/* * 'OpenSSL for Ruby' project * Copyright (C) 2001-2002 Michal Rokos * All rights reserved. */ /* * This program is licensed under the same licence as Ruby. * (See the file 'LICENCE'.) */ #include "ossl.h" /* * Classes */ VALUE mPKey; VALUE cPKey; VALUE ePKeyError; static ID id_private_q; /* * callback for generating keys */ static VALUE call_check_ints0(VALUE arg) { rb_thread_check_ints(); return Qnil; } static void * call_check_ints(void *arg) { int state; rb_protect(call_check_ints0, Qnil, &state); return (void *)(VALUE)state; } int ossl_generate_cb_2(int p, int n, BN_GENCB *cb) { VALUE ary; struct ossl_generate_cb_arg *arg; int state; arg = (struct ossl_generate_cb_arg *)BN_GENCB_get_arg(cb); if (arg->yield) { ary = rb_ary_new2(2); rb_ary_store(ary, 0, INT2NUM(p)); rb_ary_store(ary, 1, INT2NUM(n)); /* * can be break by raising exception or 'break' */ rb_protect(rb_yield, ary, &state); if (state) { arg->state = state; return 0; } } if (arg->interrupted) { arg->interrupted = 0; state = (int)(VALUE)rb_thread_call_with_gvl(call_check_ints, NULL); if (state) { arg->state = state; return 0; } } return 1; } void ossl_generate_cb_stop(void *ptr) { struct ossl_generate_cb_arg *arg = (struct ossl_generate_cb_arg *)ptr; arg->interrupted = 1; } static void ossl_evp_pkey_free(void *ptr) { EVP_PKEY_free(ptr); } /* * Public */ const rb_data_type_t ossl_evp_pkey_type = { "OpenSSL/EVP_PKEY", { 0, ossl_evp_pkey_free, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY, }; static VALUE pkey_new0(EVP_PKEY *pkey) { VALUE klass, obj; int type; if (!pkey || (type = EVP_PKEY_base_id(pkey)) == EVP_PKEY_NONE) ossl_raise(rb_eRuntimeError, "pkey is empty"); switch (type) { #if !defined(OPENSSL_NO_RSA) case EVP_PKEY_RSA: klass = cRSA; break; #endif #if !defined(OPENSSL_NO_DSA) case EVP_PKEY_DSA: klass = cDSA; break; #endif #if !defined(OPENSSL_NO_DH) case EVP_PKEY_DH: klass = cDH; break; #endif #if !defined(OPENSSL_NO_EC) case EVP_PKEY_EC: klass = cEC; break; #endif default: klass = cPKey; break; } obj = NewPKey(klass); SetPKey(obj, pkey); return obj; } VALUE ossl_pkey_new(EVP_PKEY *pkey) { VALUE obj; int status; obj = rb_protect((VALUE (*)(VALUE))pkey_new0, (VALUE)pkey, &status); if (status) { EVP_PKEY_free(pkey); rb_jump_tag(status); } return obj; } EVP_PKEY * ossl_pkey_read_generic(BIO *bio, VALUE pass) { void *ppass = (void *)pass; EVP_PKEY *pkey; if ((pkey = d2i_PrivateKey_bio(bio, NULL))) goto out; OSSL_BIO_reset(bio); if ((pkey = d2i_PKCS8PrivateKey_bio(bio, NULL, ossl_pem_passwd_cb, ppass))) goto out; OSSL_BIO_reset(bio); if ((pkey = d2i_PUBKEY_bio(bio, NULL))) goto out; OSSL_BIO_reset(bio); /* PEM_read_bio_PrivateKey() also parses PKCS #8 formats */ if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, ppass))) goto out; OSSL_BIO_reset(bio); if ((pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL))) goto out; OSSL_BIO_reset(bio); if ((pkey = PEM_read_bio_Parameters(bio, NULL))) goto out; out: return pkey; } /* * call-seq: * OpenSSL::PKey.read(string [, pwd ]) -> PKey * OpenSSL::PKey.read(io [, pwd ]) -> PKey * * Reads a DER or PEM encoded string from _string_ or _io_ and returns an * instance of the appropriate PKey class. * * === Parameters * * _string_ is a DER- or PEM-encoded string containing an arbitrary private * or public key. * * _io_ is an instance of IO containing a DER- or PEM-encoded * arbitrary private or public key. * * _pwd_ is an optional password in case _string_ or _io_ is an encrypted * PEM resource. */ static VALUE ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; BIO *bio; VALUE data, pass; rb_scan_args(argc, argv, "11", &data, &pass); bio = ossl_obj2bio(&data); pkey = ossl_pkey_read_generic(bio, ossl_pem_passwd_value(pass)); BIO_free(bio); if (!pkey) ossl_raise(ePKeyError, "Could not parse PKey"); return ossl_pkey_new(pkey); } static VALUE pkey_gen_apply_options_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ctx_v)) { VALUE key = rb_ary_entry(i, 0), value = rb_ary_entry(i, 1); EVP_PKEY_CTX *ctx = (EVP_PKEY_CTX *)ctx_v; if (SYMBOL_P(key)) key = rb_sym2str(key); value = rb_String(value); if (EVP_PKEY_CTX_ctrl_str(ctx, StringValueCStr(key), StringValueCStr(value)) <= 0) ossl_raise(ePKeyError, "EVP_PKEY_CTX_ctrl_str(ctx, %+"PRIsVALUE", %+"PRIsVALUE")", key, value); return Qnil; } static VALUE pkey_gen_apply_options0(VALUE args_v) { VALUE *args = (VALUE *)args_v; rb_block_call(args[1], rb_intern("each"), 0, NULL, pkey_gen_apply_options_i, args[0]); return Qnil; } struct pkey_blocking_generate_arg { EVP_PKEY_CTX *ctx; EVP_PKEY *pkey; int state; int yield: 1; int genparam: 1; int stop: 1; }; static VALUE pkey_gen_cb_yield(VALUE ctx_v) { EVP_PKEY_CTX *ctx = (void *)ctx_v; int i, info_num; VALUE *argv; info_num = EVP_PKEY_CTX_get_keygen_info(ctx, -1); argv = ALLOCA_N(VALUE, info_num); for (i = 0; i < info_num; i++) argv[i] = INT2NUM(EVP_PKEY_CTX_get_keygen_info(ctx, i)); return rb_yield_values2(info_num, argv); } static int pkey_gen_cb(EVP_PKEY_CTX *ctx) { struct pkey_blocking_generate_arg *arg = EVP_PKEY_CTX_get_app_data(ctx); if (arg->yield) { int state; rb_protect(pkey_gen_cb_yield, (VALUE)ctx, &state); if (state) { arg->stop = 1; arg->state = state; } } return !arg->stop; } static void pkey_blocking_gen_stop(void *ptr) { struct pkey_blocking_generate_arg *arg = ptr; arg->stop = 1; } static void * pkey_blocking_gen(void *ptr) { struct pkey_blocking_generate_arg *arg = ptr; if (arg->genparam && EVP_PKEY_paramgen(arg->ctx, &arg->pkey) <= 0) return NULL; if (!arg->genparam && EVP_PKEY_keygen(arg->ctx, &arg->pkey) <= 0) return NULL; return arg->pkey; } static VALUE pkey_generate(int argc, VALUE *argv, VALUE self, int genparam) { EVP_PKEY_CTX *ctx; VALUE alg, options; struct pkey_blocking_generate_arg gen_arg = { 0 }; int state; rb_scan_args(argc, argv, "11", &alg, &options); if (rb_obj_is_kind_of(alg, cPKey)) { EVP_PKEY *base_pkey; GetPKey(alg, base_pkey); ctx = EVP_PKEY_CTX_new(base_pkey, NULL/* engine */); if (!ctx) ossl_raise(ePKeyError, "EVP_PKEY_CTX_new"); } else { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng; int pkey_id; StringValue(alg); ameth = EVP_PKEY_asn1_find_str(&tmpeng, RSTRING_PTR(alg), RSTRING_LENINT(alg)); if (!ameth) ossl_raise(ePKeyError, "algorithm %"PRIsVALUE" not found", alg); EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth); #if !defined(OPENSSL_NO_ENGINE) if (tmpeng) ENGINE_finish(tmpeng); #endif ctx = EVP_PKEY_CTX_new_id(pkey_id, NULL/* engine */); if (!ctx) ossl_raise(ePKeyError, "EVP_PKEY_CTX_new_id"); } if (genparam && EVP_PKEY_paramgen_init(ctx) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_paramgen_init"); } if (!genparam && EVP_PKEY_keygen_init(ctx) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_keygen_init"); } if (!NIL_P(options)) { VALUE args[2]; args[0] = (VALUE)ctx; args[1] = options; rb_protect(pkey_gen_apply_options0, (VALUE)args, &state); if (state) { EVP_PKEY_CTX_free(ctx); rb_jump_tag(state); } } gen_arg.genparam = genparam; gen_arg.ctx = ctx; gen_arg.yield = rb_block_given_p(); EVP_PKEY_CTX_set_app_data(ctx, &gen_arg); EVP_PKEY_CTX_set_cb(ctx, pkey_gen_cb); if (gen_arg.yield) pkey_blocking_gen(&gen_arg); else rb_thread_call_without_gvl(pkey_blocking_gen, &gen_arg, pkey_blocking_gen_stop, &gen_arg); EVP_PKEY_CTX_free(ctx); if (!gen_arg.pkey) { if (gen_arg.state) { ossl_clear_error(); rb_jump_tag(gen_arg.state); } else { ossl_raise(ePKeyError, genparam ? "EVP_PKEY_paramgen" : "EVP_PKEY_keygen"); } } return ossl_pkey_new(gen_arg.pkey); } /* * call-seq: * OpenSSL::PKey.generate_parameters(algo_name [, options]) -> pkey * * Generates new parameters for the algorithm. _algo_name_ is a String that * represents the algorithm. The optional argument _options_ is a Hash that * specifies the options specific to the algorithm. The order of the options * can be important. * * A block can be passed optionally. The meaning of the arguments passed to * the block varies depending on the implementation of the algorithm. The block * may be called once or multiple times, or may not even be called. * * For the supported options, see the documentation for the 'openssl genpkey' * utility command. * * == Example * pkey = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048) * p pkey.p.num_bits #=> 2048 */ static VALUE ossl_pkey_s_generate_parameters(int argc, VALUE *argv, VALUE self) { return pkey_generate(argc, argv, self, 1); } /* * call-seq: * OpenSSL::PKey.generate_key(algo_name [, options]) -> pkey * OpenSSL::PKey.generate_key(pkey [, options]) -> pkey * * Generates a new key (pair). * * If a String is given as the first argument, it generates a new random key * for the algorithm specified by the name just as ::generate_parameters does. * If an OpenSSL::PKey::PKey is given instead, it generates a new random key * for the same algorithm as the key, using the parameters the key contains. * * See ::generate_parameters for the details of _options_ and the given block. * * == Example * pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048) * pkey_params.priv_key #=> nil * pkey = OpenSSL::PKey.generate_key(pkey_params) * pkey.priv_key #=> # self * * Because PKey is an abstract class, actually calling this method explicitly * will raise a NotImplementedError. */ static VALUE ossl_pkey_initialize(VALUE self) { if (rb_obj_is_instance_of(self, cPKey)) { ossl_raise(rb_eTypeError, "OpenSSL::PKey::PKey can't be instantiated directly"); } return self; } /* * call-seq: * pkey.oid -> string * * Returns the short name of the OID associated with _pkey_. */ static VALUE ossl_pkey_oid(VALUE self) { EVP_PKEY *pkey; int nid; GetPKey(self, pkey); nid = EVP_PKEY_id(pkey); return rb_str_new_cstr(OBJ_nid2sn(nid)); } /* * call-seq: * pkey.inspect -> string * * Returns a string describing the PKey object. */ static VALUE ossl_pkey_inspect(VALUE self) { EVP_PKEY *pkey; int nid; GetPKey(self, pkey); nid = EVP_PKEY_id(pkey); return rb_sprintf("#<%"PRIsVALUE":%p oid=%s>", rb_class_name(CLASS_OF(self)), (void *)self, OBJ_nid2sn(nid)); } VALUE ossl_pkey_export_traditional(int argc, VALUE *argv, VALUE self, int to_der) { EVP_PKEY *pkey; VALUE cipher, pass; const EVP_CIPHER *enc = NULL; BIO *bio; GetPKey(self, pkey); rb_scan_args(argc, argv, "02", &cipher, &pass); if (!NIL_P(cipher)) { enc = ossl_evp_get_cipherbyname(cipher); pass = ossl_pem_passwd_value(pass); } bio = BIO_new(BIO_s_mem()); if (!bio) ossl_raise(ePKeyError, "BIO_new"); if (to_der) { if (!i2d_PrivateKey_bio(bio, pkey)) { BIO_free(bio); ossl_raise(ePKeyError, "i2d_PrivateKey_bio"); } } else { #if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER) if (!PEM_write_bio_PrivateKey_traditional(bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { #else char pem_str[80]; const char *aname; EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &aname, pkey->ameth); snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", aname); if (!PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, pem_str, bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { #endif BIO_free(bio); ossl_raise(ePKeyError, "PEM_write_bio_PrivateKey_traditional"); } } return ossl_membio2str(bio); } static VALUE do_pkcs8_export(int argc, VALUE *argv, VALUE self, int to_der) { EVP_PKEY *pkey; VALUE cipher, pass; const EVP_CIPHER *enc = NULL; BIO *bio; GetPKey(self, pkey); rb_scan_args(argc, argv, "02", &cipher, &pass); if (argc > 0) { /* * TODO: EncryptedPrivateKeyInfo actually has more options. * Should they be exposed? */ enc = ossl_evp_get_cipherbyname(cipher); pass = ossl_pem_passwd_value(pass); } bio = BIO_new(BIO_s_mem()); if (!bio) ossl_raise(ePKeyError, "BIO_new"); if (to_der) { if (!i2d_PKCS8PrivateKey_bio(bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { BIO_free(bio); ossl_raise(ePKeyError, "i2d_PKCS8PrivateKey_bio"); } } else { if (!PEM_write_bio_PKCS8PrivateKey(bio, pkey, enc, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { BIO_free(bio); ossl_raise(ePKeyError, "PEM_write_bio_PKCS8PrivateKey"); } } return ossl_membio2str(bio); } /* * call-seq: * pkey.private_to_der -> string * pkey.private_to_der(cipher, password) -> string * * Serializes the private key to DER-encoded PKCS #8 format. If called without * arguments, unencrypted PKCS #8 PrivateKeyInfo format is used. If called with * a cipher name and a password, PKCS #8 EncryptedPrivateKeyInfo format with * PBES2 encryption scheme is used. */ static VALUE ossl_pkey_private_to_der(int argc, VALUE *argv, VALUE self) { return do_pkcs8_export(argc, argv, self, 1); } /* * call-seq: * pkey.private_to_pem -> string * pkey.private_to_pem(cipher, password) -> string * * Serializes the private key to PEM-encoded PKCS #8 format. See #private_to_der * for more details. */ static VALUE ossl_pkey_private_to_pem(int argc, VALUE *argv, VALUE self) { return do_pkcs8_export(argc, argv, self, 0); } VALUE ossl_pkey_export_spki(VALUE self, int to_der) { EVP_PKEY *pkey; BIO *bio; GetPKey(self, pkey); bio = BIO_new(BIO_s_mem()); if (!bio) ossl_raise(ePKeyError, "BIO_new"); if (to_der) { if (!i2d_PUBKEY_bio(bio, pkey)) { BIO_free(bio); ossl_raise(ePKeyError, "i2d_PUBKEY_bio"); } } else { if (!PEM_write_bio_PUBKEY(bio, pkey)) { BIO_free(bio); ossl_raise(ePKeyError, "PEM_write_bio_PUBKEY"); } } return ossl_membio2str(bio); } /* * call-seq: * pkey.public_to_der -> string * * Serializes the public key to DER-encoded X.509 SubjectPublicKeyInfo format. */ static VALUE ossl_pkey_public_to_der(VALUE self) { return ossl_pkey_export_spki(self, 1); } /* * call-seq: * pkey.public_to_pem -> string * * Serializes the public key to PEM-encoded X.509 SubjectPublicKeyInfo format. */ static VALUE ossl_pkey_public_to_pem(VALUE self) { return ossl_pkey_export_spki(self, 0); } /* * call-seq: * pkey.compare?(another_pkey) -> true | false * * Used primarily to check if an OpenSSL::X509::Certificate#public_key compares to its private key. * * == Example * x509 = OpenSSL::X509::Certificate.new(pem_encoded_certificate) * rsa_key = OpenSSL::PKey::RSA.new(pem_encoded_private_key) * * rsa_key.compare?(x509.public_key) => true | false */ static VALUE ossl_pkey_compare(VALUE self, VALUE other) { int ret; EVP_PKEY *selfPKey; EVP_PKEY *otherPKey; GetPKey(self, selfPKey); GetPKey(other, otherPKey); /* Explicitly check the key type given EVP_PKEY_ASN1_METHOD(3) * docs param_cmp could return any negative number. */ if (EVP_PKEY_id(selfPKey) != EVP_PKEY_id(otherPKey)) ossl_raise(rb_eTypeError, "cannot match different PKey types"); ret = EVP_PKEY_cmp(selfPKey, otherPKey); if (ret == 0) return Qfalse; else if (ret == 1) return Qtrue; else ossl_raise(ePKeyError, "EVP_PKEY_cmp"); } /* * call-seq: * pkey.sign(digest, data) -> String * * To sign the String _data_, _digest_, an instance of OpenSSL::Digest, must * be provided. The return value is again a String containing the signature. * A PKeyError is raised should errors occur. * Any previous state of the Digest instance is irrelevant to the signature * outcome, the digest instance is reset to its initial state during the * operation. * * == Example * data = 'Sign me!' * digest = OpenSSL::Digest.new('SHA256') * pkey = OpenSSL::PKey::RSA.new(2048) * signature = pkey.sign(digest, data) */ static VALUE ossl_pkey_sign(VALUE self, VALUE digest, VALUE data) { EVP_PKEY *pkey; const EVP_MD *md = NULL; EVP_MD_CTX *ctx; size_t siglen; int state; VALUE sig; pkey = GetPrivPKeyPtr(self); if (!NIL_P(digest)) md = ossl_evp_get_digestbyname(digest); StringValue(data); ctx = EVP_MD_CTX_new(); if (!ctx) ossl_raise(ePKeyError, "EVP_MD_CTX_new"); if (EVP_DigestSignInit(ctx, NULL, md, /* engine */NULL, pkey) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSignInit"); } #if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER) if (EVP_DigestSign(ctx, NULL, &siglen, (unsigned char *)RSTRING_PTR(data), RSTRING_LEN(data)) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSign"); } if (siglen > LONG_MAX) rb_raise(ePKeyError, "signature would be too large"); sig = ossl_str_new(NULL, (long)siglen, &state); if (state) { EVP_MD_CTX_free(ctx); rb_jump_tag(state); } if (EVP_DigestSign(ctx, (unsigned char *)RSTRING_PTR(sig), &siglen, (unsigned char *)RSTRING_PTR(data), RSTRING_LEN(data)) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSign"); } #else if (EVP_DigestSignUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSignUpdate"); } if (EVP_DigestSignFinal(ctx, NULL, &siglen) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSignFinal"); } if (siglen > LONG_MAX) rb_raise(ePKeyError, "signature would be too large"); sig = ossl_str_new(NULL, (long)siglen, &state); if (state) { EVP_MD_CTX_free(ctx); rb_jump_tag(state); } if (EVP_DigestSignFinal(ctx, (unsigned char *)RSTRING_PTR(sig), &siglen) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestSignFinal"); } #endif EVP_MD_CTX_free(ctx); rb_str_set_len(sig, siglen); return sig; } /* * call-seq: * pkey.verify(digest, signature, data) -> String * * To verify the String _signature_, _digest_, an instance of * OpenSSL::Digest, must be provided to re-compute the message digest of the * original _data_, also a String. The return value is +true+ if the * signature is valid, +false+ otherwise. A PKeyError is raised should errors * occur. * Any previous state of the Digest instance is irrelevant to the validation * outcome, the digest instance is reset to its initial state during the * operation. * * == Example * data = 'Sign me!' * digest = OpenSSL::Digest.new('SHA256') * pkey = OpenSSL::PKey::RSA.new(2048) * signature = pkey.sign(digest, data) * pub_key = pkey.public_key * puts pub_key.verify(digest, signature, data) # => true */ static VALUE ossl_pkey_verify(VALUE self, VALUE digest, VALUE sig, VALUE data) { EVP_PKEY *pkey; const EVP_MD *md = NULL; EVP_MD_CTX *ctx; int ret; GetPKey(self, pkey); ossl_pkey_check_public_key(pkey); if (!NIL_P(digest)) md = ossl_evp_get_digestbyname(digest); StringValue(sig); StringValue(data); ctx = EVP_MD_CTX_new(); if (!ctx) ossl_raise(ePKeyError, "EVP_MD_CTX_new"); if (EVP_DigestVerifyInit(ctx, NULL, md, /* engine */NULL, pkey) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestVerifyInit"); } #if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER) ret = EVP_DigestVerify(ctx, (unsigned char *)RSTRING_PTR(sig), RSTRING_LEN(sig), (unsigned char *)RSTRING_PTR(data), RSTRING_LEN(data)); EVP_MD_CTX_free(ctx); if (ret < 0) ossl_raise(ePKeyError, "EVP_DigestVerify"); #else if (EVP_DigestVerifyUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) { EVP_MD_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_DigestVerifyUpdate"); } ret = EVP_DigestVerifyFinal(ctx, (unsigned char *)RSTRING_PTR(sig), RSTRING_LEN(sig)); EVP_MD_CTX_free(ctx); if (ret < 0) ossl_raise(ePKeyError, "EVP_DigestVerifyFinal"); #endif if (ret) return Qtrue; else { ossl_clear_error(); return Qfalse; } } /* * call-seq: * pkey.derive(peer_pkey) -> string * * Derives a shared secret from _pkey_ and _peer_pkey_. _pkey_ must contain * the private components, _peer_pkey_ must contain the public components. */ static VALUE ossl_pkey_derive(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey, *peer_pkey; EVP_PKEY_CTX *ctx; VALUE peer_pkey_obj, str; size_t keylen; int state; GetPKey(self, pkey); rb_scan_args(argc, argv, "1", &peer_pkey_obj); GetPKey(peer_pkey_obj, peer_pkey); ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL); if (!ctx) ossl_raise(ePKeyError, "EVP_PKEY_CTX_new"); if (EVP_PKEY_derive_init(ctx) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_derive_init"); } if (EVP_PKEY_derive_set_peer(ctx, peer_pkey) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_derive_set_peer"); } if (EVP_PKEY_derive(ctx, NULL, &keylen) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_derive"); } if (keylen > LONG_MAX) rb_raise(ePKeyError, "derived key would be too large"); str = ossl_str_new(NULL, (long)keylen, &state); if (state) { EVP_PKEY_CTX_free(ctx); rb_jump_tag(state); } if (EVP_PKEY_derive(ctx, (unsigned char *)RSTRING_PTR(str), &keylen) <= 0) { EVP_PKEY_CTX_free(ctx); ossl_raise(ePKeyError, "EVP_PKEY_derive"); } EVP_PKEY_CTX_free(ctx); rb_str_set_len(str, keylen); return str; } /* * INIT */ void Init_ossl_pkey(void) { #undef rb_intern #if 0 mOSSL = rb_define_module("OpenSSL"); eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError); #endif /* Document-module: OpenSSL::PKey * * == Asymmetric Public Key Algorithms * * Asymmetric public key algorithms solve the problem of establishing and * sharing secret keys to en-/decrypt messages. The key in such an * algorithm consists of two parts: a public key that may be distributed * to others and a private key that needs to remain secret. * * Messages encrypted with a public key can only be decrypted by * recipients that are in possession of the associated private key. * Since public key algorithms are considerably slower than symmetric * key algorithms (cf. OpenSSL::Cipher) they are often used to establish * a symmetric key shared between two parties that are in possession of * each other's public key. * * Asymmetric algorithms offer a lot of nice features that are used in a * lot of different areas. A very common application is the creation and * validation of digital signatures. To sign a document, the signatory * generally uses a message digest algorithm (cf. OpenSSL::Digest) to * compute a digest of the document that is then encrypted (i.e. signed) * using the private key. Anyone in possession of the public key may then * verify the signature by computing the message digest of the original * document on their own, decrypting the signature using the signatory's * public key and comparing the result to the message digest they * previously computed. The signature is valid if and only if the * decrypted signature is equal to this message digest. * * The PKey module offers support for three popular public/private key * algorithms: * * RSA (OpenSSL::PKey::RSA) * * DSA (OpenSSL::PKey::DSA) * * Elliptic Curve Cryptography (OpenSSL::PKey::EC) * Each of these implementations is in fact a sub-class of the abstract * PKey class which offers the interface for supporting digital signatures * in the form of PKey#sign and PKey#verify. * * == Diffie-Hellman Key Exchange * * Finally PKey also features OpenSSL::PKey::DH, an implementation of * the Diffie-Hellman key exchange protocol based on discrete logarithms * in finite fields, the same basis that DSA is built on. * The Diffie-Hellman protocol can be used to exchange (symmetric) keys * over insecure channels without needing any prior joint knowledge * between the participating parties. As the security of DH demands * relatively long "public keys" (i.e. the part that is overtly * transmitted between participants) DH tends to be quite slow. If * security or speed is your primary concern, OpenSSL::PKey::EC offers * another implementation of the Diffie-Hellman protocol. * */ mPKey = rb_define_module_under(mOSSL, "PKey"); /* Document-class: OpenSSL::PKey::PKeyError * *Raised when errors occur during PKey#sign or PKey#verify. */ ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError); /* Document-class: OpenSSL::PKey::PKey * * An abstract class that bundles signature creation (PKey#sign) and * validation (PKey#verify) that is common to all implementations except * OpenSSL::PKey::DH * * OpenSSL::PKey::RSA * * OpenSSL::PKey::DSA * * OpenSSL::PKey::EC */ cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject); rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1); rb_define_module_function(mPKey, "generate_parameters", ossl_pkey_s_generate_parameters, -1); rb_define_module_function(mPKey, "generate_key", ossl_pkey_s_generate_key, -1); rb_define_alloc_func(cPKey, ossl_pkey_alloc); rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0); rb_define_method(cPKey, "oid", ossl_pkey_oid, 0); rb_define_method(cPKey, "inspect", ossl_pkey_inspect, 0); rb_define_method(cPKey, "private_to_der", ossl_pkey_private_to_der, -1); rb_define_method(cPKey, "private_to_pem", ossl_pkey_private_to_pem, -1); rb_define_method(cPKey, "public_to_der", ossl_pkey_public_to_der, 0); rb_define_method(cPKey, "public_to_pem", ossl_pkey_public_to_pem, 0); rb_define_method(cPKey, "compare?", ossl_pkey_compare, 1); rb_define_method(cPKey, "sign", ossl_pkey_sign, 2); rb_define_method(cPKey, "verify", ossl_pkey_verify, 3); rb_define_method(cPKey, "derive", ossl_pkey_derive, -1); id_private_q = rb_intern("private?"); /* * INIT rsa, dsa, dh, ec */ Init_ossl_rsa(); Init_ossl_dsa(); Init_ossl_dh(); Init_ossl_ec(); }