if (type != T_ZOMBIE && type != T_NONE) { gc_mark(objspace, obj); } } } void rb_gc_mark_maybe(VALUE obj) { gc_mark_maybe(&rb_objspace, obj); } static inline int gc_marked(rb_objspace_t *objspace, VALUE ptr) { register bits_t *bits = GET_HEAP_MARK_BITS(ptr); if (MARKED_IN_BITMAP(bits, ptr)) return 1; return 0; } static inline int gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr) { register bits_t *bits = GET_HEAP_MARK_BITS(ptr); if (gc_marked(objspace, ptr)) return 0; MARK_IN_BITMAP(bits, ptr); return 1; } static void rgengc_check_shady(rb_objspace_t *objspace, VALUE obj) { #if USE_RGENGC if (objspace->rgengc.parent_object_is_old) { if (RVALUE_SHADY(obj)) { if (rgengc_remember(objspace, obj)) { objspace->rgengc.remembered_shady_object_count++; } } #if RGENGC_THREEGEN else { if (gc_marked(objspace, obj)) { if (!RVALUE_OLD_P(obj)) { /* An object pointed from an OLD object should be OLD. */ rgengc_remember(objspace, obj); } } else { if (RVALUE_INFANT_P(obj)) { RVALUE_PROMOTE_INFANT(obj); } } } #endif } #endif } static void gc_mark(rb_objspace_t *objspace, VALUE ptr) { if (!is_markable_object(objspace, ptr)) return; if (LIKELY(objspace->mark_func_data == 0)) { rgengc_check_shady(objspace, ptr); if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */ push_mark_stack(&objspace->mark_stack, ptr); } else { objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data); } } void rb_gc_mark(VALUE ptr) { gc_mark(&rb_objspace, ptr); } /* resurrect non-marked `obj' if obj is before swept */ void rb_gc_resurrect(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; if (is_lazy_sweeping(heap_eden) && !gc_marked(objspace, obj) && !is_swept_object(objspace, obj)) { gc_mark_ptr(objspace, obj); } } static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr) { register RVALUE *obj = RANY(ptr); goto marking; /* skip */ again: if (LIKELY(objspace->mark_func_data == 0)) { obj = RANY(ptr); if (!is_markable_object(objspace, ptr)) return; rgengc_check_shady(objspace, ptr); if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */ } else { gc_mark(objspace, ptr); return; } marking: #if USE_RGENGC check_gen_consistency((VALUE)obj); if (LIKELY(objspace->mark_func_data == 0)) { /* minor/major common */ if (!RVALUE_SHADY(obj)) { if (RVALUE_INFANT_P((VALUE)obj)) { /* infant -> young */ RVALUE_PROMOTE_INFANT((VALUE)obj); #if RGENGC_THREEGEN /* infant -> young */ objspace->rgengc.young_object_count++; objspace->rgengc.parent_object_is_old = FALSE; #else /* infant -> old */ objspace->rgengc.old_object_count++; objspace->rgengc.parent_object_is_old = TRUE; #endif rgengc_report(3, objspace, "gc_mark_children: promote infant -> young %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj)); } else { objspace->rgengc.parent_object_is_old = TRUE; #if RGENGC_THREEGEN if (RVALUE_YOUNG_P((VALUE)obj)) { /* young -> old */ RVALUE_PROMOTE_YOUNG((VALUE)obj); objspace->rgengc.old_object_count++; rgengc_report(3, objspace, "gc_mark_children: promote young -> old %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj)); } else { #endif if (!objspace->rgengc.during_minor_gc) { /* major/full GC */ objspace->rgengc.old_object_count++; } #if RGENGC_THREEGEN } #endif } } else { rgengc_report(3, objspace, "gc_mark_children: do not promote shady %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj)); objspace->rgengc.parent_object_is_old = FALSE; } } check_gen_consistency((VALUE)obj); #endif /* USE_RGENGC */ if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar(ptr); } switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: switch (nd_type(obj)) { case NODE_IF: /* 1,2,3 */ case NODE_FOR: case NODE_ITER: case NODE_WHEN: case NODE_MASGN: case NODE_RESCUE: case NODE_RESBODY: case NODE_CLASS: case NODE_BLOCK_PASS: gc_mark(objspace, (VALUE)obj->as.node.u2.node); /* fall through */ case NODE_BLOCK: /* 1,3 */ case NODE_ARRAY: case NODE_DSTR: case NODE_DXSTR: case NODE_DREGX: case NODE_DREGX_ONCE: case NODE_ENSURE: case NODE_CALL: case NODE_DEFS: case NODE_OP_ASGN1: gc_mark(objspace, (VALUE)obj->as.node.u1.node); /* fall through */ case NODE_SUPER: /* 3 */ case NODE_FCALL: case NODE_DEFN: case NODE_ARGS_AUX: ptr = (VALUE)obj->as.node.u3.node; goto again; case NODE_WHILE: /* 1,2 */ case NODE_UNTIL: case NODE_AND: case NODE_OR: case NODE_CASE: case NODE_SCLASS: case NODE_DOT2: case NODE_DOT3: case NODE_FLIP2: case NODE_FLIP3: case NODE_MATCH2: case NODE_MATCH3: case NODE_OP_ASGN_OR: case NODE_OP_ASGN_AND: case NODE_MODULE: case NODE_ALIAS: case NODE_VALIAS: case NODE_ARGSCAT: gc_mark(objspace, (VALUE)obj->as.node.u1.node); /* fall through */ case NODE_GASGN: /* 2 */ case NODE_LASGN: case NODE_DASGN: case NODE_DASGN_CURR: case NODE_IASGN: case NODE_IASGN2: case NODE_CVASGN: case NODE_COLON3: case NODE_OPT_N: case NODE_EVSTR: case NODE_UNDEF: case NODE_POSTEXE: ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_HASH: /* 1 */ case NODE_LIT: case NODE_STR: case NODE_XSTR: case NODE_DEFINED: case NODE_MATCH: case NODE_RETURN: case NODE_BREAK: case NODE_NEXT: case NODE_YIELD: case NODE_COLON2: case NODE_SPLAT: case NODE_TO_ARY: ptr = (VALUE)obj->as.node.u1.node; goto again; case NODE_SCOPE: /* 2,3 */ case NODE_CDECL: case NODE_OPT_ARG: gc_mark(objspace, (VALUE)obj->as.node.u3.node); ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ARGS: /* custom */ { struct rb_args_info *args = obj->as.node.u3.args; if (args) { if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init); if (args->post_init) gc_mark(objspace, (VALUE)args->post_init); if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args); if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args); if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg); } } ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ZARRAY: /* - */ case NODE_ZSUPER: case NODE_VCALL: case NODE_GVAR: case NODE_LVAR: case NODE_DVAR: case NODE_IVAR: case NODE_CVAR: case NODE_NTH_REF: case NODE_BACK_REF: case NODE_REDO: case NODE_RETRY: case NODE_SELF: case NODE_NIL: case NODE_TRUE: case NODE_FALSE: case NODE_ERRINFO: case NODE_BLOCK_ARG: break; case NODE_ALLOCA: mark_locations_array(objspace, (VALUE*)obj->as.node.u1.value, obj->as.node.u3.cnt); gc_mark(objspace, (VALUE)obj->as.node.u2.node); break; case NODE_CREF: gc_mark(objspace, obj->as.node.nd_refinements); gc_mark(objspace, (VALUE)obj->as.node.nd_clss); ptr = (VALUE)obj->as.node.nd_next; goto again; default: /* unlisted NODE */ gc_mark_maybe(objspace, (VALUE)obj->as.node.u1.node); gc_mark_maybe(objspace, (VALUE)obj->as.node.u2.node); gc_mark_maybe(objspace, (VALUE)obj->as.node.u3.node); } return; /* no need to mark class. */ } gc_mark(objspace, obj->as.basic.klass); switch (BUILTIN_TYPE(obj)) { case T_ICLASS: case T_CLASS: case T_MODULE: mark_m_tbl_wrapper(objspace, RCLASS_M_TBL_WRAPPER(obj)); if (!RCLASS_EXT(obj)) break; mark_tbl(objspace, RCLASS_IV_TBL(obj)); mark_const_tbl(objspace, RCLASS_CONST_TBL(obj)); ptr = RCLASS_SUPER((VALUE)obj); goto again; case T_ARRAY: if (FL_TEST(obj, ELTS_SHARED)) { ptr = obj->as.array.as.heap.aux.shared; goto again; } else { long i, len = RARRAY_LEN(obj); const VALUE *ptr = RARRAY_CONST_PTR(obj); for (i=0; i < len; i++) { gc_mark(objspace, *ptr++); } } break; case T_HASH: mark_hash(objspace, obj->as.hash.ntbl); ptr = obj->as.hash.ifnone; goto again; case T_STRING: #define STR_ASSOC FL_USER3 /* copied from string.c */ if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) { ptr = obj->as.string.as.heap.aux.shared; goto again; } break; case T_DATA: if (RTYPEDDATA_P(obj)) { RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark; if (mark_func) (*mark_func)(DATA_PTR(obj)); } else { if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj)); } break; case T_OBJECT: { long i, len = ROBJECT_NUMIV(obj); VALUE *ptr = ROBJECT_IVPTR(obj); for (i = 0; i < len; i++) { gc_mark(objspace, *ptr++); } } break; case T_FILE: if (obj->as.file.fptr) { gc_mark(objspace, obj->as.file.fptr->pathv); gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing); gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat); gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts); gc_mark(objspace, obj->as.file.fptr->encs.ecopts); gc_mark(objspace, obj->as.file.fptr->write_lock); } break; case T_REGEXP: ptr = obj->as.regexp.src; goto again; case T_FLOAT: case T_BIGNUM: break; case T_MATCH: gc_mark(objspace, obj->as.match.regexp); if (obj->as.match.str) { ptr = obj->as.match.str; goto again; } break; case T_RATIONAL: gc_mark(objspace, obj->as.rational.num); ptr = obj->as.rational.den; goto again; case T_COMPLEX: gc_mark(objspace, obj->as.complex.real); ptr = obj->as.complex.imag; goto again; case T_STRUCT: { long len = RSTRUCT_LEN(obj); const VALUE *ptr = RSTRUCT_CONST_PTR(obj); while (len--) { gc_mark(objspace, *ptr++); } } break; default: #if GC_DEBUG rb_gcdebug_print_obj_condition((VALUE)obj); #endif if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj); if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj); rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", BUILTIN_TYPE(obj), (void *)obj, is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object"); } } static void gc_mark_stacked_objects(rb_objspace_t *objspace) { mark_stack_t *mstack = &objspace->mark_stack; VALUE obj = 0; if (!mstack->index) return; while (pop_mark_stack(mstack, &obj)) { if (RGENGC_CHECK_MODE > 0 && !gc_marked(objspace, obj)) { rb_bug("gc_mark_stacked_objects: %p (%s) is infant, but not marked.", (void *)obj, obj_type_name(obj)); } gc_mark_children(objspace, obj); } shrink_stack_chunk_cache(mstack); } #ifndef RGENGC_PRINT_TICK #define RGENGC_PRINT_TICK 0 #endif /* the following code is only for internal tuning. */ /* Source code to use RDTSC is quoted and modified from * http://www.mcs.anl.gov/~kazutomo/rdtsc.html * written by Kazutomo Yoshii */ #if RGENGC_PRINT_TICK #if defined(__GNUC__) && defined(__i386__) typedef unsigned long long tick_t; static inline tick_t tick(void) { unsigned long long int x; __asm__ __volatile__ ("rdtsc" : "=A" (x)); return x; } #elif defined(__GNUC__) && defined(__x86_64__) typedef unsigned long long tick_t; static __inline__ tick_t tick(void) { unsigned long hi, lo; __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32); } #elif defined(_WIN32) && defined(_MSC_VER) #include typedef unsigned __int64 tick_t; static inline tick_t tick(void) { return __rdtsc(); } #else /* use clock */ typedef clock_t tick_t; static inline tick_t tick(void) { return clock(); } #endif #define MAX_TICKS 0x100 static tick_t mark_ticks[MAX_TICKS]; static const char *mark_ticks_categories[MAX_TICKS]; static void show_mark_ticks(void) { int i; fprintf(stderr, "mark ticks result:\n"); for (i=0; ivm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm); MARK_CHECKPOINT("finalizers"); mark_tbl(objspace, finalizer_table); MARK_CHECKPOINT("machine_context"); mark_current_machine_context(objspace, th); MARK_CHECKPOINT("symbols"); #if USE_RGENGC objspace->rgengc.parent_object_is_old = TRUE; rb_gc_mark_symbols(full_mark); objspace->rgengc.parent_object_is_old = FALSE; #else rb_gc_mark_symbols(full_mark); #endif MARK_CHECKPOINT("encodings"); rb_gc_mark_encodings(); /* mark protected global variables */ MARK_CHECKPOINT("global_list"); for (list = global_List; list; list = list->next) { rb_gc_mark_maybe(*list->varptr); } MARK_CHECKPOINT("end_proc"); rb_mark_end_proc(); MARK_CHECKPOINT("global_tbl"); rb_gc_mark_global_tbl(); /* mark generic instance variables for special constants */ MARK_CHECKPOINT("generic_ivars"); rb_mark_generic_ivar_tbl(); MARK_CHECKPOINT("parser"); rb_gc_mark_parser(); MARK_CHECKPOINT("live_method_entries"); rb_gc_mark_unlinked_live_method_entries(th->vm); MARK_CHECKPOINT("finish"); #undef MARK_CHECKPOINT } static void gc_marks_body(rb_objspace_t *objspace, int full_mark) { /* start marking */ rgengc_report(1, objspace, "gc_marks_body: start (%s)\n", full_mark ? "full" : "minor"); #if USE_RGENGC objspace->rgengc.parent_object_is_old = FALSE; objspace->rgengc.during_minor_gc = full_mark ? FALSE : TRUE; if (objspace->rgengc.during_minor_gc) { objspace->profile.minor_gc_count++; rgengc_rememberset_mark(objspace, heap_eden); } else { objspace->profile.major_gc_count++; rgengc_mark_and_rememberset_clear(objspace, heap_eden); } #endif gc_mark_roots(objspace, full_mark, 0); gc_mark_stacked_objects(objspace); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0); rgengc_report(1, objspace, "gc_marks_body: end (%s)\n", full_mark ? "full" : "minor"); } #if RGENGC_CHECK_MODE >= 2 #define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01) #define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01) #define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1)) struct reflist { VALUE *list; int pos; int size; }; static struct reflist * reflist_create(VALUE obj) { struct reflist *refs = xmalloc(sizeof(struct reflist)); refs->size = 1; refs->list = ALLOC_N(VALUE, refs->size); refs->list[0] = obj; refs->pos = 1; return refs; } static void reflist_destruct(struct reflist *refs) { xfree(refs->list); xfree(refs); } static void reflist_add(struct reflist *refs, VALUE obj) { if (refs->pos == refs->size) { refs->size *= 2; SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2); } refs->list[refs->pos++] = obj; } static void reflist_dump(struct reflist *refs) { int i; for (i=0; ipos; i++) { VALUE obj = refs->list[i]; if (IS_ROOTSIG(obj)) { /* root */ fprintf(stderr, "", GET_ROOTSIG(obj)); } else { fprintf(stderr, "<%p@%s>", (void *)obj, obj_type_name(obj)); } if (i+1 < refs->pos) fprintf(stderr, ", "); } } #if RGENGC_CHECK_MODE >= 3 static int reflist_refered_from_machine_context(struct reflist *refs) { int i; for (i=0; ipos; i++) { VALUE obj = refs->list[i]; if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1; } return 0; } #endif struct allrefs { rb_objspace_t *objspace; /* a -> obj1 * b -> obj1 * c -> obj1 * c -> obj2 * d -> obj3 * #=> {obj1 => [a, b, c], obj2 => [c, d]} */ struct st_table *references; const char *category; VALUE root_obj; }; static int allrefs_add(struct allrefs *data, VALUE obj) { struct reflist *refs; if (st_lookup(data->references, obj, (st_data_t *)&refs)) { reflist_add(refs, data->root_obj); return 0; } else { refs = reflist_create(data->root_obj); st_insert(data->references, obj, (st_data_t)refs); return 1; } } static void allrefs_i(VALUE obj, void *ptr) { struct allrefs *data = (struct allrefs *)ptr; if (allrefs_add(data, obj)) { push_mark_stack(&data->objspace->mark_stack, obj); } } static void allrefs_roots_i(VALUE obj, void *ptr) { struct allrefs *data = (struct allrefs *)ptr; if (strlen(data->category) == 0) rb_bug("!!!"); data->root_obj = MAKE_ROOTSIG(data->category); if (allrefs_add(data, obj)) { push_mark_stack(&data->objspace->mark_stack, obj); } } static st_table * objspace_allrefs(rb_objspace_t *objspace) { struct allrefs data; struct mark_func_data_struct mfd; VALUE obj; data.objspace = objspace; data.references = st_init_numtable(); mfd.mark_func = allrefs_roots_i; mfd.data = &data; /* traverse root objects */ objspace->mark_func_data = &mfd; gc_mark_roots(objspace, TRUE, &data.category); objspace->mark_func_data = 0; /* traverse rest objects reachable from root objects */ while (pop_mark_stack(&objspace->mark_stack, &obj)) { rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data); } shrink_stack_chunk_cache(&objspace->mark_stack); return data.references; } static int objspaec_allrefs_destruct_i(st_data_t key, st_data_t value, void *ptr) { struct reflist *refs = (struct reflist *)value; reflist_destruct(refs); return ST_CONTINUE; } static void objspace_allrefs_destruct(struct st_table *refs) { st_foreach(refs, objspaec_allrefs_destruct_i, 0); st_free_table(refs); } #if RGENGC_CHECK_MODE >= 4 static int allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr) { VALUE obj = (VALUE)k; struct reflist *refs = (struct reflist *)v; fprintf(stderr, "[allrefs_dump_i] %p (%s%s%s%s) <- ", (void *)obj, obj_type_name(obj), RVALUE_OLD_P(obj) ? "[O]" : "[Y]", RVALUE_SHADY(obj) ? "[S]" : "", MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "[R]" : ""); reflist_dump(refs); fprintf(stderr, "\n"); return ST_CONTINUE; } static void allrefs_dump(rb_objspace_t *objspace) { fprintf(stderr, "[all refs] (size: %d)\n", (int)objspace->rgengc.allrefs_table->num_entries); st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0); } #endif static int gc_check_before_marks_i(st_data_t k, st_data_t v, void *ptr) { VALUE obj = k; struct reflist *refs = (struct reflist *)v; rb_objspace_t *objspace = (rb_objspace_t *)ptr; /* check WB sanity */ if (!RVALUE_OLD_P(obj)) { int i; for (i=0; ipos; i++) { VALUE parent = refs->list[i]; if (!IS_ROOTSIG(parent) && RVALUE_OLD_P(parent)) { /* parent is old */ if (!MARKED_IN_BITMAP(GET_HEAP_PAGE(parent)->rememberset_bits, parent) && !MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->rememberset_bits, obj)) { fprintf(stderr, "gc_marks_check_i: WB miss %p (%s) -> %p (%s) ", (void *)parent, obj_type_name(parent), (void *)obj, obj_type_name(obj)); reflist_dump(refs); fprintf(stderr, "\n"); objspace->rgengc.error_count++; } } } } return ST_CONTINUE; } #if RGENGC_CHECK_MODE >= 3 static int gc_check_after_marks_i(st_data_t k, st_data_t v, void *ptr) { VALUE obj = k; struct reflist *refs = (struct reflist *)v; rb_objspace_t *objspace = (rb_objspace_t *)ptr; /* object should be marked or oldgen */ if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) { fprintf(stderr, "gc_check_after_marks_i: %p (%s) is not marked and not oldgen.\n", (void *)obj, obj_type_name(obj)); fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj); reflist_dump(refs); if (reflist_refered_from_machine_context(refs)) { fprintf(stderr, " (marked from machine stack).\n"); /* marked from machine context can be false positive */ } else { objspace->rgengc.error_count++; fprintf(stderr, "\n"); } } return ST_CONTINUE; } #endif static void gc_marks_check(rb_objspace_t *objspace, int (*checker_func)(ANYARGS), const char *checker_name) { size_t saved_malloc_increase = objspace->malloc_params.increase; #if RGENGC_ESTIMATE_OLDMALLOC size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase; #endif VALUE already_disabled = rb_gc_disable(); objspace->rgengc.allrefs_table = objspace_allrefs(objspace); st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace); if (objspace->rgengc.error_count > 0) { #if RGENGC_CHECK_MODE >= 4 allrefs_dump(objspace); #endif rb_bug("%s: GC has problem.", checker_name); } objspace_allrefs_destruct(objspace->rgengc.allrefs_table); objspace->rgengc.allrefs_table = 0; if (already_disabled == Qfalse) rb_gc_enable(); objspace->malloc_params.increase = saved_malloc_increase; #if RGENGC_ESTIMATE_OLDMALLOC objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase; #endif } #endif /* RGENGC_CHECK_MODE >= 2 */ static void gc_marks(rb_objspace_t *objspace, int full_mark) { struct mark_func_data_struct *prev_mark_func_data; gc_prof_mark_timer_start(objspace); { /* setup marking */ prev_mark_func_data = objspace->mark_func_data; objspace->mark_func_data = 0; #if USE_RGENGC #if RGENGC_CHECK_MODE >= 2 gc_marks_check(objspace, gc_check_before_marks_i, "before_marks"); #endif if (full_mark == TRUE) { /* major/full GC */ objspace->rgengc.remembered_shady_object_count = 0; objspace->rgengc.old_object_count = 0; #if RGENGC_THREEGEN objspace->rgengc.young_object_count = 0; #endif gc_marks_body(objspace, TRUE); /* Do full GC if old/remembered_shady object counts is greater than counts two times at last full GC counts */ objspace->rgengc.remembered_shady_object_limit = objspace->rgengc.remembered_shady_object_count * 2; objspace->rgengc.old_object_limit = objspace->rgengc.old_object_count * 2; } else { /* minor GC */ gc_marks_body(objspace, FALSE); } #if RGENGC_PROFILE > 0 if (gc_prof_record(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->old_objects = objspace->rgengc.old_object_count; } #endif #if RGENGC_CHECK_MODE >= 3 gc_marks_check(objspace, gc_check_after_marks_i, "after_marks"); #endif #else /* USE_RGENGC */ gc_marks_body(objspace, TRUE); #endif objspace->mark_func_data = prev_mark_func_data; } gc_prof_mark_timer_stop(objspace); } /* RGENGC */ static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...) { if (level <= RGENGC_DEBUG) { char buf[1024]; FILE *out = stderr; va_list args; const char *status = " "; #if USE_RGENGC if (during_gc) { status = objspace->rgengc.during_minor_gc ? "-" : "+"; } #endif va_start(args, fmt); vsnprintf(buf, 1024, fmt, args); va_end(args); fprintf(out, "%s|", status); fputs(buf, out); } } #if USE_RGENGC /* bit operations */ static int rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj) { bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj); return MARKED_IN_BITMAP(bits, obj) ? 1 : 0; } static int rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj) { bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj); if (MARKED_IN_BITMAP(bits, obj)) { return FALSE; } else { MARK_IN_BITMAP(bits, obj); return TRUE; } } /* wb, etc */ /* return FALSE if already remembered */ static int rgengc_remember(rb_objspace_t *objspace, VALUE obj) { rgengc_report(2, objspace, "rgengc_remember: %p (%s, %s) %s\n", (void *)obj, obj_type_name(obj), RVALUE_SHADY(obj) ? "shady" : "non-shady", rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now"); #if RGENGC_CHECK_MODE > 0 { switch (BUILTIN_TYPE(obj)) { case T_NONE: case T_ZOMBIE: rb_bug("rgengc_remember: should not remember %p (%s)\n", (void *)obj, obj_type_name(obj)); default: ; } } #endif if (RGENGC_PROFILE) { if (!rgengc_remembered(objspace, obj)) { if (!RVALUE_SHADY(obj)) { #if RGENGC_PROFILE > 0 objspace->profile.remembered_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif #endif } else { #if RGENGC_PROFILE > 0 objspace->profile.remembered_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif #endif } } } return rgengc_remembersetbits_set(objspace, obj); } static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj) { int result = rgengc_remembersetbits_get(objspace, obj); check_gen_consistency(obj); rgengc_report(6, objspace, "gc_remembered: %p (%s) => %d\n", (void *)obj, obj_type_name(obj), result); return result; } static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap) { size_t j; RVALUE *p, *offset; bits_t *bits, bitset; struct heap_page *page = heap->pages; #if RGENGC_PROFILE > 0 size_t shady_object_count = 0, clear_count = 0; #endif while (page) { p = page->start; bits = page->rememberset_bits; offset = p - NUM_IN_PAGE(p); for (j=0; j < HEAP_BITMAP_LIMIT; j++) { if (bits[j]) { p = offset + j * BITS_BITLENGTH; bitset = bits[j]; do { if (bitset & 1) { /* mark before RVALUE_PROMOTE_... */ gc_mark_ptr(objspace, (VALUE)p); if (!RVALUE_SHADY(p)) { rgengc_report(2, objspace, "rgengc_rememberset_mark: clear %p (%s)\n", p, obj_type_name((VALUE)p)); #if RGENGC_THREEGEN if (RVALUE_INFANT_P((VALUE)p)) RVALUE_PROMOTE_INFANT((VALUE)p); if (RVALUE_YOUNG_P((VALUE)p)) RVALUE_PROMOTE_YOUNG((VALUE)p); #endif CLEAR_IN_BITMAP(bits, p); #if RGENGC_PROFILE > 0 clear_count++; #endif } else { #if RGENGC_PROFILE > 0 shady_object_count++; #endif } rgengc_report(2, objspace, "rgengc_rememberset_mark: mark %p (%s)\n", p, obj_type_name((VALUE)p)); gc_mark_children(objspace, (VALUE) p); } p++; bitset >>= 1; } while (bitset); } } page = page->next; } rgengc_report(2, objspace, "rgengc_rememberset_mark: finished\n"); #if RGENGC_PROFILE > 0 rgengc_report(2, objspace, "rgengc_rememberset_mark: clear_count: %"PRIdSIZE", shady_object_count: %"PRIdSIZE"\n", clear_count, shady_object_count); if (gc_prof_record(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->remembered_normal_objects = clear_count; record->remembered_shady_objects = shady_object_count; } #endif } static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page = heap->pages; while (page) { memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE); memset(&page->rememberset_bits[0], 0, HEAP_BITMAP_SIZE); page = page->next; } } /* RGENGC: APIs */ void rb_gc_writebarrier(VALUE a, VALUE b) { if (RGENGC_CHECK_MODE) { if (!RVALUE_PROMOTED_P(a)) rb_bug("rb_gc_writebarrier: referer object %p (%s) is not promoted.\n", (void *)a, obj_type_name(a)); } if (!RVALUE_OLD_P(b) && RVALUE_OLD_BITMAP_P(a)) { rb_objspace_t *objspace = &rb_objspace; if (!rgengc_remembered(objspace, a)) { int type = BUILTIN_TYPE(a); /* TODO: 2 << 16 is just a magic number. */ if ((type == T_ARRAY && RARRAY_LEN(a) >= 2 << 16) || (type == T_HASH && RHASH_SIZE(a) >= 2 << 16)) { if (!rgengc_remembered(objspace, b)) { rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n", (void *)a, obj_type_name(a), (void *)b, obj_type_name(b)); rgengc_remember(objspace, b); } } else { rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n", (void *)a, obj_type_name(a), (void *)b, obj_type_name(b)); rgengc_remember(objspace, a); } } } } void rb_gc_writebarrier_unprotect_promoted(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; if (RGENGC_CHECK_MODE) { if (!RVALUE_PROMOTED_P(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on non-promoted object"); if (RVALUE_SHADY(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on shady object"); } rgengc_report(0, objspace, "rb_gc_writebarrier_unprotect_promoted: %p (%s)%s\n", (void *)obj, obj_type_name(obj), rgengc_remembered(objspace, obj) ? " (already remembered)" : ""); if (RVALUE_OLD_P(obj)) { RVALUE_DEMOTE_FROM_OLD(obj); rgengc_remember(objspace, obj); objspace->rgengc.remembered_shady_object_count++; #if RGENGC_PROFILE objspace->profile.shade_operation_count++; #if RGENGC_PROFILE >= 2 objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++; #endif /* RGENGC_PROFILE >= 2 */ #endif /* RGENGC_PROFILE */ } #if RGENGC_THREEGEN else { RVALUE_DEMOTE_FROM_YOUNG(obj); } #endif } void rb_gc_writebarrier_remember_promoted(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; rgengc_remember(objspace, obj); } static st_table *rgengc_unprotect_logging_table; static int rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val) { fprintf(stderr, "%s\t%d\n", (char *)key, (int)val); return ST_CONTINUE; } static void rgengc_unprotect_logging_exit_func(void) { st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0); } void rb_gc_unprotect_logging(void *objptr, const char *filename, int line) { VALUE obj = (VALUE)objptr; if (rgengc_unprotect_logging_table == 0) { rgengc_unprotect_logging_table = st_init_strtable(); atexit(rgengc_unprotect_logging_exit_func); } if (OBJ_WB_PROTECTED(obj)) { char buff[0x100]; st_data_t cnt = 1; char *ptr = buff; snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_type_name(obj), filename, line); if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) { cnt++; } else { ptr = (char *)malloc(strlen(buff) + 1); strcpy(ptr, buff); } st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt); } } #endif /* USE_RGENGC */ /* RGENGC analysis information */ VALUE rb_obj_rgengc_writebarrier_protected_p(VALUE obj) { return OBJ_WB_PROTECTED(obj) ? Qtrue : Qfalse; } VALUE rb_obj_rgengc_promoted_p(VALUE obj) { return OBJ_PROMOTED(obj) ? Qtrue : Qfalse; } size_t rb_obj_gc_flags(VALUE obj, ID* flags, size_t max) { size_t n = 0; static ID ID_marked; #if USE_RGENGC static ID ID_wb_protected, ID_old, ID_remembered; #if RGENGC_THREEGEN static ID ID_young, ID_infant; #endif #endif if (!ID_marked) { #define I(s) ID_##s = rb_intern(#s); I(marked); #if USE_RGENGC I(wb_protected); I(old); I(remembered); #if RGENGC_THREEGEN I(young); I(infant); #endif #endif #undef I } #if USE_RGENGC if (OBJ_WB_PROTECTED(obj) && nbefore_sweep) { CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(p), p); } #endif objspace->profile.total_freed_object_num++; heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), p); /* Disable counting swept_slots because there are no meaning. * if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) { * objspace->heap.swept_slots++; * } */ } void rb_gc_register_mark_object(VALUE obj) { VALUE ary = GET_THREAD()->vm->mark_object_ary; rb_ary_push(ary, obj); } void rb_gc_register_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = global_List; tmp->varptr = addr; global_List = tmp; } void rb_gc_unregister_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp = global_List; if (tmp->varptr == addr) { global_List = tmp->next; xfree(tmp); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; xfree(t); break; } tmp = tmp->next; } } void rb_global_variable(VALUE *var) { rb_gc_register_address(var); } #define GC_NOTIFY 0 static int garbage_collect_body(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (ruby_gc_stress && !ruby_disable_gc_stress) { int flag = FIXNUM_P(ruby_gc_stress) ? FIX2INT(ruby_gc_stress) : 0; if (flag & 0x01) reason &= ~GPR_FLAG_MAJOR_MASK; else reason |= GPR_FLAG_MAJOR_BY_STRESS; immediate_sweep = !(flag & 0x02); } #if USE_RGENGC else { if (full_mark) { reason |= GPR_FLAG_MAJOR_BY_NOFREE; } if (objspace->rgengc.need_major_gc) { reason |= objspace->rgengc.need_major_gc; objspace->rgengc.need_major_gc = GPR_FLAG_NONE; } if (objspace->rgengc.remembered_shady_object_count > objspace->rgengc.remembered_shady_object_limit) { reason |= GPR_FLAG_MAJOR_BY_SHADY; } if (objspace->rgengc.old_object_count > objspace->rgengc.old_object_limit) { reason |= GPR_FLAG_MAJOR_BY_OLDGEN; } if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) { immediate_sweep = TRUE; } } #endif if (immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP; full_mark = (reason & GPR_FLAG_MAJOR_MASK) ? TRUE : FALSE; if (GC_NOTIFY) fprintf(stderr, "start garbage_collect(%d, %d, %d)\n", full_mark, immediate_sweep, reason); objspace->profile.count++; objspace->profile.latest_gc_info = reason; gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */); objspace->profile.total_allocated_object_num_at_gc_start = objspace->profile.total_allocated_object_num; objspace->profile.heap_used_at_gc_start = heap_pages_used; gc_prof_setup_new_record(objspace, reason); gc_prof_timer_start(objspace); { assert(during_gc > 0); gc_marks(objspace, full_mark); gc_sweep(objspace, immediate_sweep); during_gc = 0; } gc_prof_timer_stop(objspace); if (GC_NOTIFY) fprintf(stderr, "end garbage_collect()\n"); return TRUE; } static int heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap) { if (dont_gc || during_gc) { if (!heap->freelist && !heap->free_pages) { if (!heap_increment(objspace, heap)) { heap_set_increment(objspace, 0); heap_increment(objspace, heap); } } return FALSE; } return TRUE; } static int ready_to_gc(rb_objspace_t *objspace) { return heap_ready_to_gc(objspace, heap_eden); } static int garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (!heap_pages_used) { during_gc = 0; return FALSE; } if (!ready_to_gc(objspace)) { during_gc = 0; return TRUE; } #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time(); #endif gc_rest_sweep(objspace); #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time; #endif during_gc++; return garbage_collect_body(objspace, full_mark, immediate_sweep, reason); } struct objspace_and_reason { rb_objspace_t *objspace; int reason; int full_mark; int immediate_sweep; }; static void * gc_with_gvl(void *ptr) { struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr; return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_sweep, oar->reason); } static int garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason) { if (dont_gc) return TRUE; if (ruby_thread_has_gvl_p()) { return garbage_collect(objspace, full_mark, immediate_sweep, reason); } else { if (ruby_native_thread_p()) { struct objspace_and_reason oar; oar.objspace = objspace; oar.reason = reason; oar.full_mark = full_mark; oar.immediate_sweep = immediate_sweep; return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } int rb_garbage_collect(void) { return garbage_collect(&rb_objspace, TRUE, TRUE, GPR_FLAG_CAPI); } #undef Init_stack void Init_stack(volatile VALUE *addr) { ruby_init_stack(addr); } /* * call-seq: * GC.start -> nil * GC.garbage_collect -> nil * ObjectSpace.garbage_collect -> nil * GC.start(full_mark: false) -> nil * * Initiates garbage collection, unless manually disabled. * * This method is defined with keyword arguments that default to true: * * def GC.start(full_mark: true, immediate_sweep: true) end * * Use full_mark: false to perform a minor GC. * Use immediate_sweep: false to defer sweeping (use lazy sweep). * * Note: These keyword arguments are implementation and version dependent. They * are not guaranteed to be future-compatible, and may be ignored if the * underlying implementation does not support them. */ static VALUE gc_start_internal(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; int full_mark = TRUE, immediate_sweep = TRUE; VALUE opt = Qnil; static ID keyword_ids[2]; rb_scan_args(argc, argv, "0:", &opt); if (!NIL_P(opt)) { VALUE kwvals[2]; if (!keyword_ids[0]) { keyword_ids[0] = rb_intern("full_mark"); keyword_ids[1] = rb_intern("immediate_sweep"); } rb_get_kwargs(opt, keyword_ids, 0, 2, kwvals); if (kwvals[0] != Qundef) full_mark = RTEST(kwvals[0]); if (kwvals[1] != Qundef) immediate_sweep = RTEST(kwvals[1]); } garbage_collect(objspace, full_mark, immediate_sweep, GPR_FLAG_METHOD); if (!finalizing) finalize_deferred(objspace); return Qnil; } VALUE rb_gc_start(void) { rb_gc(); return Qnil; } void rb_gc(void) { rb_objspace_t *objspace = &rb_objspace; garbage_collect(objspace, TRUE, TRUE, GPR_FLAG_CAPI); if (!finalizing) finalize_deferred(objspace); } int rb_during_gc(void) { rb_objspace_t *objspace = &rb_objspace; return during_gc; } #if RGENGC_PROFILE >= 2 static void gc_count_add_each_types(VALUE hash, const char *name, const size_t *types) { VALUE result = rb_hash_new(); int i; for (i=0; i Integer * * The number of times GC occurred. * * It returns the number of times GC occurred since the process started. * */ static VALUE gc_count(VALUE self) { return SIZET2NUM(rb_gc_count()); } static VALUE gc_info_decode(int flags, VALUE hash_or_key) { static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer; static VALUE sym_nofree, sym_oldgen, sym_shady, sym_rescan, sym_stress, sym_oldmalloc; static VALUE sym_newobj, sym_malloc, sym_method, sym_capi; VALUE hash = Qnil, key = Qnil; VALUE major_by; if (SYMBOL_P(hash_or_key)) key = hash_or_key; else if (RB_TYPE_P(hash_or_key, T_HASH)) hash = hash_or_key; else rb_raise(rb_eTypeError, "non-hash or symbol given"); if (sym_major_by == Qnil) { #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(major_by); S(gc_by); S(immediate_sweep); S(have_finalizer); S(nofree); S(oldgen); S(shady); S(rescan); S(stress); S(oldmalloc); S(newobj); S(malloc); S(method); S(capi); #undef S } #define SET(name, attr) \ if (key == sym_##name) \ return (attr); \ else if (hash != Qnil) \ rb_hash_aset(hash, sym_##name, (attr)); major_by = (flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree : (flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen : (flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady : (flags & GPR_FLAG_MAJOR_BY_RESCAN) ? sym_rescan : (flags & GPR_FLAG_MAJOR_BY_STRESS) ? sym_stress : #if RGENGC_ESTIMATE_OLDMALLOC (flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc : #endif Qnil; SET(major_by, major_by); SET(gc_by, (flags & GPR_FLAG_NEWOBJ) ? sym_newobj : (flags & GPR_FLAG_MALLOC) ? sym_malloc : (flags & GPR_FLAG_METHOD) ? sym_method : (flags & GPR_FLAG_CAPI) ? sym_capi : (flags & GPR_FLAG_STRESS) ? sym_stress : Qnil ); SET(have_finalizer, (flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse); SET(immediate_sweep, (flags & GPR_FLAG_IMMEDIATE_SWEEP) ? Qtrue : Qfalse); #undef SET if (key != Qnil) /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %s", RSTRING_PTR(rb_id2str(SYM2ID(key)))); return hash; } VALUE rb_gc_latest_gc_info(VALUE key) { rb_objspace_t *objspace = &rb_objspace; return gc_info_decode(objspace->profile.latest_gc_info, key); } /* * call-seq: * GC.latest_gc_info -> {:gc_by=>:newobj} * GC.latest_gc_info(hash) -> hash * GC.latest_gc_info(:major_by) -> :malloc * * Returns information about the most recent garbage collection. */ static VALUE gc_latest_gc_info(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; VALUE arg = Qnil; if (rb_scan_args(argc, argv, "01", &arg) == 1) { if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) { rb_raise(rb_eTypeError, "non-hash or symbol given"); } } if (arg == Qnil) arg = rb_hash_new(); return gc_info_decode(objspace->profile.latest_gc_info, arg); } static VALUE gc_stat_internal(VALUE hash_or_sym, size_t *out) { static VALUE sym_count; static VALUE sym_heap_used, sym_heap_length, sym_heap_increment; static VALUE sym_heap_live_slot, sym_heap_free_slot, sym_heap_final_slot, sym_heap_swept_slot; static VALUE sym_heap_eden_page_length, sym_heap_tomb_page_length; static VALUE sym_total_allocated_object, sym_total_freed_object; static VALUE sym_malloc_increase, sym_malloc_limit; #if USE_RGENGC static VALUE sym_minor_gc_count, sym_major_gc_count; static VALUE sym_remembered_shady_object, sym_remembered_shady_object_limit; static VALUE sym_old_object, sym_old_object_limit; #if RGENGC_ESTIMATE_OLDMALLOC static VALUE sym_oldmalloc_increase, sym_oldmalloc_limit; #endif #if RGENGC_PROFILE static VALUE sym_generated_normal_object_count, sym_generated_shady_object_count; static VALUE sym_shade_operation_count, sym_promote_infant_count, sym_promote_young_count; static VALUE sym_remembered_normal_object_count, sym_remembered_shady_object_count; #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ rb_objspace_t *objspace = &rb_objspace; VALUE hash = Qnil, key = Qnil; if (RB_TYPE_P(hash_or_sym, T_HASH)) hash = hash_or_sym; else if (SYMBOL_P(hash_or_sym) && out) key = hash_or_sym; else rb_raise(rb_eTypeError, "non-hash or symbol argument"); if (sym_count == 0) { #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(count); S(heap_used); S(heap_length); S(heap_increment); S(heap_live_slot); S(heap_free_slot); S(heap_final_slot); S(heap_swept_slot); S(heap_eden_page_length); S(heap_tomb_page_length); S(total_allocated_object); S(total_freed_object); S(malloc_increase); S(malloc_limit); #if USE_RGENGC S(minor_gc_count); S(major_gc_count); S(remembered_shady_object); S(remembered_shady_object_limit); S(old_object); S(old_object_limit); #if RGENGC_ESTIMATE_OLDMALLOC S(oldmalloc_increase); S(oldmalloc_limit); #endif #if RGENGC_PROFILE S(generated_normal_object_count); S(generated_shady_object_count); S(shade_operation_count); S(promote_infant_count); S(promote_young_count); S(remembered_normal_object_count); S(remembered_shady_object_count); #endif /* USE_RGENGC */ #endif /* RGENGC_PROFILE */ #undef S } #define SET(name, attr) \ if (key == sym_##name) \ return (*out = attr, Qnil); \ else if (hash != Qnil) \ rb_hash_aset(hash, sym_##name, SIZET2NUM(attr)); SET(count, objspace->profile.count); /* implementation dependent counters */ SET(heap_used, heap_pages_used); SET(heap_length, heap_pages_length); SET(heap_increment, heap_pages_increment); SET(heap_live_slot, objspace_live_slot(objspace)); SET(heap_free_slot, objspace_free_slot(objspace)); SET(heap_final_slot, heap_pages_final_slots); SET(heap_swept_slot, heap_pages_swept_slots); SET(heap_eden_page_length, heap_eden->page_length); SET(heap_tomb_page_length, heap_tomb->page_length); SET(total_allocated_object, objspace->profile.total_allocated_object_num); SET(total_freed_object, objspace->profile.total_freed_object_num); SET(malloc_increase, malloc_increase); SET(malloc_limit, malloc_limit); #if USE_RGENGC SET(minor_gc_count, objspace->profile.minor_gc_count); SET(major_gc_count, objspace->profile.major_gc_count); SET(remembered_shady_object, objspace->rgengc.remembered_shady_object_count); SET(remembered_shady_object_limit, objspace->rgengc.remembered_shady_object_limit); SET(old_object, objspace->rgengc.old_object_count); SET(old_object_limit, objspace->rgengc.old_object_limit); #if RGENGC_ESTIMATE_OLDMALLOC SET(oldmalloc_increase, objspace->rgengc.oldmalloc_increase); SET(oldmalloc_limit, objspace->rgengc.oldmalloc_increase_limit); #endif #if RGENGC_PROFILE SET(generated_normal_object_count, objspace->profile.generated_normal_object_count); SET(generated_shady_object_count, objspace->profile.generated_shady_object_count); SET(shade_operation_count, objspace->profile.shade_operation_count); SET(promote_infant_count, objspace->profile.promote_infant_count); #if RGENGC_THREEGEN SET(promote_young_count, objspace->profile.promote_young_count); #endif SET(remembered_normal_object_count, objspace->profile.remembered_normal_object_count); SET(remembered_shady_object_count, objspace->profile.remembered_shady_object_count); #endif /* RGENGC_PROFILE */ #endif /* USE_RGENGC */ #undef SET if (key != Qnil) /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %s", RSTRING_PTR(rb_id2str(SYM2ID(key)))); #if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2 if (hash != Qnil) { gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types); gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types); gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types); gc_count_add_each_types(hash, "promote_infant_types", objspace->profile.promote_infant_types); #if RGENGC_THREEGEN gc_count_add_each_types(hash, "promote_young_types", objspace->profile.promote_young_types); #endif gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types); gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types); } #endif return hash; } /* * call-seq: * GC.stat -> Hash * GC.stat(hash) -> hash * GC.stat(:key) -> Numeric * * Returns a Hash containing information about the GC. * * The hash includes information about internal statistics about GC such as: * * { * :count=>2, * :heap_used=>9, * :heap_length=>11, * :heap_increment=>2, * :heap_live_slot=>6836, * :heap_free_slot=>519, * :heap_final_slot=>0, * :heap_swept_slot=>818, * :total_allocated_object=>7674, * :total_freed_object=>838, * :malloc_increase=>181034, * :malloc_limit=>16777216, * :minor_gc_count=>2, * :major_gc_count=>0, * :remembered_shady_object=>55, * :remembered_shady_object_limit=>0, * :old_object=>2422, * :old_object_limit=>0, * :oldmalloc_increase=>277386, * :oldmalloc_limit=>16777216 * } * * The contents of the hash are implementation specific and may be changed in * the future. * * This method is only expected to work on C Ruby. * */ static VALUE gc_stat(int argc, VALUE *argv, VALUE self) { VALUE arg = Qnil; if (rb_scan_args(argc, argv, "01", &arg) == 1) { if (SYMBOL_P(arg)) { size_t value = 0; gc_stat_internal(arg, &value); return SIZET2NUM(value); } else if (!RB_TYPE_P(arg, T_HASH)) { rb_raise(rb_eTypeError, "non-hash or symbol given"); } } if (arg == Qnil) { arg = rb_hash_new(); } gc_stat_internal(arg, 0); return arg; } size_t rb_gc_stat(VALUE key) { if (SYMBOL_P(key)) { size_t value = 0; gc_stat_internal(key, &value); return value; } else { gc_stat_internal(key, 0); return 0; } } /* * call-seq: * GC.stress -> fixnum, true or false * * Returns current status of GC stress mode. */ static VALUE gc_stress_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return ruby_gc_stress; } /* * call-seq: * GC.stress = bool -> bool * * Updates the GC stress mode. * * When stress mode is enabled, the GC is invoked at every GC opportunity: * all memory and object allocations. * * Enabling stress mode will degrade performance, it is only for debugging. */ static VALUE gc_stress_set(VALUE self, VALUE flag) { rb_objspace_t *objspace = &rb_objspace; rb_secure(2); ruby_gc_stress = FIXNUM_P(flag) ? flag : (RTEST(flag) ? Qtrue : Qfalse); return flag; } /* * call-seq: * GC.enable -> true or false * * Enables garbage collection, returning +true+ if garbage * collection was previously disabled. * * GC.disable #=> false * GC.enable #=> true * GC.enable #=> false * */ VALUE rb_gc_enable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; dont_gc = FALSE; return old ? Qtrue : Qfalse; } /* * call-seq: * GC.disable -> true or false * * Disables garbage collection, returning +true+ if garbage * collection was already disabled. * * GC.disable #=> false * GC.disable #=> true * */ VALUE rb_gc_disable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; gc_rest_sweep(objspace); dont_gc = TRUE; return old ? Qtrue : Qfalse; } static int get_envparam_int(const char *name, unsigned int *default_value, int lower_bound) { char *ptr = getenv(name); int val; if (ptr != NULL) { val = atoi(ptr); if (val > lower_bound) { if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%d (%d)\n", name, val, *default_value); *default_value = val; return 1; } else { if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%d (%d), but ignored because lower than %d\n", name, val, *default_value, lower_bound); } } return 0; } static int get_envparam_double(const char *name, double *default_value, double lower_bound) { char *ptr = getenv(name); double val; if (ptr != NULL) { val = strtod(ptr, NULL); if (val > lower_bound) { if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (%f)\n", name, val, *default_value); *default_value = val; return 1; } else { if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (%f), but ignored because lower than %f\n", name, val, *default_value, lower_bound); } } return 0; } static void gc_set_initial_pages(void) { size_t min_pages; rb_objspace_t *objspace = &rb_objspace; min_pages = gc_params.heap_init_slots / HEAP_OBJ_LIMIT; if (min_pages > heap_eden->page_length) { heap_add_pages(objspace, heap_eden, min_pages - heap_eden->page_length); } } /* * GC tuning environment variables * * * RUBY_GC_HEAP_INIT_SLOTS * - Initial allocation slots. * * RUBY_GC_HEAP_FREE_SLOTS * - Prepare at least this ammount of slots after GC. * - Allocate slots if there are not enough slots. * * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1) * - Allocate slots by this factor. * - (next slots number) = (current slots number) * (this factor) * * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1) * - Allocation rate is limited to this factor. * * * obsolete * * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1) * * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1) * * * RUBY_GC_MALLOC_LIMIT * * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1) * * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) * * * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1) * * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1) * * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) */ void ruby_gc_set_params(int safe_level) { if (safe_level > 0) return; /* RUBY_GC_HEAP_FREE_SLOTS */ if (get_envparam_int ("RUBY_FREE_MIN", &gc_params.heap_free_slots, 0)) { rb_warn("RUBY_FREE_MIN is obsolete. Use RUBY_GC_HEAP_FREE_SLOTS instead."); } get_envparam_int ("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0); /* RUBY_GC_HEAP_INIT_SLOTS */ if (get_envparam_int("RUBY_HEAP_MIN_SLOTS", &gc_params.heap_init_slots, 0)) { rb_warn("RUBY_HEAP_MIN_SLOTS is obsolete. Use RUBY_GC_HEAP_INIT_SLOTS instead."); gc_set_initial_pages(); } if (get_envparam_int("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) { gc_set_initial_pages(); } get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0); get_envparam_int ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0); get_envparam_int("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0); get_envparam_int("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0); get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0); #ifdef RGENGC_ESTIMATE_OLDMALLOC get_envparam_int("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0); get_envparam_int("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0); get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0); #endif } void rb_gc_set_params(void) { ruby_gc_set_params(rb_safe_level()); } void rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data) { rb_objspace_t *objspace = &rb_objspace; if (is_markable_object(objspace, obj)) { struct mark_func_data_struct mfd; mfd.mark_func = func; mfd.data = data; objspace->mark_func_data = &mfd; gc_mark_children(objspace, obj); objspace->mark_func_data = 0; } } struct root_objects_data { const char *category; void (*func)(const char *category, VALUE, void *); void *data; }; static void root_objects_from(VALUE obj, void *ptr) { const struct root_objects_data *data = (struct root_objects_data *)ptr; (*data->func)(data->category, obj, data->data); } void rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data) { rb_objspace_t *objspace = &rb_objspace; struct root_objects_data data; struct mark_func_data_struct mfd; data.func = func; data.data = passing_data; mfd.mark_func = root_objects_from; mfd.data = &data; objspace->mark_func_data = &mfd; { gc_mark_roots(objspace, TRUE, &data.category); } objspace->mark_func_data = 0; } /* ------------------------ Extended allocator ------------------------ */ static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size); static void * negative_size_allocation_error_with_gvl(void *ptr) { rb_raise(rb_eNoMemError, "%s", (const char *)ptr); return 0; /* should not be reached */ } static void negative_size_allocation_error(const char *msg) { if (ruby_thread_has_gvl_p()) { rb_raise(rb_eNoMemError, "%s", msg); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg); } else { fprintf(stderr, "[FATAL] %s\n", msg); exit(EXIT_FAILURE); } } } static void * ruby_memerror_body(void *dummy) { rb_memerror(); return 0; } static void ruby_memerror(void) { if (ruby_thread_has_gvl_p()) { rb_memerror(); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(ruby_memerror_body, 0); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } void rb_memerror(void) { rb_thread_t *th = GET_THREAD(); if (!nomem_error || rb_thread_raised_p(th, RAISED_NOMEMORY)) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } if (rb_thread_raised_p(th, RAISED_NOMEMORY)) { rb_thread_raised_clear(th); GET_THREAD()->errinfo = nomem_error; JUMP_TAG(TAG_RAISE); } rb_thread_raised_set(th, RAISED_NOMEMORY); rb_exc_raise(nomem_error); } static void * aligned_malloc(size_t alignment, size_t size) { void *res; #if defined __MINGW32__ res = __mingw_aligned_malloc(size, alignment); #elif defined _WIN32 && !defined __CYGWIN__ void *_aligned_malloc(size_t, size_t); res = _aligned_malloc(size, alignment); #elif defined(HAVE_POSIX_MEMALIGN) if (posix_memalign(&res, alignment, size) == 0) { return res; } else { return NULL; } #elif defined(HAVE_MEMALIGN) res = memalign(alignment, size); #else char* aligned; res = malloc(alignment + size + sizeof(void*)); aligned = (char*)res + alignment + sizeof(void*); aligned -= ((VALUE)aligned & (alignment - 1)); ((void**)aligned)[-1] = res; res = (void*)aligned; #endif #if defined(_DEBUG) || GC_DEBUG /* alignment must be a power of 2 */ assert(((alignment - 1) & alignment) == 0); assert(alignment % sizeof(void*) == 0); #endif return res; } static void aligned_free(void *ptr) { #if defined __MINGW32__ __mingw_aligned_free(ptr); #elif defined _WIN32 && !defined __CYGWIN__ _aligned_free(ptr); #elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN) free(ptr); #else free(((void**)ptr)[-1]); #endif } static inline size_t objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint) { #ifdef HAVE_MALLOC_USABLE_SIZE return malloc_usable_size(ptr); #else return hint; #endif } enum memop_type { MEMOP_TYPE_MALLOC = 1, MEMOP_TYPE_FREE = 2, MEMOP_TYPE_REALLOC = 3 }; static inline void atomic_sub_nounderflow(size_t *var, size_t sub) { if (sub == 0) return; while (1) { size_t val = *var; if (val < sub) sub = val; if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break; } } static void objspace_malloc_increase(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type) { if (new_size > old_size) { ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size); ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size); } else { atomic_sub_nounderflow(&malloc_increase, old_size - new_size); atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size); } if (type == MEMOP_TYPE_MALLOC) { if (ruby_gc_stress && !ruby_disable_gc_stress) { garbage_collect_with_gvl(objspace, FALSE, TRUE, GPR_FLAG_MALLOC); } else { retry: if (malloc_increase > malloc_limit) { if (ruby_thread_has_gvl_p() && is_lazy_sweeping(heap_eden)) { gc_rest_sweep(objspace); /* rest_sweep can reduce malloc_increase */ goto retry; } garbage_collect_with_gvl(objspace, FALSE, TRUE, GPR_FLAG_MALLOC); } } } #if MALLOC_ALLOCATED_SIZE if (new_size >= old_size) { ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size); } else { size_t dec_size = old_size - new_size; size_t allocated_size = objspace->malloc_params.allocated_size; #if MALLOC_ALLOCATED_SIZE_CHECK if (allocated_size < dec_size) { rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size."); } #endif atomic_sub_nounderflow(objspace->malloc_params.allocated_size, dec_size); } if (0) fprintf(stderr, "incraese - ptr: %p, type: %s, new_size: %d, old_size: %d\n", mem, type == MEMOP_TYPE_MALLOC ? "malloc" : type == MEMOP_TYPE_FREE ? "free " : type == MEMOP_TYPE_REALLOC ? "realloc": "error", (int)new_size, (int)old_size); switch (type) { case MEMOP_TYPE_MALLOC: ATOMIC_SIZE_INC(objspace->malloc_params.allocations); break; case MEMOP_TYPE_FREE: { size_t allocations = objspace->malloc_params.allocations; if (allocations > 0) { atomic_sub_nounderflow(objspace->malloc_params.allocations, 1); } #if MALLOC_ALLOCATED_SIZE_CHECK else { assert(objspace->malloc_params.allocations > 0); } #endif } break; case MEMOP_TYPE_REALLOC: /* ignore */ break; } #endif } static inline size_t objspace_malloc_prepare(rb_objspace_t *objspace, size_t size) { if ((ssize_t)size < 0) { negative_size_allocation_error("negative allocation size (or too big)"); } if (size == 0) size = 1; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif return size; } static inline void * objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size) { #if CALC_EXACT_MALLOC_SIZE ((size_t *)mem)[0] = size; mem = (size_t *)mem + 1; #endif return mem; } #define TRY_WITH_GC(alloc) do { \ if (!(alloc) && \ (!garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC) || /* full mark && immediate sweep */ \ !(alloc))) { \ ruby_memerror(); \ } \ } while (0) static void * objspace_xmalloc(rb_objspace_t *objspace, size_t size) { void *mem; size = objspace_malloc_prepare(objspace, size); TRY_WITH_GC(mem = malloc(size)); size = objspace_malloc_size(objspace, mem, size); objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC); return objspace_malloc_fixup(objspace, mem, size); } static void * objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size) { void *mem; if ((ssize_t)new_size < 0) { negative_size_allocation_error("negative re-allocation size"); } if (!ptr) return objspace_xmalloc(objspace, new_size); /* * The behavior of realloc(ptr, 0) is implementation defined. * Therefore we don't use realloc(ptr, 0) for portability reason. * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm */ if (new_size == 0) { objspace_xfree(objspace, ptr, old_size); return 0; } #if CALC_EXACT_MALLOC_SIZE new_size += sizeof(size_t); ptr = (size_t *)ptr - 1; oldsize = ((size_t *)ptr)[0]; #endif old_size = objspace_malloc_size(objspace, ptr, old_size); TRY_WITH_GC(mem = realloc(ptr, new_size)); new_size = objspace_malloc_size(objspace, mem, new_size); #if CALC_EXACT_MALLOC_SIZE ((size_t *)mem)[0] = new_size; mem = (size_t *)mem + 1; #endif objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC); return mem; } static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size) { #if CALC_EXACT_MALLOC_SIZE ptr = ((size_t *)ptr) - 1; oldsize = ((size_t*)ptr)[0]; #endif old_size = objspace_malloc_size(objspace, ptr, old_size); free(ptr); objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE); } void * ruby_xmalloc(size_t size) { return objspace_xmalloc(&rb_objspace, size); } static inline size_t xmalloc2_size(size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "malloc: possible integer overflow"); } return len; } void * ruby_xmalloc2(size_t n, size_t size) { return objspace_xmalloc(&rb_objspace, xmalloc2_size(n, size)); } static void * objspace_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize) { void *mem; size_t size; size = xmalloc2_size(count, elsize); size = objspace_malloc_prepare(objspace, size); TRY_WITH_GC(mem = calloc(1, size)); return objspace_malloc_fixup(objspace, mem, size); } void * ruby_xcalloc(size_t n, size_t size) { return objspace_xcalloc(&rb_objspace, n, size); } #ifdef ruby_sized_xrealloc #undef ruby_sized_xrealloc #endif void * ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size) { return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size); } void * ruby_xrealloc(void *ptr, size_t new_size) { return ruby_sized_xrealloc(ptr, new_size, 0); } #ifdef ruby_sized_xrealloc2 #undef ruby_sized_xrealloc2 #endif void * ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "realloc: possible integer overflow"); } return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size); } void * ruby_xrealloc2(void *ptr, size_t n, size_t size) { return ruby_sized_xrealloc2(ptr, n, size, 0); } #ifdef ruby_sized_xfree #undef ruby_sized_xfree #endif void ruby_sized_xfree(void *x, size_t size) { if (x) { objspace_xfree(&rb_objspace, x, size); } } void ruby_xfree(void *x) { ruby_sized_xfree(x, 0); } /* Mimic ruby_xmalloc, but need not rb_objspace. * should return pointer suitable for ruby_xfree */ void * ruby_mimmalloc(size_t size) { void *mem; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif mem = malloc(size); #if CALC_EXACT_MALLOC_SIZE /* set 0 for consistency of allocated_size/allocations */ ((size_t *)mem)[0] = 0; mem = (size_t *)mem + 1; #endif return mem; } void ruby_mimfree(void *ptr) { size_t *mem = (size_t *)ptr; #if CALC_EXACT_MALLOC_SIZE mem = mem - 1; #endif free(mem); } #if MALLOC_ALLOCATED_SIZE /* * call-seq: * GC.malloc_allocated_size -> Integer * * Returns the size of memory allocated by malloc(). * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocated_size(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocated_size); } /* * call-seq: * GC.malloc_allocations -> Integer * * Returns the number of malloc() allocations. * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocations(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocations); } #endif /* ------------------------------ WeakMap ------------------------------ */ struct weakmap { st_table *obj2wmap; /* obj -> [ref,...] */ st_table *wmap2obj; /* ref -> obj */ VALUE final; }; static int wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; VALUE obj = (VALUE)val; if (!is_live_object(objspace, obj)) return ST_DELETE; return ST_CONTINUE; } static void wmap_mark(void *ptr) { struct weakmap *w = ptr; if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace); rb_gc_mark(w->final); } static int wmap_free_map(st_data_t key, st_data_t val, st_data_t arg) { VALUE *ptr = (VALUE *)val; ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE)); return ST_CONTINUE; } static void wmap_free(void *ptr) { struct weakmap *w = ptr; st_foreach(w->obj2wmap, wmap_free_map, 0); st_free_table(w->obj2wmap); st_free_table(w->wmap2obj); } static int wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg) { VALUE *ptr = (VALUE *)val; *(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE); return ST_CONTINUE; } static size_t wmap_memsize(const void *ptr) { size_t size; const struct weakmap *w = ptr; if (!w) return 0; size = sizeof(*w); size += st_memsize(w->obj2wmap); size += st_memsize(w->wmap2obj); st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size); return size; } static const rb_data_type_t weakmap_type = { "weakmap", { wmap_mark, wmap_free, wmap_memsize, }, NULL, NULL, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE wmap_allocate(VALUE klass) { struct weakmap *w; VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w); w->obj2wmap = st_init_numtable(); w->wmap2obj = st_init_numtable(); w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize"))); return obj; } static int wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) { VALUE wmap, *ptr, size, i, j; if (!existing) return ST_STOP; wmap = (VALUE)arg, ptr = (VALUE *)*value; for (i = j = 1, size = ptr[0]; i <= size; ++i) { if (ptr[i] != wmap) { ptr[j++] = ptr[i]; } } if (j == 1) { ruby_sized_xfree(ptr, i * sizeof(VALUE)); return ST_DELETE; } if (j < i) { ptr = ruby_sized_xrealloc2(ptr, j, sizeof(VALUE), i); ptr[0] = j; } return ST_CONTINUE; } static VALUE wmap_finalize(VALUE self, VALUE objid) { st_data_t orig, wmap, data; VALUE obj, *rids, i, size; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); /* Get reference from object id. */ obj = obj_id_to_ref(objid); /* obj is original referenced object and/or weak reference. */ orig = (st_data_t)obj; if (st_delete(w->obj2wmap, &orig, &data)) { rids = (VALUE *)data; size = *rids++; for (i = 0; i < size; ++i) { wmap = (st_data_t)rids[i]; st_delete(w->wmap2obj, &wmap, NULL); } ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE)); } wmap = (st_data_t)obj; if (st_delete(w->wmap2obj, &wmap, &orig)) { wmap = (st_data_t)obj; st_update(w->obj2wmap, orig, wmap_final_func, wmap); } return self; } struct wmap_iter_arg { rb_objspace_t *objspace; VALUE value; }; static int wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg) { VALUE str = (VALUE)arg; VALUE k = (VALUE)key, v = (VALUE)val; if (RSTRING_PTR(str)[0] == '#') { rb_str_cat2(str, ", "); } else { rb_str_cat2(str, ": "); RSTRING_PTR(str)[0] = '#'; } k = SPECIAL_CONST_P(k) ? rb_inspect(k) : rb_any_to_s(k); rb_str_append(str, k); rb_str_cat2(str, " => "); v = SPECIAL_CONST_P(v) ? rb_inspect(v) : rb_any_to_s(v); rb_str_append(str, v); OBJ_INFECT(str, k); OBJ_INFECT(str, v); return ST_CONTINUE; } static VALUE wmap_inspect(VALUE self) { VALUE str; VALUE c = rb_class_name(CLASS_OF(self)); struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self); if (w->wmap2obj) { st_foreach(w->wmap2obj, wmap_inspect_i, str); } RSTRING_PTR(str)[0] = '#'; rb_str_cat2(str, ">"); return str; } static int wmap_each_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; VALUE obj = (VALUE)val; if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) { rb_yield_values(2, (VALUE)key, obj); } return ST_CONTINUE; } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace); return self; } static int wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; VALUE obj = (VALUE)val; if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) { rb_yield((VALUE)key); } return ST_CONTINUE; } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each_key(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace); return self; } static int wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; VALUE obj = (VALUE)val; if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) { rb_yield(obj); } return ST_CONTINUE; } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each_value(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace); return self; } static int wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg) { struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; rb_objspace_t *objspace = argp->objspace; VALUE ary = argp->value; VALUE obj = (VALUE)val; if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) { rb_ary_push(ary, (VALUE)key); } return ST_CONTINUE; } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_keys(VALUE self) { struct weakmap *w; struct wmap_iter_arg args; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); args.objspace = &rb_objspace; args.value = rb_ary_new(); st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args); return args.value; } static int wmap_values_i(st_data_t key, st_data_t val, st_data_t arg) { struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; rb_objspace_t *objspace = argp->objspace; VALUE ary = argp->value; VALUE obj = (VALUE)val; if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) { rb_ary_push(ary, obj); } return ST_CONTINUE; } /* Iterates over values and objects in a weakly referenced object */ static VALUE wmap_values(VALUE self) { struct weakmap *w; struct wmap_iter_arg args; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); args.objspace = &rb_objspace; args.value = rb_ary_new(); st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args); return args.value; } static int wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { VALUE size, *ptr, *optr; if (existing) { size = (ptr = optr = (VALUE *)*val)[0]; ++size; ptr = ruby_sized_xrealloc2(ptr, size + 1, sizeof(VALUE), size); } else { optr = 0; size = 1; ptr = ruby_xmalloc2(2, sizeof(VALUE)); } ptr[0] = size; ptr[size] = (VALUE)arg; if (ptr == optr) return ST_STOP; *val = (st_data_t)ptr; return ST_CONTINUE; } /* Creates a weak reference from the given key to the given value */ static VALUE wmap_aset(VALUE self, VALUE wmap, VALUE orig) { struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); should_be_finalizable(orig); should_be_finalizable(wmap); define_final0(orig, w->final); define_final0(wmap, w->final); st_update(w->obj2wmap, (st_data_t)orig, wmap_aset_update, wmap); st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig); return nonspecial_obj_id(orig); } /* Retrieves a weakly referenced object with the given key */ static VALUE wmap_aref(VALUE self, VALUE wmap) { st_data_t data; VALUE obj; struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil; obj = (VALUE)data; if (!is_id_value(objspace, obj)) return Qnil; if (!is_live_object(objspace, obj)) return Qnil; return obj; } /* Returns +true+ if +key+ is registered */ static VALUE wmap_has_key(VALUE self, VALUE key) { return NIL_P(wmap_aref(self, key)) ? Qfalse : Qtrue; } static VALUE wmap_size(VALUE self) { struct weakmap *w; st_index_t n; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); n = w->wmap2obj->num_entries; #if SIZEOF_ST_INDEX_T <= SIZEOF_LONG return ULONG2NUM(n); #else return ULL2NUM(n); #endif } /* ------------------------------ GC profiler ------------------------------ */ #define GC_PROFILE_RECORD_DEFAULT_SIZE 100 static double getrusage_time(void) { #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) { static int try_clock_gettime = 1; struct timespec ts; if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) { return ts.tv_sec + ts.tv_nsec * 1e-9; } else { try_clock_gettime = 0; } } #endif #ifdef RUSAGE_SELF { struct rusage usage; struct timeval time; if (getrusage(RUSAGE_SELF, &usage) == 0) { time = usage.ru_utime; return time.tv_sec + time.tv_usec * 1e-6; } } #endif #ifdef _WIN32 { FILETIME creation_time, exit_time, kernel_time, user_time; ULARGE_INTEGER ui; LONG_LONG q; double t; if (GetProcessTimes(GetCurrentProcess(), &creation_time, &exit_time, &kernel_time, &user_time) != 0) { memcpy(&ui, &user_time, sizeof(FILETIME)); q = ui.QuadPart / 10L; t = (DWORD)(q % 1000000L) * 1e-6; q /= 1000000L; #ifdef __GNUC__ t += q; #else t += (double)(DWORD)(q >> 16) * (1 << 16); t += (DWORD)q & ~(~0 << 16); #endif return t; } } #endif return 0.0; } static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason) { if (objspace->profile.run) { size_t index = objspace->profile.next_index; gc_profile_record *record; /* create new record */ objspace->profile.next_index++; if (!objspace->profile.records) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE; objspace->profile.records = malloc(sizeof(gc_profile_record) * objspace->profile.size); } if (index >= objspace->profile.size) { objspace->profile.size += 1000; objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size); } if (!objspace->profile.records) { rb_bug("gc_profile malloc or realloc miss"); } record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1]; MEMZERO(record, gc_profile_record, 1); /* setup before-GC parameter */ record->flags = reason | ((ruby_gc_stress && !ruby_disable_gc_stress) ? GPR_FLAG_STRESS : 0); #if MALLOC_ALLOCATED_SIZE record->allocated_size = malloc_allocated_size; #endif #if GC_PROFILE_DETAIL_MEMORY #ifdef RUSAGE_SELF { struct rusage usage; if (getrusage(RUSAGE_SELF, &usage) == 0) { record->maxrss = usage.ru_maxrss; record->minflt = usage.ru_minflt; record->majflt = usage.ru_majflt; } } #endif #endif } } static inline void gc_prof_timer_start(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); #if GC_PROFILE_MORE_DETAIL record->prepare_time = objspace->profile.prepare_time; #endif record->gc_time = 0; record->gc_invoke_time = getrusage_time(); } } static double elapsed_time_from(double time) { double now = getrusage_time(); if (now > time) { return now - time; } else { return 0; } } static inline void gc_prof_timer_stop(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->gc_time = elapsed_time_from(record->gc_invoke_time); record->gc_invoke_time -= objspace->profile.invoke_time; } } static inline void gc_prof_mark_timer_start(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) { RUBY_DTRACE_GC_MARK_BEGIN(); } #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_prof_record(objspace)->gc_mark_time = getrusage_time(); } #endif } static inline void gc_prof_mark_timer_stop(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_MARK_END_ENABLED()) { RUBY_DTRACE_GC_MARK_END(); } #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->gc_mark_time = elapsed_time_from(record->gc_mark_time); } #endif } static inline void gc_prof_sweep_timer_start(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) { RUBY_DTRACE_GC_SWEEP_BEGIN(); } if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) { objspace->profile.gc_sweep_start_time = getrusage_time(); } } } static inline void gc_prof_sweep_timer_stop(rb_objspace_t *objspace) { if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) { RUBY_DTRACE_GC_SWEEP_END(); } if (objspace->profile.run) { double sweep_time; gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); /* need to accumulate GC time for lazy sweep after gc() */ record->gc_time += sweep_time; } else if (GC_PROFILE_MORE_DETAIL) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); } #if GC_PROFILE_MORE_DETAIL record->gc_sweep_time += sweep_time; if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE; #endif if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE; } } static inline void gc_prof_set_malloc_info(rb_objspace_t *objspace) { #if GC_PROFILE_MORE_DETAIL if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); record->allocate_increase = malloc_increase; record->allocate_limit = malloc_limit; } #endif } static inline void gc_prof_set_heap_info(rb_objspace_t *objspace) { if (objspace->profile.run) { gc_profile_record *record = gc_prof_record(objspace); size_t live = objspace->profile.total_allocated_object_num_at_gc_start - objspace->profile.total_freed_object_num; size_t total = objspace->profile.heap_used_at_gc_start * HEAP_OBJ_LIMIT; #if GC_PROFILE_MORE_DETAIL record->heap_use_pages = objspace->profile.heap_used_at_gc_start; record->heap_live_objects = live; record->heap_free_objects = total - live; #endif record->heap_total_objects = total; record->heap_use_size = live * sizeof(RVALUE); record->heap_total_size = total * sizeof(RVALUE); } } /* * call-seq: * GC::Profiler.clear -> nil * * Clears the GC profiler data. * */ static VALUE gc_profile_clear(void) { rb_objspace_t *objspace = &rb_objspace; /* This method doesn't change profile.run status. * While lazy sweeping, it is possible to touch zero-cleared profile.current_record. */ gc_rest_sweep(objspace); if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2; objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size); if (!objspace->profile.records) { rb_memerror(); } } MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size); objspace->profile.next_index = 0; objspace->profile.current_record = 0; return Qnil; } /* * call-seq: * GC::Profiler.raw_data -> [Hash, ...] * * Returns an Array of individual raw profile data Hashes ordered * from earliest to latest by +:GC_INVOKE_TIME+. * * For example: * * [ * { * :GC_TIME=>1.3000000000000858e-05, * :GC_INVOKE_TIME=>0.010634999999999999, * :HEAP_USE_SIZE=>289640, * :HEAP_TOTAL_SIZE=>588960, * :HEAP_TOTAL_OBJECTS=>14724, * :GC_IS_MARKED=>false * }, * # ... * ] * * The keys mean: * * +:GC_TIME+:: * Time elapsed in seconds for this GC run * +:GC_INVOKE_TIME+:: * Time elapsed in seconds from startup to when the GC was invoked * +:HEAP_USE_SIZE+:: * Total bytes of heap used * +:HEAP_TOTAL_SIZE+:: * Total size of heap in bytes * +:HEAP_TOTAL_OBJECTS+:: * Total number of objects * +:GC_IS_MARKED+:: * Returns +true+ if the GC is in mark phase * * If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access * to the following hash keys: * * +:GC_MARK_TIME+:: * +:GC_SWEEP_TIME+:: * +:ALLOCATE_INCREASE+:: * +:ALLOCATE_LIMIT+:: * +:HEAP_USE_PAGES+:: * +:HEAP_LIVE_OBJECTS+:: * +:HEAP_FREE_OBJECTS+:: * +:HAVE_FINALIZE+:: * */ static VALUE gc_profile_record_get(void) { VALUE prof; VALUE gc_profile = rb_ary_new(); size_t i; rb_objspace_t *objspace = (&rb_objspace); if (!objspace->profile.run) { return Qnil; } for (i =0; i < objspace->profile.next_index; i++) { gc_profile_record *record = &objspace->profile.records[i]; prof = rb_hash_new(); rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(record->flags, rb_hash_new())); rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue); #if GC_PROFILE_MORE_DETAIL rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse); #endif #if RGENGC_PROFILE > 0 rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects)); #endif rb_ary_push(gc_profile, prof); } return gc_profile; } #if GC_PROFILE_MORE_DETAIL static const char * gc_profile_dump_major_reason(int reason) { switch (reason & GPR_FLAG_MAJOR_MASK) { #define C(x, s) case GPR_FLAG_MAJOR_BY_##x: return s case GPR_FLAG_NONE: return "-"; C(NOFREE, "+"); C(OLDGEN, "O"); C(SHADY, "S"); C(RESCAN, "R"); C(STRESS, "!"); #if RGENGC_ESTIMATE_OLDMALLOC C(OLDMALLOC, "M"); #endif default: rb_bug("gc_profile_dump_major_reason: no such reason"); #undef C } } #endif static void gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE)) { rb_objspace_t *objspace = &rb_objspace; size_t count = objspace->profile.next_index; if (objspace->profile.run && count /* > 1 */) { size_t i; const gc_profile_record *record; append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count)); append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n")); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n", i+1, record->gc_invoke_time, record->heap_use_size, record->heap_total_size, record->heap_total_objects, record->gc_time*1000)); } #if GC_PROFILE_MORE_DETAIL append(out, rb_str_new_cstr("\n\n" \ "More detail.\n" \ "Prepare Time = Previously GC's rest sweep time\n" "Index Flags Allocate Inc. Allocate Limit" #if CALC_EXACT_MALLOC_SIZE " Allocated Size" #endif " Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj" #if RGENGC_PROFILE " OldgenObj RemNormObj RemShadObj" #endif #if GC_PROFILE_DETAIL_MEMORY " MaxRSS(KB) MinorFLT MajorFLT" #endif "\n")); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIdSIZE" %s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE #if CALC_EXACT_MALLOC_SIZE " %15"PRIuSIZE #endif " %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #if RGENGC_PROFILE "%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #endif #if GC_PROFILE_DETAIL_MEMORY "%11ld %8ld %8ld" #endif "\n", i+1, gc_profile_dump_major_reason(record->flags), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.', (record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" : (record->flags & GPR_FLAG_MALLOC) ? "MALLOC" : (record->flags & GPR_FLAG_METHOD) ? "METHOD" : (record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????", (record->flags & GPR_FLAG_STRESS) ? '!' : ' ', record->allocate_increase, record->allocate_limit, #if CALC_EXACT_MALLOC_SIZE record->allocated_size, #endif record->heap_use_pages, record->gc_mark_time*1000, record->gc_sweep_time*1000, record->prepare_time*1000, record->heap_live_objects, record->heap_free_objects, record->removing_objects, record->empty_objects #if RGENGC_PROFILE , record->old_objects, record->remembered_normal_objects, record->remembered_shady_objects #endif #if GC_PROFILE_DETAIL_MEMORY , record->maxrss / 1024, record->minflt, record->majflt #endif )); } #endif } } /* * call-seq: * GC::Profiler.result -> String * * Returns a profile data report such as: * * GC 1 invokes. * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) * 1 0.012 159240 212940 10647 0.00000000000001530000 */ static VALUE gc_profile_result(void) { VALUE str = rb_str_buf_new(0); gc_profile_dump_on(str, rb_str_buf_append); return str; } /* * call-seq: * GC::Profiler.report * GC::Profiler.report(io) * * Writes the GC::Profiler.result to $stdout or the given IO object. * */ static VALUE gc_profile_report(int argc, VALUE *argv, VALUE self) { VALUE out; if (argc == 0) { out = rb_stdout; } else { rb_scan_args(argc, argv, "01", &out); } gc_profile_dump_on(out, rb_io_write); return Qnil; } /* * call-seq: * GC::Profiler.total_time -> float * * The total time used for garbage collection in seconds */ static VALUE gc_profile_total_time(VALUE self) { double time = 0; rb_objspace_t *objspace = &rb_objspace; if (objspace->profile.run && objspace->profile.next_index > 0) { size_t i; size_t count = objspace->profile.next_index; for (i = 0; i < count; i++) { time += objspace->profile.records[i].gc_time; } } return DBL2NUM(time); } /* * call-seq: * GC::Profiler.enabled? -> true or false * * The current status of GC profile mode. */ static VALUE gc_profile_enable_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return objspace->profile.run ? Qtrue : Qfalse; } /* * call-seq: * GC::Profiler.enable -> nil * * Starts the GC profiler. * */ static VALUE gc_profile_enable(void) { rb_objspace_t *objspace = &rb_objspace; gc_rest_sweep(objspace); objspace->profile.run = TRUE; return Qnil; } /* * call-seq: * GC::Profiler.disable -> nil * * Stops the GC profiler. * */ static VALUE gc_profile_disable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = FALSE; objspace->profile.current_record = 0; return Qnil; } /* ------------------------------ DEBUG ------------------------------ */ static const char * type_name(int type, VALUE obj) { switch (type) { #define TYPE_NAME(t) case (t): return #t; TYPE_NAME(T_NONE); TYPE_NAME(T_OBJECT); TYPE_NAME(T_CLASS); TYPE_NAME(T_MODULE); TYPE_NAME(T_FLOAT); TYPE_NAME(T_STRING); TYPE_NAME(T_REGEXP); TYPE_NAME(T_ARRAY); TYPE_NAME(T_HASH); TYPE_NAME(T_STRUCT); TYPE_NAME(T_BIGNUM); TYPE_NAME(T_FILE); TYPE_NAME(T_MATCH); TYPE_NAME(T_COMPLEX); TYPE_NAME(T_RATIONAL); TYPE_NAME(T_NIL); TYPE_NAME(T_TRUE); TYPE_NAME(T_FALSE); TYPE_NAME(T_SYMBOL); TYPE_NAME(T_FIXNUM); TYPE_NAME(T_UNDEF); TYPE_NAME(T_NODE); TYPE_NAME(T_ICLASS); TYPE_NAME(T_ZOMBIE); case T_DATA: if (obj && rb_objspace_data_type_name(obj)) { return rb_objspace_data_type_name(obj); } return "T_DATA"; #undef TYPE_NAME } return "unknown"; } static const char * obj_type_name(VALUE obj) { return type_name(TYPE(obj), obj); } #if GC_DEBUG void rb_gcdebug_print_obj_condition(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; fprintf(stderr, "created at: %s:%d\n", RSTRING_PTR(RANY(obj)->file), FIX2INT(RANY(obj)->line)); if (is_pointer_to_heap(objspace, (void *)obj)) { fprintf(stderr, "pointer to heap?: true\n"); } else { fprintf(stderr, "pointer to heap?: false\n"); return; } fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false"); #if USE_RGENGC #if RGENGC_THREEGEN fprintf(stderr, "young? : %s\n", RVALUE_YOUNG_P(obj) ? "true" : "false"); #endif fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false"); fprintf(stderr, "shady? : %s\n", RVALUE_SHADY(obj) ? "true" : "false"); fprintf(stderr, "remembered?: %s\n", MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "true" : "false"); #endif if (is_lazy_sweeping(heap_eden)) { fprintf(stderr, "lazy sweeping?: true\n"); fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet"); } else { fprintf(stderr, "lazy sweeping?: false\n"); } } static VALUE gcdebug_sential(VALUE obj, VALUE name) { fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj); return Qnil; } void rb_gcdebug_sentinel(VALUE obj, const char *name) { rb_define_finalizer(obj, rb_proc_new(gcdebug_sential, (VALUE)name)); } #endif /* GC_DEBUG */ /* * Document-module: ObjectSpace * * The ObjectSpace module contains a number of routines * that interact with the garbage collection facility and allow you to * traverse all living objects with an iterator. * * ObjectSpace also provides support for object finalizers, procs that will be * called when a specific object is about to be destroyed by garbage * collection. * * a = "A" * b = "B" * * ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) * ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) * * _produces:_ * * Finalizer two on 537763470 * Finalizer one on 537763480 */ /* * Document-class: ObjectSpace::WeakMap * * An ObjectSpace::WeakMap object holds references to * any objects, but those objects can get garbage collected. * * This class is mostly used internally by WeakRef, please use * +lib/weakref.rb+ for the public interface. */ /* Document-class: GC::Profiler * * The GC profiler provides access to information on GC runs including time, * length and object space size. * * Example: * * GC::Profiler.enable * * require 'rdoc/rdoc' * * GC::Profiler.report * * GC::Profiler.disable * * See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations */ /* * The GC module provides an interface to Ruby's mark and * sweep garbage collection mechanism. * * Some of the underlying methods are also available via the ObjectSpace * module. * * You may obtain information about the operation of the GC through * GC::Profiler. */ void Init_GC(void) { VALUE rb_mObjSpace; VALUE rb_mProfiler; VALUE gc_constants; rb_mGC = rb_define_module("GC"); rb_define_singleton_method(rb_mGC, "start", gc_start_internal, -1); rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0); rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0); rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0); rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1); rb_define_singleton_method(rb_mGC, "count", gc_count, 0); rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1); rb_define_singleton_method(rb_mGC, "latest_gc_info", gc_latest_gc_info, -1); rb_define_method(rb_mGC, "garbage_collect", gc_start_internal, -1); gc_constants = rb_hash_new(); rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE))); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_OBJ_LIMIT")), SIZET2NUM(HEAP_OBJ_LIMIT)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_SIZE")), SIZET2NUM(HEAP_BITMAP_SIZE)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_PLANES")), SIZET2NUM(HEAP_BITMAP_PLANES)); OBJ_FREEZE(gc_constants); rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants); rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler"); rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0); rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0); rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0); rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0); rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0); rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0); rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1); rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0); rb_mObjSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObjSpace, "garbage_collect", gc_start_internal, -1); rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1); nomem_error = rb_exc_new3(rb_eNoMemError, rb_obj_freeze(rb_str_new2("failed to allocate memory"))); OBJ_TAINT(nomem_error); OBJ_FREEZE(nomem_error); rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0); rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1); { VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject); rb_define_alloc_func(rb_cWeakMap, wmap_allocate); rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2); rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1); rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0); rb_define_method(rb_cWeakMap, "each", wmap_each, 0); rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0); rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0); rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0); rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0); rb_define_method(rb_cWeakMap, "values", wmap_values, 0); rb_define_method(rb_cWeakMap, "size", wmap_size, 0); rb_define_method(rb_cWeakMap, "length", wmap_size, 0); rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1); rb_include_module(rb_cWeakMap, rb_mEnumerable); } #if MALLOC_ALLOCATED_SIZE rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0); rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0); #endif /* ::GC::OPTS, which shows GC build options */ { VALUE opts; rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new()); #define OPT(o) if (o) rb_ary_push(opts, rb_str_new2(#o)) OPT(GC_DEBUG); OPT(USE_RGENGC); OPT(RGENGC_DEBUG); OPT(RGENGC_CHECK_MODE); OPT(RGENGC_PROFILE); OPT(RGENGC_THREEGEN); OPT(RGENGC_ESTIMATE_OLDMALLOC); OPT(GC_PROFILE_MORE_DETAIL); OPT(GC_ENABLE_LAZY_SWEEP); OPT(CALC_EXACT_MALLOC_SIZE); OPT(MALLOC_ALLOCATED_SIZE); OPT(MALLOC_ALLOCATED_SIZE_CHECK); OPT(GC_PROFILE_DETAIL_MEMORY); #undef OPT } }