/********************************************************************** cont.c - $Author$ created at: Thu May 23 09:03:43 2007 Copyright (C) 2007 Koichi Sasada **********************************************************************/ #include "ruby/ruby.h" #include "vm_core.h" #include "gc.h" #include "eval_intern.h" #define CAPTURE_JUST_VALID_VM_STACK 1 enum context_type { CONTINUATION_CONTEXT = 0, FIBER_CONTEXT = 1, ROOT_FIBER_CONTEXT = 2 }; typedef struct rb_context_struct { enum context_type type; VALUE self; int argc; VALUE value; VALUE *vm_stack; #ifdef CAPTURE_JUST_VALID_VM_STACK int vm_stack_slen; /* length of stack (head of th->stack) */ int vm_stack_clen; /* length of control frames (tail of th->stack) */ #endif VALUE *machine_stack; VALUE *machine_stack_src; #ifdef __ia64 VALUE *machine_register_stack; VALUE *machine_register_stack_src; int machine_register_stack_size; #endif rb_thread_t saved_thread; rb_jmpbuf_t jmpbuf; int machine_stack_size; } rb_context_t; enum fiber_status { CREATED, RUNNING, TERMINATED }; typedef struct rb_fiber_struct { rb_context_t cont; VALUE prev; enum fiber_status status; struct rb_fiber_struct *prev_fiber; struct rb_fiber_struct *next_fiber; } rb_fiber_t; static VALUE rb_cContinuation; static VALUE rb_cFiber; static VALUE rb_eFiberError; #define GetContPtr(obj, ptr) \ Data_Get_Struct(obj, rb_context_t, ptr) #define GetFiberPtr(obj, ptr) do {\ ptr = (rb_fiber_t*)DATA_PTR(obj);\ if (!ptr) rb_raise(rb_eFiberError, "uninitialized fiber");\ } while(0) NOINLINE(static VALUE cont_capture(volatile int *stat)); void rb_thread_mark(rb_thread_t *th); static void cont_mark(void *ptr) { RUBY_MARK_ENTER("cont"); if (ptr) { rb_context_t *cont = ptr; rb_gc_mark(cont->value); rb_thread_mark(&cont->saved_thread); if (cont->vm_stack) { #ifdef CAPTURE_JUST_VALID_VM_STACK rb_gc_mark_locations(cont->vm_stack, cont->vm_stack + cont->vm_stack_slen + cont->vm_stack_clen); #else rb_gc_mark_localtion(cont->vm_stack, cont->vm_stack, cont->saved_thread.stack_size); #endif } if (cont->machine_stack) { rb_gc_mark_locations(cont->machine_stack, cont->machine_stack + cont->machine_stack_size); } #ifdef __ia64 if (cont->machine_register_stack) { rb_gc_mark_locations(cont->machine_register_stack, cont->machine_register_stack + cont->machine_register_stack_size); } #endif } RUBY_MARK_LEAVE("cont"); } static void cont_free(void *ptr) { RUBY_FREE_ENTER("cont"); if (ptr) { rb_context_t *cont = ptr; RUBY_FREE_UNLESS_NULL(cont->saved_thread.stack); fflush(stdout); RUBY_FREE_UNLESS_NULL(cont->machine_stack); #ifdef __ia64 RUBY_FREE_UNLESS_NULL(cont->machine_register_stack); #endif RUBY_FREE_UNLESS_NULL(cont->vm_stack); /* free rb_cont_t or rb_fiber_t */ ruby_xfree(ptr); } RUBY_FREE_LEAVE("cont"); } static void fiber_mark(void *ptr) { RUBY_MARK_ENTER("cont"); if (ptr) { rb_fiber_t *fib = ptr; rb_gc_mark(fib->prev); cont_mark(&fib->cont); } RUBY_MARK_LEAVE("cont"); } static void fiber_link_join(rb_fiber_t *fib) { VALUE current_fibval = rb_fiber_current(); rb_fiber_t *current_fib; GetFiberPtr(current_fibval, current_fib); /* join fiber link */ fib->next_fiber = current_fib->next_fiber; fib->prev_fiber = current_fib; current_fib->next_fiber->prev_fiber = fib; current_fib->next_fiber = fib; } static void fiber_link_remove(rb_fiber_t *fib) { fib->prev_fiber->next_fiber = fib->next_fiber; fib->next_fiber->prev_fiber = fib->prev_fiber; } static void fiber_free(void *ptr) { RUBY_FREE_ENTER("fiber"); if (ptr) { rb_fiber_t *fib = ptr; if (fib->cont.type != ROOT_FIBER_CONTEXT) { st_free_table(fib->cont.saved_thread.local_storage); } fiber_link_remove(fib); cont_free(&fib->cont); } RUBY_FREE_LEAVE("fiber"); } static void cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont) { int size; rb_thread_t *sth = &cont->saved_thread; SET_MACHINE_STACK_END(&th->machine_stack_end); #ifdef __ia64 th->machine_register_stack_end = rb_ia64_bsp(); #endif if (th->machine_stack_start > th->machine_stack_end) { size = cont->machine_stack_size = th->machine_stack_start - th->machine_stack_end; cont->machine_stack_src = th->machine_stack_end; } else { size = cont->machine_stack_size = th->machine_stack_end - th->machine_stack_start; cont->machine_stack_src = th->machine_stack_start; } if (cont->machine_stack) { REALLOC_N(cont->machine_stack, VALUE, size); } else { cont->machine_stack = ALLOC_N(VALUE, size); } FLUSH_REGISTER_WINDOWS; MEMCPY(cont->machine_stack, cont->machine_stack_src, VALUE, size); #ifdef __ia64 rb_ia64_flushrs(); size = cont->machine_register_stack_size = th->machine_register_stack_end - th->machine_register_stack_start; cont->machine_register_stack_src = th->machine_register_stack_start; if (cont->machine_register_stack) { REALLOC_N(cont->machine_register_stack, VALUE, size); } else { cont->machine_register_stack = ALLOC_N(VALUE, size); } MEMCPY(cont->machine_register_stack, cont->machine_register_stack_src, VALUE, size); #endif sth->machine_stack_start = sth->machine_stack_end = 0; #ifdef __ia64 sth->machine_register_stack_start = sth->machine_register_stack_end = 0; #endif } static void cont_init(rb_context_t *cont) { rb_thread_t *th = GET_THREAD(); /* save thread context */ cont->saved_thread = *th; } static rb_context_t * cont_new(VALUE klass) { rb_context_t *cont; volatile VALUE contval; contval = Data_Make_Struct(klass, rb_context_t, cont_mark, cont_free, cont); cont->self = contval; cont_init(cont); return cont; } void rb_vm_stack_to_heap(rb_thread_t *th); static VALUE cont_capture(volatile int *stat) { rb_context_t *cont; rb_thread_t *th = GET_THREAD(), *sth; volatile VALUE contval; rb_vm_stack_to_heap(th); cont = cont_new(rb_cContinuation); contval = cont->self; sth = &cont->saved_thread; #ifdef CAPTURE_JUST_VALID_VM_STACK cont->vm_stack_slen = th->cfp->sp + th->mark_stack_len - th->stack; cont->vm_stack_clen = th->stack + th->stack_size - (VALUE*)th->cfp; cont->vm_stack = ALLOC_N(VALUE, cont->vm_stack_slen + cont->vm_stack_clen); MEMCPY(cont->vm_stack, th->stack, VALUE, cont->vm_stack_slen); MEMCPY(cont->vm_stack + cont->vm_stack_slen, (VALUE*)th->cfp, VALUE, cont->vm_stack_clen); #else cont->vm_stack = ALLOC_N(VALUE, th->stack_size); MEMCPY(cont->vm_stack, th->stack, VALUE, th->stack_size); #endif sth->stack = 0; cont_save_machine_stack(th, cont); if (ruby_setjmp(cont->jmpbuf)) { VALUE value; value = cont->value; cont->value = Qnil; *stat = 1; return value; } else { *stat = 0; return cont->self; } } NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *))); static void cont_restore_1(rb_context_t *cont) { rb_thread_t *th = GET_THREAD(), *sth = &cont->saved_thread; /* restore thread context */ if (cont->type == CONTINUATION_CONTEXT) { /* continuation */ VALUE fib; th->fiber = sth->fiber; fib = th->fiber ? th->fiber : th->root_fiber; if (fib) { rb_context_t *fcont; GetContPtr(fib, fcont); th->stack_size = fcont->saved_thread.stack_size; th->stack = fcont->saved_thread.stack; } #ifdef CAPTURE_JUST_VALID_VM_STACK MEMCPY(th->stack, cont->vm_stack, VALUE, cont->vm_stack_slen); MEMCPY(th->stack + sth->stack_size - cont->vm_stack_clen, cont->vm_stack + cont->vm_stack_slen, VALUE, cont->vm_stack_clen); #else MEMCPY(th->stack, cont->vm_stack, VALUE, sth->stack_size); #endif } else { /* fiber */ th->stack = sth->stack; th->stack_size = sth->stack_size; th->local_storage = sth->local_storage; th->fiber = cont->self; } th->cfp = sth->cfp; th->safe_level = sth->safe_level; th->raised_flag = sth->raised_flag; th->state = sth->state; th->status = sth->status; th->tag = sth->tag; th->trap_tag = sth->trap_tag; th->errinfo = sth->errinfo; th->first_proc = sth->first_proc; /* restore machine stack */ #ifdef _M_AMD64 { /* workaround for x64 SEH */ jmp_buf buf; setjmp(buf); ((_JUMP_BUFFER*)(&cont->jmpbuf))->Frame = ((_JUMP_BUFFER*)(&buf))->Frame; } #endif if (cont->machine_stack_src) { FLUSH_REGISTER_WINDOWS; MEMCPY(cont->machine_stack_src, cont->machine_stack, VALUE, cont->machine_stack_size); } #ifdef __ia64 if (cont->machine_register_stack_src) { MEMCPY(cont->machine_register_stack_src, cont->machine_register_stack, VALUE, cont->machine_register_stack_size); } #endif ruby_longjmp(cont->jmpbuf, 1); } NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *))); #ifdef __ia64 #define C(a) rse_##a##0, rse_##a##1, rse_##a##2, rse_##a##3, rse_##a##4 #define E(a) rse_##a##0= rse_##a##1= rse_##a##2= rse_##a##3= rse_##a##4 static volatile int C(a), C(b), C(c), C(d), C(e); static volatile int C(f), C(g), C(h), C(i), C(j); static volatile int C(k), C(l), C(m), C(n), C(o); static volatile int C(p), C(q), C(r), C(s), C(t); #if 0 {/* the above lines make cc-mode.el confused so much */} #endif int rb_dummy_false = 0; NORETURN(NOINLINE(static void register_stack_extend(rb_context_t *, VALUE *, VALUE *))); static void register_stack_extend(rb_context_t *cont, VALUE *vp, VALUE *curr_bsp) { if (rb_dummy_false) { /* use registers as much as possible */ E(a) = E(b) = E(c) = E(d) = E(e) = E(f) = E(g) = E(h) = E(i) = E(j) = E(k) = E(l) = E(m) = E(n) = E(o) = E(p) = E(q) = E(r) = E(s) = E(t) = 0; E(a) = E(b) = E(c) = E(d) = E(e) = E(f) = E(g) = E(h) = E(i) = E(j) = E(k) = E(l) = E(m) = E(n) = E(o) = E(p) = E(q) = E(r) = E(s) = E(t) = 0; } if (curr_bsp < cont->machine_register_stack_src+cont->machine_register_stack_size) { register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp()); } cont_restore_0(cont, vp); } #undef C #undef E #endif static void cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame) { if (cont->machine_stack_src) { #ifdef HAVE_ALLOCA #define STACK_PAD_SIZE 1 #else #define STACK_PAD_SIZE 1024 #endif VALUE space[STACK_PAD_SIZE]; #if !STACK_GROW_DIRECTION if (addr_in_prev_frame > &space[0]) { /* Stack grows downward */ #endif #if STACK_GROW_DIRECTION <= 0 volatile VALUE *const end = cont->machine_stack_src; if (&space[0] > end) { # ifdef HAVE_ALLOCA volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end); (void)sp; # else cont_restore_0(cont, &space[0]); # endif } #endif #if !STACK_GROW_DIRECTION } else { /* Stack grows upward */ #endif #if STACK_GROW_DIRECTION >= 0 volatile VALUE *const end = cont->machine_stack_src + cont->machine_stack_size; if (&space[STACK_PAD_SIZE] < end) { # ifdef HAVE_ALLOCA volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]); (void)sp; # else cont_restore_0(cont, &space[STACK_PAD_SIZE-1]); # endif } #endif #if !STACK_GROW_DIRECTION } #endif } cont_restore_1(cont); } #ifdef __ia64 #define cont_restore_0(cont, vp) register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp()); #endif /* * Document-class: Continuation * * Continuation objects are generated by * Kernel#callcc. They hold a return address and execution * context, allowing a nonlocal return to the end of the * callcc block from anywhere within a program. * Continuations are somewhat analogous to a structured version of C's * setjmp/longjmp (although they contain more state, so * you might consider them closer to threads). * * For instance: * * arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ] * callcc{|$cc|} * puts(message = arr.shift) * $cc.call unless message =~ /Max/ * * produces: * * Freddie * Herbie * Ron * Max * * This (somewhat contrived) example allows the inner loop to abandon * processing early: * * callcc {|cont| * for i in 0..4 * print "\n#{i}: " * for j in i*5...(i+1)*5 * cont.call() if j == 17 * printf "%3d", j * end * end * } * print "\n" * * produces: * * 0: 0 1 2 3 4 * 1: 5 6 7 8 9 * 2: 10 11 12 13 14 * 3: 15 16 */ /* * call-seq: * callcc {|cont| block } => obj * * Generates a Continuation object, which it passes to the * associated block. Performing a cont.call will * cause the callcc to return (as will falling through the * end of the block). The value returned by the callcc is * the value of the block, or the value passed to * cont.call. See class Continuation * for more details. Also see Kernel::throw for * an alternative mechanism for unwinding a call stack. */ static VALUE rb_callcc(VALUE self) { volatile int called; volatile VALUE val = cont_capture(&called); if (called) { return val; } else { return rb_yield(val); } } static VALUE make_passing_arg(int argc, VALUE *argv) { switch(argc) { case 0: return Qnil; case 1: return argv[0]; default: return rb_ary_new4(argc, argv); } } /* * call-seq: * cont.call(args, ...) * cont[args, ...] * * Invokes the continuation. The program continues from the end of the * callcc block. If no arguments are given, the original * callcc returns nil. If one argument is * given, callcc returns it. Otherwise, an array * containing args is returned. * * callcc {|cont| cont.call } #=> nil * callcc {|cont| cont.call 1 } #=> 1 * callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3] */ static VALUE rb_cont_call(int argc, VALUE *argv, VALUE contval) { rb_context_t *cont; rb_thread_t *th = GET_THREAD(); GetContPtr(contval, cont); if (cont->saved_thread.self != th->self) { rb_raise(rb_eRuntimeError, "continuation called across threads"); } if (cont->saved_thread.trap_tag != th->trap_tag) { rb_raise(rb_eRuntimeError, "continuation called across trap"); } if (cont->saved_thread.fiber) { rb_context_t *fcont; GetContPtr(cont->saved_thread.fiber, fcont); if (th->fiber != cont->saved_thread.fiber) { rb_raise(rb_eRuntimeError, "continuation called across fiber"); } } cont->argc = argc; cont->value = make_passing_arg(argc, argv); cont_restore_0(cont, &contval); return Qnil; /* unreachable */ } /*********/ /* fiber */ /*********/ /* * Document-class: Fiber * * Fibers are primitives for implementing light weight cooperative * concurrency in Ruby. Basically they are a means of creating code blocks * that can be paused and resumed, much like threads. The main difference * is that they are never preempted and that the scheduling must be done by * the programmer and not the VM. * * As opposed to other stackless light weight concurrency models, each fiber * comes with a small 4KB stack. This enables the fiber to be paused from deeply * nested function calls within the fiber block. * * When a fiber is created it will not run automatically. Rather it must be * be explicitly asked to run using the Fiber#resume method. * The code running inside the fiber can give up control by calling * Fiber.yield in which case it yields control back to caller * (the caller of the Fiber#resume). * * Upon yielding or termination the Fiber returns the value of the last * executed expression * * For instance: * * fiber = Fiber.new do * Fiber.yield 1 * 2 * end * * puts fiber.resume * puts fiber.resume * puts fiber.resume * * produces * * 1 * 2 * FiberError: dead fiber called * * The Fiber#resume method accepts an arbitary number of * parameters, if it is the first call to resume then they * will be passed as block arguments. Otherwise they will be the return * value of the call to Fiber.yield * * Example: * * fiber = Fiber.new do |first| * second = Fiber.yield first + 2 * end * * puts fiber.resume 10 * puts fiber.resume 14 * puts fiber.resume 18 * * produces * * 12 * 14 * FiberError: dead fiber called * */ #define FIBER_VM_STACK_SIZE (4 * 1024) static VALUE fiber_alloc(VALUE klass) { return Data_Wrap_Struct(klass, fiber_mark, fiber_free, 0); } static rb_fiber_t* fiber_t_alloc(VALUE fibval) { rb_fiber_t *fib = ALLOC(rb_fiber_t); memset(fib, 0, sizeof(rb_fiber_t)); fib->cont.self = fibval; fib->cont.type = FIBER_CONTEXT; cont_init(&fib->cont); fib->prev = Qnil; fib->status = CREATED; DATA_PTR(fibval) = fib; return fib; } static VALUE fiber_init(VALUE fibval, VALUE proc) { rb_fiber_t *fib = fiber_t_alloc(fibval); rb_context_t *cont = &fib->cont; rb_thread_t *th = &cont->saved_thread; fiber_link_join(fib); /* initialize cont */ cont->vm_stack = 0; th->stack = 0; th->stack_size = FIBER_VM_STACK_SIZE; th->stack = ALLOC_N(VALUE, th->stack_size); th->cfp = (void *)(th->stack + th->stack_size); th->cfp--; th->cfp->pc = 0; th->cfp->sp = th->stack + 1; th->cfp->bp = 0; th->cfp->lfp = th->stack; *th->cfp->lfp = 0; th->cfp->dfp = th->stack; th->cfp->self = Qnil; th->cfp->flag = 0; th->cfp->iseq = 0; th->cfp->proc = 0; th->cfp->block_iseq = 0; th->tag = 0; th->local_storage = st_init_numtable(); th->first_proc = proc; MEMCPY(&cont->jmpbuf, &th->root_jmpbuf, rb_jmpbuf_t, 1); return fibval; } static VALUE rb_fiber_init(VALUE fibval) { return fiber_init(fibval, rb_block_proc()); } VALUE rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj) { return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj)); } static VALUE return_fiber(void) { rb_fiber_t *fib; VALUE curr = rb_fiber_current(); GetFiberPtr(curr, fib); if (fib->prev == Qnil) { rb_thread_t *th = GET_THREAD(); if (th->root_fiber != curr) { return th->root_fiber; } else { rb_raise(rb_eFiberError, "can't yield from root fiber"); } } else { VALUE prev = fib->prev; fib->prev = Qnil; return prev; } } VALUE rb_fiber_transfer(VALUE fib, int argc, VALUE *argv); static void rb_fiber_terminate(rb_fiber_t *fib) { VALUE value = fib->cont.value; fib->status = TERMINATED; rb_fiber_transfer(return_fiber(), 1, &value); } void rb_fiber_start(void) { rb_thread_t *th = GET_THREAD(); rb_fiber_t *fib; rb_context_t *cont; rb_proc_t *proc; int state; GetFiberPtr(th->fiber, fib); cont = &fib->cont; TH_PUSH_TAG(th); if ((state = EXEC_TAG()) == 0) { int argc; VALUE *argv, args; GetProcPtr(cont->saved_thread.first_proc, proc); args = cont->value; argv = (argc = cont->argc) > 1 ? RARRAY_PTR(args) : &args; cont->value = Qnil; th->errinfo = Qnil; th->local_lfp = proc->block.lfp; th->local_svar = Qnil; fib->status = RUNNING; cont->value = rb_vm_invoke_proc(th, proc, proc->block.self, argc, argv, 0); } TH_POP_TAG(); if (state) { if (TAG_RAISE) { th->thrown_errinfo = th->errinfo; } else { th->thrown_errinfo = rb_vm_make_jump_tag_but_local_jump(state, th->errinfo); } RUBY_VM_SET_INTERRUPT(th); } rb_fiber_terminate(fib); rb_bug("rb_fiber_start: unreachable"); } static rb_fiber_t * root_fiber_alloc(rb_thread_t *th) { rb_fiber_t *fib; /* no need to allocate vm stack */ fib = fiber_t_alloc(fiber_alloc(rb_cFiber)); fib->cont.type = ROOT_FIBER_CONTEXT; fib->prev_fiber = fib->next_fiber = fib; return fib; } VALUE rb_fiber_current(void) { rb_thread_t *th = GET_THREAD(); if (th->fiber == 0) { /* save root */ rb_fiber_t *fib = root_fiber_alloc(th); th->root_fiber = th->fiber = fib->cont.self; } return th->fiber; } static VALUE fiber_store(rb_fiber_t *next_fib) { rb_thread_t *th = GET_THREAD(); rb_fiber_t *fib; if (th->fiber) { GetFiberPtr(th->fiber, fib); fib->cont.saved_thread = *th; } else { /* create current fiber */ fib = root_fiber_alloc(th); th->root_fiber = th->fiber = fib->cont.self; } cont_save_machine_stack(th, &fib->cont); if (ruby_setjmp(fib->cont.jmpbuf)) { /* restored */ GetFiberPtr(th->fiber, fib); return fib->cont.value; } else { return Qundef; } } static inline VALUE fiber_switch(VALUE fibval, int argc, VALUE *argv, int is_resume) { VALUE value; rb_fiber_t *fib; rb_context_t *cont; rb_thread_t *th = GET_THREAD(); GetFiberPtr(fibval, fib); cont = &fib->cont; if (cont->saved_thread.self != th->self) { rb_raise(rb_eFiberError, "fiber called across threads"); } else if (cont->saved_thread.trap_tag != th->trap_tag) { rb_raise(rb_eFiberError, "fiber called across trap"); } else if (fib->status == TERMINATED) { rb_raise(rb_eFiberError, "dead fiber called"); } if (is_resume) { fib->prev = rb_fiber_current(); } cont->argc = argc; cont->value = make_passing_arg(argc, argv); if ((value = fiber_store(fib)) == Qundef) { cont_restore_0(&fib->cont, &value); rb_bug("rb_fiber_resume: unreachable"); } RUBY_VM_CHECK_INTS(); return value; } VALUE rb_fiber_transfer(VALUE fib, int argc, VALUE *argv) { return fiber_switch(fib, argc, argv, 0); } VALUE rb_fiber_resume(VALUE fibval, int argc, VALUE *argv) { rb_fiber_t *fib; GetFiberPtr(fibval, fib); if (fib->prev != Qnil) { rb_raise(rb_eFiberError, "double resume"); } return fiber_switch(fibval, argc, argv, 1); } VALUE rb_fiber_yield(int argc, VALUE *argv) { return rb_fiber_transfer(return_fiber(), argc, argv); } /* * call-seq: * fiber.alive? -> true or false * * Returns true if the fiber can still be resumed (or transferred to). * After finishing execution of the fiber block this method will always * return false. */ VALUE rb_fiber_alive_p(VALUE fibval) { rb_fiber_t *fib; GetFiberPtr(fibval, fib); return fib->status != TERMINATED; } /* * call-seq: * fiber.resume(args, ...) -> obj * * Resumes the fiber from the point at which the last Fiber.yield * was called, or starts running it if it is the first call to * resume. Arguments passed to resume will be the value of * the Fiber.yield expression or will be passed as block * parameters to the fiber's block if this is the first resume. * * Alternatively, when resume is called it evaluates to the arguments passed * to the next Fiber.yield statement inside the fiber's block * or to the block value if it runs to completion without any * Fiber.yield */ static VALUE rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib) { return rb_fiber_resume(fib, argc, argv); } /* * call-seq: * fiber.transfer(args, ...) -> obj * * Transfer control to another fiber, resuming it from where it last * stopped or starting it if it was not resumed before. The calling * fiber will be suspended much like in a call to Fiber.yield. * * The fiber which recieves the transfer call is treats it much like * a resume call. Arguments passed to transfer are treated like those * passed to resume. * * You cannot resume a fiber that transferred control to another one. * This will cause a double resume error. You need to transfer control * back to this fiber before it can yield and resume. */ static VALUE rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fib) { return rb_fiber_transfer(fib, argc, argv); } /* * call-seq: * Fiber.yield(args, ...) -> obj * * Yields control back to the context that resumed the fiber, passing * along any arguments that were passed to it. The fiber will resume * processing at this point when resume is called next. * Any arguments passed to the next resume will be the * value that this Fiber.yield expression evaluates to. */ static VALUE rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass) { return rb_fiber_yield(argc, argv); } /* * call-seq: * Fiber.current() -> fiber * * Returns the current fiber. You need to require 'fiber' * before using this method. If you are not running in the context of * a fiber this method will return the root fiber. */ static VALUE rb_fiber_s_current(VALUE klass) { return rb_fiber_current(); } void Init_Cont(void) { rb_cFiber = rb_define_class("Fiber", rb_cObject); rb_define_alloc_func(rb_cFiber, fiber_alloc); rb_eFiberError = rb_define_class("FiberError", rb_eStandardError); rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1); rb_define_method(rb_cFiber, "initialize", rb_fiber_init, 0); rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1); } void ruby_Init_Continuation_body(void) { rb_cContinuation = rb_define_class("Continuation", rb_cObject); rb_undef_alloc_func(rb_cContinuation); rb_undef_method(CLASS_OF(rb_cContinuation), "new"); rb_define_method(rb_cContinuation, "call", rb_cont_call, -1); rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1); rb_define_global_function("callcc", rb_callcc, 0); } void ruby_Init_Fiber_as_Coroutine(void) { rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1); rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0); rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0); }