/********************************************************************** class.c - $Author$ created at: Tue Aug 10 15:05:44 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ /*! * \defgroup class Classes and their hierarchy. * \par Terminology * - class: same as in Ruby. * - singleton class: class for a particular object * - eigenclass: = singleton class * - metaclass: class of a class. metaclass is a kind of singleton class. * - metametaclass: class of a metaclass. * - meta^(n)-class: class of a meta^(n-1)-class. * - attached object: A singleton class knows its unique instance. * The instance is called the attached object for the singleton class. * \{ */ #include "ruby/ruby.h" #include "ruby/st.h" #include "method.h" #include "constant.h" #include "vm_core.h" #include "internal.h" #include extern st_table *rb_class_tbl; static ID id_attached; /** * Allocates a struct RClass for a new class. * * \param flags initial value for basic.flags of the returned class. * \param klass the class of the returned class. * \return an uninitialized Class object. * \pre \p klass must refer \c Class class or an ancestor of Class. * \pre \code (flags | T_CLASS) != 0 \endcode * \post the returned class can safely be \c #initialize 'd. * * \note this function is not Class#allocate. */ static VALUE class_alloc(VALUE flags, VALUE klass) { NEWOBJ_OF(obj, struct RClass, klass, flags); obj->ptr = ALLOC(rb_classext_t); RCLASS_IV_TBL(obj) = 0; RCLASS_CONST_TBL(obj) = 0; RCLASS_M_TBL(obj) = 0; RCLASS_SUPER(obj) = 0; RCLASS_ORIGIN(obj) = (VALUE)obj; RCLASS_IV_INDEX_TBL(obj) = 0; RCLASS_REFINED_CLASS(obj) = Qnil; RCLASS_EXT(obj)->allocator = 0; return (VALUE)obj; } /*! * A utility function that wraps class_alloc. * * allocates a class and initializes safely. * \param super a class from which the new class derives. * \return a class object. * \pre \a super must be a class. * \post the metaclass of the new class is Class. */ VALUE rb_class_boot(VALUE super) { VALUE klass = class_alloc(T_CLASS, rb_cClass); RCLASS_SUPER(klass) = super; RCLASS_M_TBL(klass) = st_init_numtable(); OBJ_INFECT(klass, super); return (VALUE)klass; } /*! * Ensures a class can be derived from super. * * \param super a reference to an object. * \exception TypeError if \a super is not a Class or \a super is a singleton class. */ void rb_check_inheritable(VALUE super) { if (!RB_TYPE_P(super, T_CLASS)) { rb_raise(rb_eTypeError, "superclass must be a Class (%s given)", rb_obj_classname(super)); } if (RBASIC(super)->flags & FL_SINGLETON) { rb_raise(rb_eTypeError, "can't make subclass of singleton class"); } if (super == rb_cClass) { rb_raise(rb_eTypeError, "can't make subclass of Class"); } } /*! * Creates a new class. * \param super a class from which the new class derives. * \exception TypeError \a super is not inheritable. * \exception TypeError \a super is the Class class. */ VALUE rb_class_new(VALUE super) { Check_Type(super, T_CLASS); rb_check_inheritable(super); return rb_class_boot(super); } static NODE* rewrite_cref_stack(NODE *node, VALUE old_klass, VALUE new_klass) { NODE *new_node; if (!node) { return NULL; } if (node->nd_clss == old_klass) { new_node = NEW_CREF(new_klass); new_node->nd_next = node->nd_next; } else { new_node = NEW_CREF(node->nd_clss); new_node->nd_next = rewrite_cref_stack(node->nd_next, old_klass, new_klass); } return new_node; } static void clone_method(VALUE klass, ID mid, const rb_method_entry_t *me) { VALUE newiseqval; if (me->def && me->def->type == VM_METHOD_TYPE_ISEQ) { rb_iseq_t *iseq; newiseqval = rb_iseq_clone(me->def->body.iseq->self, klass); GetISeqPtr(newiseqval, iseq); iseq->cref_stack = rewrite_cref_stack(me->def->body.iseq->cref_stack, me->klass, klass); rb_add_method(klass, mid, VM_METHOD_TYPE_ISEQ, iseq, me->flag); RB_GC_GUARD(newiseqval); } else { rb_method_entry_set(klass, mid, me, me->flag); } } static int clone_method_i(st_data_t key, st_data_t value, st_data_t data) { clone_method((VALUE)data, (ID)key, (const rb_method_entry_t *)value); return ST_CONTINUE; } static int clone_const(ID key, const rb_const_entry_t *ce, st_table *tbl) { rb_const_entry_t *nce = ALLOC(rb_const_entry_t); *nce = *ce; st_insert(tbl, key, (st_data_t)nce); return ST_CONTINUE; } static int clone_const_i(st_data_t key, st_data_t value, st_data_t data) { return clone_const((ID)key, (const rb_const_entry_t *)value, (st_table *)data); } static void class_init_copy_check(VALUE clone, VALUE orig) { if (orig == rb_cBasicObject) { rb_raise(rb_eTypeError, "can't copy the root class"); } if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) { rb_raise(rb_eTypeError, "already initialized class"); } if (FL_TEST(orig, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't copy singleton class"); } } /* :nodoc: */ VALUE rb_mod_init_copy(VALUE clone, VALUE orig) { if (RB_TYPE_P(clone, T_CLASS)) { class_init_copy_check(clone, orig); } rb_obj_init_copy(clone, orig); if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) { RBASIC(clone)->klass = rb_singleton_class_clone(orig); rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone); } RCLASS_SUPER(clone) = RCLASS_SUPER(orig); RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator; if (RCLASS_IV_TBL(orig)) { st_data_t id; if (RCLASS_IV_TBL(clone)) { st_free_table(RCLASS_IV_TBL(clone)); } RCLASS_IV_TBL(clone) = st_copy(RCLASS_IV_TBL(orig)); CONST_ID(id, "__tmp_classpath__"); st_delete(RCLASS_IV_TBL(clone), &id, 0); CONST_ID(id, "__classpath__"); st_delete(RCLASS_IV_TBL(clone), &id, 0); CONST_ID(id, "__classid__"); st_delete(RCLASS_IV_TBL(clone), &id, 0); } if (RCLASS_CONST_TBL(orig)) { if (RCLASS_CONST_TBL(clone)) { rb_free_const_table(RCLASS_CONST_TBL(clone)); } RCLASS_CONST_TBL(clone) = st_init_numtable(); st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)RCLASS_CONST_TBL(clone)); } if (RCLASS_M_TBL(orig)) { if (RCLASS_M_TBL(clone)) { rb_free_m_table(RCLASS_M_TBL(clone)); } RCLASS_M_TBL(clone) = st_init_numtable(); st_foreach(RCLASS_M_TBL(orig), clone_method_i, (st_data_t)clone); } return clone; } VALUE rb_singleton_class_clone(VALUE obj) { VALUE klass = RBASIC(obj)->klass; if (!FL_TEST(klass, FL_SINGLETON)) return klass; else { /* copy singleton(unnamed) class */ VALUE clone = class_alloc(RBASIC(klass)->flags, 0); if (BUILTIN_TYPE(obj) == T_CLASS) { RBASIC(clone)->klass = clone; } else { RBASIC(clone)->klass = rb_singleton_class_clone(klass); } RCLASS_SUPER(clone) = RCLASS_SUPER(klass); RCLASS_EXT(clone)->allocator = RCLASS_EXT(klass)->allocator; if (RCLASS_IV_TBL(klass)) { RCLASS_IV_TBL(clone) = st_copy(RCLASS_IV_TBL(klass)); } if (RCLASS_CONST_TBL(klass)) { RCLASS_CONST_TBL(clone) = st_init_numtable(); st_foreach(RCLASS_CONST_TBL(klass), clone_const_i, (st_data_t)RCLASS_CONST_TBL(clone)); } RCLASS_M_TBL(clone) = st_init_numtable(); st_foreach(RCLASS_M_TBL(klass), clone_method_i, (st_data_t)clone); rb_singleton_class_attached(RBASIC(clone)->klass, clone); FL_SET(clone, FL_SINGLETON); return clone; } } /*! * Attach a object to a singleton class. * @pre \a klass is the singleton class of \a obj. */ void rb_singleton_class_attached(VALUE klass, VALUE obj) { if (FL_TEST(klass, FL_SINGLETON)) { if (!RCLASS_IV_TBL(klass)) { RCLASS_IV_TBL(klass) = st_init_numtable(); } st_insert(RCLASS_IV_TBL(klass), id_attached, obj); } } #define METACLASS_OF(k) RBASIC(k)->klass /*! * whether k is a meta^(n)-class of Class class * @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0) * @retval 0 otherwise */ #define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k)) /*! * ensures \a klass belongs to its own eigenclass. * @return the eigenclass of \a klass * @post \a klass belongs to the returned eigenclass. * i.e. the attached object of the eigenclass is \a klass. * @note this macro creates a new eigenclass if necessary. */ #define ENSURE_EIGENCLASS(klass) \ (rb_ivar_get(METACLASS_OF(klass), id_attached) == (klass) ? METACLASS_OF(klass) : make_metaclass(klass)) /*! * Creates a metaclass of \a klass * \param klass a class * \return created metaclass for the class * \pre \a klass is a Class object * \pre \a klass has no singleton class. * \post the class of \a klass is the returned class. * \post the returned class is meta^(n+1)-class when \a klass is a meta^(n)-klass for n >= 0 */ static inline VALUE make_metaclass(VALUE klass) { VALUE super; VALUE metaclass = rb_class_boot(Qundef); FL_SET(metaclass, FL_SINGLETON); rb_singleton_class_attached(metaclass, klass); if (META_CLASS_OF_CLASS_CLASS_P(klass)) { METACLASS_OF(klass) = METACLASS_OF(metaclass) = metaclass; } else { VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */ METACLASS_OF(klass) = metaclass; METACLASS_OF(metaclass) = ENSURE_EIGENCLASS(tmp); } super = RCLASS_SUPER(klass); while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super); RCLASS_SUPER(metaclass) = super ? ENSURE_EIGENCLASS(super) : rb_cClass; OBJ_INFECT(metaclass, RCLASS_SUPER(metaclass)); return metaclass; } /*! * Creates a singleton class for \a obj. * \pre \a obj must not a immediate nor a special const. * \pre \a obj must not a Class object. * \pre \a obj has no singleton class. */ static inline VALUE make_singleton_class(VALUE obj) { VALUE orig_class = RBASIC(obj)->klass; VALUE klass = rb_class_boot(orig_class); FL_SET(klass, FL_SINGLETON); RBASIC(obj)->klass = klass; rb_singleton_class_attached(klass, obj); METACLASS_OF(klass) = METACLASS_OF(rb_class_real(orig_class)); return klass; } static VALUE boot_defclass(const char *name, VALUE super) { extern st_table *rb_class_tbl; VALUE obj = rb_class_boot(super); ID id = rb_intern(name); rb_name_class(obj, id); st_add_direct(rb_class_tbl, id, obj); rb_const_set((rb_cObject ? rb_cObject : obj), id, obj); return obj; } void Init_class_hierarchy(void) { id_attached = rb_intern("__attached__"); rb_cBasicObject = boot_defclass("BasicObject", 0); rb_cObject = boot_defclass("Object", rb_cBasicObject); rb_cModule = boot_defclass("Module", rb_cObject); rb_cClass = boot_defclass("Class", rb_cModule); rb_const_set(rb_cObject, rb_intern("BasicObject"), rb_cBasicObject); RBASIC(rb_cClass)->klass = RBASIC(rb_cModule)->klass = RBASIC(rb_cObject)->klass = RBASIC(rb_cBasicObject)->klass = rb_cClass; } /*! * \internal * Creates a new *singleton class* for an object. * * \pre \a obj has no singleton class. * \note DO NOT USE the function in an extension libraries. Use \ref rb_singleton_class. * \param obj An object. * \param unused ignored. * \return The singleton class of the object. */ VALUE rb_make_metaclass(VALUE obj, VALUE unused) { if (BUILTIN_TYPE(obj) == T_CLASS) { return make_metaclass(obj); } else { return make_singleton_class(obj); } } /*! * Defines a new class. * \param id ignored * \param super A class from which the new class will derive. NULL means \c Object class. * \return the created class * \throw TypeError if super is not a \c Class object. * * \note the returned class will not be associated with \a id. * You must explicitly set a class name if necessary. */ VALUE rb_define_class_id(ID id, VALUE super) { VALUE klass; if (!super) super = rb_cObject; klass = rb_class_new(super); rb_make_metaclass(klass, RBASIC(super)->klass); return klass; } /*! * Calls Class#inherited. * \param super A class which will be called #inherited. * NULL means Object class. * \param klass A Class object which derived from \a super * \return the value \c Class#inherited's returns * \pre Each of \a super and \a klass must be a \c Class object. */ VALUE rb_class_inherited(VALUE super, VALUE klass) { ID inherited; if (!super) super = rb_cObject; CONST_ID(inherited, "inherited"); return rb_funcall(super, inherited, 1, klass); } /*! * Defines a top-level class. * \param name name of the class * \param super a class from which the new class will derive. * NULL means \c Object class. * \return the created class * \throw TypeError if the constant name \a name is already taken but * the constant is not a \c Class. * \throw NameError if the class is already defined but the class can not * be reopened because its superclass is not \a super. * \post top-level constant named \a name refers the returned class. * * \note if a class named \a name is already defined and its superclass is * \a super, the function just returns the defined class. */ VALUE rb_define_class(const char *name, VALUE super) { VALUE klass; ID id; id = rb_intern(name); if (rb_const_defined(rb_cObject, id)) { klass = rb_const_get(rb_cObject, id); if (!RB_TYPE_P(klass, T_CLASS)) { rb_raise(rb_eTypeError, "%s is not a class", name); } if (rb_class_real(RCLASS_SUPER(klass)) != super) { rb_raise(rb_eTypeError, "superclass mismatch for class %s", name); } return klass; } if (!super) { rb_warn("no super class for `%s', Object assumed", name); } klass = rb_define_class_id(id, super); st_add_direct(rb_class_tbl, id, klass); rb_name_class(klass, id); rb_const_set(rb_cObject, id, klass); rb_class_inherited(super, klass); return klass; } /*! * Defines a class under the namespace of \a outer. * \param outer a class which contains the new class. * \param name name of the new class * \param super a class from which the new class will derive. * NULL means \c Object class. * \return the created class * \throw TypeError if the constant name \a name is already taken but * the constant is not a \c Class. * \throw NameError if the class is already defined but the class can not * be reopened because its superclass is not \a super. * \post top-level constant named \a name refers the returned class. * * \note if a class named \a name is already defined and its superclass is * \a super, the function just returns the defined class. */ VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super) { return rb_define_class_id_under(outer, rb_intern(name), super); } /*! * Defines a class under the namespace of \a outer. * \param outer a class which contains the new class. * \param id name of the new class * \param super a class from which the new class will derive. * NULL means \c Object class. * \return the created class * \throw TypeError if the constant name \a name is already taken but * the constant is not a \c Class. * \throw NameError if the class is already defined but the class can not * be reopened because its superclass is not \a super. * \post top-level constant named \a name refers the returned class. * * \note if a class named \a name is already defined and its superclass is * \a super, the function just returns the defined class. */ VALUE rb_define_class_id_under(VALUE outer, ID id, VALUE super) { VALUE klass; if (rb_const_defined_at(outer, id)) { klass = rb_const_get_at(outer, id); if (!RB_TYPE_P(klass, T_CLASS)) { rb_raise(rb_eTypeError, "%s is not a class", rb_id2name(id)); } if (rb_class_real(RCLASS_SUPER(klass)) != super) { rb_name_error(id, "%s is already defined", rb_id2name(id)); } return klass; } if (!super) { rb_warn("no super class for `%s::%s', Object assumed", rb_class2name(outer), rb_id2name(id)); } klass = rb_define_class_id(id, super); rb_set_class_path_string(klass, outer, rb_id2str(id)); rb_const_set(outer, id, klass); rb_class_inherited(super, klass); rb_gc_register_mark_object(klass); return klass; } VALUE rb_module_new(void) { VALUE mdl = class_alloc(T_MODULE, rb_cModule); RCLASS_M_TBL(mdl) = st_init_numtable(); return (VALUE)mdl; } VALUE rb_define_module_id(ID id) { VALUE mdl; mdl = rb_module_new(); rb_name_class(mdl, id); return mdl; } VALUE rb_define_module(const char *name) { VALUE module; ID id; id = rb_intern(name); if (rb_const_defined(rb_cObject, id)) { module = rb_const_get(rb_cObject, id); if (RB_TYPE_P(module, T_MODULE)) return module; rb_raise(rb_eTypeError, "%s is not a module", rb_obj_classname(module)); } module = rb_define_module_id(id); st_add_direct(rb_class_tbl, id, module); rb_const_set(rb_cObject, id, module); return module; } VALUE rb_define_module_under(VALUE outer, const char *name) { return rb_define_module_id_under(outer, rb_intern(name)); } VALUE rb_define_module_id_under(VALUE outer, ID id) { VALUE module; if (rb_const_defined_at(outer, id)) { module = rb_const_get_at(outer, id); if (RB_TYPE_P(module, T_MODULE)) return module; rb_raise(rb_eTypeError, "%s::%s is not a module", rb_class2name(outer), rb_obj_classname(module)); } module = rb_define_module_id(id); rb_const_set(outer, id, module); rb_set_class_path_string(module, outer, rb_id2str(id)); rb_gc_register_mark_object(module); return module; } VALUE rb_include_class_new(VALUE module, VALUE super) { VALUE klass = class_alloc(T_ICLASS, rb_cClass); if (BUILTIN_TYPE(module) == T_ICLASS) { module = RBASIC(module)->klass; } if (!RCLASS_IV_TBL(module)) { RCLASS_IV_TBL(module) = st_init_numtable(); } if (!RCLASS_CONST_TBL(module)) { RCLASS_CONST_TBL(module) = st_init_numtable(); } RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module); RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module); RCLASS_M_TBL(klass) = RCLASS_M_TBL(RCLASS_ORIGIN(module)); RCLASS_SUPER(klass) = super; if (RB_TYPE_P(module, T_ICLASS)) { RBASIC(klass)->klass = RBASIC(module)->klass; } else { RBASIC(klass)->klass = module; } OBJ_INFECT(klass, module); OBJ_INFECT(klass, super); return (VALUE)klass; } static int include_modules_at(VALUE klass, VALUE c, VALUE module); void rb_include_module(VALUE klass, VALUE module) { int changed = 0; rb_frozen_class_p(klass); if (!OBJ_UNTRUSTED(klass)) { rb_secure(4); } if (!RB_TYPE_P(module, T_MODULE)) { Check_Type(module, T_MODULE); } OBJ_INFECT(klass, module); changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module); if (changed < 0) rb_raise(rb_eArgError, "cyclic include detected"); if (changed) rb_clear_cache(); } static int add_refined_method_entry_i(st_data_t key, st_data_t value, st_data_t data) { rb_add_refined_method_entry((VALUE) data, (ID) key); return ST_CONTINUE; } static int include_modules_at(VALUE klass, VALUE c, VALUE module) { VALUE p; int changed = 0; while (module) { int superclass_seen = FALSE; if (RCLASS_ORIGIN(module) != module) goto skip; if (RCLASS_M_TBL(klass) && RCLASS_M_TBL(klass) == RCLASS_M_TBL(module)) return -1; /* ignore if the module included already in superclasses */ for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) { switch (BUILTIN_TYPE(p)) { case T_ICLASS: if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) { if (!superclass_seen) { c = p; /* move insertion point */ } goto skip; } break; case T_CLASS: superclass_seen = TRUE; break; } } c = RCLASS_SUPER(c) = rb_include_class_new(module, RCLASS_SUPER(c)); if (FL_TEST(klass, RMODULE_IS_REFINEMENT)) { VALUE refined_class = rb_refinement_module_get_refined_class(klass); st_foreach(RMODULE_M_TBL(module), add_refined_method_entry_i, (st_data_t) refined_class); FL_SET(c, RMODULE_INCLUDED_INTO_REFINEMENT); } if (RMODULE_M_TBL(module) && RMODULE_M_TBL(module)->num_entries) changed = 1; skip: module = RCLASS_SUPER(module); } return changed; } static int move_refined_method(st_data_t key, st_data_t value, st_data_t data) { rb_method_entry_t *me = (rb_method_entry_t *) value; st_table *tbl = (st_table *) data; if (me->def->type == VM_METHOD_TYPE_REFINED) { if (me->def->body.orig_me) { rb_method_entry_t *orig_me = me->def->body.orig_me, *new_me; me->def->body.orig_me = NULL; new_me = ALLOC(rb_method_entry_t); *new_me = *me; st_add_direct(tbl, key, (st_data_t) new_me); *me = *orig_me; xfree(orig_me); return ST_CONTINUE; } else { st_add_direct(tbl, key, (st_data_t) me); return ST_DELETE; } } else { return ST_CONTINUE; } } void rb_prepend_module(VALUE klass, VALUE module) { VALUE origin; int changed = 0; rb_frozen_class_p(klass); if (!OBJ_UNTRUSTED(klass)) { rb_secure(4); } Check_Type(module, T_MODULE); OBJ_INFECT(klass, module); origin = RCLASS_ORIGIN(klass); if (origin == klass) { origin = class_alloc(T_ICLASS, klass); RCLASS_SUPER(origin) = RCLASS_SUPER(klass); RCLASS_SUPER(klass) = origin; RCLASS_ORIGIN(klass) = origin; RCLASS_M_TBL(origin) = RCLASS_M_TBL(klass); RCLASS_M_TBL(klass) = st_init_numtable(); st_foreach(RCLASS_M_TBL(origin), move_refined_method, (st_data_t) RCLASS_M_TBL(klass)); } changed = include_modules_at(klass, klass, module); if (changed < 0) rb_raise(rb_eArgError, "cyclic prepend detected"); if (changed) rb_clear_cache(); } /* * call-seq: * mod.included_modules -> array * * Returns the list of modules included in mod. * * module Mixin * end * * module Outer * include Mixin * end * * Mixin.included_modules #=> [] * Outer.included_modules #=> [Mixin] */ VALUE rb_mod_included_modules(VALUE mod) { VALUE ary = rb_ary_new(); VALUE p; for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, RBASIC(p)->klass); } } return ary; } /* * call-seq: * mod.include?(module) -> true or false * * Returns true if module is included in * mod or one of mod's ancestors. * * module A * end * class B * include A * end * class C < B * end * B.include?(A) #=> true * C.include?(A) #=> true * A.include?(A) #=> false */ VALUE rb_mod_include_p(VALUE mod, VALUE mod2) { VALUE p; Check_Type(mod2, T_MODULE); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { if (RBASIC(p)->klass == mod2) return Qtrue; } } return Qfalse; } /* * call-seq: * mod.ancestors -> array * * Returns a list of modules included in mod (including * mod itself). * * module Mod * include Math * include Comparable * end * * Mod.ancestors #=> [Mod, Comparable, Math] * Math.ancestors #=> [Math] */ VALUE rb_mod_ancestors(VALUE mod) { VALUE p, ary = rb_ary_new(); for (p = mod; p; p = RCLASS_SUPER(p)) { if (FL_TEST(p, FL_SINGLETON)) continue; if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, RBASIC(p)->klass); } else if (p == RCLASS_ORIGIN(p)) { rb_ary_push(ary, p); } } return ary; } #define VISI(x) ((x)&NOEX_MASK) #define VISI_CHECK(x,f) (VISI(x) == (f)) static int ins_methods_push(ID name, long type, VALUE ary, long visi) { if (type == -1) return ST_CONTINUE; switch (visi) { case NOEX_PRIVATE: case NOEX_PROTECTED: case NOEX_PUBLIC: visi = (type == visi); break; default: visi = (type != NOEX_PRIVATE); break; } if (visi) { rb_ary_push(ary, ID2SYM(name)); } return ST_CONTINUE; } static int ins_methods_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_push((ID)name, (long)type, (VALUE)ary, -1); /* everything but private */ } static int ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_push((ID)name, (long)type, (VALUE)ary, NOEX_PROTECTED); } static int ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_push((ID)name, (long)type, (VALUE)ary, NOEX_PRIVATE); } static int ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_push((ID)name, (long)type, (VALUE)ary, NOEX_PUBLIC); } static int method_entry_i(st_data_t key, st_data_t value, st_data_t data) { const rb_method_entry_t *me = (const rb_method_entry_t *)value; st_table *list = (st_table *)data; long type; if (!st_lookup(list, key, 0)) { if (UNDEFINED_METHOD_ENTRY_P(me)) { type = -1; /* none */ } else { type = VISI(me->flag); } st_add_direct(list, key, type); } return ST_CONTINUE; } static VALUE class_instance_method_list(int argc, VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t)) { VALUE ary; int recur, prepended = 0; st_table *list; if (argc == 0) { recur = TRUE; } else { VALUE r; rb_scan_args(argc, argv, "01", &r); recur = RTEST(r); } if (!recur && RCLASS_ORIGIN(mod) != mod) { mod = RCLASS_ORIGIN(mod); prepended = 1; } list = st_init_numtable(); for (; mod; mod = RCLASS_SUPER(mod)) { if (RCLASS_M_TBL(mod)) st_foreach(RCLASS_M_TBL(mod), method_entry_i, (st_data_t)list); if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue; if (obj && FL_TEST(mod, FL_SINGLETON)) continue; if (!recur) break; } ary = rb_ary_new(); st_foreach(list, func, ary); st_free_table(list); return ary; } /* * call-seq: * mod.instance_methods(include_super=true) -> array * * Returns an array containing the names of the public and protected instance * methods in the receiver. For a module, these are the public and protected methods; * for a class, they are the instance (not singleton) methods. With no * argument, or with an argument that is false, the * instance methods in mod are returned, otherwise the methods * in mod and mod's superclasses are returned. * * module A * def method1() end * end * class B * def method2() end * end * class C < B * def method3() end * end * * A.instance_methods #=> [:method1] * B.instance_methods(false) #=> [:method2] * C.instance_methods(false) #=> [:method3] * C.instance_methods(true).length #=> 43 */ VALUE rb_class_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_i); } /* * call-seq: * mod.protected_instance_methods(include_super=true) -> array * * Returns a list of the protected instance methods defined in * mod. If the optional parameter is not false, the * methods of any ancestors are included. */ VALUE rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i); } /* * call-seq: * mod.private_instance_methods(include_super=true) -> array * * Returns a list of the private instance methods defined in * mod. If the optional parameter is not false, the * methods of any ancestors are included. * * module Mod * def method1() end * private :method1 * def method2() end * end * Mod.instance_methods #=> [:method2] * Mod.private_instance_methods #=> [:method1] */ VALUE rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i); } /* * call-seq: * mod.public_instance_methods(include_super=true) -> array * * Returns a list of the public instance methods defined in mod. * If the optional parameter is not false, the methods of * any ancestors are included. */ VALUE rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i); } /* * call-seq: * obj.methods(all=true) -> array * * Returns a list of the names of public and protected methods of * obj. This will include all the methods accessible in * obj's ancestors. * If the all parameter is set to false, only those methods * in the receiver will be listed. * * class Klass * def klass_method() * end * end * k = Klass.new * k.methods[0..9] #=> [:klass_method, :nil?, :===, * # :==~, :!, :eql? * # :hash, :<=>, :class, :singleton_class] * k.methods.length #=> 57 */ VALUE rb_obj_methods(int argc, VALUE *argv, VALUE obj) { retry: if (argc == 0) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i); } else { VALUE recur; rb_scan_args(argc, argv, "1", &recur); if (RTEST(recur)) { argc = 0; goto retry; } return rb_obj_singleton_methods(argc, argv, obj); } } /* * call-seq: * obj.protected_methods(all=true) -> array * * Returns the list of protected methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_protected_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i); } /* * call-seq: * obj.private_methods(all=true) -> array * * Returns the list of private methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_private_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i); } /* * call-seq: * obj.public_methods(all=true) -> array * * Returns the list of public methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_public_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i); } /* * call-seq: * obj.singleton_methods(all=true) -> array * * Returns an array of the names of singleton methods for obj. * If the optional all parameter is true, the list will include * methods in modules included in obj. * Only public and protected singleton methods are returned. * * module Other * def three() end * end * * class Single * def Single.four() end * end * * a = Single.new * * def a.one() * end * * class << a * include Other * def two() * end * end * * Single.singleton_methods #=> [:four] * a.singleton_methods(false) #=> [:two, :one] * a.singleton_methods #=> [:two, :one, :three] */ VALUE rb_obj_singleton_methods(int argc, VALUE *argv, VALUE obj) { VALUE recur, ary, klass; st_table *list; if (argc == 0) { recur = Qtrue; } else { rb_scan_args(argc, argv, "01", &recur); } klass = CLASS_OF(obj); list = st_init_numtable(); if (klass && FL_TEST(klass, FL_SINGLETON)) { if (RCLASS_M_TBL(klass)) st_foreach(RCLASS_M_TBL(klass), method_entry_i, (st_data_t)list); klass = RCLASS_SUPER(klass); } if (RTEST(recur)) { while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) { if (RCLASS_M_TBL(klass)) st_foreach(RCLASS_M_TBL(klass), method_entry_i, (st_data_t)list); klass = RCLASS_SUPER(klass); } } ary = rb_ary_new(); st_foreach(list, ins_methods_i, ary); st_free_table(list); return ary; } /*! * \} */ /*! * \defgroup defmethod Defining methods * There are some APIs to define a method from C. * These API takes a C function as a method body. * * \par Method body functions * Method body functions must return a VALUE and * can be one of the following form: *
*
Fixed number of parameters
*
* This form is a normal C function, excepting it takes * a receiver object as the first argument. * * \code * static VALUE my_method(VALUE self, VALUE x, VALUE y); * \endcode *
*
argc and argv style
*
* This form takes three parameters: \a argc, \a argv and \a self. * \a self is the receiver. \a argc is the number of arguments. * \a argv is a pointer to an array of the arguments. * * \code * static VALUE my_method(int argc, VALUE *argv, VALUE self); * \endcode *
*
Ruby array style
*
* This form takes two parameters: self and args. * \a self is the receiver. \a args is an Array object which * contains the arguments. * * \code * static VALUE my_method(VALUE self, VALUE args); * \endcode *
* * \par Number of parameters * Method defining APIs takes the number of parameters which the * method will takes. This number is called \a argc. * \a argc can be: *
*
zero or positive number
*
This means the method body function takes a fixed number of parameters
*
-1
*
This means the method body function is "argc and argv" style.
*
-2
*
This means the method body function is "self and args" style.
*
* \{ */ void rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, mid, func, argc, NOEX_PUBLIC); } void rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, NOEX_PUBLIC); } void rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, NOEX_PROTECTED); } void rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, NOEX_PRIVATE); } void rb_undef_method(VALUE klass, const char *name) { rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, NOEX_UNDEF); } /*! * \} */ /*! * \addtogroup class * \{ */ #define SPECIAL_SINGLETON(x,c) do {\ if (obj == (x)) {\ return (c);\ }\ } while (0) static inline VALUE special_singleton_class_of(VALUE obj) { SPECIAL_SINGLETON(Qnil, rb_cNilClass); SPECIAL_SINGLETON(Qfalse, rb_cFalseClass); SPECIAL_SINGLETON(Qtrue, rb_cTrueClass); return Qnil; } VALUE rb_special_singleton_class(VALUE obj) { return special_singleton_class_of(obj); } /*! * \internal * Returns the singleton class of \a obj. Creates it if necessary. * * \note DO NOT expose the returned singleton class to * outside of class.c. * Use \ref rb_singleton_class instead for * consistency of the metaclass hierarchy. */ static VALUE singleton_class_of(VALUE obj) { VALUE klass; if (FIXNUM_P(obj) || FLONUM_P(obj) || SYMBOL_P(obj)) { rb_raise(rb_eTypeError, "can't define singleton"); } if (SPECIAL_CONST_P(obj)) { klass = special_singleton_class_of(obj); if (NIL_P(klass)) rb_bug("unknown immediate %p", (void *)obj); return klass; } else { enum ruby_value_type type = BUILTIN_TYPE(obj); if (type == T_FLOAT || type == T_BIGNUM) { rb_raise(rb_eTypeError, "can't define singleton"); } } if (FL_TEST(RBASIC(obj)->klass, FL_SINGLETON) && rb_ivar_get(RBASIC(obj)->klass, id_attached) == obj) { klass = RBASIC(obj)->klass; } else { klass = rb_make_metaclass(obj, RBASIC(obj)->klass); } if (OBJ_TAINTED(obj)) { OBJ_TAINT(klass); } else { FL_UNSET(klass, FL_TAINT); } if (OBJ_UNTRUSTED(obj)) { OBJ_UNTRUST(klass); } else { FL_UNSET(klass, FL_UNTRUSTED); } if (OBJ_FROZEN(obj)) OBJ_FREEZE(klass); return klass; } /*! * Returns the singleton class of \a obj. Creates it if necessary. * * \param obj an arbitrary object. * \throw TypeError if \a obj is a Fixnum or a Symbol. * \return the singleton class. * * \post \a obj has its own singleton class. * \post if \a obj is a class, * the returned singleton class also has its own * singleton class in order to keep consistency of the * inheritance structure of metaclasses. * \note a new singleton class will be created * if \a obj does not have it. * \note the singleton classes for nil, true and false are: * NilClass, TrueClass and FalseClass. */ VALUE rb_singleton_class(VALUE obj) { VALUE klass = singleton_class_of(obj); /* ensures an exposed class belongs to its own eigenclass */ if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass); return klass; } /*! * \} */ /*! * \addtogroup defmethod * \{ */ /*! * Defines a singleton method for \a obj. * \param obj an arbitrary object * \param name name of the singleton method * \param func the method body * \param argc the number of parameters, or -1 or -2. see \ref defmethod. */ void rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_method(singleton_class_of(obj), name, func, argc); } /*! * Defines a module function for \a module. * \param module an module or a class. * \param name name of the function * \param func the method body * \param argc the number of parameters, or -1 or -2. see \ref defmethod. */ void rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_private_method(module, name, func, argc); rb_define_singleton_method(module, name, func, argc); } /*! * Defines a global function * \param name name of the function * \param func the method body * \param argc the number of parameters, or -1 or -2. see \ref defmethod. */ void rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_module_function(rb_mKernel, name, func, argc); } /*! * Defines an alias of a method. * \param klass the class which the original method belongs to * \param name1 a new name for the method * \param name2 the original name of the method */ void rb_define_alias(VALUE klass, const char *name1, const char *name2) { rb_alias(klass, rb_intern(name1), rb_intern(name2)); } /*! * Defines (a) public accessor method(s) for an attribute. * \param klass the class which the attribute will belongs to * \param name name of the attribute * \param read a getter method for the attribute will be defined if \a read is non-zero. * \param write a setter method for the attribute will be defined if \a write is non-zero. */ void rb_define_attr(VALUE klass, const char *name, int read, int write) { rb_attr(klass, rb_intern(name), read, write, FALSE); } int rb_obj_basic_to_s_p(VALUE obj) { const rb_method_entry_t *me = rb_method_entry(CLASS_OF(obj), rb_intern("to_s"), 0); if (me && me->def && me->def->type == VM_METHOD_TYPE_CFUNC && me->def->body.cfunc.func == rb_any_to_s) return 1; return 0; } #include int rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...) { int i; const char *p = fmt; VALUE *var; va_list vargs; int f_var = 0, f_hash = 0, f_block = 0; int n_lead = 0, n_opt = 0, n_trail = 0, n_mand; int argi = 0; VALUE hash = Qnil; if (ISDIGIT(*p)) { n_lead = *p - '0'; p++; if (ISDIGIT(*p)) { n_opt = *p - '0'; p++; if (ISDIGIT(*p)) { n_trail = *p - '0'; p++; goto block_arg; } } } if (*p == '*') { f_var = 1; p++; if (ISDIGIT(*p)) { n_trail = *p - '0'; p++; } } block_arg: if (*p == ':') { f_hash = 1; p++; } if (*p == '&') { f_block = 1; p++; } if (*p != '\0') { rb_fatal("bad scan arg format: %s", fmt); } n_mand = n_lead + n_trail; if (argc < n_mand) goto argc_error; va_start(vargs, fmt); /* capture an option hash - phase 1: pop */ if (f_hash && n_mand < argc) { VALUE last = argv[argc - 1]; if (NIL_P(last)) { /* nil is taken as an empty option hash only if it is not ambiguous; i.e. '*' is not specified and arguments are given more than sufficient */ if (!f_var && n_mand + n_opt < argc) argc--; } else { hash = rb_check_hash_type(last); if (!NIL_P(hash)) argc--; } } /* capture leading mandatory arguments */ for (i = n_lead; i-- > 0; ) { var = va_arg(vargs, VALUE *); if (var) *var = argv[argi]; argi++; } /* capture optional arguments */ for (i = n_opt; i-- > 0; ) { var = va_arg(vargs, VALUE *); if (argi < argc - n_trail) { if (var) *var = argv[argi]; argi++; } else { if (var) *var = Qnil; } } /* capture variable length arguments */ if (f_var) { int n_var = argc - argi - n_trail; var = va_arg(vargs, VALUE *); if (0 < n_var) { if (var) *var = rb_ary_new4(n_var, &argv[argi]); argi += n_var; } else { if (var) *var = rb_ary_new(); } } /* capture trailing mandatory arguments */ for (i = n_trail; i-- > 0; ) { var = va_arg(vargs, VALUE *); if (var) *var = argv[argi]; argi++; } /* capture an option hash - phase 2: assignment */ if (f_hash) { var = va_arg(vargs, VALUE *); if (var) *var = hash; } /* capture iterator block */ if (f_block) { var = va_arg(vargs, VALUE *); if (rb_block_given_p()) { *var = rb_block_proc(); } else { *var = Qnil; } } va_end(vargs); if (argi < argc) { argc_error: rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt); } return argc; } /*! * \} */