# Check that frozen objects are respected assert_equal 'great', %q{ class Foo attr_accessor :bar def initialize @bar = 1 freeze end end foo = Foo.new 5.times do begin foo.bar = 2 rescue FrozenError end end foo.bar == 1 ? "great" : "NG" } # Check that global variable set works assert_equal 'string', %q{ def foo $foo = "string" end foo } # Check that exceptions work when setting global variables assert_equal 'rescued', %q{ def set_var $var = 100 rescue :rescued end set_var trace_var(:$var) { raise } set_var } # Check that global variables work assert_equal 'string', %q{ $foo = "string" def foo $foo end foo } # Check that exceptions work when getting global variable assert_equal 'rescued', %q{ module Warning def warn(message) raise end end def get_var $= rescue :rescued end $VERBOSE = true get_var get_var } # Check that global tracepoints work assert_equal 'true', %q{ def foo 1 end foo foo foo called = false tp = TracePoint.new(:return) { |event| if event.method_id == :foo called = true end } tp.enable foo tp.disable called } # Check that local tracepoints work assert_equal 'true', %q{ def foo 1 end foo foo foo called = false tp = TracePoint.new(:return) { |_| called = true } tp.enable(target: method(:foo)) foo tp.disable called } # Make sure that optional param methods return the correct value assert_equal '1', %q{ def m(ary = []) yield(ary) end # Warm the JIT with a 0 param call 2.times { m { } } m(1) { |v| v } } # Test for topn assert_equal 'array', %q{ def threequals(a) case a when Array "array" when Hash "hash" else "unknown" end end threequals([]) threequals([]) threequals([]) } # Test for opt_mod assert_equal '2', %q{ def mod(a, b) a % b end mod(7, 5) mod(7, 5) } # Test for opt_mult assert_equal '12', %q{ def mult(a, b) a * b end mult(6, 2) mult(6, 2) } # Test for opt_div assert_equal '3', %q{ def div(a, b) a / b end div(6, 2) div(6, 2) } # BOP redefined methods work when JIT compiled assert_equal 'false', %q{ def less_than x x < 10 end class Integer def < x false end end less_than 2 less_than 2 less_than 2 } # BOP redefinition works on Integer#< assert_equal 'false', %q{ def less_than x x < 10 end less_than 2 less_than 2 class Integer def < x false end end less_than 2 } # Putobject, less-than operator, fixnums assert_equal '2', %q{ def check_index(index) if 0x40000000 < index raise "wat? #{index}" end index end check_index 2 check_index 2 } # foo leaves a temp on the stack before the call assert_equal '6', %q{ def bar return 5 end def foo return 1 + bar end foo() retval = foo() } # Method with one arguments # foo leaves a temp on the stack before the call assert_equal '7', %q{ def bar(a) return a + 1 end def foo return 1 + bar(5) end foo() retval = foo() } # Method with two arguments # foo leaves a temp on the stack before the call assert_equal '0', %q{ def bar(a, b) return a - b end def foo return 1 + bar(1, 2) end foo() retval = foo() } # Passing argument types to callees assert_equal '8.5', %q{ def foo(x, y) x + y end def bar foo(7, 1.5) end bar bar } # Recursive Ruby-to-Ruby calls assert_equal '21', %q{ def fib(n) if n < 2 return n end return fib(n-1) + fib(n-2) end r = fib(8) } # Ruby-to-Ruby call and C call assert_normal_exit %q{ def bar puts('hi!') end def foo bar end foo() foo() } # Method aliasing assert_equal '42', %q{ class Foo def method_a 42 end alias method_b method_a def method_a :somethingelse end end @obj = Foo.new def test @obj.method_b end test test } # Method aliasing with method from parent class assert_equal '777', %q{ class A def method_a 777 end end class B < A alias method_b method_a end @obj = B.new def test @obj.method_b end test test } # The hash method is a C function and uses the self argument assert_equal 'true', %q{ def lehashself hash end a = lehashself b = lehashself a == b } # Method redefinition (code invalidation) test assert_equal '1', %q{ def ret1 return 1 end klass = Class.new do def alias_then_hash(klass, method_to_redefine) # Redefine the method to be ret1 klass.alias_method(method_to_redefine, :ret1) hash end end instance = klass.new i = 0 while i < 12 if i < 11 # Redefine the bar method instance.alias_then_hash(klass, :bar) else # Redefine the hash method to be ret1 retval = instance.alias_then_hash(klass, :hash) end i += 1 end retval } # Code invalidation and opt_getinlinecache assert_normal_exit %q{ class Foo; end # Uses the class constant Foo def use_constant(arg) [Foo.new, arg] end def propagate_type i = Array.new i.itself # make it remember that i is on-heap use_constant(i) end propagate_type propagate_type use_constant(Foo.new) class Jo; end # bump global constant state use_constant(3) } # Method redefinition (code invalidation) and GC assert_equal '7', %q{ def bar() return 5 end def foo() bar() end foo() foo() def bar() return 7 end 4.times { GC.start } foo() foo() } # Method redefinition with two block versions assert_equal '7', %q{ def bar() return 5 end def foo(n) return ((n < 5)? 5:false), bar() end foo(4) foo(4) foo(10) foo(10) def bar() return 7 end 4.times { GC.start } foo(4) foo(4)[1] } # Method redefinition while the method is on the stack assert_equal '[777, 1]', %q{ def foo redef() 777 end def redef # Redefine the global foo eval("def foo; 1; end", TOPLEVEL_BINDING) # Collect dead code GC.stress = true GC.start # But we will return to the original foo, # which remains alive because it's on the stack end # Must produce [777, 1] [foo, foo] } # Test for GC safety. Don't invalidate dead iseqs. assert_normal_exit %q{ Class.new do def foo itself end new.foo new.foo new.foo new.foo end 4.times { GC.start } def itself self end } # test setinstancevariable on extended objects assert_equal '1', %q{ class Extended attr_reader :one def write_many @a = 1 @b = 2 @c = 3 @d = 4 @one = 1 end end foo = Extended.new foo.write_many foo.write_many foo.write_many } # test setinstancevariable on embedded objects assert_equal '1', %q{ class Embedded attr_reader :one def write_one @one = 1 end end foo = Embedded.new foo.write_one foo.write_one foo.write_one } # test setinstancevariable after extension assert_equal '[10, 11, 12, 13, 1]', %q{ class WillExtend attr_reader :one def make_extended @foo1 = 10 @foo2 = 11 @foo3 = 12 @foo4 = 13 end def write_one @one = 1 end def read_all [@foo1, @foo2, @foo3, @foo4, @one] end end foo = WillExtend.new foo.write_one foo.write_one foo.make_extended foo.write_one foo.read_all } # test setinstancevariable on frozen object assert_equal 'object was not modified', %q{ class WillFreeze def write @ivar = 1 end end wf = WillFreeze.new wf.write wf.write wf.freeze begin wf.write rescue FrozenError "object was not modified" end } # Test getinstancevariable and inline caches assert_equal '6', %q{ class Foo def initialize @x1 = 1 @x2 = 1 @x2 = 1 @x3 = 1 @x4 = 3 end def bar x = 1 @x4 + @x4 end end f = Foo.new f.bar f.bar } # Test that getinstancevariable codegen checks for extended table size assert_equal "nil\n", %q{ class A def read @ins1000 end end ins = A.new other = A.new 10.times { other.instance_variable_set(:"@otr#{_1}", 'value') } 1001.times { ins.instance_variable_set(:"@ins#{_1}", 'value') } ins.read ins.read ins.read p other.read } # Test that opt_aref checks the class of the receiver assert_equal 'special', %q{ def foo(array) array[30] end foo([]) foo([]) special = [] def special.[](idx) 'special' end foo(special) } # Test that object references in generated code get marked and moved assert_equal "good", %q{ def bar "good" end def foo bar end foo foo GC.verify_compaction_references(double_heap: true, toward: :empty) foo } # Test polymorphic getinstancevariable. T_OBJECT -> T_STRING assert_equal 'ok', %q{ @hello = @h1 = @h2 = @h3 = @h4 = 'ok' str = "" str.instance_variable_set(:@hello, 'ok') public def get @hello end get get str.get str.get } # Test polymorphic getinstancevariable, two different classes assert_equal 'ok', %q{ class Embedded def initialize @ivar = 0 end def get @ivar end end class Extended < Embedded def initialize @v1 = @v2 = @v3 = @v4 = @ivar = 'ok' end end embed = Embedded.new extend = Extended.new embed.get embed.get extend.get extend.get } # Test megamorphic getinstancevariable assert_equal 'ok', %q{ parent = Class.new do def initialize @hello = @h1 = @h2 = @h3 = @h4 = 'ok' end def get @hello end end subclasses = 300.times.map { Class.new(parent) } subclasses.each { _1.new.get } parent.new.get } # Test polymorphic opt_aref. array -> hash assert_equal '[42, :key]', %q{ def index(obj, idx) obj[idx] end index([], 0) # get over compilation threshold [ index([42], 0), index({0=>:key}, 0), ] } # Test polymorphic opt_aref. hash -> array -> custom class assert_equal '[nil, nil, :custom]', %q{ def index(obj, idx) obj[idx] end custom = Object.new def custom.[](_idx) :custom end index({}, 0) # get over compilation threshold [ index({}, 0), index([], 0), index(custom, 0) ] } # Test polymorphic opt_aref. array -> custom class assert_equal '[42, :custom]', %q{ def index(obj, idx) obj[idx] end custom = Object.new def custom.[](_idx) :custom end index([], 0) # get over compilation threshold [ index([42], 0), index(custom, 0) ] } # Test custom hash method with opt_aref assert_equal '[nil, :ok]', %q{ def index(obj, idx) obj[idx] end custom = Object.new def custom.hash 42 end h = {custom => :ok} [ index(h, 0), index(h, custom) ] } # Test default value block for Hash with opt_aref assert_equal '[42, :default]', %q{ def index(obj, idx) obj[idx] end h = Hash.new { :default } h[0] = 42 [ index(h, 0), index(h, 1) ] } # A regression test for making sure cfp->sp is proper when # hitting stubs. See :stub-sp-flush: assert_equal 'ok', %q{ class D def foo Object.new end end GC.stress = true 10.times do D.new.foo # ^ # This hits a stub with sp_offset > 0 end :ok } # Test polymorphic callsite, cfunc -> iseq assert_equal '[Cfunc, Iseq]', %q{ public def call_itself itself # the polymorphic callsite end class Cfunc; end class Iseq def itself self end end call_itself # cross threshold [Cfunc.call_itself, Iseq.call_itself] } # Test polymorphic callsite, iseq -> cfunc assert_equal '[Iseq, Cfunc]', %q{ public def call_itself itself # the polymorphic callsite end class Cfunc; end class Iseq def itself self end end call_itself # cross threshold [Iseq.call_itself, Cfunc.call_itself] } # attr_reader method assert_equal '[100, 299]', %q{ class A attr_reader :foo def initialize @foo = 100 end # Make it extended def fill! @bar = @jojo = @as = @sdfsdf = @foo = 299 end end def bar(ins) ins.foo end ins = A.new oth = A.new oth.fill! bar(ins) bar(oth) [bar(ins), bar(oth)] } # get ivar on object, then on hash assert_equal '[42, 100]', %q{ class Hash attr_accessor :foo end class A attr_reader :foo def initialize @foo = 42 end end def use(val) val.foo end h = {} h.foo = 100 obj = A.new use(obj) [use(obj), use(h)] } # get ivar on String assert_equal '[nil, nil, 42, 42]', %q{ # @foo to exercise the getinstancevariable instruction public def get_foo @foo end get_foo get_foo # compile it for the top level object class String attr_reader :foo end def run str = String.new getter = str.foo insn = str.get_foo str.instance_variable_set(:@foo, 42) [getter, insn, str.foo, str.get_foo] end run run } # splatting an empty array on a getter assert_equal '42', %q{ @foo = 42 module Kernel attr_reader :foo end def run foo(*[]) end run run } # getinstancevariable on Symbol assert_equal '[nil, nil]', %q{ # @foo to exercise the getinstancevariable instruction public def get_foo @foo end dyn_sym = ("a" + "b").to_sym sym = :static # compile get_foo dyn_sym.get_foo dyn_sym.get_foo [dyn_sym.get_foo, sym.get_foo] } # attr_reader on Symbol assert_equal '[nil, nil]', %q{ class Symbol attr_reader :foo end public def get_foo foo end dyn_sym = ("a" + "b").to_sym sym = :static # compile get_foo dyn_sym.get_foo dyn_sym.get_foo [dyn_sym.get_foo, sym.get_foo] } # passing too few arguments to method with optional parameters assert_equal 'raised', %q{ def opt(a, b = 0) end def use opt end use rescue nil begin use :ng rescue ArgumentError :raised end } # passing too many arguments to method with optional parameters assert_equal 'raised', %q{ def opt(a, b = 0) end def use opt(1, 2, 3, 4) end use rescue nil begin use :ng rescue ArgumentError :raised end } # test calling Ruby method with a block assert_equal '[1, 2, 42]', %q{ def thing(a, b) [a, b, yield] end def use thing(1,2) { 42 } end use use } # test calling C method with a block assert_equal '[42, 42]', %q{ def use(array, initial) array.reduce(initial) { |a, b| a + b } end use([], 0) [use([2, 2], 38), use([14, 14, 14], 0)] } # test calling block param assert_equal '[1, 2, 42]', %q{ def foo(&block) block.call end [foo {1}, foo {2}, foo {42}] } # test calling block param failing assert_equal '42', %q{ def foo(&block) block.call end foo {} # warmup begin foo rescue NoMethodError => e 42 if nil == e.receiver end } # test calling method taking block param assert_equal '[Proc, 1, 2, 3, Proc]', %q{ def three(a, b, c, &block) [a, b, c, block.class] end def zero(&block) block.class end def use_three three(1, 2, 3) {} end def use_zero zero {} end use_three use_zero [use_zero] + use_three } # test building empty array assert_equal '[]', %q{ def build_arr [] end build_arr build_arr } # test building array of one element assert_equal '[5]', %q{ def build_arr(val) [val] end build_arr(5) build_arr(5) } # test building array of several element assert_equal '[5, 5, 5, 5, 5]', %q{ def build_arr(val) [val, val, val, val, val] end build_arr(5) build_arr(5) } # test building empty hash assert_equal '{}', %q{ def build_hash {} end build_hash build_hash } # test building hash with values assert_equal '{:foo=>:bar}', %q{ def build_hash(val) { foo: val } end build_hash(:bar) build_hash(:bar) } # test string interpolation with known types assert_equal 'foobar', %q{ def make_str foo = -"foo" bar = -"bar" "#{foo}#{bar}" end make_str make_str } # test string interpolation with unknown types assert_equal 'foobar', %q{ def make_str(foo, bar) "#{foo}#{bar}" end make_str("foo", "bar") make_str("foo", "bar") } # test string interpolation with known non-strings assert_equal 'foo123', %q{ def make_str foo = -"foo" bar = 123 "#{foo}#{bar}" end make_str make_str } # test string interpolation with unknown non-strings assert_equal 'foo123', %q{ def make_str(foo, bar) "#{foo}#{bar}" end make_str("foo", 123) make_str("foo", 123) } # test invokebuiltin as used in struct assignment assert_equal '123', %q{ def foo(obj) obj.foo = 123 end struct = Struct.new(:foo) obj = struct.new foo(obj) foo(obj) } # test invokebuiltin_delegate as used inside Dir.open assert_equal '.', %q{ def foo(path) Dir.open(path).path end foo(".") foo(".") } # test invokebuiltin_delegate_leave in method called from jit assert_normal_exit %q{ def foo(obj) obj.clone end foo(Object.new) foo(Object.new) } # test invokebuiltin_delegate_leave in method called from cfunc assert_normal_exit %q{ def foo(obj) [obj].map(&:clone) end foo(Object.new) foo(Object.new) } # defining TrueClass#! assert_equal '[false, false, :ok]', %q{ def foo(obj) !obj end x = foo(true) y = foo(true) class TrueClass def ! :ok end end z = foo(true) [x, y, z] } # defining FalseClass#! assert_equal '[true, true, :ok]', %q{ def foo(obj) !obj end x = foo(false) y = foo(false) class FalseClass def ! :ok end end z = foo(false) [x, y, z] } # defining NilClass#! assert_equal '[true, true, :ok]', %q{ def foo(obj) !obj end x = foo(nil) y = foo(nil) class NilClass def ! :ok end end z = foo(nil) [x, y, z] } # polymorphic opt_not assert_equal '[true, true, false, false, false, false, false]', %q{ def foo(obj) !obj end foo(0) [foo(nil), foo(false), foo(true), foo([]), foo(0), foo(4.2), foo(:sym)] } # getlocal with 2 levels assert_equal '7', %q{ def foo(foo, bar) while foo > 0 while bar > 0 return foo + bar end end end foo(5,2) foo(5,2) } # test pattern matching assert_equal '[:ok, :ok]', %q{ class C def destructure_keys {} end end pattern_match = ->(i) do case i in a: 0 :ng else :ok end end [{}, C.new].map(&pattern_match) } # Call to object with singleton assert_equal '123', %q{ obj = Object.new def obj.foo 123 end def foo(obj) obj.foo() end foo(obj) foo(obj) } # Call method on an object that has a non-material # singleton class. # TODO: assert that it takes no side exits? This # test case revealed that we were taking exits unnecessarily. assert_normal_exit %q{ def foo(obj) obj.itself end o = Object.new.singleton_class foo(o) foo(o) } # Call to singleton class assert_equal '123', %q{ class Foo def self.foo 123 end end def foo(obj) obj.foo() end foo(Foo) foo(Foo) } # invokesuper edge case assert_equal '[:A, [:A, :B]]', %q{ class B def foo = :B end class A < B def foo = [:A, super()] end A.new.foo A.new.foo # compile A#foo class C < A define_method(:bar, A.instance_method(:foo)) end C.new.bar } # Same invokesuper bytecode, multiple destinations assert_equal '[:Forward, :SecondTerminus]', %q{ module Terminus def foo = :Terminus end module SecondTerminus def foo = :SecondTerminus end module Forward def foo = [:Forward, super] end class B include SecondTerminus end class A < B include Terminus include Forward end A.new.foo A.new.foo # compile class B include Forward alias bar foo end # A.ancestors.take(5) == [A, Forward, Terminus, B, Forward, SecondTerminus] A.new.bar } # invokesuper calling into itself assert_equal '[:B, [:B, :m]]', %q{ module M def foo = :m end class B include M def foo = [:B, super] end ins = B.new ins.singleton_class # materialize the singleton class ins.foo ins.foo # compile ins.singleton_class.define_method(:bar, B.instance_method(:foo)) ins.bar } # invokesuper changed ancestor assert_equal '[:A, [:M, :B]]', %q{ class B def foo :B end end class A < B def foo [:A, super] end end module M def foo [:M, super] end end ins = A.new ins.foo ins.foo A.include(M) ins.foo } # invokesuper changed ancestor via prepend assert_equal '[:A, [:M, :B]]', %q{ class B def foo :B end end class A < B def foo [:A, super] end end module M def foo [:M, super] end end ins = A.new ins.foo ins.foo B.prepend(M) ins.foo } # invokesuper replaced method assert_equal '[:A, :Btwo]', %q{ class B def foo :B end end class A < B def foo [:A, super] end end ins = A.new ins.foo ins.foo class B def foo :Btwo end end ins.foo } # Call to fixnum assert_equal '[true, false]', %q{ def is_odd(obj) obj.odd? end is_odd(1) is_odd(1) [is_odd(123), is_odd(456)] } # Call to bignum assert_equal '[true, false]', %q{ def is_odd(obj) obj.odd? end bignum = 99999999999999999999 is_odd(bignum) is_odd(bignum) [is_odd(bignum), is_odd(bignum+1)] } # Call to fixnum and bignum assert_equal '[true, false, true, false]', %q{ def is_odd(obj) obj.odd? end bignum = 99999999999999999999 is_odd(bignum) is_odd(bignum) is_odd(123) is_odd(123) [is_odd(123), is_odd(456), is_odd(bignum), is_odd(bignum+1)] } # Call to static and dynamic symbol assert_equal 'bar', %q{ def to_string(obj) obj.to_s end to_string(:foo) to_string(:foo) to_string((-"bar").to_sym) to_string((-"bar").to_sym) } # Call to flonum and heap float assert_equal '[nil, nil, nil, 1]', %q{ def is_inf(obj) obj.infinite? end is_inf(0.0) is_inf(0.0) is_inf(1e256) is_inf(1e256) [ is_inf(0.0), is_inf(1.0), is_inf(1e256), is_inf(1.0/0.0) ] } assert_equal '[1, 2, 3, 4, 5]', %q{ def splatarray [*(1..5)] end splatarray splatarray } assert_equal '[1, 1, 2, 1, 2, 3]', %q{ def expandarray arr = [1, 2, 3] a, = arr b, c, = arr d, e, f = arr [a, b, c, d, e, f] end expandarray expandarray } assert_equal '[1, 1]', %q{ def expandarray_useless_splat arr = (1..10).to_a a, * = arr b, (*) = arr [a, b] end expandarray_useless_splat expandarray_useless_splat } assert_equal '[:not_heap, nil, nil]', %q{ def expandarray_not_heap a, b, c = :not_heap [a, b, c] end expandarray_not_heap expandarray_not_heap } assert_equal '[:not_array, nil, nil]', %q{ def expandarray_not_array(obj) a, b, c = obj [a, b, c] end obj = Object.new def obj.to_ary [:not_array] end expandarray_not_array(obj) expandarray_not_array(obj) } assert_equal '[1, 2, nil]', %q{ def expandarray_rhs_too_small a, b, c = [1, 2] [a, b, c] end expandarray_rhs_too_small expandarray_rhs_too_small } assert_equal '[1, [2]]', %q{ def expandarray_splat a, *b = [1, 2] [a, b] end expandarray_splat expandarray_splat } assert_equal '2', %q{ def expandarray_postarg *, a = [1, 2] a end expandarray_postarg expandarray_postarg } assert_equal '10', %q{ obj = Object.new val = nil obj.define_singleton_method(:to_ary) { val = 10; [] } def expandarray_always_call_to_ary(object) * = object end expandarray_always_call_to_ary(obj) expandarray_always_call_to_ary(obj) val } # regression test of local type change assert_equal '1.1', %q{ def bar(baz, quux) if baz.integer? baz, quux = quux, nil end baz.to_s end bar(123, 1.1) bar(123, 1.1) } # test enabling a line TracePoint in a C method call assert_equal '[[:line, true]]', %q{ events = [] events.instance_variable_set( :@tp, TracePoint.new(:line) { |tp| events << [tp.event, tp.lineno] if tp.path == __FILE__ } ) def events.to_str @tp.enable; '' end # Stay in generated code while enabling tracing def events.compiled(obj) String(obj) @tp.disable; __LINE__ end line = events.compiled(events) events[0][-1] = (events[0][-1] == line) events } # test enabling a c_return TracePoint in a C method call assert_equal '[[:c_return, :String, :string_alias, "events_to_str"]]', %q{ events = [] events.instance_variable_set(:@tp, TracePoint.new(:c_return) { |tp| events << [tp.event, tp.method_id, tp.callee_id, tp.return_value] }) def events.to_str @tp.enable; 'events_to_str' end # Stay in generated code while enabling tracing alias string_alias String def events.compiled(obj) string_alias(obj) @tp.disable end events.compiled(events) events } # test enabling a TracePoint that targets a particular line in a C method call assert_equal '[true]', %q{ events = [] events.instance_variable_set(:@tp, TracePoint.new(:line) { |tp| events << tp.lineno }) def events.to_str @tp.enable(target: method(:compiled)) '' end # Stay in generated code while enabling tracing def events.compiled(obj) String(obj) __LINE__ end line = events.compiled(events) events[0] = (events[0] == line) events } # test enabling tracing in the middle of splatarray assert_equal '[true]', %q{ events = [] obj = Object.new obj.instance_variable_set(:@tp, TracePoint.new(:line) { |tp| events << tp.lineno }) def obj.to_a @tp.enable(target: method(:compiled)) [] end # Enable tracing in the middle of the splatarray instruction def obj.compiled(obj) * = *obj __LINE__ end obj.compiled([]) line = obj.compiled(obj) events[0] = (events[0] == line) events } # test enabling tracing in the middle of opt_aref. Different since the codegen # for it ends in a jump. assert_equal '[true]', %q{ def lookup(hash, tp) hash[42] tp.disable; __LINE__ end lines = [] tp = TracePoint.new(:line) { lines << _1.lineno if _1.path == __FILE__ } lookup(:foo, tp) lookup({}, tp) enable_tracing_on_missing = Hash.new { tp.enable } expected_line = lookup(enable_tracing_on_missing, tp) lines[0] = true if lines[0] == expected_line lines } # test enabling c_call tracing before compiling assert_equal '[[:c_call, :itself]]', %q{ def shouldnt_compile itself end events = [] tp = TracePoint.new(:c_call) { |tp| events << [tp.event, tp.method_id] } # assume first call compiles tp.enable { shouldnt_compile } events } # test enabling c_return tracing before compiling assert_equal '[[:c_return, :itself, main]]', %q{ def shouldnt_compile itself end events = [] tp = TracePoint.new(:c_return) { |tp| events << [tp.event, tp.method_id, tp.return_value] } # assume first call compiles tp.enable { shouldnt_compile } events } # test enabling tracing for a suspended fiber assert_equal '[[:return, 42]]', %q{ def traced_method Fiber.yield 42 end events = [] tp = TracePoint.new(:return) { events << [_1.event, _1.return_value] } # assume first call compiles fiber = Fiber.new { traced_method } fiber.resume tp.enable(target: method(:traced_method)) fiber.resume events } # test compiling on non-tracing ractor then running on a tracing one assert_equal '[:itself]', %q{ def traced_method itself end tracing_ractor = Ractor.new do # 1: start tracing events = [] tp = TracePoint.new(:c_call) { events << _1.method_id } tp.enable Ractor.yield(nil) # 3: run compiled method on tracing ractor Ractor.yield(nil) traced_method events ensure tp&.disable end tracing_ractor.take # 2: compile on non tracing ractor traced_method tracing_ractor.take tracing_ractor.take } # Try to hit a lazy branch stub while another ractor enables tracing assert_equal '42', %q{ def compiled(arg) if arg arg + 1 else itself itself end end ractor = Ractor.new do compiled(false) Ractor.yield(nil) compiled(41) end tp = TracePoint.new(:line) { itself } ractor.take tp.enable ractor.take } # Test equality with changing types assert_equal '[true, false, false, false]', %q{ def eq(a, b) a == b end [ eq("foo", "foo"), eq("foo", "bar"), eq(:foo, "bar"), eq("foo", :bar) ] } # Redefined String eq assert_equal 'true', %q{ class String def ==(other) true end end def eq(a, b) a == b end eq("foo", "bar") eq("foo", "bar") } # Redefined Integer eq assert_equal 'true', %q{ class Integer def ==(other) true end end def eq(a, b) a == b end eq(1, 2) eq(1, 2) } # aset on array with invalid key assert_normal_exit %q{ def foo(arr) arr[:foo] = 123 end foo([1]) rescue nil foo([1]) rescue nil } # test ractor exception on when getting ivar assert_equal '42', %q{ class A def self.foo _foo = 1 _bar = 2 begin @bar rescue Ractor::IsolationError 42 end end end A.foo A.foo Ractor.new { A.foo }.take } assert_equal '["plain", "special", "sub", "plain"]', %q{ def foo(arg) arg.to_s end class Sub < String end special = String.new("special") special.singleton_class [ foo("plain"), foo(special), foo(Sub.new("sub")), foo("plain") ] } assert_equal '["sub", "sub"]', %q{ def foo(arg) arg.to_s end class Sub < String def to_s super end end sub = Sub.new("sub") [foo(sub), foo(sub)] } assert_equal '[1]', %q{ def kwargs(value:) value end 5.times.map { kwargs(value: 1) }.uniq } assert_equal '[[1, 2]]', %q{ def kwargs(left:, right:) [left, right] end 5.times.flat_map do [ kwargs(left: 1, right: 2), kwargs(right: 2, left: 1) ] end.uniq } assert_equal '[[1, 2]]', %q{ def kwargs(lead, kwarg:) [lead, kwarg] end 5.times.map { kwargs(1, kwarg: 2) }.uniq } # leading and keyword arguments are swapped into the right order assert_equal '[[1, 2, 3, 4, 5, 6]]', %q{ def kwargs(five, six, a:, b:, c:, d:) [a, b, c, d, five, six] end 5.times.flat_map do [ kwargs(5, 6, a: 1, b: 2, c: 3, d: 4), kwargs(5, 6, a: 1, b: 2, d: 4, c: 3), kwargs(5, 6, a: 1, c: 3, b: 2, d: 4), kwargs(5, 6, a: 1, c: 3, d: 4, b: 2), kwargs(5, 6, a: 1, d: 4, b: 2, c: 3), kwargs(5, 6, a: 1, d: 4, c: 3, b: 2), kwargs(5, 6, b: 2, a: 1, c: 3, d: 4), kwargs(5, 6, b: 2, a: 1, d: 4, c: 3), kwargs(5, 6, b: 2, c: 3, a: 1, d: 4), kwargs(5, 6, b: 2, c: 3, d: 4, a: 1), kwargs(5, 6, b: 2, d: 4, a: 1, c: 3), kwargs(5, 6, b: 2, d: 4, c: 3, a: 1), kwargs(5, 6, c: 3, a: 1, b: 2, d: 4), kwargs(5, 6, c: 3, a: 1, d: 4, b: 2), kwargs(5, 6, c: 3, b: 2, a: 1, d: 4), kwargs(5, 6, c: 3, b: 2, d: 4, a: 1), kwargs(5, 6, c: 3, d: 4, a: 1, b: 2), kwargs(5, 6, c: 3, d: 4, b: 2, a: 1), kwargs(5, 6, d: 4, a: 1, b: 2, c: 3), kwargs(5, 6, d: 4, a: 1, c: 3, b: 2), kwargs(5, 6, d: 4, b: 2, a: 1, c: 3), kwargs(5, 6, d: 4, b: 2, c: 3, a: 1), kwargs(5, 6, d: 4, c: 3, a: 1, b: 2), kwargs(5, 6, d: 4, c: 3, b: 2, a: 1) ] end.uniq } # implicit hashes get skipped and don't break compilation assert_equal '[[:key]]', %q{ def implicit(hash) hash.keys end 5.times.map { implicit(key: :value) }.uniq } # default values on keywords don't mess up argument order assert_equal '[2]', %q{ def default_value 1 end def default_expression(value: default_value) value end 5.times.map { default_expression(value: 2) }.uniq } # attr_reader on frozen object assert_equal 'false', %q{ class Foo attr_reader :exception def failed? !exception.nil? end end foo = Foo.new.freeze foo.failed? foo.failed? } # regression test for doing kwarg shuffle before checking for interrupts assert_equal 'ok', %q{ def new_media_drop(attributes:, product_drop:, context:, sources:) nil.nomethod rescue nil # force YJIT to bail to side exit [attributes, product_drop, context, sources] end def load_medias(product_drop: nil, raw_medias:, context:) raw_medias.map do |raw_media| case new_media_drop(context: context, attributes: raw_media, product_drop: product_drop, sources: []) in [Hash, ProductDrop, Context, Array] else raise "bad shuffle" end end end class Context; end class ProductDrop attr_reader :title def initialize(title) @title = title end end # Make a thread so we have thread switching interrupts th = Thread.new do while true; end end 1_000.times do |i| load_medias(product_drop: ProductDrop.new("foo"), raw_medias: [{}, {}], context: Context.new) end th.kill.join :ok } # regression test for tracing attr_accessor methods. assert_equal "true", %q{ c = Class.new do attr_accessor :x alias y x alias y= x= end obj = c.new ar_meth = obj.method(:x) aw_meth = obj.method(:x=) aar_meth = obj.method(:y) aaw_meth = obj.method(:y=) events = [] trace = TracePoint.new(:c_call, :c_return){|tp| next if tp.path != __FILE__ next if tp.method_id == :call case tp.event when :c_call events << [tp.event, tp.method_id, tp.callee_id] when :c_return events << [tp.event, tp.method_id, tp.callee_id, tp.return_value] end } test_proc = proc do obj.x = 1 obj.x obj.y = 2 obj.y aw_meth.call(1) ar_meth.call aaw_meth.call(2) aar_meth.call end test_proc.call # populate call caches trace.enable(&test_proc) expected = [ [:c_call, :x=, :x=], [:c_return, :x=, :x=, 1], [:c_call, :x, :x], [:c_return, :x, :x, 1], [:c_call, :x=, :y=], [:c_return, :x=, :y=, 2], [:c_call, :x, :y], [:c_return, :x, :y, 2], ] * 2 expected == events }