/* * 'OpenSSL for Ruby' project * Copyright (C) 2001-2002 Michal Rokos * All rights reserved. */ /* * This program is licensed under the same licence as Ruby. * (See the file 'LICENCE'.) */ #include "ossl.h" #if !defined(OPENSSL_NO_DSA) #define GetPKeyDSA(obj, pkey) do { \ GetPKey((obj), (pkey)); \ if (EVP_PKEY_base_id(pkey) != EVP_PKEY_DSA) { /* PARANOIA? */ \ ossl_raise(rb_eRuntimeError, "THIS IS NOT A DSA!"); \ } \ } while (0) #define GetDSA(obj, dsa) do { \ EVP_PKEY *_pkey; \ GetPKeyDSA((obj), _pkey); \ (dsa) = EVP_PKEY_get0_DSA(_pkey); \ } while (0) static inline int DSA_HAS_PRIVATE(DSA *dsa) { const BIGNUM *bn; DSA_get0_key(dsa, NULL, &bn); return !!bn; } static inline int DSA_PRIVATE(VALUE obj, DSA *dsa) { return DSA_HAS_PRIVATE(dsa) || OSSL_PKEY_IS_PRIVATE(obj); } /* * Classes */ VALUE cDSA; VALUE eDSAError; /* * Public */ static VALUE dsa_instance(VALUE klass, DSA *dsa) { EVP_PKEY *pkey; VALUE obj; if (!dsa) { return Qfalse; } obj = NewPKey(klass); if (!(pkey = EVP_PKEY_new())) { return Qfalse; } if (!EVP_PKEY_assign_DSA(pkey, dsa)) { EVP_PKEY_free(pkey); return Qfalse; } SetPKey(obj, pkey); return obj; } VALUE ossl_dsa_new(EVP_PKEY *pkey) { VALUE obj; if (!pkey) { obj = dsa_instance(cDSA, DSA_new()); } else { obj = NewPKey(cDSA); if (EVP_PKEY_base_id(pkey) != EVP_PKEY_DSA) { ossl_raise(rb_eTypeError, "Not a DSA key!"); } SetPKey(obj, pkey); } if (obj == Qfalse) { ossl_raise(eDSAError, NULL); } return obj; } /* * Private */ struct dsa_blocking_gen_arg { DSA *dsa; int size; int *counter; unsigned long *h; BN_GENCB *cb; int result; }; static void * dsa_blocking_gen(void *arg) { struct dsa_blocking_gen_arg *gen = (struct dsa_blocking_gen_arg *)arg; gen->result = DSA_generate_parameters_ex(gen->dsa, gen->size, NULL, 0, gen->counter, gen->h, gen->cb); return 0; } static DSA * dsa_generate(int size) { struct ossl_generate_cb_arg cb_arg = { 0 }; struct dsa_blocking_gen_arg gen_arg; DSA *dsa = DSA_new(); BN_GENCB *cb = BN_GENCB_new(); int counter; unsigned long h; if (!dsa || !cb) { DSA_free(dsa); BN_GENCB_free(cb); return NULL; } if (rb_block_given_p()) cb_arg.yield = 1; BN_GENCB_set(cb, ossl_generate_cb_2, &cb_arg); gen_arg.dsa = dsa; gen_arg.size = size; gen_arg.counter = &counter; gen_arg.h = &h; gen_arg.cb = cb; if (cb_arg.yield == 1) { /* we cannot release GVL when callback proc is supplied */ dsa_blocking_gen(&gen_arg); } else { /* there's a chance to unblock */ rb_thread_call_without_gvl(dsa_blocking_gen, &gen_arg, ossl_generate_cb_stop, &cb_arg); } BN_GENCB_free(cb); if (!gen_arg.result) { DSA_free(dsa); if (cb_arg.state) { /* Clear OpenSSL error queue before re-raising. By the way, the * documentation of DSA_generate_parameters_ex() says the error code * can be obtained by ERR_get_error(), but the default * implementation, dsa_builtin_paramgen() doesn't put any error... */ ossl_clear_error(); rb_jump_tag(cb_arg.state); } return NULL; } if (!DSA_generate_key(dsa)) { DSA_free(dsa); return NULL; } return dsa; } /* * call-seq: * DSA.generate(size) -> dsa * * Creates a new DSA instance by generating a private/public key pair * from scratch. * * === Parameters * * _size_ is an integer representing the desired key size. * */ static VALUE ossl_dsa_s_generate(VALUE klass, VALUE size) { DSA *dsa = dsa_generate(NUM2INT(size)); /* err handled by dsa_instance */ VALUE obj = dsa_instance(klass, dsa); if (obj == Qfalse) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return obj; } /* * call-seq: * DSA.new -> dsa * DSA.new(size) -> dsa * DSA.new(string [, pass]) -> dsa * * Creates a new DSA instance by reading an existing key from _string_. * * === Parameters * * _size_ is an integer representing the desired key size. * * _string_ contains a DER or PEM encoded key. * * _pass_ is a string that contains an optional password. * * === Examples * DSA.new -> dsa * DSA.new(1024) -> dsa * DSA.new(File.read('dsa.pem')) -> dsa * DSA.new(File.read('dsa.pem'), 'mypassword') -> dsa * */ static VALUE ossl_dsa_initialize(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; DSA *dsa; BIO *in; VALUE arg, pass; GetPKey(self, pkey); if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) { dsa = DSA_new(); } else if (RB_INTEGER_TYPE_P(arg)) { if (!(dsa = dsa_generate(NUM2INT(arg)))) { ossl_raise(eDSAError, NULL); } } else { pass = ossl_pem_passwd_value(pass); arg = ossl_to_der_if_possible(arg); in = ossl_obj2bio(&arg); dsa = PEM_read_bio_DSAPrivateKey(in, NULL, ossl_pem_passwd_cb, (void *)pass); if (!dsa) { OSSL_BIO_reset(in); dsa = PEM_read_bio_DSA_PUBKEY(in, NULL, NULL, NULL); } if (!dsa) { OSSL_BIO_reset(in); dsa = d2i_DSAPrivateKey_bio(in, NULL); } if (!dsa) { OSSL_BIO_reset(in); dsa = d2i_DSA_PUBKEY_bio(in, NULL); } if (!dsa) { OSSL_BIO_reset(in); #define PEM_read_bio_DSAPublicKey(bp,x,cb,u) (DSA *)PEM_ASN1_read_bio( \ (d2i_of_void *)d2i_DSAPublicKey, PEM_STRING_DSA_PUBLIC, (bp), (void **)(x), (cb), (u)) dsa = PEM_read_bio_DSAPublicKey(in, NULL, NULL, NULL); #undef PEM_read_bio_DSAPublicKey } BIO_free(in); if (!dsa) { ossl_clear_error(); ossl_raise(eDSAError, "Neither PUB key nor PRIV key"); } } if (!EVP_PKEY_assign_DSA(pkey, dsa)) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return self; } static VALUE ossl_dsa_initialize_copy(VALUE self, VALUE other) { EVP_PKEY *pkey; DSA *dsa, *dsa_new; GetPKey(self, pkey); if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE) ossl_raise(eDSAError, "DSA already initialized"); GetDSA(other, dsa); dsa_new = ASN1_dup((i2d_of_void *)i2d_DSAPrivateKey, (d2i_of_void *)d2i_DSAPrivateKey, (char *)dsa); if (!dsa_new) ossl_raise(eDSAError, "ASN1_dup"); EVP_PKEY_assign_DSA(pkey, dsa_new); return self; } /* * call-seq: * dsa.public? -> true | false * * Indicates whether this DSA instance has a public key associated with it or * not. The public key may be retrieved with DSA#public_key. */ static VALUE ossl_dsa_is_public(VALUE self) { DSA *dsa; const BIGNUM *bn; GetDSA(self, dsa); DSA_get0_key(dsa, &bn, NULL); return bn ? Qtrue : Qfalse; } /* * call-seq: * dsa.private? -> true | false * * Indicates whether this DSA instance has a private key associated with it or * not. The private key may be retrieved with DSA#private_key. */ static VALUE ossl_dsa_is_private(VALUE self) { DSA *dsa; GetDSA(self, dsa); return DSA_PRIVATE(self, dsa) ? Qtrue : Qfalse; } /* * call-seq: * dsa.export([cipher, password]) -> aString * dsa.to_pem([cipher, password]) -> aString * dsa.to_s([cipher, password]) -> aString * * Encodes this DSA to its PEM encoding. * * === Parameters * * _cipher_ is an OpenSSL::Cipher. * * _password_ is a string containing your password. * * === Examples * DSA.to_pem -> aString * DSA.to_pem(cipher, 'mypassword') -> aString * */ static VALUE ossl_dsa_export(int argc, VALUE *argv, VALUE self) { DSA *dsa; BIO *out; const EVP_CIPHER *ciph = NULL; VALUE cipher, pass, str; GetDSA(self, dsa); rb_scan_args(argc, argv, "02", &cipher, &pass); if (!NIL_P(cipher)) { ciph = ossl_evp_get_cipherbyname(cipher); pass = ossl_pem_passwd_value(pass); } if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eDSAError, NULL); } if (DSA_HAS_PRIVATE(dsa)) { if (!PEM_write_bio_DSAPrivateKey(out, dsa, ciph, NULL, 0, ossl_pem_passwd_cb, (void *)pass)){ BIO_free(out); ossl_raise(eDSAError, NULL); } } else { if (!PEM_write_bio_DSA_PUBKEY(out, dsa)) { BIO_free(out); ossl_raise(eDSAError, NULL); } } str = ossl_membio2str(out); return str; } /* * call-seq: * dsa.to_der -> aString * * Encodes this DSA to its DER encoding. * */ static VALUE ossl_dsa_to_der(VALUE self) { DSA *dsa; int (*i2d_func)(DSA *, unsigned char **); unsigned char *p; long len; VALUE str; GetDSA(self, dsa); if(DSA_HAS_PRIVATE(dsa)) i2d_func = (int (*)(DSA *,unsigned char **))i2d_DSAPrivateKey; else i2d_func = i2d_DSA_PUBKEY; if((len = i2d_func(dsa, NULL)) <= 0) ossl_raise(eDSAError, NULL); str = rb_str_new(0, len); p = (unsigned char *)RSTRING_PTR(str); if(i2d_func(dsa, &p) < 0) ossl_raise(eDSAError, NULL); ossl_str_adjust(str, p); return str; } /* * call-seq: * dsa.params -> hash * * Stores all parameters of key to the hash * INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!! * Don't use :-)) (I's up to you) */ static VALUE ossl_dsa_get_params(VALUE self) { DSA *dsa; VALUE hash; const BIGNUM *p, *q, *g, *pub_key, *priv_key; GetDSA(self, dsa); DSA_get0_pqg(dsa, &p, &q, &g); DSA_get0_key(dsa, &pub_key, &priv_key); hash = rb_hash_new(); rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p)); rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q)); rb_hash_aset(hash, rb_str_new2("g"), ossl_bn_new(g)); rb_hash_aset(hash, rb_str_new2("pub_key"), ossl_bn_new(pub_key)); rb_hash_aset(hash, rb_str_new2("priv_key"), ossl_bn_new(priv_key)); return hash; } /* * call-seq: * dsa.to_text -> aString * * Prints all parameters of key to buffer * INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!! * Don't use :-)) (I's up to you) */ static VALUE ossl_dsa_to_text(VALUE self) { DSA *dsa; BIO *out; VALUE str; GetDSA(self, dsa); if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eDSAError, NULL); } if (!DSA_print(out, dsa, 0)) { /* offset = 0 */ BIO_free(out); ossl_raise(eDSAError, NULL); } str = ossl_membio2str(out); return str; } /* * call-seq: * dsa.public_key -> aDSA * * Returns a new DSA instance that carries just the public key information. * If the current instance has also private key information, this will no * longer be present in the new instance. This feature is helpful for * publishing the public key information without leaking any of the private * information. * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) # has public and private information * pub_key = dsa.public_key # has only the public part available * pub_key_der = pub_key.to_der # it's safe to publish this * * */ static VALUE ossl_dsa_to_public_key(VALUE self) { EVP_PKEY *pkey; DSA *dsa; VALUE obj; GetPKeyDSA(self, pkey); /* err check performed by dsa_instance */ #define DSAPublicKey_dup(dsa) (DSA *)ASN1_dup( \ (i2d_of_void *)i2d_DSAPublicKey, (d2i_of_void *)d2i_DSAPublicKey, (char *)(dsa)) dsa = DSAPublicKey_dup(EVP_PKEY_get0_DSA(pkey)); #undef DSAPublicKey_dup obj = dsa_instance(rb_obj_class(self), dsa); if (obj == Qfalse) { DSA_free(dsa); ossl_raise(eDSAError, NULL); } return obj; } /* * call-seq: * dsa.syssign(string) -> aString * * Computes and returns the DSA signature of _string_, where _string_ is * expected to be an already-computed message digest of the original input * data. The signature is issued using the private key of this DSA instance. * * === Parameters * * _string_ is a message digest of the original input data to be signed. * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) * doc = "Sign me" * digest = OpenSSL::Digest::SHA1.digest(doc) * sig = dsa.syssign(digest) * * */ static VALUE ossl_dsa_sign(VALUE self, VALUE data) { DSA *dsa; const BIGNUM *dsa_q; unsigned int buf_len; VALUE str; GetDSA(self, dsa); DSA_get0_pqg(dsa, NULL, &dsa_q, NULL); if (!dsa_q) ossl_raise(eDSAError, "incomplete DSA"); if (!DSA_PRIVATE(self, dsa)) ossl_raise(eDSAError, "Private DSA key needed!"); StringValue(data); str = rb_str_new(0, DSA_size(dsa)); if (!DSA_sign(0, (unsigned char *)RSTRING_PTR(data), RSTRING_LENINT(data), (unsigned char *)RSTRING_PTR(str), &buf_len, dsa)) { /* type is ignored (0) */ ossl_raise(eDSAError, NULL); } rb_str_set_len(str, buf_len); return str; } /* * call-seq: * dsa.sysverify(digest, sig) -> true | false * * Verifies whether the signature is valid given the message digest input. It * does so by validating _sig_ using the public key of this DSA instance. * * === Parameters * * _digest_ is a message digest of the original input data to be signed * * _sig_ is a DSA signature value * * === Example * dsa = OpenSSL::PKey::DSA.new(2048) * doc = "Sign me" * digest = OpenSSL::Digest::SHA1.digest(doc) * sig = dsa.syssign(digest) * puts dsa.sysverify(digest, sig) # => true * */ static VALUE ossl_dsa_verify(VALUE self, VALUE digest, VALUE sig) { DSA *dsa; int ret; GetDSA(self, dsa); StringValue(digest); StringValue(sig); /* type is ignored (0) */ ret = DSA_verify(0, (unsigned char *)RSTRING_PTR(digest), RSTRING_LENINT(digest), (unsigned char *)RSTRING_PTR(sig), RSTRING_LENINT(sig), dsa); if (ret < 0) { ossl_raise(eDSAError, NULL); } else if (ret == 1) { return Qtrue; } return Qfalse; } /* * Document-method: OpenSSL::PKey::DSA#set_pqg * call-seq: * dsa.set_pqg(p, q, g) -> self * * Sets _p_, _q_, _g_ to the DSA instance. */ OSSL_PKEY_BN_DEF3(dsa, DSA, pqg, p, q, g) /* * Document-method: OpenSSL::PKey::DSA#set_key * call-seq: * dsa.set_key(pub_key, priv_key) -> self * * Sets _pub_key_ and _priv_key_ for the DSA instance. _priv_key_ may be +nil+. */ OSSL_PKEY_BN_DEF2(dsa, DSA, key, pub_key, priv_key) /* * INIT */ void Init_ossl_dsa(void) { #if 0 mPKey = rb_define_module_under(mOSSL, "PKey"); cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject); ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError); #endif /* Document-class: OpenSSL::PKey::DSAError * * Generic exception that is raised if an operation on a DSA PKey * fails unexpectedly or in case an instantiation of an instance of DSA * fails due to non-conformant input data. */ eDSAError = rb_define_class_under(mPKey, "DSAError", ePKeyError); /* Document-class: OpenSSL::PKey::DSA * * DSA, the Digital Signature Algorithm, is specified in NIST's * FIPS 186-3. It is an asymmetric public key algorithm that may be used * similar to e.g. RSA. */ cDSA = rb_define_class_under(mPKey, "DSA", cPKey); rb_define_singleton_method(cDSA, "generate", ossl_dsa_s_generate, 1); rb_define_method(cDSA, "initialize", ossl_dsa_initialize, -1); rb_define_method(cDSA, "initialize_copy", ossl_dsa_initialize_copy, 1); rb_define_method(cDSA, "public?", ossl_dsa_is_public, 0); rb_define_method(cDSA, "private?", ossl_dsa_is_private, 0); rb_define_method(cDSA, "to_text", ossl_dsa_to_text, 0); rb_define_method(cDSA, "export", ossl_dsa_export, -1); rb_define_alias(cDSA, "to_pem", "export"); rb_define_alias(cDSA, "to_s", "export"); rb_define_method(cDSA, "to_der", ossl_dsa_to_der, 0); rb_define_method(cDSA, "public_key", ossl_dsa_to_public_key, 0); rb_define_method(cDSA, "syssign", ossl_dsa_sign, 1); rb_define_method(cDSA, "sysverify", ossl_dsa_verify, 2); DEF_OSSL_PKEY_BN(cDSA, dsa, p); DEF_OSSL_PKEY_BN(cDSA, dsa, q); DEF_OSSL_PKEY_BN(cDSA, dsa, g); DEF_OSSL_PKEY_BN(cDSA, dsa, pub_key); DEF_OSSL_PKEY_BN(cDSA, dsa, priv_key); rb_define_method(cDSA, "set_pqg", ossl_dsa_set_pqg, 3); rb_define_method(cDSA, "set_key", ossl_dsa_set_key, 2); rb_define_method(cDSA, "params", ossl_dsa_get_params, 0); } #else /* defined NO_DSA */ void Init_ossl_dsa(void) { } #endif /* NO_DSA */