/********************************************************************** enum.c - $Author$ created at: Fri Oct 1 15:15:19 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/ruby.h" #include "ruby/util.h" #include "node.h" VALUE rb_mEnumerable; static ID id_each, id_eqq, id_cmp, id_next, id_size; static VALUE enum_values_pack(int argc, VALUE *argv) { if (argc == 0) return Qnil; if (argc == 1) return argv[0]; return rb_ary_new4(argc, argv); } #define ENUM_WANT_SVALUE() do { \ i = enum_values_pack(argc, argv); \ } while (0) #define enum_yield rb_yield_values2 static VALUE grep_i(VALUE i, VALUE args, int argc, VALUE *argv) { VALUE *arg = (VALUE *)args; ENUM_WANT_SVALUE(); if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) { rb_ary_push(arg[1], i); } return Qnil; } static VALUE grep_iter_i(VALUE i, VALUE args, int argc, VALUE *argv) { VALUE *arg = (VALUE *)args; ENUM_WANT_SVALUE(); if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) { rb_ary_push(arg[1], rb_yield(i)); } return Qnil; } /* * call-seq: * enum.grep(pattern) => array * enum.grep(pattern) {| obj | block } => array * * Returns an array of every element in enum for which * Pattern === element. If the optional block is * supplied, each matching element is passed to it, and the block's * result is stored in the output array. * * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44] * c = IO.constants * c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END] * res = c.grep(/SEEK/) {|v| IO.const_get(v) } * res #=> [0, 1, 2] * */ static VALUE enum_grep(VALUE obj, VALUE pat) { VALUE ary = rb_ary_new(); VALUE arg[2]; arg[0] = pat; arg[1] = ary; rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)arg); return ary; } static VALUE count_i(VALUE i, VALUE memop, int argc, VALUE *argv) { VALUE *memo = (VALUE*)memop; ENUM_WANT_SVALUE(); if (rb_equal(i, memo[1])) { memo[0]++; } return Qnil; } static VALUE count_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv) { VALUE *memo = (VALUE*)memop; if (RTEST(enum_yield(argc, argv))) { memo[0]++; } return Qnil; } static VALUE count_all_i(VALUE i, VALUE memop, int argc, VALUE *argv) { VALUE *memo = (VALUE*)memop; memo[0]++; return Qnil; } /* * call-seq: * enum.count => int * enum.count(item) => int * enum.count {| obj | block } => int * * Returns the number of items in enum, where #size is called * if it responds to it, otherwise the items are counted through * enumeration. If an argument is given, counts the number of items * in enum, for which equals to item. If a block is * given, counts the number of elements yielding a true value. * * ary = [1, 2, 4, 2] * ary.count # => 4 * ary.count(2) # => 2 * ary.count{|x|x%2==0} # => 3 * */ static VALUE enum_count(int argc, VALUE *argv, VALUE obj) { VALUE memo[2]; /* [count, condition value] */ rb_block_call_func *func; if (argc == 0) { if (rb_block_given_p()) { func = count_iter_i; } else { if (rb_respond_to(obj, id_size)) { return rb_funcall(obj, id_size, 0, 0); } func = count_all_i; } } else { rb_scan_args(argc, argv, "1", &memo[1]); if (rb_block_given_p()) { rb_warn("given block not used"); } func = count_i; } memo[0] = 0; rb_block_call(obj, id_each, 0, 0, func, (VALUE)&memo); return INT2NUM(memo[0]); } static VALUE find_i(VALUE i, VALUE *memo, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (RTEST(rb_yield(i))) { *memo = i; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.detect(ifnone = nil) {| obj | block } => obj or nil * enum.find(ifnone = nil) {| obj | block } => obj or nil * * Passes each entry in enum to block. Returns the * first for which block is not false. If no * object matches, calls ifnone and returns its result when it * is specified, or returns nil * * (1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> 35 * */ static VALUE enum_find(int argc, VALUE *argv, VALUE obj) { VALUE memo = Qundef; VALUE if_none; rb_scan_args(argc, argv, "01", &if_none); RETURN_ENUMERATOR(obj, argc, argv); rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)&memo); if (memo != Qundef) { return memo; } if (!NIL_P(if_none)) { return rb_funcall(if_none, rb_intern("call"), 0, 0); } return Qnil; } static VALUE find_index_i(VALUE i, VALUE memop, int argc, VALUE *argv) { VALUE *memo = (VALUE*)memop; ENUM_WANT_SVALUE(); if (rb_equal(i, memo[2])) { memo[0] = UINT2NUM(memo[1]); rb_iter_break(); } memo[1]++; return Qnil; } static VALUE find_index_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv) { VALUE *memo = (VALUE*)memop; if (RTEST(enum_yield(argc, argv))) { memo[0] = UINT2NUM(memo[1]); rb_iter_break(); } memo[1]++; return Qnil; } /* * call-seq: * enum.find_index(value) => int or nil * enum.find_index {| obj | block } => int or nil * * Compares each entry in enum with value or passes * to block. Returns the index for the first for which the * evaluated value is non-false. If no object matches, returns * nil * * (1..10).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> 34 * (1..100).find_index(50) #=> 49 * */ static VALUE enum_find_index(int argc, VALUE *argv, VALUE obj) { VALUE memo[3]; /* [return value, current index, condition value] */ rb_block_call_func *func; if (argc == 0) { RETURN_ENUMERATOR(obj, 0, 0); func = find_index_iter_i; } else { rb_scan_args(argc, argv, "1", &memo[2]); if (rb_block_given_p()) { rb_warn("given block not used"); } func = find_index_i; } memo[0] = Qnil; memo[1] = 0; rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return memo[0]; } static VALUE find_all_i(VALUE i, VALUE ary, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (RTEST(rb_yield(i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * enum.find_all {| obj | block } => array * enum.select {| obj | block } => array * * Returns an array containing all elements of enum for which * block is not false (see also * Enumerable#reject). * * (1..10).find_all {|i| i % 3 == 0 } #=> [3, 6, 9] * */ static VALUE enum_find_all(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, find_all_i, ary); return ary; } static VALUE reject_i(VALUE i, VALUE ary, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (!RTEST(rb_yield(i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * enum.reject {| obj | block } => array * * Returns an array for all elements of enum for which * block is false (see also Enumerable#find_all). * * (1..10).reject {|i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10] * */ static VALUE enum_reject(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, reject_i, ary); return ary; } static VALUE collect_i(VALUE i, VALUE ary, int argc, VALUE *argv) { rb_ary_push(ary, enum_yield(argc, argv)); return Qnil; } static VALUE collect_all(VALUE i, VALUE ary, int argc, VALUE *argv) { rb_thread_check_ints(); rb_ary_push(ary, enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * enum.collect {| obj | block } => array * enum.map {| obj | block } => array * * Returns a new array with the results of running block once * for every element in enum. * * (1..4).collect {|i| i*i } #=> [1, 4, 9, 16] * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"] * */ static VALUE enum_collect(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, collect_i, ary); return ary; } /* * call-seq: * enum.to_a => array * enum.entries => array * * Returns an array containing the items in enum. * * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7] * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]] */ static VALUE enum_to_a(int argc, VALUE *argv, VALUE obj) { VALUE ary = rb_ary_new(); rb_block_call(obj, id_each, argc, argv, collect_all, ary); OBJ_INFECT(ary, obj); return ary; } static VALUE inject_i(VALUE i, VALUE p, int argc, VALUE *argv) { VALUE *memo = (VALUE *)p; ENUM_WANT_SVALUE(); if (memo[0] == Qundef) { memo[0] = i; } else { memo[0] = rb_yield_values(2, memo[0], i); } return Qnil; } static VALUE inject_op_i(VALUE i, VALUE p, int argc, VALUE *argv) { VALUE *memo = (VALUE *)p; ENUM_WANT_SVALUE(); if (memo[0] == Qundef) { memo[0] = i; } else { memo[0] = rb_funcall(memo[0], (ID)memo[1], 1, i); } return Qnil; } /* * call-seq: * enum.inject(initial, sym) => obj * enum.inject(sym) => obj * enum.inject(initial) {| memo, obj | block } => obj * enum.inject {| memo, obj | block } => obj * * enum.reduce(initial, sym) => obj * enum.reduce(sym) => obj * enum.reduce(initial) {| memo, obj | block } => obj * enum.reduce {| memo, obj | block } => obj * * Combines all elements of enum by applying a binary * operation, specified by a block or a symbol that names a * method or operator. * * If you specify a block, then for each element in enum * the block is passed an accumulator value (memo) and the element. * If you specify a symbol instead, then each element in the collection * will be passed to the named method of memo. * In either case, the result becomes the new value for memo. * At the end of the iteration, the final value of memo is the * return value fo the method. * * If you do not explicitly specify an initial value for memo, * then uses the first element of collection is used as the initial value * of memo. * * Examples: * * # Sum some numbers * (5..10).reduce(:+) #=> 45 * # Same using a block and inject * (5..10).inject {|sum, n| sum + n } #=> 45 * # Multiply some numbers * (5..10).reduce(1, :*) #=> 151200 * # Same using a block * (5..10).inject(1) {|product, n| product * n } #=> 151200 * # find the longest word * longest = %w{ cat sheep bear }.inject do |memo,word| * memo.length > word.length ? memo : word * end * longest #=> "sheep" * */ static VALUE enum_inject(int argc, VALUE *argv, VALUE obj) { VALUE memo[2]; VALUE (*iter)(VALUE, VALUE, int, VALUE*) = inject_i; switch (rb_scan_args(argc, argv, "02", &memo[0], &memo[1])) { case 0: memo[0] = Qundef; break; case 1: if (rb_block_given_p()) { break; } memo[1] = (VALUE)rb_to_id(memo[0]); memo[0] = Qundef; iter = inject_op_i; break; case 2: if (rb_block_given_p()) { rb_warning("given block not used"); } memo[1] = (VALUE)rb_to_id(memo[1]); iter = inject_op_i; break; } rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); if (memo[0] == Qundef) return Qnil; return memo[0]; } static VALUE partition_i(VALUE i, VALUE *ary, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (RTEST(rb_yield(i))) { rb_ary_push(ary[0], i); } else { rb_ary_push(ary[1], i); } return Qnil; } /* * call-seq: * enum.partition {| obj | block } => [ true_array, false_array ] * * Returns two arrays, the first containing the elements of * enum for which the block evaluates to true, the second * containing the rest. * * (1..6).partition {|i| (i&1).zero?} #=> [[2, 4, 6], [1, 3, 5]] * */ static VALUE enum_partition(VALUE obj) { VALUE ary[2]; RETURN_ENUMERATOR(obj, 0, 0); ary[0] = rb_ary_new(); ary[1] = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)ary); return rb_assoc_new(ary[0], ary[1]); } static VALUE group_by_i(VALUE i, VALUE hash, int argc, VALUE *argv) { VALUE group; VALUE values; ENUM_WANT_SVALUE(); group = rb_yield(i); values = rb_hash_aref(hash, group); if (NIL_P(values)) { values = rb_ary_new3(1, i); rb_hash_aset(hash, group, values); } else { rb_ary_push(values, i); } return Qnil; } /* * call-seq: * enum.group_by {| obj | block } => a_hash * * Returns a hash, which keys are evaluated result from the * block, and values are arrays of elements in enum * corresponding to the key. * * (1..6).group_by {|i| i%3} #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]} * */ static VALUE enum_group_by(VALUE obj) { VALUE hash; RETURN_ENUMERATOR(obj, 0, 0); hash = rb_hash_new(); rb_block_call(obj, id_each, 0, 0, group_by_i, hash); OBJ_INFECT(hash, obj); return hash; } static VALUE first_i(VALUE i, VALUE *params, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (NIL_P(params[1])) { params[1] = i; rb_iter_break(); } else { long n = params[0]; rb_ary_push(params[1], i); n--; if (n <= 0) { rb_iter_break(); } params[0] = n; } return Qnil; } /* * call-seq: * enum.first -> obj or nil * enum.first(n) -> an_array * * Returns the first element, or the first +n+ elements, of the enumerable. * If the enumerable is empty, the first form returns nil, and the * second form returns an empty array. * */ static VALUE enum_first(int argc, VALUE *argv, VALUE obj) { VALUE n, params[2]; if (argc == 0) { params[0] = params[1] = Qnil; } else { long len; rb_scan_args(argc, argv, "01", &n); len = NUM2LONG(n); if (len == 0) return rb_ary_new2(0); if (len < 0) { rb_raise(rb_eArgError, "negative length"); } params[0] = len; params[1] = rb_ary_new2(len); } rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)params); return params[1]; } /* * call-seq: * enum.sort => array * enum.sort {| a, b | block } => array * * Returns an array containing the items in enum sorted, * either according to their own <=> method, or by using * the results of the supplied block. The block should return -1, 0, or * +1 depending on the comparison between a and b. As of * Ruby 1.8, the method Enumerable#sort_by implements a * built-in Schwartzian Transform, useful when key computation or * comparison is expensive. * * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"] * (1..10).sort {|a,b| b <=> a} #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] */ static VALUE enum_sort(VALUE obj) { return rb_ary_sort(enum_to_a(0, 0, obj)); } static VALUE sort_by_i(VALUE i, VALUE ary, int argc, VALUE *argv) { NODE *memo; ENUM_WANT_SVALUE(); if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } /* use NODE_DOT2 as memo(v, v, -) */ memo = rb_node_newnode(NODE_DOT2, rb_yield(i), i, 0); rb_ary_push(ary, (VALUE)memo); return Qnil; } static int sort_by_cmp(const void *ap, const void *bp, void *data) { VALUE a = (*(NODE *const *)ap)->u1.value; VALUE b = (*(NODE *const *)bp)->u1.value; VALUE ary = (VALUE)data; if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b); } /* * call-seq: * enum.sort_by {| obj | block } => array * * Sorts enum using a set of keys generated by mapping the * values in enum through the given block. * * %w{ apple pear fig }.sort_by {|word| word.length} * #=> ["fig", "pear", "apple"] * * The current implementation of sort_by generates an * array of tuples containing the original collection element and the * mapped value. This makes sort_by fairly expensive when * the keysets are simple * * require 'benchmark' * include Benchmark * * a = (1..100000).map {rand(100000)} * * bm(10) do |b| * b.report("Sort") { a.sort } * b.report("Sort by") { a.sort_by {|a| a} } * end * * produces: * * user system total real * Sort 0.180000 0.000000 0.180000 ( 0.175469) * Sort by 1.980000 0.040000 2.020000 ( 2.013586) * * However, consider the case where comparing the keys is a non-trivial * operation. The following code sorts some files on modification time * using the basic sort method. * * files = Dir["*"] * sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime} * sorted #=> ["mon", "tues", "wed", "thurs"] * * This sort is inefficient: it generates two new File * objects during every comparison. A slightly better technique is to * use the Kernel#test method to generate the modification * times directly. * * files = Dir["*"] * sorted = files.sort { |a,b| * test(?M, a) <=> test(?M, b) * } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This still generates many unnecessary Time objects. A * more efficient technique is to cache the sort keys (modification * times in this case) before the sort. Perl users often call this * approach a Schwartzian Transform, after Randal Schwartz. We * construct a temporary array, where each element is an array * containing our sort key along with the filename. We sort this array, * and then extract the filename from the result. * * sorted = Dir["*"].collect { |f| * [test(?M, f), f] * }.sort.collect { |f| f[1] } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This is exactly what sort_by does internally. * * sorted = Dir["*"].sort_by {|f| test(?M, f)} * sorted #=> ["mon", "tues", "wed", "thurs"] */ static VALUE enum_sort_by(VALUE obj) { VALUE ary; long i; RETURN_ENUMERATOR(obj, 0, 0); if (TYPE(obj) == T_ARRAY) { ary = rb_ary_new2(RARRAY_LEN(obj)); } else { ary = rb_ary_new(); } RBASIC(ary)->klass = 0; rb_block_call(obj, id_each, 0, 0, sort_by_i, ary); if (RARRAY_LEN(ary) > 1) { ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary), sizeof(VALUE), sort_by_cmp, (void *)ary); } if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } for (i=0; iu2.value; } RBASIC(ary)->klass = rb_cArray; OBJ_INFECT(ary, obj); return ary; } #define ENUMFUNC(name) rb_block_given_p() ? name##_iter_i : name##_i #define DEFINE_ENUMFUNCS(name) \ static VALUE enum_##name##_func(VALUE result, VALUE *memo); \ \ static VALUE \ name##_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \ { \ return enum_##name##_func(enum_values_pack(argc, argv), memo); \ } \ \ static VALUE \ name##_iter_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \ { \ return enum_##name##_func(enum_yield(argc, argv), memo); \ } \ \ static VALUE \ enum_##name##_func(VALUE result, VALUE *memo) DEFINE_ENUMFUNCS(all) { if (!RTEST(result)) { *memo = Qfalse; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.all? [{|obj| block } ] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns * false or nil. If the block is not given, * Ruby adds an implicit block of {|obj| obj} (that is * all? will return true only if none of the * collection members are false or nil.) * * %w{ant bear cat}.all? {|word| word.length >= 3} #=> true * %w{ant bear cat}.all? {|word| word.length >= 4} #=> false * [ nil, true, 99 ].all? #=> false * */ static VALUE enum_all(VALUE obj) { VALUE result = Qtrue; rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)&result); return result; } DEFINE_ENUMFUNCS(any) { if (RTEST(result)) { *memo = Qtrue; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.any? [{|obj| block } ] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block ever returns a value other * than false or nil. If the block is not * given, Ruby adds an implicit block of {|obj| obj} (that * is any? will return true if at least one * of the collection members is not false or * nil. * * %w{ant bear cat}.any? {|word| word.length >= 3} #=> true * %w{ant bear cat}.any? {|word| word.length >= 4} #=> true * [ nil, true, 99 ].any? #=> true * */ static VALUE enum_any(VALUE obj) { VALUE result = Qfalse; rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)&result); return result; } DEFINE_ENUMFUNCS(one) { if (RTEST(result)) { if (*memo == Qundef) { *memo = Qtrue; } else if (*memo == Qtrue) { *memo = Qfalse; rb_iter_break(); } } return Qnil; } /* * call-seq: * enum.one? [{|obj| block }] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block returns true * exactly once. If the block is not given, one? will return * true only if exactly one of the collection members is * true. * * %w{ant bear cat}.one? {|word| word.length == 4} #=> true * %w{ant bear cat}.one? {|word| word.length > 4} #=> false * %w{ant bear cat}.one? {|word| word.length < 4} #=> false * [ nil, true, 99 ].one? #=> false * [ nil, true, false ].one? #=> true * */ static VALUE enum_one(VALUE obj) { VALUE result = Qundef; rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)&result); if (result == Qundef) return Qfalse; return result; } DEFINE_ENUMFUNCS(none) { if (RTEST(result)) { *memo = Qfalse; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.none? [{|obj| block }] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns true * for all elements. If the block is not given, none? will return * true only if none of the collection members is true. * * %w{ant bear cat}.none? {|word| word.length == 5} #=> true * %w{ant bear cat}.none? {|word| word.length >= 4} #=> false * [].none? #=> true * [nil].none? #=> true * [nil,false].none? #=> true */ static VALUE enum_none(VALUE obj) { VALUE result = Qtrue; rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)&result); return result; } static VALUE min_i(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE cmp; ENUM_WANT_SVALUE(); if (*memo == Qundef) { *memo = i; } else { cmp = rb_funcall(i, id_cmp, 1, *memo); if (rb_cmpint(cmp, i, *memo) < 0) { *memo = i; } } return Qnil; } static VALUE min_ii(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE cmp; ENUM_WANT_SVALUE(); if (*memo == Qundef) { *memo = i; } else { VALUE ary = memo[1]; RARRAY_PTR(ary)[0] = i; RARRAY_PTR(ary)[1] = *memo; cmp = rb_yield(ary); if (rb_cmpint(cmp, i, *memo) < 0) { *memo = i; } } return Qnil; } /* * call-seq: * enum.min => obj * enum.min {| a,b | block } => obj * * Returns the object in enum with the minimum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.min #=> "albatross" * a.min {|a,b| a.length <=> b.length } #=> "dog" */ static VALUE enum_min(VALUE obj) { VALUE result[2]; result[0] = Qundef; if (rb_block_given_p()) { result[1] = rb_ary_new3(2, Qnil, Qnil); rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)result); } else { rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)result); } if (result[0] == Qundef) return Qnil; return result[0]; } static VALUE max_i(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE cmp; ENUM_WANT_SVALUE(); if (*memo == Qundef) { *memo = i; } else { cmp = rb_funcall(i, id_cmp, 1, *memo); if (rb_cmpint(cmp, i, *memo) > 0) { *memo = i; } } return Qnil; } static VALUE max_ii(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE cmp; ENUM_WANT_SVALUE(); if (*memo == Qundef) { *memo = i; } else { VALUE ary = memo[1]; RARRAY_PTR(ary)[0] = i; RARRAY_PTR(ary)[1] = *memo; cmp = rb_yield(ary); if (rb_cmpint(cmp, i, *memo) > 0) { *memo = i; } } return Qnil; } /* * call-seq: * enum.max => obj * enum.max {|a,b| block } => obj * * Returns the object in _enum_ with the maximum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.max #=> "horse" * a.max {|a,b| a.length <=> b.length } #=> "albatross" */ static VALUE enum_max(VALUE obj) { VALUE result[2]; result[0] = Qundef; if (rb_block_given_p()) { result[1] = rb_ary_new3(2, Qnil, Qnil); rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)result); } else { rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)result); } if (result[0] == Qundef) return Qnil; return result[0]; } struct minmax_t { VALUE min; VALUE max; VALUE ary; VALUE last; }; static void minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (memo->min == Qundef) { memo->min = i; memo->max = j; } else { n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo->min), i, memo->min); if (n < 0) { memo->min = i; } n = rb_cmpint(rb_funcall(j, id_cmp, 1, memo->max), j, memo->max); if (n > 0) { memo->max = j; } } } static VALUE minmax_i(VALUE i, VALUE _memo, int argc, VALUE *argv) { struct minmax_t *memo = (struct minmax_t *)_memo; int n; VALUE j; ENUM_WANT_SVALUE(); if (memo->last == Qundef) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; n = rb_cmpint(rb_funcall(j, id_cmp, 1, i), j, i); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_i_update(i, j, memo); return Qnil; } static void minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (memo->min == Qundef) { memo->min = i; memo->max = j; } else { VALUE ary = memo->ary; rb_ary_store(ary, 0, i); rb_ary_store(ary, 1, memo->min); n = rb_cmpint(rb_yield(ary), i, memo->min); if (n < 0) { memo->min = i; } rb_ary_store(ary, 0, j); rb_ary_store(ary, 1, memo->max); n = rb_cmpint(rb_yield(ary), j, memo->max); if (n > 0) { memo->max = j; } } } static VALUE minmax_ii(VALUE i, VALUE _memo, int argc, VALUE *argv) { struct minmax_t *memo = (struct minmax_t *)_memo; int n; VALUE ary, j; ENUM_WANT_SVALUE(); if (memo->last == Qundef) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; ary = memo->ary; rb_ary_store(ary, 0, j); rb_ary_store(ary, 1, i); n = rb_cmpint(rb_yield(ary), j, i); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_ii_update(i, j, memo); return Qnil; } /* * call-seq: * enum.minmax => [min,max] * enum.minmax {|a,b| block } => [min,max] * * Returns two elements array which contains the minimum and the * maximum value in the enumerable. The first form assumes all * objects implement Comparable; the second uses the * block to return a <=> b. * * a = %w(albatross dog horse) * a.minmax #=> ["albatross", "horse"] * a.minmax {|a,b| a.length <=> b.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax(VALUE obj) { struct minmax_t memo; VALUE ary = rb_ary_new3(2, Qnil, Qnil); memo.min = Qundef; memo.last = Qundef; if (rb_block_given_p()) { memo.ary = ary; rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)&memo); if (memo.last != Qundef) minmax_ii_update(memo.last, memo.last, &memo); } else { rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)&memo); if (memo.last != Qundef) minmax_i_update(memo.last, memo.last, &memo); } if (memo.min != Qundef) { rb_ary_store(ary, 0, memo.min); rb_ary_store(ary, 1, memo.max); } return ary; } static VALUE min_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE v; ENUM_WANT_SVALUE(); v = rb_yield(i); if (memo[0] == Qundef) { memo[0] = v; memo[1] = i; } else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) { memo[0] = v; memo[1] = i; } return Qnil; } /* * call-seq: * enum.min_by {| obj| block } => obj * * Returns the object in enum that gives the minimum * value from the given block. * * a = %w(albatross dog horse) * a.min_by {|x| x.length } #=> "dog" */ static VALUE enum_min_by(VALUE obj) { VALUE memo[2]; RETURN_ENUMERATOR(obj, 0, 0); memo[0] = Qundef; memo[1] = Qnil; rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); return memo[1]; } static VALUE max_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv) { VALUE v; ENUM_WANT_SVALUE(); v = rb_yield(i); if (memo[0] == Qundef) { memo[0] = v; memo[1] = i; } else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) > 0) { memo[0] = v; memo[1] = i; } return Qnil; } /* * call-seq: * enum.max_by {| obj| block } => obj * * Returns the object in enum that gives the maximum * value from the given block. * * a = %w(albatross dog horse) * a.max_by {|x| x.length } #=> "albatross" */ static VALUE enum_max_by(VALUE obj) { VALUE memo[2]; RETURN_ENUMERATOR(obj, 0, 0); memo[0] = Qundef; memo[1] = Qnil; rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); return memo[1]; } struct minmax_by_t { VALUE min_bv; VALUE max_bv; VALUE min; VALUE max; VALUE last_bv; VALUE last; }; static void minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo) { if (memo->min_bv == Qundef) { memo->min_bv = v1; memo->max_bv = v2; memo->min = i1; memo->max = i2; } else { if (rb_cmpint(rb_funcall(v1, id_cmp, 1, memo->min_bv), v1, memo->min_bv) < 0) { memo->min_bv = v1; memo->min = i1; } if (rb_cmpint(rb_funcall(v2, id_cmp, 1, memo->max_bv), v2, memo->max_bv) > 0) { memo->max_bv = v2; memo->max = i2; } } } static VALUE minmax_by_i(VALUE i, VALUE _memo, int argc, VALUE *argv) { struct minmax_by_t *memo = (struct minmax_by_t *)_memo; VALUE vi, vj, j; int n; ENUM_WANT_SVALUE(); vi = rb_yield(i); if (memo->last_bv == Qundef) { memo->last_bv = vi; memo->last = i; return Qnil; } vj = memo->last_bv; j = memo->last; memo->last_bv = Qundef; n = rb_cmpint(rb_funcall(vj, id_cmp, 1, vi), vj, vi); if (n == 0) { i = j; vi = vj; } else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; tmp = vi; vi = vj; vj = tmp; } minmax_by_i_update(vi, vj, i, j, memo); return Qnil; } /* * call-seq: * enum.minmax_by {| obj| block } => [min, max] * * Returns two elements array array containing the objects in * enum that gives the minimum and maximum values respectively * from the given block. * * a = %w(albatross dog horse) * a.minmax_by {|x| x.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax_by(VALUE obj) { struct minmax_by_t memo; RETURN_ENUMERATOR(obj, 0, 0); memo.min_bv = Qundef; memo.max_bv = Qundef; memo.min = Qnil; memo.max = Qnil; memo.last_bv = Qundef; memo.last = Qundef; rb_block_call(obj, id_each, 0, 0, minmax_by_i, (VALUE)&memo); if (memo.last_bv != Qundef) minmax_by_i_update(memo.last_bv, memo.last_bv, memo.last, memo.last, &memo); return rb_assoc_new(memo.min, memo.max); } static VALUE member_i(VALUE iter, VALUE *memo, int argc, VALUE *argv) { if (rb_equal(enum_values_pack(argc, argv), memo[0])) { memo[1] = Qtrue; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.include?(obj) => true or false * enum.member?(obj) => true or false * * Returns true if any member of enum equals * obj. Equality is tested using ==. * * IO.constants.include? :SEEK_SET #=> true * IO.constants.include? :SEEK_NO_FURTHER #=> false * */ static VALUE enum_member(VALUE obj, VALUE val) { VALUE memo[2]; memo[0] = val; memo[1] = Qfalse; rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo); return memo[1]; } static VALUE each_with_index_i(VALUE i, VALUE memo, int argc, VALUE *argv) { long n = (*(VALUE *)memo)++; return rb_yield_values(2, enum_values_pack(argc, argv), INT2NUM(n)); } /* * call-seq: * enum.each_with_index {|obj, i| block } -> enum * * Calls block with two arguments, the item and its index, * for each item in enum. Given arguments are passed through * to #each(). * * hash = Hash.new * %w(cat dog wombat).each_with_index {|item, index| * hash[item] = index * } * hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2} * */ static VALUE enum_each_with_index(int argc, VALUE *argv, VALUE obj) { long memo; RETURN_ENUMERATOR(obj, argc, argv); memo = 0; rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)&memo); return obj; } /* * call-seq: * enum.reverse_each {|item| block } * * Traverses enum in reverse order. */ static VALUE enum_reverse_each(int argc, VALUE *argv, VALUE obj) { VALUE ary; long i; RETURN_ENUMERATOR(obj, argc, argv); ary = enum_to_a(argc, argv, obj); for (i = RARRAY_LEN(ary); --i >= 0; ) { rb_yield(RARRAY_PTR(ary)[i]); } return obj; } static VALUE zip_ary(VALUE val, NODE *memo, int argc, VALUE *argv) { volatile VALUE result = memo->u1.value; volatile VALUE args = memo->u2.value; long n = memo->u3.cnt++; volatile VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, enum_values_pack(argc, argv)); for (i=0; iu1.value; volatile VALUE args = memo->u2.value; volatile VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, enum_values_pack(argc, argv)); for (i=0; i enumerator * enum.zip(arg, ...) {|arr| block } => nil * * Takes one element from enum and merges corresponding * elements from each args. This generates a sequence of * n-element arrays, where n is one more than the * count of arguments. The length of the resulting sequence will be * enum#sizeenum#size, nil values are supplied. If * a block is given, it is invoked for each output array, otherwise * an array of arrays is returned. * * a = [ 4, 5, 6 ] * b = [ 7, 8, 9 ] * * [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] * [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]] * a.zip([1,2],[8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]] * */ static VALUE enum_zip(int argc, VALUE *argv, VALUE obj) { int i; ID conv; NODE *memo; VALUE result = Qnil; VALUE args = rb_ary_new4(argc, argv); int allary = TRUE; argv = RARRAY_PTR(args); for (i=0; i array * * Returns first n elements from enum. * * a = [1, 2, 3, 4, 5, 0] * a.take(3) # => [1, 2, 3] * */ static VALUE enum_take(VALUE obj, VALUE n) { VALUE args[2]; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) return rb_ary_new2(0); args[0] = rb_ary_new(); args[1] = len; rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)args); return args[0]; } static VALUE take_while_i(VALUE i, VALUE *ary, int argc, VALUE *argv) { if (!RTEST(enum_yield(argc, argv))) rb_iter_break(); rb_ary_push(*ary, enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * enum.take_while {|arr| block } => array * * Passes elements to the block until the block returns nil or false, * then stops iterating and returns an array of all prior elements. * * a = [1, 2, 3, 4, 5, 0] * a.take_while {|i| i < 3 } # => [1, 2] * */ static VALUE enum_take_while(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, take_while_i, (VALUE)&ary); return ary; } static VALUE drop_i(VALUE i, VALUE *arg, int argc, VALUE *argv) { if (arg[1] == 0) { rb_ary_push(arg[0], enum_values_pack(argc, argv)); } else { arg[1]--; } return Qnil; } /* * call-seq: * enum.drop(n) => array * * Drops first n elements from enum, and returns rest elements * in an array. * * a = [1, 2, 3, 4, 5, 0] * a.drop(3) # => [4, 5, 0] * */ static VALUE enum_drop(VALUE obj, VALUE n) { VALUE args[2]; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } args[1] = len; args[0] = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)args); return args[0]; } static VALUE drop_while_i(VALUE i, VALUE *args, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); if (!args[1] && !RTEST(rb_yield(i))) { args[1] = Qtrue; } if (args[1]) { rb_ary_push(args[0], i); } return Qnil; } /* * call-seq: * enum.drop_while {|arr| block } => array * * Drops elements up to, but not including, the first element for * which the block returns nil or false and returns an array * containing the remaining elements. * * a = [1, 2, 3, 4, 5, 0] * a.drop_while {|i| i < 3 } # => [3, 4, 5, 0] * */ static VALUE enum_drop_while(VALUE obj) { VALUE args[2]; RETURN_ENUMERATOR(obj, 0, 0); args[0] = rb_ary_new(); args[1] = Qfalse; rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)args); return args[0]; } static VALUE cycle_i(VALUE i, VALUE ary, int argc, VALUE *argv) { ENUM_WANT_SVALUE(); rb_ary_push(ary, i); rb_yield(i); return Qnil; } /* * call-seq: * enum.cycle {|obj| block } * enum.cycle(n) {|obj| block } * * Calls block for each element of enum repeatedly _n_ * times or forever if none or nil is given. If a non-positive * number is given or the collection is empty, does nothing. Returns * nil if the loop has finished without getting interrupted. * * Enumerable#cycle saves elements in an internal array so changes * to enum after the first pass have no effect. * * a = ["a", "b", "c"] * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever. * a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c. * */ static VALUE enum_cycle(int argc, VALUE *argv, VALUE obj) { VALUE ary; VALUE nv = Qnil; long n, i, len; rb_scan_args(argc, argv, "01", &nv); RETURN_ENUMERATOR(obj, argc, argv); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } ary = rb_ary_new(); RBASIC(ary)->klass = 0; rb_block_call(obj, id_each, 0, 0, cycle_i, ary); len = RARRAY_LEN(ary); if (len == 0) return Qnil; while (n < 0 || 0 < --n) { for (i=0; istate)) v = rb_funcall(argp->categorize, rb_intern("call"), 1, i); else v = rb_funcall(argp->categorize, rb_intern("call"), 2, i, argp->state); if (v == alone) { if (!NIL_P(argp->prev_value)) { rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts)); argp->prev_value = argp->prev_elts = Qnil; } rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(v, rb_ary_new3(1, i))); } else if (NIL_P(v) || v == separator) { if (!NIL_P(argp->prev_value)) { rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts)); argp->prev_value = argp->prev_elts = Qnil; } } else if (SYMBOL_P(v) && rb_id2name(SYM2ID(v))[0] == '_') { rb_raise(rb_eRuntimeError, "symbol begins with an underscore is reserved"); } else { if (NIL_P(argp->prev_value)) { argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } else { if (rb_equal(argp->prev_value, v)) { rb_ary_push(argp->prev_elts, i); } else { rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts)); argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } } } return Qnil; } static VALUE chunk_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv) { VALUE enumerable; struct chunk_arg arg; enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable")); arg.categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize")); arg.state = rb_ivar_get(enumerator, rb_intern("chunk_initial_state")); arg.prev_value = Qnil; arg.prev_elts = Qnil; arg.yielder = yielder; if (!NIL_P(arg.state)) arg.state = rb_obj_dup(arg.state); rb_block_call(enumerable, id_each, 0, 0, chunk_ii, (VALUE)&arg); if (!NIL_P(arg.prev_elts)) rb_funcall(arg.yielder, rb_intern("<<"), 1, rb_assoc_new(arg.prev_value, arg.prev_elts)); return Qnil; } /* * call-seq: * enum.chunk {|elt| ... } => enumerator * enum.chunk(initial_state) {|elt, state| ... } => enumerator * * Creates an enumerator for each chunked elements. * The consecutive elements which have same block value are chunked. * * The result enumerator yields the block value and an array of chunked elements. * So "each" method can be called as follows. * * enum.chunk {|elt| key }.each {|key, ary| ... } * enum.chunk(initial_state) {|elt, state| key }.each {|key, ary| ... } * * For example, consecutive even numbers and odd numbers can be * splitted as follows. * * [3,1,4,1,5,9,2,6,5,3,5].chunk {|n| * n.even? * }.each {|even, ary| * p [even, ary] * } * #=> [false, [3, 1]] * # [true, [4]] * # [false, [1, 5, 9]] * # [true, [2, 6]] * # [false, [5, 3, 5]] * * This method is especially useful for sorted series of elements. * The following example counts words for each initial letter. * * open("/usr/share/dict/words", "r:iso-8859-1") {|f| * f.chunk {|line| line.ord }.each {|ch, lines| p [ch.chr, lines.length] } * } * #=> ["\n", 1] * # ["A", 1327] * # ["B", 1372] * # ["C", 1507] * # ["D", 791] * # ... * * The following key values has special meaning: * - nil and :_separator specifies that the elements are dropped. * - :_alone specifies that the element should be chunked as a singleton. * Other symbols which begins an underscore are reserved. * * nil and :_separator can be used to ignore some elements. * For example, the sequence of hyphens in svn log can be eliminated as follows. * * sep = "-"*72 + "\n" * IO.popen("svn log README") {|f| * f.chunk {|line| * line != sep || nil * }.each {|_, lines| * pp lines * } * } * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Update the portability section.\n", * # "\n"] * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Add a note about default C flags.\n", * # "\n"] * # ... * * paragraphs separated by empty lines can be parsed as follows. * * File.foreach("README").chunk {|line| * /\A\s*\z/ !~ line || nil * }.each {|_, lines| * pp lines * } * * :_alone can be used to pass through bunch of elements. * For example, sort consective lines formed as Foo#bar and * pass other lines, chunk can be used as follows. * * pat = /\A[A-Z][A-Za-z0-9_]+\#/ * open(filename) {|f| * f.chunk {|line| pat =~ line ? $& : :_alone }.each {|key, lines| * if key != :_alone * print lines.sort.join('') * else * print lines.join('') * end * } * } * * If the block needs to maintain state over multiple elements, * _initial_state_ argument can be used. * If non-nil value is given, * it is duplicated for each "each" method invocation of the enumerator. * The duplicated object is passed to 2nd argument of the block for "chunk" method. * */ static VALUE enum_chunk(int argc, VALUE *argv, VALUE enumerable) { VALUE initial_state; VALUE enumerator; rb_scan_args(argc, argv, "01", &initial_state); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable); rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc()); rb_ivar_set(enumerator, rb_intern("chunk_initial_state"), initial_state); rb_block_call(enumerator, rb_intern("initialize"), 0, 0, chunk_i, enumerator); return enumerator; } struct slicebefore_arg { VALUE separator_p; VALUE state; VALUE prev_elts; VALUE yielder; }; static VALUE slicebefore_ii(VALUE i, VALUE _argp, int argc, VALUE *argv) { struct slicebefore_arg *argp = (struct slicebefore_arg *)_argp; VALUE header_p; ENUM_WANT_SVALUE(); if (NIL_P(argp->state)) header_p = rb_funcall(argp->separator_p, rb_intern("call"), 1, i); else header_p = rb_funcall(argp->separator_p, rb_intern("call"), 2, i, argp->state); if (RTEST(header_p)) { if (!NIL_P(argp->prev_elts)) rb_funcall(argp->yielder, rb_intern("<<"), 1, argp->prev_elts); argp->prev_elts = rb_ary_new3(1, i); } else { if (NIL_P(argp->prev_elts)) argp->prev_elts = rb_ary_new3(1, i); else rb_ary_push(argp->prev_elts, i); } return Qnil; } static VALUE slicebefore_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv) { VALUE enumerable; struct slicebefore_arg arg; enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable")); arg.separator_p = rb_ivar_get(enumerator, rb_intern("slicebefore_separator_p")); arg.state = rb_ivar_get(enumerator, rb_intern("slicebefore_initial_state")); arg.prev_elts = Qnil; arg.yielder = yielder; if (!NIL_P(arg.state)) arg.state = rb_obj_dup(arg.state); rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, (VALUE)&arg); if (!NIL_P(arg.prev_elts)) rb_funcall(arg.yielder, rb_intern("<<"), 1, arg.prev_elts); return Qnil; } /* * call-seq: * enum.slice_before {|elt| ... } => enumerator * enum.slice_before(initial_state) {|elt, state| ... } => enumerator * * Creates an enumerator for each chunked elements. * The chunked elements begins an element which the block returns true value. * * The result enumerator yields the chunked elements as an array. * So "each" method can be called as follows. * * enum.slice_before {|elt| bool }.each {|ary| ... } * enum.slice_before(initial_state) {|elt, state| bool }.each {|ary| ... } * * For example, iteration over ChangeLog entries can be implemented as follows. * * # iterate over ChangeLog entries. * open("ChangeLog") {|f| * f.slice_before {|line| /\A\S/ =~ line }.each {|e| pp e} * } * * If the block needs to maintain state over multiple elements, * local variables can be used. * For example, monotonically increasing elements can be chunked as follows. * * a = [3,1,4,1,5,9,2,6,5,3,5] * n = 0 * p a.slice_before {|elt| * prev, n = n, elt * prev > elt * }.to_a * #=> [[3], [1, 4], [1, 5, 9], [2, 6], [5], [3, 5]] * * However local variables are not appropriate to maintain state * if the result enumerator is used twice or more. * In such case, the last state of the 1st +each+ is used in 2nd +each+. * _initial_state_ argument can be used to avoid this problem. * If non-nil value is given as _initial_state_, * it is duplicated for each "each" method invocation of the enumerator. * The duplicated object is passed to 2nd argument of the block for * +slice_before+ method. * * # word wrapping * def wordwrap(words, width) * # if cols is a local variable, 2nd "each" may start with non-zero cols. * words.slice_before(cols: 0) {|w, h| * h[:cols] += 1 if h[:cols] != 0 * h[:cols] += w.length * if width < h[:cols] * h[:cols] = w.length * true * else * false * end * } * end * text = (1..20).to_a.join(" ") * enum = wordwrap(text.split(/\s+/), 10) * puts "-"*10 * enum.each {|ws| puts ws.join(" ") } * puts "-"*10 * #=> ---------- * # 1 2 3 4 5 * # 6 7 8 9 10 * # 11 12 13 * # 14 15 16 * # 17 18 19 * # 20 * # ---------- * * mbox contains series of mails which start with Unix From line. * So each mail can be extracted by slice before Unix From line. * * # parse mbox * open("mbox") {|f| * f.slice_before {|line| * line.start_with? "From " * }.each {|mail| * unix_from = mail.shift * i = mail.index("\n") * header = mail[0...i] * body = mail[(i+1)..-1] * fields = header.slice_before {|line| !" \t".include?(line[0]) }.to_a * p unix_from * pp fields * pp body * } * } * * # split mails in mbox (slice before Unix From line after an empty line) * open("mbox") {|f| * f.slice_before(emp: true) {|line,h| * prevemp = h[:emp] * h[:emp] = line == "\n" * prevemp && line.start_with?("From ") * }.each {|mail| * pp mail * } * */ static VALUE enum_slice_before(int argc, VALUE *argv, VALUE enumerable) { VALUE initial_state, enumerator; rb_scan_args(argc, argv, "01", &initial_state); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable); rb_ivar_set(enumerator, rb_intern("slicebefore_separator_p"), rb_block_proc()); rb_ivar_set(enumerator, rb_intern("slicebefore_initial_state"), initial_state); rb_block_call(enumerator, rb_intern("initialize"), 0, 0, slicebefore_i, enumerator); return enumerator; } /* * call-seq: * enum.join(sep=$,) -> str * * Returns a string created by converting each element of the * enum to a string, separated by sep. */ static VALUE enum_join(int argc, VALUE *argv, VALUE obj) { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(enum_to_a(0, 0, obj), sep); } /* * The Enumerable mixin provides collection classes with * several traversal and searching methods, and with the ability to * sort. The class must provide a method each, which * yields successive members of the collection. If * Enumerable#max, #min, or * #sort is used, the objects in the collection must also * implement a meaningful <=> operator, as these methods * rely on an ordering between members of the collection. */ void Init_Enumerable(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_mEnumerable = rb_define_module("Enumerable"); rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1); rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1); rb_define_method(rb_mEnumerable, "sort", enum_sort, 0); rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0); rb_define_method(rb_mEnumerable, "grep", enum_grep, 1); rb_define_method(rb_mEnumerable, "count", enum_count, -1); rb_define_method(rb_mEnumerable, "find", enum_find, -1); rb_define_method(rb_mEnumerable, "detect", enum_find, -1); rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1); rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0); rb_define_method(rb_mEnumerable, "select", enum_find_all, 0); rb_define_method(rb_mEnumerable, "reject", enum_reject, 0); rb_define_method(rb_mEnumerable, "collect", enum_collect, 0); rb_define_method(rb_mEnumerable, "map", enum_collect, 0); rb_define_method(rb_mEnumerable, "inject", enum_inject, -1); rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1); rb_define_method(rb_mEnumerable, "partition", enum_partition, 0); rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0); rb_define_method(rb_mEnumerable, "first", enum_first, -1); rb_define_method(rb_mEnumerable, "all?", enum_all, 0); rb_define_method(rb_mEnumerable, "any?", enum_any, 0); rb_define_method(rb_mEnumerable, "one?", enum_one, 0); rb_define_method(rb_mEnumerable, "none?", enum_none, 0); rb_define_method(rb_mEnumerable, "min", enum_min, 0); rb_define_method(rb_mEnumerable, "max", enum_max, 0); rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0); rb_define_method(rb_mEnumerable, "min_by", enum_min_by, 0); rb_define_method(rb_mEnumerable, "max_by", enum_max_by, 0); rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0); rb_define_method(rb_mEnumerable, "member?", enum_member, 1); rb_define_method(rb_mEnumerable, "include?", enum_member, 1); rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1); rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1); rb_define_method(rb_mEnumerable, "zip", enum_zip, -1); rb_define_method(rb_mEnumerable, "take", enum_take, 1); rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0); rb_define_method(rb_mEnumerable, "drop", enum_drop, 1); rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0); rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1); rb_define_method(rb_mEnumerable, "join", enum_join, -1); rb_define_method(rb_mEnumerable, "chunk", enum_chunk, -1); rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1); id_eqq = rb_intern("==="); id_each = rb_intern("each"); id_cmp = rb_intern("<=>"); id_next = rb_intern("next"); id_size = rb_intern("size"); }