#ifndef RUBY_DARRAY_H #define RUBY_DARRAY_H #include #include #include // Type for a dynamic array. Use to declare a dynamic array. // It is a pointer so it fits in st_table nicely. Designed // to be fairly type-safe. // // NULL is a valid empty dynamic array. // // Example: // rb_darray(char) char_array = NULL; // if (!rb_darray_append(&char_array, 'e')) abort(); // printf("pushed %c\n", *rb_darray_ref(char_array, 0)); // rb_darray_free(char_array); // #define rb_darray(T) struct { rb_darray_meta_t meta; T data[]; } * // Copy an element out of the array. Warning: not bounds checked. // // T rb_darray_get(rb_darray(T) ary, int32_t idx); // #define rb_darray_get(ary, idx) ((ary)->data[(idx)]) // Assign to an element. Warning: not bounds checked. // // void rb_darray_set(rb_darray(T) ary, int32_t idx, T element); // #define rb_darray_set(ary, idx, element) ((ary)->data[(idx)] = (element)) // Get a pointer to an element. Warning: not bounds checked. // // T *rb_darray_ref(rb_darray(T) ary, int32_t idx); // #define rb_darray_ref(ary, idx) (&((ary)->data[(idx)])) // Copy a new element into the array. Return 1 on success and 0 on failure. // ptr_to_ary is evaluated multiple times. // // bool rb_darray_append(rb_darray(T) *ptr_to_ary, T element); // #define rb_darray_append(ptr_to_ary, element) ( \ rb_darray_ensure_space((ptr_to_ary), sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0])) ? ( \ rb_darray_set(*(ptr_to_ary), \ (*(ptr_to_ary))->meta.size, \ (element)), \ ++((*(ptr_to_ary))->meta.size), \ 1 \ ) : 0) // Last element of the array // #define rb_darray_back(ary) ((ary)->data[(ary)->meta.size - 1]) // Remove the last element of the array. // #define rb_darray_pop_back(ary) ((ary)->meta.size--) // Remove element at idx and replace it by the last element #define rb_darray_remove_unordered(ary, idx) do { \ rb_darray_set(ary, idx, rb_darray_back(ary)); \ rb_darray_pop_back(ary); \ } while (0); // Iterate over items of the array in a for loop // #define rb_darray_foreach(ary, idx_name, elem_ptr_var) \ for (int idx_name = 0; idx_name < rb_darray_size(ary) && ((elem_ptr_var) = rb_darray_ref(ary, idx_name)); ++idx_name) // Iterate over valid indicies in the array in a for loop // #define rb_darray_for(ary, idx_name) \ for (int idx_name = 0; idx_name < rb_darray_size(ary); ++idx_name) // Make a dynamic array of a certain size. All bytes backing the elements are set to zero. // Return 1 on success and 0 on failure. // // Note that NULL is a valid empty dynamic array. // // bool rb_darray_make(rb_darray(T) *ptr_to_ary, int32_t size); // #define rb_darray_make(ptr_to_ary, size) rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0])) // Set the size of the array to zero without freeing the backing memory. // Allows reusing the same array. // #define rb_darray_clear(ary) (ary->meta.size = 0) typedef struct rb_darray_meta { int32_t size; int32_t capa; } rb_darray_meta_t; // Get the size of the dynamic array. // static inline int32_t rb_darray_size(const void *ary) { const rb_darray_meta_t *meta = ary; return meta ? meta->size : 0; } // Get the capacity of the dynamic array. // static inline int32_t rb_darray_capa(const void *ary) { const rb_darray_meta_t *meta = ary; return meta ? meta->capa : 0; } // Free the dynamic array. // static inline void rb_darray_free(void *ary) { free(ary); } // Internal function. Calculate buffer size on malloc heap. static inline size_t rb_darray_buffer_size(int32_t capacity, size_t header_size, size_t element_size) { if (capacity == 0) return 0; return header_size + (size_t)capacity * element_size; } // Internal function // Ensure there is space for one more element. Return 1 on success and 0 on failure. // Note: header_size can be bigger than sizeof(rb_darray_meta_t) when T is __int128_t, for example. static inline int rb_darray_ensure_space(void *ptr_to_ary, size_t header_size, size_t element_size) { rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary; rb_darray_meta_t *meta = *ptr_to_ptr_to_meta; int32_t current_capa = rb_darray_capa(meta); if (rb_darray_size(meta) < current_capa) return 1; int32_t new_capa; // Calculate new capacity if (current_capa == 0) { new_capa = 1; } else { int64_t doubled = 2 * (int64_t)current_capa; new_capa = (int32_t)doubled; if (new_capa != doubled) return 0; } // Calculate new buffer size size_t current_buffer_size = rb_darray_buffer_size(current_capa, header_size, element_size); size_t new_buffer_size = rb_darray_buffer_size(new_capa, header_size, element_size); if (new_buffer_size <= current_buffer_size) return 0; rb_darray_meta_t *doubled_ary = realloc(meta, new_buffer_size); if (!doubled_ary) return 0; if (meta == NULL) { // First allocation. Initialize size. On subsequence allocations // realloc takes care of carrying over the size. doubled_ary->size = 0; } doubled_ary->capa = new_capa; // We don't have access to the type of the dynamic array in function context. // Write out result with memcpy to avoid strict aliasing issue. memcpy(ptr_to_ary, &doubled_ary, sizeof(doubled_ary)); return 1; } static inline int rb_darray_make_impl(void *ptr_to_ary, int32_t array_size, size_t header_size, size_t element_size) { rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary; if (array_size < 0) return 0; if (array_size == 0) { *ptr_to_ptr_to_meta = NULL; return 1; } size_t buffer_size = rb_darray_buffer_size(array_size, header_size, element_size); rb_darray_meta_t *meta = calloc(buffer_size, 1); if (!meta) return 0; meta->size = array_size; meta->capa = array_size; // We don't have access to the type of the dynamic array in function context. // Write out result with memcpy to avoid strict aliasing issue. memcpy(ptr_to_ary, &meta, sizeof(meta)); return 1; } #endif /* RUBY_DARRAY_H */