/* * $Id$ * 'OpenSSL for Ruby' project * Copyright (C) 2001-2002 Michal Rokos * All rights reserved. */ /* * This program is licenced under the same licence as Ruby. * (See the file 'LICENCE'.) */ #if !defined(OPENSSL_NO_DSA) #include "ossl.h" #define GetPKeyDSA(obj, pkey) do { \ GetPKey((obj), (pkey)); \ if (EVP_PKEY_type((pkey)->type) != EVP_PKEY_DSA) { /* PARANOIA? */ \ ossl_raise(rb_eRuntimeError, "THIS IS NOT A DSA!"); \ } \ } while (0) #define DSA_HAS_PRIVATE(dsa) ((dsa)->priv_key) #define DSA_PRIVATE(obj,dsa) (DSA_HAS_PRIVATE(dsa)||OSSL_PKEY_IS_PRIVATE(obj)) /* * Classes */ VALUE cDSA; VALUE eDSAError; /* * Public */ static VALUE dsa_instance(VALUE klass, DSA *dsa) { EVP_PKEY *pkey; VALUE obj; if (!dsa) { return Qfalse; } if (!(pkey = EVP_PKEY_new())) { return Qfalse; } if (!EVP_PKEY_assign_DSA(pkey, dsa)) { EVP_PKEY_free(pkey); return Qfalse; } WrapPKey(klass, obj, pkey); return obj; } VALUE ossl_dsa_new(EVP_PKEY *pkey) { VALUE obj; if (!pkey) { obj = dsa_instance(cDSA, DSA_new()); } else { if (EVP_PKEY_type(pkey->type) != EVP_PKEY_DSA) { ossl_raise(rb_eTypeError, "Not a DSA key!"); } WrapPKey(cDSA, obj, pkey); } if (obj == Qfalse) { ossl_raise(eDSAError, NULL); } return obj; } /* * Private */ #if defined(HAVE_DSA_GENERATE_PARAMETERS_EX) && HAVE_BN_GENCB struct dsa_blocking_gen_arg { DSA *dsa; int size; unsigned char* seed; int seed_len; int *counter; unsigned long *h; BN_GENCB *cb; int result; }; static void * dsa_blocking_gen(void *arg) { struct dsa_blocking_gen_arg *gen = (struct dsa_blocking_gen_arg *)arg; gen->result = DSA_generate_parameters_ex(gen->dsa, gen->size, gen->seed, gen->seed_len, gen->counter, gen->h, gen->cb); return 0; } #endif static DSA * dsa_generate(int size) { #if defined(HAVE_DSA_GENERATE_PARAMETERS_EX) && HAVE_BN_GENCB BN_GENCB cb; struct ossl_generate_cb_arg cb_arg; struct dsa_blocking_gen_arg gen_arg; DSA *dsa = DSA_new(); unsigned char seed[20]; int seed_len = 20, counter; unsigned long h; if (!dsa) return 0; if (!RAND_bytes(seed, seed_len)) { DSA_free(dsa); return 0; } memset(&cb_arg, 0, sizeof(struct ossl_generate_cb_arg)); if (rb_block_given_p()) cb_arg.yield = 1; BN_GENCB_set(&cb, ossl_generate_cb_2, &cb_arg); gen_arg.dsa = dsa; gen_arg.size = size; gen_arg.seed = seed; gen_arg.seed_len = seed_len; gen_arg.counter = &counter; gen_arg.h = &h; gen_arg.cb = &cb; if (cb_arg.yield == 1) { /* we cannot release GVL when callback proc is supplied */ dsa_blocking_gen(&gen_arg); } else { /* there's a chance to unblock */ rb_thread_call_without_gvl(dsa_blocking_gen, &gen_arg, ossl_generate_cb_stop, &cb_arg); } if (!gen_arg.result) { DSA_free(dsa); if (cb_arg.state) rb_jump_tag(cb_arg.state); return 0; } #else DSA *dsa; unsigned char seed[20]; int seed_len = 20, counter; unsigned long h; if (!RAND_bytes(seed, seed_len)) { return 0; } dsa = DSA_generate_parameters(size, seed, seed_len, &counter, &h, rb_block_given_p() ? ossl_generate_cb : NULL, NULL); if(!dsa) return 0; #endif if (!DSA_generate_key(dsa)) { DSA_free(dsa); return 0; } return dsa; } /* * call-seq: * DSA.generate(size) -> dsa * * Creates a new DSA instance by generating a private/public key pair * from scratch. * * === Parameters * * +size+ is an integer representing the desired key size. * */ static VALUE ossl_dsa_s_generate(VALUE klass, VALUE size) { DSA *dsa = dsa_generate(NUM2INT(size)); /* err handled by dsa_instance */ VALUE obj = dsa_instance(klass, dsa); if (obj == Qfalse) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return obj; } /* * call-seq: * DSA.new([size | string [, pass]) -> dsa * * Creates a new DSA instance by reading an existing key from +string+. * * === Parameters * * +size+ is an integer representing the desired key size. * * +string+ contains a DER or PEM encoded key. * * +pass+ is a string that contains an optional password. * * === Examples * DSA.new -> dsa * DSA.new(1024) -> dsa * DSA.new(File.read('dsa.pem')) -> dsa * DSA.new(File.read('dsa.pem'), 'mypassword') -> dsa * */ static VALUE ossl_dsa_initialize(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; DSA *dsa; BIO *in; char *passwd = NULL; VALUE arg, pass; GetPKey(self, pkey); if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) { dsa = DSA_new(); } else if (FIXNUM_P(arg)) { if (!(dsa = dsa_generate(FIX2INT(arg)))) { ossl_raise(eDSAError, NULL); } } else { if (!NIL_P(pass)) passwd = StringValuePtr(pass); arg = ossl_to_der_if_possible(arg); in = ossl_obj2bio(arg); dsa = PEM_read_bio_DSAPrivateKey(in, NULL, ossl_pem_passwd_cb, passwd); if (!dsa) { OSSL_BIO_reset(in); dsa = PEM_read_bio_DSA_PUBKEY(in, NULL, NULL, NULL); } if (!dsa) { OSSL_BIO_reset(in); dsa = d2i_DSAPrivateKey_bio(in, NULL); } if (!dsa) { OSSL_BIO_reset(in); dsa = d2i_DSA_PUBKEY_bio(in, NULL); } if (!dsa) { OSSL_BIO_reset(in); dsa = PEM_read_bio_DSAPublicKey(in, NULL, NULL, NULL); } BIO_free(in); if (!dsa) { ERR_clear_error(); ossl_raise(eDSAError, "Neither PUB key nor PRIV key"); } } if (!EVP_PKEY_assign_DSA(pkey, dsa)) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return self; } /* * call-seq: * dsa.public? -> true | false * * Indicates whether this DSA instance has a public key associated with it or * not. The public key may be retrieved with DSA#public_key. */ static VALUE ossl_dsa_is_public(VALUE self) { EVP_PKEY *pkey; GetPKeyDSA(self, pkey); return (pkey->pkey.dsa->pub_key) ? Qtrue : Qfalse; } /* * call-seq: * dsa.private? -> true | false * * Indicates whether this DSA instance has a private key associated with it or * not. The private key may be retrieved with DSA#private_key. */ static VALUE ossl_dsa_is_private(VALUE self) { EVP_PKEY *pkey; GetPKeyDSA(self, pkey); return (DSA_PRIVATE(self, pkey->pkey.dsa)) ? Qtrue : Qfalse; } /* * call-seq: * dsa.export([cipher, password]) -> aString * dsa.to_pem([cipher, password]) -> aString * dsa.to_s([cipher, password]) -> aString * * Encodes this DSA to its PEM encoding. * * === Parameters * * +cipher+ is an OpenSSL::Cipher. * * +password+ is a string containing your password. * * === Examples * DSA.to_pem -> aString * DSA.to_pem(cipher, 'mypassword') -> aString * */ static VALUE ossl_dsa_export(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; BIO *out; const EVP_CIPHER *ciph = NULL; char *passwd = NULL; VALUE cipher, pass, str; GetPKeyDSA(self, pkey); rb_scan_args(argc, argv, "02", &cipher, &pass); if (!NIL_P(cipher)) { ciph = GetCipherPtr(cipher); if (!NIL_P(pass)) { StringValue(pass); if (RSTRING_LENINT(pass) < OSSL_MIN_PWD_LEN) ossl_raise(eOSSLError, "OpenSSL requires passwords to be at least four characters long"); passwd = RSTRING_PTR(pass); } } if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eDSAError, NULL); } if (DSA_HAS_PRIVATE(pkey->pkey.dsa)) { if (!PEM_write_bio_DSAPrivateKey(out, pkey->pkey.dsa, ciph, NULL, 0, ossl_pem_passwd_cb, passwd)){ BIO_free(out); ossl_raise(eDSAError, NULL); } } else { if (!PEM_write_bio_DSA_PUBKEY(out, pkey->pkey.dsa)) { BIO_free(out); ossl_raise(eDSAError, NULL); } } str = ossl_membio2str(out); return str; } /* * call-seq: * dsa.to_der -> aString * * Encodes this DSA to its DER encoding. * */ static VALUE ossl_dsa_to_der(VALUE self) { EVP_PKEY *pkey; int (*i2d_func)_((DSA*, unsigned char**)); unsigned char *p; long len; VALUE str; GetPKeyDSA(self, pkey); if(DSA_HAS_PRIVATE(pkey->pkey.dsa)) i2d_func = (int(*)_((DSA*,unsigned char**)))i2d_DSAPrivateKey; else i2d_func = i2d_DSA_PUBKEY; if((len = i2d_func(pkey->pkey.dsa, NULL)) <= 0) ossl_raise(eDSAError, NULL); str = rb_str_new(0, len); p = (unsigned char *)RSTRING_PTR(str); if(i2d_func(pkey->pkey.dsa, &p) < 0) ossl_raise(eDSAError, NULL); ossl_str_adjust(str, p); return str; } /* * call-seq: * dsa.params -> hash * * Stores all parameters of key to the hash * INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!! * Don't use :-)) (I's up to you) */ static VALUE ossl_dsa_get_params(VALUE self) { EVP_PKEY *pkey; VALUE hash; GetPKeyDSA(self, pkey); hash = rb_hash_new(); rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(pkey->pkey.dsa->p)); rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(pkey->pkey.dsa->q)); rb_hash_aset(hash, rb_str_new2("g"), ossl_bn_new(pkey->pkey.dsa->g)); rb_hash_aset(hash, rb_str_new2("pub_key"), ossl_bn_new(pkey->pkey.dsa->pub_key)); rb_hash_aset(hash, rb_str_new2("priv_key"), ossl_bn_new(pkey->pkey.dsa->priv_key)); return hash; } /* * call-seq: * dsa.to_text -> aString * * Prints all parameters of key to buffer * INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!! * Don't use :-)) (I's up to you) */ static VALUE ossl_dsa_to_text(VALUE self) { EVP_PKEY *pkey; BIO *out; VALUE str; GetPKeyDSA(self, pkey); if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eDSAError, NULL); } if (!DSA_print(out, pkey->pkey.dsa, 0)) { /* offset = 0 */ BIO_free(out); ossl_raise(eDSAError, NULL); } str = ossl_membio2str(out); return str; } /* * call-seq: * dsa.public_key -> aDSA * * Returns a new DSA instance that carries just the public key information. * If the current instance has also private key information, this will no * longer be present in the new instance. This feature is helpful for * publishing the public key information without leaking any of the private * information. * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) # has public and private information * pub_key = dsa.public_key # has only the public part available * pub_key_der = pub_key.to_der # it's safe to publish this * * */ static VALUE ossl_dsa_to_public_key(VALUE self) { EVP_PKEY *pkey; DSA *dsa; VALUE obj; GetPKeyDSA(self, pkey); /* err check performed by dsa_instance */ dsa = DSAPublicKey_dup(pkey->pkey.dsa); obj = dsa_instance(CLASS_OF(self), dsa); if (obj == Qfalse) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return obj; } #define ossl_dsa_buf_size(pkey) (DSA_size((pkey)->pkey.dsa)+16) /* * call-seq: * dsa.syssign(string) -> aString * * Computes and returns the DSA signature of +string+, where +string+ is * expected to be an already-computed message digest of the original input * data. The signature is issued using the private key of this DSA instance. * * === Parameters * * +string+ is a message digest of the original input data to be signed * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) * doc = "Sign me" * digest = OpenSSL::Digest::SHA1.digest(doc) * sig = dsa.syssign(digest) * * */ static VALUE ossl_dsa_sign(VALUE self, VALUE data) { EVP_PKEY *pkey; unsigned int buf_len; VALUE str; GetPKeyDSA(self, pkey); StringValue(data); if (!DSA_PRIVATE(self, pkey->pkey.dsa)) { ossl_raise(eDSAError, "Private DSA key needed!"); } str = rb_str_new(0, ossl_dsa_buf_size(pkey)); if (!DSA_sign(0, (unsigned char *)RSTRING_PTR(data), RSTRING_LENINT(data), (unsigned char *)RSTRING_PTR(str), &buf_len, pkey->pkey.dsa)) { /* type is ignored (0) */ ossl_raise(eDSAError, NULL); } rb_str_set_len(str, buf_len); return str; } /* * call-seq: * dsa.sysverify(digest, sig) -> true | false * * Verifies whether the signature is valid given the message digest input. It * does so by validating +sig+ using the public key of this DSA instance. * * === Parameters * * +digest+ is a message digest of the original input data to be signed * * +sig+ is a DSA signature value * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) * doc = "Sign me" * digest = OpenSSL::Digest::SHA1.digest(doc) * sig = dsa.syssign(digest) * puts dsa.sysverify(digest, sig) # => true * */ static VALUE ossl_dsa_verify(VALUE self, VALUE digest, VALUE sig) { EVP_PKEY *pkey; int ret; GetPKeyDSA(self, pkey); StringValue(digest); StringValue(sig); /* type is ignored (0) */ ret = DSA_verify(0, (unsigned char *)RSTRING_PTR(digest), RSTRING_LENINT(digest), (unsigned char *)RSTRING_PTR(sig), RSTRING_LENINT(sig), pkey->pkey.dsa); if (ret < 0) { ossl_raise(eDSAError, NULL); } else if (ret == 1) { return Qtrue; } return Qfalse; } OSSL_PKEY_BN(dsa, p) OSSL_PKEY_BN(dsa, q) OSSL_PKEY_BN(dsa, g) OSSL_PKEY_BN(dsa, pub_key) OSSL_PKEY_BN(dsa, priv_key) /* * INIT */ void Init_ossl_dsa(void) { #if 0 mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL and mPKey */ mPKey = rb_define_module_under(mOSSL, "PKey"); #endif /* Document-class: OpenSSL::PKey::DSAError * * Generic exception that is raised if an operation on a DSA PKey * fails unexpectedly or in case an instantiation of an instance of DSA * fails due to non-conformant input data. */ eDSAError = rb_define_class_under(mPKey, "DSAError", ePKeyError); /* Document-class: OpenSSL::PKey::DSA * * DSA, the Digital Signature Algorithm, is specified in NIST's * FIPS 186-3. It is an asymmetric public key algorithm that may be used * similar to e.g. RSA. * Please note that for OpenSSL versions prior to 1.0.0 the digest * algorithms OpenSSL::Digest::DSS (equivalent to SHA) or * OpenSSL::Digest::DSS1 (equivalent to SHA-1) must be used for issuing * signatures with a DSA key using OpenSSL::PKey#sign. * Starting with OpenSSL 1.0.0, digest algorithms are no longer restricted, * any Digest may be used for signing. */ cDSA = rb_define_class_under(mPKey, "DSA", cPKey); rb_define_singleton_method(cDSA, "generate", ossl_dsa_s_generate, 1); rb_define_method(cDSA, "initialize", ossl_dsa_initialize, -1); rb_define_method(cDSA, "public?", ossl_dsa_is_public, 0); rb_define_method(cDSA, "private?", ossl_dsa_is_private, 0); rb_define_method(cDSA, "to_text", ossl_dsa_to_text, 0); rb_define_method(cDSA, "export", ossl_dsa_export, -1); rb_define_alias(cDSA, "to_pem", "export"); rb_define_alias(cDSA, "to_s", "export"); rb_define_method(cDSA, "to_der", ossl_dsa_to_der, 0); rb_define_method(cDSA, "public_key", ossl_dsa_to_public_key, 0); rb_define_method(cDSA, "syssign", ossl_dsa_sign, 1); rb_define_method(cDSA, "sysverify", ossl_dsa_verify, 2); DEF_OSSL_PKEY_BN(cDSA, dsa, p); DEF_OSSL_PKEY_BN(cDSA, dsa, q); DEF_OSSL_PKEY_BN(cDSA, dsa, g); DEF_OSSL_PKEY_BN(cDSA, dsa, pub_key); DEF_OSSL_PKEY_BN(cDSA, dsa, priv_key); rb_define_method(cDSA, "params", ossl_dsa_get_params, 0); } #else /* defined NO_DSA */ void Init_ossl_dsa(void) { } #endif /* NO_DSA */