/********************************************************************** bignum.c - $Author$ $Date$ created at: Fri Jun 10 00:48:55 JST 1994 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include #include #ifdef HAVE_IEEEFP_H #include #endif VALUE rb_cBignum; #if defined __MINGW32__ #define USHORT _USHORT #endif #define BDIGITS(x) ((BDIGIT*)RBIGNUM(x)->digits) #define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT) #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG) #define DIGSPERLONG ((unsigned int)(SIZEOF_LONG/SIZEOF_BDIGITS)) #if HAVE_LONG_LONG # define DIGSPERLL ((unsigned int)(SIZEOF_LONG_LONG/SIZEOF_BDIGITS)) #endif #define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG) #define BIGDN(x) RSHIFT(x,BITSPERDIG) #define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1))) #define BDIGMAX ((BDIGIT)-1) #define BIGZEROP(x) (RBIGNUM(x)->len == 0 || (RBIGNUM(x)->len == 1 && BDIGITS(x)[0] == 0)) static VALUE bignew_1(klass, len, sign) VALUE klass; long len; int sign; { NEWOBJ(big, struct RBignum); OBJSETUP(big, klass, T_BIGNUM); big->sign = sign?1:0; big->len = len; big->digits = ALLOC_N(BDIGIT, len); return (VALUE)big; } #define bignew(len,sign) bignew_1(rb_cBignum,len,sign) VALUE rb_big_clone(x) VALUE x; { VALUE z = bignew_1(CLASS_OF(x), RBIGNUM(x)->len, RBIGNUM(x)->sign); MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, RBIGNUM(x)->len); return z; } /* modify a bignum by 2's complement */ static void get2comp(x) VALUE x; { long i = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); BDIGIT_DBL num; while (i--) ds[i] = ~ds[i]; i = 0; num = 1; do { num += ds[i]; ds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM(x)->len); if (num != 0) { REALLOC_N(RBIGNUM(x)->digits, BDIGIT, ++RBIGNUM(x)->len); ds = BDIGITS(x); ds[RBIGNUM(x)->len-1] = RBIGNUM(x)->sign ? ~0 : 1; } } void rb_big_2comp(x) /* get 2's complement */ VALUE x; { get2comp(x); } static VALUE bignorm(x) VALUE x; { if (!FIXNUM_P(x)) { long len = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); while (len-- && !ds[len]) ; RBIGNUM(x)->len = ++len; if (len*SIZEOF_BDIGITS <= sizeof(VALUE)) { long num = 0; while (len--) { num = BIGUP(num) + ds[len]; } if (num >= 0) { if (RBIGNUM(x)->sign) { if (POSFIXABLE(num)) return LONG2FIX(num); } else if (NEGFIXABLE(-(long)num)) return LONG2FIX(-(long)num); } } } return x; } VALUE rb_big_norm(x) VALUE x; { return bignorm(x); } VALUE rb_uint2big(n) unsigned long n; { BDIGIT_DBL num = n; long i = 0; BDIGIT *digits; VALUE big; big = bignew(DIGSPERLONG, 1); digits = BDIGITS(big); while (i < DIGSPERLONG) { digits[i++] = BIGLO(num); num = BIGDN(num); } i = DIGSPERLONG; while (--i && !digits[i]) ; RBIGNUM(big)->len = i+1; return big; } VALUE rb_int2big(n) long n; { long neg = 0; VALUE big; if (n < 0) { n = -n; neg = 1; } big = rb_uint2big(n); if (neg) { RBIGNUM(big)->sign = 0; } return big; } VALUE rb_uint2inum(n) unsigned long n; { if (POSFIXABLE(n)) return LONG2FIX(n); return rb_uint2big(n); } VALUE rb_int2inum(n) long n; { if (FIXABLE(n)) return LONG2FIX(n); return rb_int2big(n); } #ifdef HAVE_LONG_LONG void rb_quad_pack(buf, val) char *buf; VALUE val; { LONG_LONG q; val = rb_to_int(val); if (FIXNUM_P(val)) { q = FIX2LONG(val); } else { long len = RBIGNUM(val)->len; BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) rb_raise(rb_eRangeError, "bignum too big to convert into `quad int'"); ds = BDIGITS(val); q = 0; while (len--) { q = BIGUP(q); q += ds[len]; } if (!RBIGNUM(val)->sign) q = -q; } memcpy(buf, (char*)&q, SIZEOF_LONG_LONG); } VALUE rb_quad_unpack(buf, sign) const char *buf; int sign; { unsigned LONG_LONG q; long neg = 0; long i; BDIGIT *digits; VALUE big; memcpy(&q, buf, SIZEOF_LONG_LONG); if (sign) { if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q); if ((LONG_LONG)q < 0) { q = -(LONG_LONG)q; neg = 1; } } else { if (POSFIXABLE(q)) return LONG2FIX(q); } i = 0; big = bignew(DIGSPERLL, 1); digits = BDIGITS(big); while (i < DIGSPERLL) { digits[i++] = BIGLO(q); q = BIGDN(q); } i = DIGSPERLL; while (i-- && !digits[i]) ; RBIGNUM(big)->len = i+1; if (neg) { RBIGNUM(big)->sign = 0; } return bignorm(big); } #else #define QUAD_SIZE 8 void rb_quad_pack(buf, val) char *buf; VALUE val; { long len; memset(buf, 0, QUAD_SIZE); val = rb_to_int(val); if (FIXNUM_P(val)) { val = rb_int2big(FIX2LONG(val)); } len = RBIGNUM(val)->len * SIZEOF_BDIGITS; if (len > QUAD_SIZE) { rb_raise(rb_eRangeError, "bignum too big to convert into `quad int'"); } memcpy(buf, (char*)BDIGITS(val), len); if (!RBIGNUM(val)->sign) { len = QUAD_SIZE; while (len--) { *buf = ~*buf; buf++; } } } #define BNEG(b) (RSHIFT(((BDIGIT*)b)[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0) VALUE rb_quad_unpack(buf, sign) const char *buf; int sign; { VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1); memcpy((char*)BDIGITS(big), buf, QUAD_SIZE); if (sign && BNEG(buf)) { long len = QUAD_SIZE; char *tmp = (char*)BDIGITS(big); RBIGNUM(big)->sign = 0; while (len--) { *tmp = ~*tmp; tmp++; } } return bignorm(big); } #endif VALUE rb_cstr_to_inum(str, base, badcheck) const char *str; int base; int badcheck; { const char *s = str; char *end; char sign = 1, nondigit = 0; int c; BDIGIT_DBL num; long len, blen = 1; long i; VALUE z; BDIGIT *zds; if (!str) { if (badcheck) goto bad; return INT2FIX(0); } if (badcheck) { while (ISSPACE(*str)) str++; } else { while (ISSPACE(*str) || *str == '_') str++; } if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; sign = 0; } if (str[0] == '+' || str[0] == '-') { if (badcheck) goto bad; return INT2FIX(0); } if (base <= 0) { if (str[0] == '0') { switch (str[1]) { case 'x': case 'X': base = 16; break; case 'b': case 'B': base = 2; break; case 'o': case 'O': base = 8; break; case 'd': case 'D': base = 10; break; default: base = 8; } } else if (base < -1) { base = -base; } else { base = 10; } } switch (base) { case 2: len = 1; if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) { str += 2; } break; case 3: len = 2; break; case 8: if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) { str += 2; } case 4: case 5: case 6: case 7: len = 3; break; case 10: if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) { str += 2; } case 9: case 11: case 12: case 13: case 14: case 15: len = 4; break; case 16: len = 4; if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) { str += 2; } break; default: if (base < 2 || 36 < base) { rb_raise(rb_eArgError, "illegal radix %d", base); } if (base <= 32) { len = 5; } else { len = 6; } break; } if (*str == '0') { /* squeeze preceeding 0s */ while (*++str == '0'); --str; } len *= strlen(str)*sizeof(char); if (len <= (sizeof(VALUE)*CHAR_BIT)) { unsigned long val = strtoul((char*)str, &end, base); if (*end == '_') goto bigparse; if (badcheck) { if (end == str) goto bad; /* no number */ while (*end && ISSPACE(*end)) end++; if (*end) goto bad; /* trailing garbage */ } if (POSFIXABLE(val)) { if (sign) return LONG2FIX(val); else { long result = -(long)val; return LONG2FIX(result); } } else { VALUE big = rb_uint2big(val); RBIGNUM(big)->sign = sign; return bignorm(big); } } bigparse: len = (len/BITSPERDIG)+1; if (badcheck && *str == '_') goto bad; z = bignew(len, sign); zds = BDIGITS(z); for (i=len;i--;) zds[i]=0; while (c = *str++) { if (c == '_') { if (badcheck) { if (nondigit) goto bad; nondigit = c; } continue; } else if (!ISASCII(c)) { break; } else if (isdigit(c)) { c -= '0'; } else if (islower(c)) { c -= 'a' - 10; } else if (isupper(c)) { c -= 'A' - 10; } else { break; } if (c >= base) break; nondigit = 0; i = 0; num = c; for (;;) { while (iptr; } if (s) { len = RSTRING(str)->len; if (s[len]) { /* no sentinel somehow */ char *p = ALLOCA_N(char, len+1); MEMCPY(p, s, char, len); p[len] = '\0'; s = p; } } return rb_cstr_to_inum(s, base, badcheck); } #if HAVE_LONG_LONG VALUE rb_ull2big(n) unsigned LONG_LONG n; { BDIGIT_DBL num = n; long i = 0; BDIGIT *digits; VALUE big; big = bignew(DIGSPERLL, 1); digits = BDIGITS(big); while (i < DIGSPERLL) { digits[i++] = BIGLO(num); num = BIGDN(num); } i = DIGSPERLL; while (i-- && !digits[i]) ; RBIGNUM(big)->len = i+1; return big; } VALUE rb_ll2big(n) LONG_LONG n; { long neg = 0; VALUE big; if (n < 0) { n = -n; neg = 1; } big = rb_ull2big(n); if (neg) { RBIGNUM(big)->sign = 0; } return big; } VALUE rb_ull2inum(n) unsigned LONG_LONG n; { if (POSFIXABLE(n)) return LONG2FIX(n); return rb_ull2big(n); } VALUE rb_ll2inum(n) LONG_LONG n; { if (FIXABLE(n)) return LONG2FIX(n); return rb_ll2big(n); } #endif /* HAVE_LONG_LONG */ VALUE rb_cstr2inum(str, base) const char *str; int base; { return rb_cstr_to_inum(str, base, base==0); } VALUE rb_str2inum(str, base) VALUE str; int base; { return rb_str_to_inum(str, base, base==0); } const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz"; VALUE rb_big2str(x, base) VALUE x; int base; { volatile VALUE t; BDIGIT *ds; long i, j, hbase; VALUE ss; char *s, c; if (FIXNUM_P(x)) { return rb_fix2str(x, base); } i = RBIGNUM(x)->len; if (BIGZEROP(x)) { return rb_str_new2("0"); } j = SIZEOF_BDIGITS*CHAR_BIT*i; switch (base) { case 2: break; case 3: j = j * 647L / 1024; break; case 4: case 5: case 6: case 7: j /= 2; break; case 8: case 9: j /= 3; break; case 10: case 11: case 12: case 13: case 14: case 15: j = j * 241L / 800; break; case 16: case 17: case 18: case 19: case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: case 29: case 30: case 31: j /= 4; break; case 32: case 33: case 34: case 35: case 36: j /= 5; break; default: rb_raise(rb_eArgError, "illegal radix %d", base); break; } j += 2; hbase = base * base; #if SIZEOF_BDIGITS > 2 hbase *= hbase; #endif t = rb_big_clone(x); ds = BDIGITS(t); ss = rb_str_new(0, j); s = RSTRING(ss)->ptr; s[0] = RBIGNUM(x)->sign ? '+' : '-'; while (i && j) { long k = i; BDIGIT_DBL num = 0; while (k--) { num = BIGUP(num) + ds[k]; ds[k] = (BDIGIT)(num / hbase); num %= hbase; } if (ds[i-1] == 0) i--; k = SIZEOF_BDIGITS; while (k--) { c = (char)(num % base); s[--j] = ruby_digitmap[(int)c]; num /= base; if (i == 0 && num == 0) break; } } while (s[j] == '0') j++; RSTRING(ss)->len -= RBIGNUM(x)->sign?j:j-1; memmove(RBIGNUM(x)->sign?s:s+1, s+j, RSTRING(ss)->len); s[RSTRING(ss)->len] = '\0'; return ss; } /* * call-seq: * big.to_s(base=10) => string * * Returns a string containing the representation of big radix * base (2 through 36). * * 12345654321.to_s #=> "12345654321" * 12345654321.to_s(2) #=> "1011011111110110111011110000110001" * 12345654321.to_s(8) #=> "133766736061" * 12345654321.to_s(16) #=> "2dfdbbc31" * 78546939656932.to_s(36) #=> "rubyrules" */ static VALUE rb_big_to_s(argc, argv, x) int argc; VALUE *argv; VALUE x; { VALUE b; int base; rb_scan_args(argc, argv, "01", &b); if (argc == 0) base = 10; else base = NUM2INT(b); return rb_big2str(x, base); } static unsigned long big2ulong(x, type) VALUE x; char *type; { long len = RBIGNUM(x)->len; BDIGIT_DBL num; BDIGIT *ds; if (len > SIZEOF_LONG/SIZEOF_BDIGITS) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } unsigned long rb_big2ulong_pack(x) VALUE x; { unsigned long num = big2ulong(x, "unsigned long"); if (!RBIGNUM(x)->sign) { return -num; } return num; } unsigned long rb_big2ulong(x) VALUE x; { unsigned long num = big2ulong(x, "unsigned long"); if (!RBIGNUM(x)->sign) { if ((long)num < 0) { rb_raise(rb_eRangeError, "bignum out of range of unsigned long"); } return -num; } return num; } long rb_big2long(x) VALUE x; { unsigned long num = big2ulong(x, "long"); if ((long)num < 0 && (RBIGNUM(x)->sign || (long)num != LONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long'"); } if (!RBIGNUM(x)->sign) return -(long)num; return num; } #if HAVE_LONG_LONG static unsigned LONG_LONG big2ull(x, type) VALUE x; char *type; { long len = RBIGNUM(x)->len; BDIGIT_DBL num; BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } unsigned LONG_LONG rb_big2ull(x) VALUE x; { unsigned LONG_LONG num = big2ull(x, "unsigned long long"); if (!RBIGNUM(x)->sign) return -num; return num; } LONG_LONG rb_big2ll(x) VALUE x; { unsigned LONG_LONG num = big2ull(x, "long long"); if ((LONG_LONG)num < 0 && (RBIGNUM(x)->sign || (LONG_LONG)num != LLONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long long'"); } if (!RBIGNUM(x)->sign) return -(LONG_LONG)num; return num; } #endif /* HAVE_LONG_LONG */ static VALUE dbl2big(d) double d; { long i = 0; BDIGIT c; BDIGIT *digits; VALUE z; double u = (d < 0)?-d:d; if (isinf(d)) { rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity"); } if (isnan(d)) { rb_raise(rb_eFloatDomainError, "NaN"); } while (!POSFIXABLE(u) || 0 != (long)u) { u /= (double)(BIGRAD); i++; } z = bignew(i, d>=0); digits = BDIGITS(z); while (i--) { u *= BIGRAD; c = (BDIGIT)u; u -= c; digits[i] = c; } return z; } VALUE rb_dbl2big(d) double d; { return bignorm(dbl2big(d)); } double rb_big2dbl(x) VALUE x; { double d = 0.0; long i = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); while (i--) { d = ds[i] + BIGRAD*d; } if (isinf(d)) { rb_warn("Bignum out of Float range"); d = HUGE_VAL; } if (!RBIGNUM(x)->sign) d = -d; return d; } /* * call-seq: * big.to_f -> float * * Converts big to a Float. If big doesn't * fit in a Float, the result is infinity. * */ static VALUE rb_big_to_f(x) VALUE x; { return rb_float_new(rb_big2dbl(x)); } /* * call-seq: * big <=> numeric => -1, 0, +1 * * Comparison---Returns -1, 0, or +1 depending on whether big is * less than, equal to, or greater than numeric. This is the * basis for the tests in Comparable. * */ static VALUE rb_big_cmp(x, y) VALUE x, y; { long xlen = RBIGNUM(x)->len; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return rb_dbl_cmp(rb_big2dbl(x), RFLOAT(y)->value); default: return rb_num_coerce_cmp(x, y); } if (RBIGNUM(x)->sign > RBIGNUM(y)->sign) return INT2FIX(1); if (RBIGNUM(x)->sign < RBIGNUM(y)->sign) return INT2FIX(-1); if (xlen < RBIGNUM(y)->len) return (RBIGNUM(x)->sign) ? INT2FIX(-1) : INT2FIX(1); if (xlen > RBIGNUM(y)->len) return (RBIGNUM(x)->sign) ? INT2FIX(1) : INT2FIX(-1); while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen])); if (-1 == xlen) return INT2FIX(0); return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ? (RBIGNUM(x)->sign ? INT2FIX(1) : INT2FIX(-1)) : (RBIGNUM(x)->sign ? INT2FIX(-1) : INT2FIX(1)); } /* * call-seq: * big == obj => true or false * * Returns true only if obj has the same value * as big. Contrast this with Bignum#eql?, which * requires obj to be a Bignum. * * 68719476736 == 68719476736.0 #=> true */ static VALUE rb_big_eq(x, y) VALUE x, y; { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { volatile double a, b; a = RFLOAT(y)->value; if (isnan(a)) return Qfalse; b = rb_big2dbl(x); return (a == b)?Qtrue:Qfalse; } default: return rb_equal(y, x); } if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse; if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse; return Qtrue; } /* * call-seq: * big.eql?(obj) => true or false * * Returns true only if obj is a * Bignum with the same value as big. Contrast this * with Bignum#==, which performs type conversions. * * 68719476736.eql?(68719476736.0) #=> false */ static VALUE rb_big_eql(x, y) VALUE x, y; { if (TYPE(y) != T_BIGNUM) return Qfalse; if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse; if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse; return Qtrue; } /* * call-seq: * -big => other_big * * Unary minus (returns a new Bignum whose value is 0-big) */ static VALUE rb_big_uminus(x) VALUE x; { VALUE z = rb_big_clone(x); RBIGNUM(z)->sign = !RBIGNUM(x)->sign; return bignorm(z); } /* * call-seq: * ~big => integer * * Inverts the bits in big. As Bignums are conceptually infinite * length, the result acts as if it had an infinite number of one * bits to the left. In hex representations, this is displayed * as two periods to the left of the digits. * * sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA" */ static VALUE rb_big_neg(x) VALUE x; { VALUE z = rb_big_clone(x); long i; BDIGIT *ds; if (!RBIGNUM(x)->sign) get2comp(z); ds = BDIGITS(z); i = RBIGNUM(x)->len; while (i--) ds[i] = ~ds[i]; RBIGNUM(z)->sign = !RBIGNUM(z)->sign; if (RBIGNUM(x)->sign) get2comp(z); return bignorm(z); } static VALUE bigsub(x, y) VALUE x, y; { VALUE z = 0; BDIGIT *zds; BDIGIT_DBL_SIGNED num; long i = RBIGNUM(x)->len; /* if x is larger than y, swap */ if (RBIGNUM(x)->len < RBIGNUM(y)->len) { z = x; x = y; y = z; /* swap x y */ } else if (RBIGNUM(x)->len == RBIGNUM(y)->len) { while (i > 0) { i--; if (BDIGITS(x)[i] > BDIGITS(y)[i]) { break; } if (BDIGITS(x)[i] < BDIGITS(y)[i]) { z = x; x = y; y = z; /* swap x y */ break; } } } z = bignew(RBIGNUM(x)->len, z==0); zds = BDIGITS(z); for (i = 0, num = 0; i < RBIGNUM(y)->len; i++) { num += (BDIGIT_DBL_SIGNED)BDIGITS(x)[i] - BDIGITS(y)[i]; zds[i] = BIGLO(num); num = BIGDN(num); } while (num && i < RBIGNUM(x)->len) { num += BDIGITS(x)[i]; zds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM(x)->len) { zds[i] = BDIGITS(x)[i]; i++; } return z; } static VALUE bigadd(x, y, sign) VALUE x, y; int sign; { VALUE z; BDIGIT_DBL num; long i, len; sign = (sign == RBIGNUM(y)->sign); if (RBIGNUM(x)->sign != sign) { if (sign) return bigsub(y, x); return bigsub(x, y); } if (RBIGNUM(x)->len > RBIGNUM(y)->len) { len = RBIGNUM(x)->len + 1; z = x; x = y; y = z; } else { len = RBIGNUM(y)->len + 1; } z = bignew(len, sign); len = RBIGNUM(x)->len; for (i = 0, num = 0; i < len; i++) { num += (BDIGIT_DBL)BDIGITS(x)[i] + BDIGITS(y)[i]; BDIGITS(z)[i] = BIGLO(num); num = BIGDN(num); } len = RBIGNUM(y)->len; while (num && i < len) { num += BDIGITS(y)[i]; BDIGITS(z)[i++] = BIGLO(num); num = BIGDN(num); } while (i < len) { BDIGITS(z)[i] = BDIGITS(y)[i]; i++; } BDIGITS(z)[i] = (BDIGIT)num; return z; } /* * call-seq: * big + other => Numeric * * Adds big and other, returning the result. */ VALUE rb_big_plus(x, y) VALUE x, y; { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); /* fall through */ case T_BIGNUM: return bignorm(bigadd(x, y, 1)); case T_FLOAT: return rb_float_new(rb_big2dbl(x) + RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * big - other => Numeric * * Subtracts other from big, returning the result. */ VALUE rb_big_minus(x, y) VALUE x, y; { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); /* fall through */ case T_BIGNUM: return bignorm(bigadd(x, y, 0)); case T_FLOAT: return rb_float_new(rb_big2dbl(x) - RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * big * other => Numeric * * Multiplies big and other, returning the result. */ VALUE rb_big_mul(x, y) VALUE x, y; { long i, j; BDIGIT_DBL n = 0; VALUE z; BDIGIT *zds; if (FIXNUM_P(x)) x = rb_int2big(FIX2LONG(x)); switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return rb_float_new(rb_big2dbl(x) * RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } j = RBIGNUM(x)->len + RBIGNUM(y)->len + 1; z = bignew(j, RBIGNUM(x)->sign==RBIGNUM(y)->sign); zds = BDIGITS(z); while (j--) zds[j] = 0; for (i = 0; i < RBIGNUM(x)->len; i++) { BDIGIT_DBL dd = BDIGITS(x)[i]; if (dd == 0) continue; n = 0; for (j = 0; j < RBIGNUM(y)->len; j++) { BDIGIT_DBL ee = n + (BDIGIT_DBL)dd * BDIGITS(y)[j]; n = zds[i + j] + ee; if (ee) zds[i + j] = BIGLO(n); n = BIGDN(n); } if (n) { zds[i + j] = n; } } return bignorm(z); } static void bigdivrem(x, y, divp, modp) VALUE x, y; VALUE *divp, *modp; { long nx = RBIGNUM(x)->len, ny = RBIGNUM(y)->len; long i, j; VALUE yy, z; BDIGIT *xds, *yds, *zds, *tds; BDIGIT_DBL t2; BDIGIT_DBL_SIGNED num; BDIGIT dd, q; if (BIGZEROP(y)) rb_num_zerodiv(); yds = BDIGITS(y); if (nx < ny || (nx == ny && BDIGITS(x)[nx - 1] < BDIGITS(y)[ny - 1])) { if (divp) *divp = rb_int2big(0); if (modp) *modp = x; return; } xds = BDIGITS(x); if (ny == 1) { dd = yds[0]; z = rb_big_clone(x); zds = BDIGITS(z); t2 = 0; i = nx; while (i--) { t2 = BIGUP(t2) + zds[i]; zds[i] = (BDIGIT)(t2 / dd); t2 %= dd; } RBIGNUM(z)->sign = RBIGNUM(x)->sign==RBIGNUM(y)->sign; if (modp) { *modp = rb_uint2big((unsigned long)t2); RBIGNUM(*modp)->sign = RBIGNUM(x)->sign; } if (divp) *divp = z; return; } z = bignew(nx==ny?nx+2:nx+1, RBIGNUM(x)->sign==RBIGNUM(y)->sign); zds = BDIGITS(z); if (nx==ny) zds[nx+1] = 0; while (!yds[ny-1]) ny--; dd = 0; q = yds[ny-1]; while ((q & (1<<(BITSPERDIG-1))) == 0) { q <<= 1; dd++; } if (dd) { yy = rb_big_clone(y); tds = BDIGITS(yy); j = 0; t2 = 0; while (j= ny); if (divp) { /* move quotient down in z */ *divp = rb_big_clone(z); zds = BDIGITS(*divp); j = (nx==ny ? nx+2 : nx+1) - ny; for (i = 0;i < j;i++) zds[i] = zds[i+ny]; RBIGNUM(*divp)->len = i; } if (modp) { /* normalize remainder */ *modp = rb_big_clone(z); zds = BDIGITS(*modp); while (--ny && !zds[ny]); ++ny; if (dd) { t2 = 0; i = ny; while(i--) { t2 = (t2 | zds[i]) >> dd; q = zds[i]; zds[i] = BIGLO(t2); t2 = BIGUP(q); } } RBIGNUM(*modp)->len = ny; RBIGNUM(*modp)->sign = RBIGNUM(x)->sign; } } static void bigdivmod(x, y, divp, modp) VALUE x, y; VALUE *divp, *modp; { VALUE mod; bigdivrem(x, y, divp, &mod); if (RBIGNUM(x)->sign != RBIGNUM(y)->sign && !BIGZEROP(mod)) { if (divp) *divp = bigadd(*divp, rb_int2big(1), 0); if (modp) *modp = bigadd(mod, y, 1); } else { if (divp) *divp = *divp; if (modp) *modp = mod; } } /* * call-seq: * big / other => Numeric * big.div(other) => Numeric * * Divides big by other, returning the result. */ static VALUE rb_big_div(x, y) VALUE x, y; { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return rb_float_new(rb_big2dbl(x) / RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } bigdivmod(x, y, &z, 0); return bignorm(z); } /* * call-seq: * big % other => Numeric * big.modulo(other) => Numeric * * Returns big modulo other. See Numeric.divmod for more * information. */ static VALUE rb_big_modulo(x, y) VALUE x, y; { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y); } bigdivmod(x, y, 0, &z); return bignorm(z); } /* * call-seq: * big.remainder(numeric) => number * * Returns the remainder after dividing big by numeric. * * -1234567890987654321.remainder(13731) #=> -6966 * -1234567890987654321.remainder(13731.24) #=> -9906.22531493148 */ static VALUE rb_big_remainder(x, y) VALUE x, y; { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y); } bigdivrem(x, y, 0, &z); return bignorm(z); } /* * call-seq: * big.divmod(numeric) => array * * See Numeric#divmod. * */ VALUE rb_big_divmod(x, y) VALUE x, y; { VALUE div, mod; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y); } bigdivmod(x, y, &div, &mod); return rb_assoc_new(bignorm(div), bignorm(mod)); } /* * call-seq: * big.quo(numeric) -> float * * Returns the floating point result of dividing big by * numeric. * * -1234567890987654321.quo(13731) #=> -89910996357705.5 * -1234567890987654321.quo(13731.24) #=> -89909424858035.7 * */ static VALUE rb_big_quo(x, y) VALUE x, y; { double dx = rb_big2dbl(x); double dy; switch (TYPE(y)) { case T_FIXNUM: dy = (double)FIX2LONG(y); break; case T_BIGNUM: dy = rb_big2dbl(y); break; case T_FLOAT: dy = RFLOAT(y)->value; break; default: return rb_num_coerce_bin(x, y); } return rb_float_new(dx / dy); } /* * call-seq: * big ** exponent #=> numeric * * Raises _big_ to the _exponent_ power (which may be an integer, float, * or anything that will coerce to a number). The result may be * a Fixnum, Bignum, or Float * * 123456789 ** 2 #=> 15241578750190521 * 123456789 ** 1.2 #=> 5126464716.09932 * 123456789 ** -2 #=> 6.5610001194102e-17 */ VALUE rb_big_pow(x, y) VALUE x, y; { double d; long yy; if (y == INT2FIX(0)) return INT2FIX(1); switch (TYPE(y)) { case T_FLOAT: d = RFLOAT(y)->value; break; case T_BIGNUM: rb_warn("in a**b, b may be too big"); d = rb_big2dbl(y); break; case T_FIXNUM: yy = FIX2LONG(y); if (yy > 0) { VALUE z = x; for (;;) { yy -= 1; if (yy == 0) break; while (yy % 2 == 0) { yy /= 2; x = rb_big_mul(x, x); } z = rb_big_mul(z, x); } return bignorm(z); } d = (double)yy; break; default: return rb_num_coerce_bin(x, y); } return rb_float_new(pow(rb_big2dbl(x), d)); } /* * call-seq: * big & numeric => integer * * Performs bitwise +and+ between _big_ and _numeric_. */ VALUE rb_big_and(xx, yy) VALUE xx, yy; { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM(y)->sign) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM(x)->sign) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM(x)->len > RBIGNUM(y)->len) { l1 = RBIGNUM(y)->len; l2 = RBIGNUM(x)->len; ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM(y)->sign; } else { l1 = RBIGNUM(x)->len; l2 = RBIGNUM(y)->len; ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM(x)->sign; } z = bignew(l2, RBIGNUM(x)->sign || RBIGNUM(y)->sign); zds = BDIGITS(z); for (i=0; isign) get2comp(z); return bignorm(z); } /* * call-seq: * big | numeric => integer * * Performs bitwise +or+ between _big_ and _numeric_. */ VALUE rb_big_or(xx, yy) VALUE xx, yy; { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM(y)->sign) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM(x)->sign) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM(x)->len > RBIGNUM(y)->len) { l1 = RBIGNUM(y)->len; l2 = RBIGNUM(x)->len; ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM(y)->sign; } else { l1 = RBIGNUM(x)->len; l2 = RBIGNUM(y)->len; ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM(x)->sign; } z = bignew(l2, RBIGNUM(x)->sign && RBIGNUM(y)->sign); zds = BDIGITS(z); for (i=0; isign) get2comp(z); return bignorm(z); } /* * call-seq: * big ^ numeric => integer * * Performs bitwise +exclusive or+ between _big_ and _numeric_. */ VALUE rb_big_xor(xx, yy) VALUE xx, yy; { volatile VALUE x, y; VALUE z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM(y)->sign) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM(x)->sign) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM(x)->len > RBIGNUM(y)->len) { l1 = RBIGNUM(y)->len; l2 = RBIGNUM(x)->len; ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM(y)->sign; } else { l1 = RBIGNUM(x)->len; l2 = RBIGNUM(y)->len; ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM(x)->sign; } RBIGNUM(x)->sign = RBIGNUM(x)->sign?1:0; RBIGNUM(y)->sign = RBIGNUM(y)->sign?1:0; z = bignew(l2, !(RBIGNUM(x)->sign ^ RBIGNUM(y)->sign)); zds = BDIGITS(z); for (i=0; isign) get2comp(z); return bignorm(z); } static VALUE rb_big_rshift _((VALUE,VALUE)); /* * call-seq: * big << numeric => integer * * Shifts big left _numeric_ positions (right if _numeric_ is negative). */ VALUE rb_big_lshift(x, y) VALUE x, y; { BDIGIT *xds, *zds; int shift = NUM2INT(y); int s1 = shift/BITSPERDIG; int s2 = shift%BITSPERDIG; VALUE z; BDIGIT_DBL num = 0; long len, i; if (shift < 0) return rb_big_rshift(x, INT2FIX(-shift)); len = RBIGNUM(x)->len; z = bignew(len+s1+1, RBIGNUM(x)->sign); zds = BDIGITS(z); for (i=0; i> numeric => integer * * Shifts big right _numeric_ positions (left if _numeric_ is negative). */ static VALUE rb_big_rshift(x, y) VALUE x, y; { BDIGIT *xds, *zds; int shift = NUM2INT(y); long s1 = shift/BITSPERDIG; long s2 = shift%BITSPERDIG; VALUE z; BDIGIT_DBL num = 0; long i, j; volatile VALUE save_x; if (shift < 0) return rb_big_lshift(x, INT2FIX(-shift)); if (s1 > RBIGNUM(x)->len) { if (RBIGNUM(x)->sign) return INT2FIX(0); else return INT2FIX(-1); } if (!RBIGNUM(x)->sign) { save_x = x = rb_big_clone(x); get2comp(x); } xds = BDIGITS(x); i = RBIGNUM(x)->len; j = i - s1; z = bignew(j, RBIGNUM(x)->sign); if (!RBIGNUM(x)->sign) { num = ((BDIGIT_DBL)~0) << BITSPERDIG; } zds = BDIGITS(z); while (i--, j--) { num = (num | xds[i]) >> s2; zds[j] = BIGLO(num); num = BIGUP(xds[i]); } if (!RBIGNUM(x)->sign) { get2comp(z); } return bignorm(z); } /* * call-seq: * big[n] -> 0, 1 * * Bit Reference---Returns the nth bit in the (assumed) binary * representation of big, where big[0] is the least * significant bit. * * a = 9**15 * 50.downto(0) do |n| * print a[n] * end * * produces: * * 000101110110100000111000011110010100111100010111001 * */ static VALUE rb_big_aref(x, y) VALUE x, y; { BDIGIT *xds; int shift; long s1, s2; if (TYPE(y) == T_BIGNUM) { if (!RBIGNUM(y)->sign || RBIGNUM(x)->sign) return INT2FIX(0); return INT2FIX(1); } shift = NUM2INT(y); if (shift < 0) return INT2FIX(0); s1 = shift/BITSPERDIG; s2 = shift%BITSPERDIG; if (!RBIGNUM(x)->sign) { if (s1 >= RBIGNUM(x)->len) return INT2FIX(1); x = rb_big_clone(x); get2comp(x); } else { if (s1 >= RBIGNUM(x)->len) return INT2FIX(0); } xds = BDIGITS(x); if (xds[s1] & (1< fixnum * * Compute a hash based on the value of _big_. */ static VALUE rb_big_hash(x) VALUE x; { long i, len, key; BDIGIT *digits; key = 0; digits = BDIGITS(x); len = RBIGNUM(x)->len; for (i=0; i aBignum * * Returns the absolute value of big. * * -1234567890987654321.abs #=> 1234567890987654321 */ static VALUE rb_big_abs(x) VALUE x; { if (!RBIGNUM(x)->sign) { x = rb_big_clone(x); RBIGNUM(x)->sign = 1; } return x; } VALUE rb_big_rand(max, rand_buf) VALUE max; double *rand_buf; { VALUE v; long len = RBIGNUM(max)->len; if (BIGZEROP(max)) { return rb_float_new(rand_buf[0]); } v = bignew(len,1); len--; BDIGITS(v)[len] = BDIGITS(max)[len] * rand_buf[len]; while (len--) { BDIGITS(v)[len] = ((BDIGIT)~0) * rand_buf[len]; } return v; } /* * call-seq: * big.size -> integer * * Returns the number of bytes in the machine representation of * big. * * (256**10 - 1).size #=> 12 * (256**20 - 1).size #=> 20 * (256**40 - 1).size #=> 40 */ static VALUE rb_big_size(big) VALUE big; { return LONG2FIX(RBIGNUM(big)->len*SIZEOF_BDIGITS); } /* * Bignum objects hold integers outside the range of * Fixnum. Bignum objects are created * automatically when integer calculations would otherwise overflow a * Fixnum. When a calculation involving * Bignum objects returns a result that will fit in a * Fixnum, the result is automatically converted. * * For the purposes of the bitwise operations and [], a * Bignum is treated as if it were an infinite-length * bitstring with 2's complement representation. * * While Fixnum values are immediate, Bignum * objects are not---assignment and parameter passing work with * references to objects, not the objects themselves. * */ void Init_Bignum() { rb_cBignum = rb_define_class("Bignum", rb_cInteger); rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1); rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1); rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0); rb_define_method(rb_cBignum, "+", rb_big_plus, 1); rb_define_method(rb_cBignum, "-", rb_big_minus, 1); rb_define_method(rb_cBignum, "*", rb_big_mul, 1); rb_define_method(rb_cBignum, "/", rb_big_div, 1); rb_define_method(rb_cBignum, "%", rb_big_modulo, 1); rb_define_method(rb_cBignum, "div", rb_big_div, 1); rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1); rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1); rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1); rb_define_method(rb_cBignum, "quo", rb_big_quo, 1); rb_define_method(rb_cBignum, "**", rb_big_pow, 1); rb_define_method(rb_cBignum, "&", rb_big_and, 1); rb_define_method(rb_cBignum, "|", rb_big_or, 1); rb_define_method(rb_cBignum, "^", rb_big_xor, 1); rb_define_method(rb_cBignum, "~", rb_big_neg, 0); rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1); rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1); rb_define_method(rb_cBignum, "[]", rb_big_aref, 1); rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1); rb_define_method(rb_cBignum, "==", rb_big_eq, 1); rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1); rb_define_method(rb_cBignum, "hash", rb_big_hash, 0); rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0); rb_define_method(rb_cBignum, "abs", rb_big_abs, 0); rb_define_method(rb_cBignum, "size", rb_big_size, 0); }