/* * 'OpenSSL for Ruby' project * Copyright (C) 2001-2002 Michal Rokos * All rights reserved. */ /* * This program is licensed under the same licence as Ruby. * (See the file 'LICENCE'.) */ #include "ossl.h" /* * Classes */ VALUE mPKey; VALUE cPKey; VALUE ePKeyError; static ID id_private_q; /* * callback for generating keys */ static VALUE call_check_ints0(VALUE arg) { rb_thread_check_ints(); return Qnil; } static void * call_check_ints(void *arg) { int state; rb_protect(call_check_ints0, Qnil, &state); return (void *)(VALUE)state; } int ossl_generate_cb_2(int p, int n, BN_GENCB *cb) { VALUE ary; struct ossl_generate_cb_arg *arg; int state; arg = (struct ossl_generate_cb_arg *)BN_GENCB_get_arg(cb); if (arg->yield) { ary = rb_ary_new2(2); rb_ary_store(ary, 0, INT2NUM(p)); rb_ary_store(ary, 1, INT2NUM(n)); /* * can be break by raising exception or 'break' */ rb_protect(rb_yield, ary, &state); if (state) { arg->state = state; return 0; } } if (arg->interrupted) { arg->interrupted = 0; state = (int)(VALUE)rb_thread_call_with_gvl(call_check_ints, NULL); if (state) { arg->state = state; return 0; } } return 1; } void ossl_generate_cb_stop(void *ptr) { struct ossl_generate_cb_arg *arg = (struct ossl_generate_cb_arg *)ptr; arg->interrupted = 1; } static void ossl_evp_pkey_free(void *ptr) { EVP_PKEY_free(ptr); } /* * Public */ const rb_data_type_t ossl_evp_pkey_type = { "OpenSSL/EVP_PKEY", { 0, ossl_evp_pkey_free, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY, }; static VALUE pkey_new0(EVP_PKEY *pkey) { VALUE obj; int type; if (!pkey || (type = EVP_PKEY_base_id(pkey)) == EVP_PKEY_NONE) ossl_raise(rb_eRuntimeError, "pkey is empty"); switch (type) { #if !defined(OPENSSL_NO_RSA) case EVP_PKEY_RSA: return ossl_rsa_new(pkey); #endif #if !defined(OPENSSL_NO_DSA) case EVP_PKEY_DSA: return ossl_dsa_new(pkey); #endif #if !defined(OPENSSL_NO_DH) case EVP_PKEY_DH: return ossl_dh_new(pkey); #endif #if !defined(OPENSSL_NO_EC) case EVP_PKEY_EC: return ossl_ec_new(pkey); #endif default: obj = NewPKey(cPKey); SetPKey(obj, pkey); return obj; } } VALUE ossl_pkey_new(EVP_PKEY *pkey) { VALUE obj; int status; obj = rb_protect((VALUE (*)(VALUE))pkey_new0, (VALUE)pkey, &status); if (status) { EVP_PKEY_free(pkey); rb_jump_tag(status); } return obj; } /* * call-seq: * OpenSSL::PKey.read(string [, pwd ]) -> PKey * OpenSSL::PKey.read(io [, pwd ]) -> PKey * * Reads a DER or PEM encoded string from _string_ or _io_ and returns an * instance of the appropriate PKey class. * * === Parameters * * _string+ is a DER- or PEM-encoded string containing an arbitrary private * or public key. * * _io_ is an instance of IO containing a DER- or PEM-encoded * arbitrary private or public key. * * _pwd_ is an optional password in case _string_ or _io_ is an encrypted * PEM resource. */ static VALUE ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; BIO *bio; VALUE data, pass; rb_scan_args(argc, argv, "11", &data, &pass); pass = ossl_pem_passwd_value(pass); bio = ossl_obj2bio(&data); if ((pkey = d2i_PrivateKey_bio(bio, NULL))) goto ok; OSSL_BIO_reset(bio); if ((pkey = d2i_PKCS8PrivateKey_bio(bio, NULL, ossl_pem_passwd_cb, (void *)pass))) goto ok; OSSL_BIO_reset(bio); if ((pkey = d2i_PUBKEY_bio(bio, NULL))) goto ok; OSSL_BIO_reset(bio); /* PEM_read_bio_PrivateKey() also parses PKCS #8 formats */ if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, (void *)pass))) goto ok; OSSL_BIO_reset(bio); if ((pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL))) goto ok; BIO_free(bio); ossl_raise(ePKeyError, "Could not parse PKey"); ok: BIO_free(bio); return ossl_pkey_new(pkey); } void ossl_pkey_check_public_key(const EVP_PKEY *pkey) { void *ptr; const BIGNUM *n, *e, *pubkey; if (EVP_PKEY_missing_parameters(pkey)) ossl_raise(ePKeyError, "parameters missing"); /* OpenSSL < 1.1.0 takes non-const pointer */ ptr = EVP_PKEY_get0((EVP_PKEY *)pkey); switch (EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: RSA_get0_key(ptr, &n, &e, NULL); if (n && e) return; break; case EVP_PKEY_DSA: DSA_get0_key(ptr, &pubkey, NULL); if (pubkey) return; break; case EVP_PKEY_DH: DH_get0_key(ptr, &pubkey, NULL); if (pubkey) return; break; #if !defined(OPENSSL_NO_EC) case EVP_PKEY_EC: if (EC_KEY_get0_public_key(ptr)) return; break; #endif default: /* unsupported type; assuming ok */ return; } ossl_raise(ePKeyError, "public key missing"); } EVP_PKEY * GetPKeyPtr(VALUE obj) { EVP_PKEY *pkey; GetPKey(obj, pkey); return pkey; } EVP_PKEY * GetPrivPKeyPtr(VALUE obj) { EVP_PKEY *pkey; if (rb_funcallv(obj, id_private_q, 0, NULL) != Qtrue) { ossl_raise(rb_eArgError, "Private key is needed."); } GetPKey(obj, pkey); return pkey; } EVP_PKEY * DupPKeyPtr(VALUE obj) { EVP_PKEY *pkey; GetPKey(obj, pkey); EVP_PKEY_up_ref(pkey); return pkey; } /* * Private */ static VALUE ossl_pkey_alloc(VALUE klass) { EVP_PKEY *pkey; VALUE obj; obj = NewPKey(klass); if (!(pkey = EVP_PKEY_new())) { ossl_raise(ePKeyError, NULL); } SetPKey(obj, pkey); return obj; } /* * call-seq: * PKeyClass.new -> self * * Because PKey is an abstract class, actually calling this method explicitly * will raise a NotImplementedError. */ static VALUE ossl_pkey_initialize(VALUE self) { if (rb_obj_is_instance_of(self, cPKey)) { ossl_raise(rb_eTypeError, "OpenSSL::PKey::PKey can't be instantiated directly"); } return self; } /* * call-seq: * pkey.oid -> string * * Returns the short name of the OID associated with _pkey_. */ static VALUE ossl_pkey_oid(VALUE self) { EVP_PKEY *pkey; int nid; GetPKey(self, pkey); nid = EVP_PKEY_id(pkey); return rb_str_new_cstr(OBJ_nid2sn(nid)); } /* * call-seq: * pkey.inspect -> string * * Returns a string describing the PKey object. */ static VALUE ossl_pkey_inspect(VALUE self) { EVP_PKEY *pkey; int nid; GetPKey(self, pkey); nid = EVP_PKEY_id(pkey); return rb_sprintf("#<%"PRIsVALUE":%p oid=%s>", rb_class_name(CLASS_OF(self)), (void *)self, OBJ_nid2sn(nid)); } static VALUE do_pkcs8_export(int argc, VALUE *argv, VALUE self, int to_der) { EVP_PKEY *pkey; VALUE cipher, pass; const EVP_CIPHER *enc = NULL; BIO *bio; GetPKey(self, pkey); rb_scan_args(argc, argv, "02", &cipher, &pass); if (argc > 0) { /* * TODO: EncryptedPrivateKeyInfo actually has more options. * Should they be exposed? */ enc = ossl_evp_get_cipherbyname(cipher); pass = ossl_pem_passwd_value(pass); } bio = BIO_new(BIO_s_mem()); if (!bio) ossl_raise(ePKeyError, "BIO_new"); if (to_der) { if (!i2d_PKCS8PrivateKey_bio(bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { BIO_free(bio); ossl_raise(ePKeyError, "i2d_PKCS8PrivateKey_bio"); } } else { if (!PEM_write_bio_PKCS8PrivateKey(bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { BIO_free(bio); ossl_raise(ePKeyError, "PEM_write_bio_PKCS8PrivateKey"); } } return ossl_membio2str(bio); } /* * call-seq: * pkey.private_to_der -> string * pkey.private_to_der(cipher, password) -> string * * Serializes the private key to DER-encoded PKCS #8 format. If called without * arguments, unencrypted PKCS #8 PrivateKeyInfo format is used. If called with * a cipher name and a password, PKCS #8 EncryptedPrivateKeyInfo format with * PBES2 encryption scheme is used. */ static VALUE ossl_pkey_private_to_der(int argc, VALUE *argv, VALUE self) { return do_pkcs8_export(argc, argv, self, 1); } /* * call-seq: * pkey.private_to_pem -> string * pkey.private_to_pem(cipher, password) -> string * * Serializes the private key to PEM-encoded PKCS #8 format. See #private_to_der * for more details. */ static VALUE ossl_pkey_private_to_pem(int argc, VALUE *argv, VALUE self) { return do_pkcs8_export(argc, argv, self, 0); } static VALUE do_spki_export(VALUE self, int to_der) { EVP_PKEY *pkey; BIO *bio; GetPKey(self, pkey); bio = BIO_new(BIO_s_mem()); if (!bio) ossl_raise(ePKeyError, "BIO_new"); if (to_der) { if (!i2d_PUBKEY_bio(bio, pkey)) { BIO_free(bio); ossl_raise(ePKeyError, "i2d_PUBKEY_bio"); } } else { if (!PEM_write_bio_PUBKEY(bio, pkey)) { BIO_free(bio); ossl_raise(ePKeyError, "PEM_write_bio_PUBKEY"); } } return ossl_membio2str(bio); } /* * call-seq: * pkey.public_to_der -> string * * Serializes the public key to DER-encoded X.509 SubjectPublicKeyInfo format. */ static VALUE ossl_pkey_public_to_der(VALUE self) { return do_spki_export(self, 1); } /* * call-seq: * pkey.public_to_pem -> string * * Serializes the public key to PEM-encoded X.509 SubjectPublicKeyInfo format. */ static VALUE ossl_pkey_public_to_pem(VALUE self) { return do_spki_export(self, 0); } /* * call-seq: * pkey.sign(digest, data) -> String * * To sign the String _data_, _digest_, an instance of OpenSSL::Digest, must * be provided. The return value is again a String containing the signature. * A PKeyError is raised should errors occur. * Any previous state of the Digest instance is irrelevant to the signature * outcome, the digest instance is reset to its initial state during the * operation. * * == Example * data = 'Sign me!' * digest = OpenSSL::Digest.new('SHA256') * pkey = OpenSSL::PKey::RSA.new(2048) * signature = pkey.sign(digest, data) */ static VALUE ossl_pkey_sign(VALUE self, VALUE digest, VALUE data) { EVP_PKEY *pkey; const EVP_MD *md; EVP_MD_CTX *ctx; unsigned int buf_len; VALUE str; int result; pkey = GetPrivPKeyPtr(self); md = ossl_evp_get_digestbyname(digest); StringValue(data); str = rb_str_new(0, EVP_PKEY_size(pkey)); ctx = EVP_MD_CTX_new(); if (!ctx) ossl_raise(ePKeyError, "EVP_MD_CTX_new"); if (!EVP_SignInit_ex(ctx, md, NULL)) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_SignInit_ex"); } if (!EVP_SignUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data))) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_SignUpdate"); } result = EVP_SignFinal(ctx, (unsigned char *)RSTRING_PTR(str), &buf_len, pkey); EVP_MD_CTX_free(ctx); if (!result) ossl_raise(ePKeyError, "EVP_SignFinal"); rb_str_set_len(str, buf_len); return str; } /* * call-seq: * pkey.verify(digest, signature, data) -> String * * To verify the String _signature_, _digest_, an instance of * OpenSSL::Digest, must be provided to re-compute the message digest of the * original _data_, also a String. The return value is +true+ if the * signature is valid, +false+ otherwise. A PKeyError is raised should errors * occur. * Any previous state of the Digest instance is irrelevant to the validation * outcome, the digest instance is reset to its initial state during the * operation. * * == Example * data = 'Sign me!' * digest = OpenSSL::Digest.new('SHA256') * pkey = OpenSSL::PKey::RSA.new(2048) * signature = pkey.sign(digest, data) * pub_key = pkey.public_key * puts pub_key.verify(digest, signature, data) # => true */ static VALUE ossl_pkey_verify(VALUE self, VALUE digest, VALUE sig, VALUE data) { EVP_PKEY *pkey; const EVP_MD *md; EVP_MD_CTX *ctx; int siglen, result; GetPKey(self, pkey); ossl_pkey_check_public_key(pkey); md = ossl_evp_get_digestbyname(digest); StringValue(sig); siglen = RSTRING_LENINT(sig); StringValue(data); ctx = EVP_MD_CTX_new(); if (!ctx) ossl_raise(ePKeyError, "EVP_MD_CTX_new"); if (!EVP_VerifyInit_ex(ctx, md, NULL)) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_VerifyInit_ex"); } if (!EVP_VerifyUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data))) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_VerifyUpdate"); } result = EVP_VerifyFinal(ctx, (unsigned char *)RSTRING_PTR(sig), siglen, pkey); EVP_MD_CTX_free(ctx); switch (result) { case 0: ossl_clear_error(); return Qfalse; case 1: return Qtrue; default: ossl_raise(ePKeyError, "EVP_VerifyFinal"); } } /* * INIT */ void Init_ossl_pkey(void) { #undef rb_intern #if 0 mOSSL = rb_define_module("OpenSSL"); eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError); #endif /* Document-module: OpenSSL::PKey * * == Asymmetric Public Key Algorithms * * Asymmetric public key algorithms solve the problem of establishing and * sharing secret keys to en-/decrypt messages. The key in such an * algorithm consists of two parts: a public key that may be distributed * to others and a private key that needs to remain secret. * * Messages encrypted with a public key can only be decrypted by * recipients that are in possession of the associated private key. * Since public key algorithms are considerably slower than symmetric * key algorithms (cf. OpenSSL::Cipher) they are often used to establish * a symmetric key shared between two parties that are in possession of * each other's public key. * * Asymmetric algorithms offer a lot of nice features that are used in a * lot of different areas. A very common application is the creation and * validation of digital signatures. To sign a document, the signatory * generally uses a message digest algorithm (cf. OpenSSL::Digest) to * compute a digest of the document that is then encrypted (i.e. signed) * using the private key. Anyone in possession of the public key may then * verify the signature by computing the message digest of the original * document on their own, decrypting the signature using the signatory's * public key and comparing the result to the message digest they * previously computed. The signature is valid if and only if the * decrypted signature is equal to this message digest. * * The PKey module offers support for three popular public/private key * algorithms: * * RSA (OpenSSL::PKey::RSA) * * DSA (OpenSSL::PKey::DSA) * * Elliptic Curve Cryptography (OpenSSL::PKey::EC) * Each of these implementations is in fact a sub-class of the abstract * PKey class which offers the interface for supporting digital signatures * in the form of PKey#sign and PKey#verify. * * == Diffie-Hellman Key Exchange * * Finally PKey also features OpenSSL::PKey::DH, an implementation of * the Diffie-Hellman key exchange protocol based on discrete logarithms * in finite fields, the same basis that DSA is built on. * The Diffie-Hellman protocol can be used to exchange (symmetric) keys * over insecure channels without needing any prior joint knowledge * between the participating parties. As the security of DH demands * relatively long "public keys" (i.e. the part that is overtly * transmitted between participants) DH tends to be quite slow. If * security or speed is your primary concern, OpenSSL::PKey::EC offers * another implementation of the Diffie-Hellman protocol. * */ mPKey = rb_define_module_under(mOSSL, "PKey"); /* Document-class: OpenSSL::PKey::PKeyError * *Raised when errors occur during PKey#sign or PKey#verify. */ ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError); /* Document-class: OpenSSL::PKey::PKey * * An abstract class that bundles signature creation (PKey#sign) and * validation (PKey#verify) that is common to all implementations except * OpenSSL::PKey::DH * * OpenSSL::PKey::RSA * * OpenSSL::PKey::DSA * * OpenSSL::PKey::EC */ cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject); rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1); rb_define_alloc_func(cPKey, ossl_pkey_alloc); rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0); rb_define_method(cPKey, "oid", ossl_pkey_oid, 0); rb_define_method(cPKey, "inspect", ossl_pkey_inspect, 0); rb_define_method(cPKey, "private_to_der", ossl_pkey_private_to_der, -1); rb_define_method(cPKey, "private_to_pem", ossl_pkey_private_to_pem, -1); rb_define_method(cPKey, "public_to_der", ossl_pkey_public_to_der, 0); rb_define_method(cPKey, "public_to_pem", ossl_pkey_public_to_pem, 0); rb_define_method(cPKey, "sign", ossl_pkey_sign, 2); rb_define_method(cPKey, "verify", ossl_pkey_verify, 3); id_private_q = rb_intern("private?"); /* * INIT rsa, dsa, dh, ec */ Init_ossl_rsa(); Init_ossl_dsa(); Init_ossl_dh(); Init_ossl_ec(); }