/********************************************************************** bignum.c - $Author$ created at: Fri Jun 10 00:48:55 JST 1994 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/ruby.h" #include #include #include #ifdef HAVE_IEEEFP_H #include #endif VALUE rb_cBignum; #if defined __MINGW32__ #define USHORT _USHORT #endif #define BDIGITS(x) (RBIGNUM_DIGITS(x)) #define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT) #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG) #define DIGSPERLONG ((unsigned int)(SIZEOF_LONG/SIZEOF_BDIGITS)) #if HAVE_LONG_LONG # define DIGSPERLL ((unsigned int)(SIZEOF_LONG_LONG/SIZEOF_BDIGITS)) #endif #define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG) #define BIGDN(x) RSHIFT(x,BITSPERDIG) #define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1))) #define BDIGMAX ((BDIGIT)-1) #define BIGZEROP(x) (RBIGNUM_LEN(x) == 0 || \ (BDIGITS(x)[0] == 0 && \ (RBIGNUM_LEN(x) == 1 || bigzero_p(x)))) static int bigzero_p(VALUE x) { long i; for (i = 0; i < RBIGNUM_LEN(x); ++i) { if (BDIGITS(x)[i]) return 0; } return 1; } #define RBIGNUM_SET_LEN(b,l) \ ((RBASIC(b)->flags & RBIGNUM_EMBED_FLAG) ? \ (RBASIC(b)->flags = (RBASIC(b)->flags & ~RBIGNUM_EMBED_LEN_MASK) | \ ((l) << RBIGNUM_EMBED_LEN_SHIFT)) : \ (RBIGNUM(b)->as.heap.len = (l))) static void rb_big_realloc(VALUE big, long len) { BDIGIT *ds; if (RBASIC(big)->flags & RBIGNUM_EMBED_FLAG) { if (RBIGNUM_EMBED_LEN_MAX < len) { ds = ALLOC_N(BDIGIT, len); MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, RBIGNUM_EMBED_LEN_MAX); RBIGNUM(big)->as.heap.len = RBIGNUM_LEN(big); RBIGNUM(big)->as.heap.digits = ds; RBASIC(big)->flags &= ~RBIGNUM_EMBED_FLAG; } } else { if (len <= RBIGNUM_EMBED_LEN_MAX) { ds = RBIGNUM(big)->as.heap.digits; RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG; RBIGNUM_SET_LEN(big, len); if (ds) { MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len); free(ds); } } else { if (RBIGNUM_LEN(big) == 0) { RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len); } else { REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len); } } } } void rb_big_resize(VALUE big, long len) { rb_big_realloc(big, len); RBIGNUM_SET_LEN(big, len); } static VALUE bignew_1(VALUE klass, long len, int sign) { NEWOBJ(big, struct RBignum); OBJSETUP(big, klass, T_BIGNUM); RBIGNUM_SET_SIGN(big, sign?1:0); if (len <= RBIGNUM_EMBED_LEN_MAX) { RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG; RBIGNUM_SET_LEN(big, len); } else { rb_big_resize((VALUE)big, len); } return (VALUE)big; } #define bignew(len,sign) bignew_1(rb_cBignum,len,sign) VALUE rb_big_clone(VALUE x) { VALUE z = bignew_1(CLASS_OF(x), RBIGNUM_LEN(x), RBIGNUM_SIGN(x)); MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, RBIGNUM_LEN(x)); return z; } /* modify a bignum by 2's complement */ static void get2comp(VALUE x) { long i = RBIGNUM_LEN(x); BDIGIT *ds = BDIGITS(x); BDIGIT_DBL num; if (!i) return; while (i--) ds[i] = ~ds[i]; i = 0; num = 1; do { num += ds[i]; ds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM_LEN(x)); if (num != 0) { rb_big_resize(x, RBIGNUM_LEN(x)+1); ds = BDIGITS(x); ds[RBIGNUM_LEN(x)-1] = 1; } } void rb_big_2comp(VALUE x) /* get 2's complement */ { get2comp(x); } static VALUE bigtrunc(VALUE x) { long len = RBIGNUM_LEN(x); BDIGIT *ds = BDIGITS(x); if (len == 0) return x; while (--len && !ds[len]); rb_big_resize(x, len+1); return x; } static VALUE bigfixize(VALUE x) { long len = RBIGNUM_LEN(x); BDIGIT *ds = BDIGITS(x); if (len*SIZEOF_BDIGITS <= sizeof(long)) { long num = 0; while (len--) { num = BIGUP(num) + ds[len]; } if (num >= 0) { if (RBIGNUM_SIGN(x)) { if (POSFIXABLE(num)) return LONG2FIX(num); } else { if (NEGFIXABLE(-(long)num)) return LONG2FIX(-(long)num); } } } return x; } static VALUE bignorm(VALUE x) { if (!FIXNUM_P(x) && TYPE(x) == T_BIGNUM) { x = bigfixize(bigtrunc(x)); } return x; } VALUE rb_big_norm(VALUE x) { return bignorm(x); } VALUE rb_uint2big(VALUE n) { BDIGIT_DBL num = n; long i = 0; BDIGIT *digits; VALUE big; big = bignew(DIGSPERLONG, 1); digits = BDIGITS(big); while (i < DIGSPERLONG) { digits[i++] = BIGLO(num); num = BIGDN(num); } i = DIGSPERLONG; while (--i && !digits[i]) ; RBIGNUM_SET_LEN(big, i+1); return big; } VALUE rb_int2big(SIGNED_VALUE n) { long neg = 0; VALUE big; if (n < 0) { n = -n; neg = 1; } big = rb_uint2big(n); if (neg) { RBIGNUM_SET_SIGN(big, 0); } return big; } VALUE rb_uint2inum(VALUE n) { if (POSFIXABLE(n)) return LONG2FIX(n); return rb_uint2big(n); } VALUE rb_int2inum(SIGNED_VALUE n) { if (FIXABLE(n)) return LONG2FIX(n); return rb_int2big(n); } #ifdef HAVE_LONG_LONG void rb_quad_pack(char *buf, VALUE val) { LONG_LONG q; val = rb_to_int(val); if (FIXNUM_P(val)) { q = FIX2LONG(val); } else { long len = RBIGNUM_LEN(val); BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) { len = SIZEOF_LONG_LONG/SIZEOF_BDIGITS; } ds = BDIGITS(val); q = 0; while (len--) { q = BIGUP(q); q += ds[len]; } if (!RBIGNUM_SIGN(val)) q = -q; } memcpy(buf, (char*)&q, SIZEOF_LONG_LONG); } VALUE rb_quad_unpack(const char *buf, int sign) { unsigned LONG_LONG q; long neg = 0; long i; BDIGIT *digits; VALUE big; memcpy(&q, buf, SIZEOF_LONG_LONG); if (sign) { if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q); if ((LONG_LONG)q < 0) { q = -(LONG_LONG)q; neg = 1; } } else { if (POSFIXABLE(q)) return LONG2FIX(q); } i = 0; big = bignew(DIGSPERLL, 1); digits = BDIGITS(big); while (i < DIGSPERLL) { digits[i++] = BIGLO(q); q = BIGDN(q); } i = DIGSPERLL; while (i-- && !digits[i]) ; RBIGNUM_SET_LEN(big, i+1); if (neg) { RBIGNUM_SET_SIGN(big, 0); } return bignorm(big); } #else #define QUAD_SIZE 8 void rb_quad_pack(char *buf, VALUE val) { long len; memset(buf, 0, QUAD_SIZE); val = rb_to_int(val); if (FIXNUM_P(val)) { val = rb_int2big(FIX2LONG(val)); } len = RBIGNUM_LEN(val) * SIZEOF_BDIGITS; if (len > QUAD_SIZE) { rb_raise(rb_eRangeError, "bignum too big to convert into `quad int'"); } memcpy(buf, (char*)BDIGITS(val), len); if (!RBIGNUM_SIGN(val)) { len = QUAD_SIZE; while (len--) { *buf = ~*buf; buf++; } } } #define BNEG(b) (RSHIFT(((BDIGIT*)b)[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0) VALUE rb_quad_unpack(const char *buf, int sign) { VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1); memcpy((char*)BDIGITS(big), buf, QUAD_SIZE); if (sign && BNEG(buf)) { long len = QUAD_SIZE; char *tmp = (char*)BDIGITS(big); RBIGNUM_SET_SIGN(big, 0); while (len--) { *tmp = ~*tmp; tmp++; } } return bignorm(big); } #endif VALUE rb_cstr_to_inum(const char *str, int base, int badcheck) { const char *s = str; char *end; char sign = 1, nondigit = 0; int c; BDIGIT_DBL num; long len, blen = 1; long i; VALUE z; BDIGIT *zds; #define conv_digit(c) \ (!ISASCII(c) ? -1 : \ ISDIGIT(c) ? ((c) - '0') : \ ISLOWER(c) ? ((c) - 'a' + 10) : \ ISUPPER(c) ? ((c) - 'A' + 10) : \ -1) if (!str) { if (badcheck) goto bad; return INT2FIX(0); } while (ISSPACE(*str)) str++; if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; sign = 0; } if (str[0] == '+' || str[0] == '-') { if (badcheck) goto bad; return INT2FIX(0); } if (base <= 0) { if (str[0] == '0') { switch (str[1]) { case 'x': case 'X': base = 16; break; case 'b': case 'B': base = 2; break; case 'o': case 'O': base = 8; break; case 'd': case 'D': base = 10; break; default: base = 8; } } else if (base < -1) { base = -base; } else { base = 10; } } switch (base) { case 2: len = 1; if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) { str += 2; } break; case 3: len = 2; break; case 8: if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) { str += 2; } case 4: case 5: case 6: case 7: len = 3; break; case 10: if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) { str += 2; } case 9: case 11: case 12: case 13: case 14: case 15: len = 4; break; case 16: len = 4; if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) { str += 2; } break; default: if (base < 2 || 36 < base) { rb_raise(rb_eArgError, "invalid radix %d", base); } if (base <= 32) { len = 5; } else { len = 6; } break; } if (*str == '0') { /* squeeze preceding 0s */ int us = 0; while ((c = *++str) == '0' || c == '_') { if (c == '_') { if (++us >= 2) break; } else us = 0; } if (!(c = *str) || ISSPACE(c)) --str; } c = *str; c = conv_digit(c); if (c < 0 || c >= base) { if (badcheck) goto bad; return INT2FIX(0); } len *= strlen(str)*sizeof(char); if (len <= (sizeof(long)*CHAR_BIT)) { unsigned long val = STRTOUL(str, &end, base); if (str < end && *end == '_') goto bigparse; if (badcheck) { if (end == str) goto bad; /* no number */ while (*end && ISSPACE(*end)) end++; if (*end) goto bad; /* trailing garbage */ } if (POSFIXABLE(val)) { if (sign) return LONG2FIX(val); else { long result = -(long)val; return LONG2FIX(result); } } else { VALUE big = rb_uint2big(val); RBIGNUM_SET_SIGN(big, sign); return bignorm(big); } } bigparse: len = (len/BITSPERDIG)+1; if (badcheck && *str == '_') goto bad; z = bignew(len, sign); zds = BDIGITS(z); for (i=len;i--;) zds[i]=0; while ((c = *str++) != 0) { if (c == '_') { if (badcheck) { if (nondigit) goto bad; nondigit = c; } continue; } else if ((c = conv_digit(c)) < 0) { break; } if (c >= base) break; nondigit = 0; i = 0; num = c; for (;;) { while (i> 1) & MASK_55; x = ((x >> 2) & MASK_33) + (x & MASK_33); x = ((x >> 4) + x) & MASK_0f; x += (x >> 8); x += (x >> 16); #if SIZEOF_LONG == 8 x += (x >> 32); #endif return (int)(x & 0x7f); #undef MASK_0f #undef MASK_33 #undef MASK_55 } static inline unsigned long next_pow2(register unsigned long x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; #if SIZEOF_LONG == 8 x |= x >> 32; #endif return x + 1; } static inline int floor_log2(register unsigned long x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; #if SIZEOF_LONG == 8 x |= x >> 32; #endif return (int)ones(x) - 1; } static inline int ceil_log2(register unsigned long x) { return floor_log2(x) + !POW2_P(x); } #define LOG2_KARATSUBA_DIGITS 7 #define KARATSUBA_DIGITS (1L< KARATSUBA_DIGITS"); m = ceil_log2(n1); if (m1) *m1 = 1 << m; i = m - LOG2_KARATSUBA_DIGITS; if (i >= MAX_BIG2STR_TABLE_ENTRIES) i = MAX_BIG2STR_TABLE_ENTRIES - 1; t = power_cache_get_power0(base, i); j = KARATSUBA_DIGITS*(1 << i); while (n1 > j) { t = bigsqr(t); j *= 2; } return t; } /* big2str_muraken_find_n1 * * Let a natural number x is given by: * x = 2^0 * x_0 + 2^1 * x_1 + ... + 2^(B*n_0 - 1) * x_{B*n_0 - 1}, * where B is BITSPERDIG (i.e. BDIGITS*CHAR_BIT) and n_0 is * RBIGNUM_LEN(x). * * Now, we assume n_1 = min_n \{ n | 2^(B*n_0/2) <= b_1^(n_1) \}, so * it is realized that 2^(B*n_0) <= {b_1}^{2*n_1}, where b_1 is a * given radix number. And then, we have n_1 <= (B*n_0) / * (2*log_2(b_1)), therefore n_1 is given by ceil((B*n_0) / * (2*log_2(b_1))). */ static long big2str_find_n1(VALUE x, int base) { static const double log_2[] = { 1.0, 1.58496250072116, 2.0, 2.32192809488736, 2.58496250072116, 2.8073549220576, 3.0, 3.16992500144231, 3.32192809488736, 3.4594316186373, 3.58496250072116, 3.70043971814109, 3.8073549220576, 3.90689059560852, 4.0, 4.08746284125034, 4.16992500144231, 4.24792751344359, 4.32192809488736, 4.39231742277876, 4.4594316186373, 4.52356195605701, 4.58496250072116, 4.64385618977472, 4.70043971814109, 4.75488750216347, 4.8073549220576, 4.85798099512757, 4.90689059560852, 4.95419631038688, 5.0, 5.04439411935845, 5.08746284125034, 5.12928301694497, 5.16992500144231 }; long bits; if (base < 2 || 36 < base) rb_bug("invalid radix %d", base); if (FIXNUM_P(x)) { bits = (SIZEOF_LONG*CHAR_BIT - 1)/2 + 1; } else if (BIGZEROP(x)) { return 0; } else { bits = BITSPERDIG*RBIGNUM_LEN(x); } return (long)ceil(bits/log_2[base - 2]); } static long big2str_orig(VALUE x, int base, char* ptr, long len, long hbase, int trim) { long i = RBIGNUM_LEN(x), j = len; BDIGIT* ds = BDIGITS(x); while (i && j > 0) { long k = i; BDIGIT_DBL num = 0; while (k--) { /* x / hbase */ num = BIGUP(num) + ds[k]; ds[k] = (BDIGIT)(num / hbase); num %= hbase; } if (trim && ds[i-1] == 0) i--; k = SIZEOF_BDIGITS; while (k--) { ptr[--j] = ruby_digitmap[num % base]; num /= base; if (j <= 0) break; if (trim && i == 0 && num == 0) break; } } if (trim) { while (j < len && ptr[j] == '0') j++; MEMMOVE(ptr, ptr + j, char, len - j); len -= j; } return len; } static long big2str_karatsuba(VALUE x, int base, char* ptr, long n1, long len, long hbase, int trim) { long lh, ll, m1; VALUE b, q, r; if (FIXNUM_P(x)) { VALUE str = rb_fix2str(x, base); char* str_ptr = RSTRING_PTR(str); long str_len = RSTRING_LEN(str); if (trim) { if (FIX2INT(x) == 0) return 0; MEMCPY(ptr, str_ptr, char, str_len); return str_len; } else { memset(ptr, '0', len - str_len); MEMCPY(ptr + len - str_len, str_ptr, char, str_len); return len; } } if (BIGZEROP(x)) { if (trim) return 0; else { memset(ptr, '0', len); return len; } } if (n1 <= KARATSUBA_DIGITS) { return big2str_orig(x, base, ptr, len, hbase, trim); } if (!power_cache_initialized) { power_cache_init(); power_cache_initialized = 1; } b = power_cache_get_power(base, n1, &m1); bigdivmod(x, b, &q, &r); lh = big2str_karatsuba(q, base, ptr, (len - m1)/2, len - m1, hbase, trim); ll = big2str_karatsuba(r, base, ptr + lh, m1/2, m1, hbase, !lh && trim); return lh + ll; } VALUE rb_big2str0(VALUE x, int base, int trim) { int off; VALUE ss, xx; long n1, n2, len, hbase; char* ptr; if (FIXNUM_P(x)) { return rb_fix2str(x, base); } if (BIGZEROP(x)) { return rb_usascii_str_new2("0"); } if (base < 2 || 36 < base) rb_raise(rb_eArgError, "invalid radix %d", base); n2 = big2str_find_n1(x, base); n1 = (n2 + 1) / 2; ss = rb_usascii_str_new(0, n2 + 1); /* plus one for sign */ ptr = RSTRING_PTR(ss); ptr[0] = RBIGNUM_SIGN(x) ? '+' : '-'; hbase = base*base; #if SIZEOF_BDIGITS > 2 hbase *= hbase; #endif off = !(trim && RBIGNUM_SIGN(x)); /* erase plus sign if trim */ xx = rb_big_clone(x); RBIGNUM_SET_SIGN(xx, 1); if (n1 <= KARATSUBA_DIGITS) { len = off + big2str_orig(xx, base, ptr + off, n2, hbase, trim); } else { len = off + big2str_karatsuba(xx, base, ptr + off, n1, n2, hbase, trim); } ptr[len] = '\0'; rb_str_resize(ss, len); return ss; } VALUE rb_big2str(VALUE x, int base) { return rb_big2str0(x, base, 1); } /* * call-seq: * big.to_s(base=10) => string * * Returns a string containing the representation of big radix * base (2 through 36). * * 12345654321.to_s #=> "12345654321" * 12345654321.to_s(2) #=> "1011011111110110111011110000110001" * 12345654321.to_s(8) #=> "133766736061" * 12345654321.to_s(16) #=> "2dfdbbc31" * 78546939656932.to_s(36) #=> "rubyrules" */ static VALUE rb_big_to_s(int argc, VALUE *argv, VALUE x) { VALUE b; int base; rb_scan_args(argc, argv, "01", &b); if (argc == 0) base = 10; else base = NUM2INT(b); return rb_big2str(x, base); } static VALUE big2ulong(VALUE x, const char *type, int check) { long len = RBIGNUM_LEN(x); BDIGIT_DBL num; BDIGIT *ds; if (len > DIGSPERLONG) { if (check) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); len = DIGSPERLONG; } ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } VALUE rb_big2ulong_pack(VALUE x) { VALUE num = big2ulong(x, "unsigned long", Qfalse); if (!RBIGNUM_SIGN(x)) { return -num; } return num; } VALUE rb_big2ulong(VALUE x) { VALUE num = big2ulong(x, "unsigned long", Qtrue); if (!RBIGNUM_SIGN(x)) { if ((SIGNED_VALUE)num < 0) { rb_raise(rb_eRangeError, "bignum out of range of unsigned long"); } return -num; } return num; } SIGNED_VALUE rb_big2long(VALUE x) { VALUE num = big2ulong(x, "long", Qtrue); if ((SIGNED_VALUE)num < 0 && (RBIGNUM_SIGN(x) || (SIGNED_VALUE)num != LONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long'"); } if (!RBIGNUM_SIGN(x)) return -(SIGNED_VALUE)num; return num; } #if HAVE_LONG_LONG static unsigned LONG_LONG big2ull(VALUE x, const char *type) { long len = RBIGNUM_LEN(x); BDIGIT_DBL num; BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } unsigned LONG_LONG rb_big2ull(VALUE x) { unsigned LONG_LONG num = big2ull(x, "unsigned long long"); if (!RBIGNUM_SIGN(x)) return -num; return num; } LONG_LONG rb_big2ll(VALUE x) { unsigned LONG_LONG num = big2ull(x, "long long"); if ((LONG_LONG)num < 0 && (RBIGNUM_SIGN(x) || (LONG_LONG)num != LLONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long long'"); } if (!RBIGNUM_SIGN(x)) return -(LONG_LONG)num; return num; } #endif /* HAVE_LONG_LONG */ static VALUE dbl2big(double d) { long i = 0; BDIGIT c; BDIGIT *digits; VALUE z; double u = (d < 0)?-d:d; if (isinf(d)) { rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity"); } if (isnan(d)) { rb_raise(rb_eFloatDomainError, "NaN"); } while (!POSFIXABLE(u) || 0 != (long)u) { u /= (double)(BIGRAD); i++; } z = bignew(i, d>=0); digits = BDIGITS(z); while (i--) { u *= BIGRAD; c = (BDIGIT)u; u -= c; digits[i] = c; } return z; } VALUE rb_dbl2big(double d) { return bignorm(dbl2big(d)); } static double big2dbl(VALUE x) { double d = 0.0; long i = RBIGNUM_LEN(x); BDIGIT *ds = BDIGITS(x); while (i--) { d = ds[i] + BIGRAD*d; } if (!RBIGNUM_SIGN(x)) d = -d; return d; } double rb_big2dbl(VALUE x) { double d = big2dbl(x); if (isinf(d)) { rb_warn("Bignum out of Float range"); d = HUGE_VAL; } return d; } /* * call-seq: * big.to_f -> float * * Converts big to a Float. If big doesn't * fit in a Float, the result is infinity. * */ static VALUE rb_big_to_f(VALUE x) { return DOUBLE2NUM(rb_big2dbl(x)); } /* * call-seq: * big <=> numeric => -1, 0, +1 * * Comparison---Returns -1, 0, or +1 depending on whether big is * less than, equal to, or greater than numeric. This is the * basis for the tests in Comparable. * */ VALUE rb_big_cmp(VALUE x, VALUE y) { long xlen = RBIGNUM_LEN(x); switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return rb_dbl_cmp(rb_big2dbl(x), RFLOAT_VALUE(y)); default: return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1); if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1); if (xlen < RBIGNUM_LEN(y)) return (RBIGNUM_SIGN(x)) ? INT2FIX(-1) : INT2FIX(1); if (xlen > RBIGNUM_LEN(y)) return (RBIGNUM_SIGN(x)) ? INT2FIX(1) : INT2FIX(-1); while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen])); if (-1 == xlen) return INT2FIX(0); return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ? (RBIGNUM_SIGN(x) ? INT2FIX(1) : INT2FIX(-1)) : (RBIGNUM_SIGN(x) ? INT2FIX(-1) : INT2FIX(1)); } /* * call-seq: * big == obj => true or false * * Returns true only if obj has the same value * as big. Contrast this with Bignum#eql?, which * requires obj to be a Bignum. * * 68719476736 == 68719476736.0 #=> true */ VALUE rb_big_eq(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { volatile double a, b; a = RFLOAT_VALUE(y); if (isnan(a)) return Qfalse; b = rb_big2dbl(x); return (a == b)?Qtrue:Qfalse; } default: return rb_equal(y, x); } if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse; if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse; return Qtrue; } /* * call-seq: * big.eql?(obj) => true or false * * Returns true only if obj is a * Bignum with the same value as big. Contrast this * with Bignum#==, which performs type conversions. * * 68719476736.eql?(68719476736.0) #=> false */ static VALUE rb_big_eql(VALUE x, VALUE y) { if (TYPE(y) != T_BIGNUM) return Qfalse; if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse; if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse; return Qtrue; } /* * call-seq: * -big => other_big * * Unary minus (returns a new Bignum whose value is 0-big) */ static VALUE rb_big_uminus(VALUE x) { VALUE z = rb_big_clone(x); RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x)); return bignorm(z); } /* * call-seq: * ~big => integer * * Inverts the bits in big. As Bignums are conceptually infinite * length, the result acts as if it had an infinite number of one * bits to the left. In hex representations, this is displayed * as two periods to the left of the digits. * * sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA" */ static VALUE rb_big_neg(VALUE x) { VALUE z = rb_big_clone(x); BDIGIT *ds; long i; if (!RBIGNUM_SIGN(x)) get2comp(z); ds = BDIGITS(z); i = RBIGNUM_LEN(x); if (!i) return INT2FIX(~(SIGNED_VALUE)0); while (i--) { ds[i] = ~ds[i]; } RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(z)); if (RBIGNUM_SIGN(x)) get2comp(z); return bignorm(z); } static VALUE bigsub(VALUE x, VALUE y) { VALUE z = 0; BDIGIT *zds; BDIGIT_DBL_SIGNED num; long i = RBIGNUM_LEN(x); /* if x is larger than y, swap */ if (RBIGNUM_LEN(x) < RBIGNUM_LEN(y)) { z = x; x = y; y = z; /* swap x y */ } else if (RBIGNUM_LEN(x) == RBIGNUM_LEN(y)) { while (i > 0) { i--; if (BDIGITS(x)[i] > BDIGITS(y)[i]) { break; } if (BDIGITS(x)[i] < BDIGITS(y)[i]) { z = x; x = y; y = z; /* swap x y */ break; } } } z = bignew(RBIGNUM_LEN(x), z==0); zds = BDIGITS(z); for (i = 0, num = 0; i < RBIGNUM_LEN(y); i++) { num += (BDIGIT_DBL_SIGNED)BDIGITS(x)[i] - BDIGITS(y)[i]; zds[i] = BIGLO(num); num = BIGDN(num); } while (num && i < RBIGNUM_LEN(x)) { num += BDIGITS(x)[i]; zds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM_LEN(x)) { zds[i] = BDIGITS(x)[i]; i++; } return z; } static VALUE bigadd(VALUE x, VALUE y, int sign) { VALUE z; BDIGIT_DBL num; long i, len; sign = (sign == RBIGNUM_SIGN(y)); if (RBIGNUM_SIGN(x) != sign) { if (sign) return bigsub(y, x); return bigsub(x, y); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { len = RBIGNUM_LEN(x) + 1; z = x; x = y; y = z; } else { len = RBIGNUM_LEN(y) + 1; } z = bignew(len, sign); len = RBIGNUM_LEN(x); for (i = 0, num = 0; i < len; i++) { num += (BDIGIT_DBL)BDIGITS(x)[i] + BDIGITS(y)[i]; BDIGITS(z)[i] = BIGLO(num); num = BIGDN(num); } len = RBIGNUM_LEN(y); while (num && i < len) { num += BDIGITS(y)[i]; BDIGITS(z)[i++] = BIGLO(num); num = BIGDN(num); } while (i < len) { BDIGITS(z)[i] = BDIGITS(y)[i]; i++; } BDIGITS(z)[i] = (BDIGIT)num; return z; } /* * call-seq: * big + other => Numeric * * Adds big and other, returning the result. */ VALUE rb_big_plus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); /* fall through */ case T_BIGNUM: return bignorm(bigadd(x, y, 1)); case T_FLOAT: return DOUBLE2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } } /* * call-seq: * big - other => Numeric * * Subtracts other from big, returning the result. */ VALUE rb_big_minus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); /* fall through */ case T_BIGNUM: return bignorm(bigadd(x, y, 0)); case T_FLOAT: return DOUBLE2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } } static void rb_big_stop(void *ptr) { VALUE *stop = (VALUE*)ptr; *stop = Qtrue; } struct big_mul_struct { VALUE x, y, z, stop; }; static VALUE bigmul1(void *ptr) { struct big_mul_struct *bms = (struct big_mul_struct*)ptr; long i, j; BDIGIT_DBL n = 0; VALUE x = bms->x, y = bms->y, z = bms->z; BDIGIT *zds; j = RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1; zds = BDIGITS(z); while (j--) zds[j] = 0; for (i = 0; i < RBIGNUM_LEN(x); i++) { BDIGIT_DBL dd; if (bms->stop) return Qnil; dd = BDIGITS(x)[i]; if (dd == 0) continue; n = 0; for (j = 0; j < RBIGNUM_LEN(y); j++) { BDIGIT_DBL ee = n + (BDIGIT_DBL)dd * BDIGITS(y)[j]; n = zds[i + j] + ee; if (ee) zds[i + j] = BIGLO(n); n = BIGDN(n); } if (n) { zds[i + j] = n; } } return z; } static VALUE rb_big_mul0(VALUE x, VALUE y) { struct big_mul_struct bms; volatile VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return DOUBLE2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } bms.x = x; bms.y = y; bms.z = bignew(RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y)); bms.stop = Qfalse; if (RBIGNUM_LEN(x) + RBIGNUM_LEN(y) > 10000) { z = rb_thread_blocking_region(bigmul1, &bms, rb_big_stop, &bms.stop); } else { z = bigmul1(&bms); } return z; } /* * call-seq: * big * other => Numeric * * Multiplies big and other, returning the result. */ VALUE rb_big_mul(VALUE x, VALUE y) { return bignorm(rb_big_mul0(x, y)); } struct big_div_struct { long nx, ny; BDIGIT *yds, *zds; VALUE stop; }; static VALUE bigdivrem1(void *ptr) { struct big_div_struct *bds = (struct big_div_struct*)ptr; long nx = bds->nx, ny = bds->ny; long i, j; BDIGIT *yds = bds->yds, *zds = bds->zds; BDIGIT_DBL t2; BDIGIT_DBL_SIGNED num; BDIGIT q; j = nx==ny?nx+1:nx; do { if (bds->stop) return Qnil; if (zds[j] == yds[ny-1]) q = BIGRAD-1; else q = (BDIGIT)((BIGUP(zds[j]) + zds[j-1])/yds[ny-1]); if (q) { i = 0; num = 0; t2 = 0; do { /* multiply and subtract */ BDIGIT_DBL ee; t2 += (BDIGIT_DBL)yds[i] * q; ee = num - BIGLO(t2); num = (BDIGIT_DBL)zds[j - ny + i] + ee; if (ee) zds[j - ny + i] = BIGLO(num); num = BIGDN(num); t2 = BIGDN(t2); } while (++i < ny); num += zds[j - ny + i] - t2;/* borrow from high digit; don't update */ while (num) { /* "add back" required */ i = 0; num = 0; q--; do { BDIGIT_DBL ee = num + yds[i]; num = (BDIGIT_DBL)zds[j - ny + i] + ee; if (ee) zds[j - ny + i] = BIGLO(num); num = BIGDN(num); } while (++i < ny); num--; } } zds[j] = q; } while (--j >= ny); return Qnil; } static VALUE bigdivrem(VALUE x, VALUE y, VALUE *divp, VALUE *modp) { struct big_div_struct bds; long nx = RBIGNUM_LEN(x), ny = RBIGNUM_LEN(y); long i, j; volatile VALUE yy, z; BDIGIT *xds, *yds, *zds, *tds; BDIGIT_DBL t2; BDIGIT dd, q; if (BIGZEROP(y)) rb_num_zerodiv(); yds = BDIGITS(y); if (nx < ny || (nx == ny && BDIGITS(x)[nx - 1] < BDIGITS(y)[ny - 1])) { if (divp) *divp = rb_int2big(0); if (modp) *modp = x; return Qnil; } xds = BDIGITS(x); if (ny == 1) { dd = yds[0]; z = rb_big_clone(x); zds = BDIGITS(z); t2 = 0; i = nx; while (i--) { t2 = BIGUP(t2) + zds[i]; zds[i] = (BDIGIT)(t2 / dd); t2 %= dd; } RBIGNUM_SET_SIGN(z, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y)); if (modp) { *modp = rb_uint2big((VALUE)t2); RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x)); } if (divp) *divp = z; return Qnil; } z = bignew(nx==ny?nx+2:nx+1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y)); zds = BDIGITS(z); if (nx==ny) zds[nx+1] = 0; while (!yds[ny-1]) ny--; dd = 0; q = yds[ny-1]; while ((q & (1UL<<(BITSPERDIG-1))) == 0) { q <<= 1UL; dd++; } if (dd) { yy = rb_big_clone(y); tds = BDIGITS(yy); j = 0; t2 = 0; while (j 10000 || RBIGNUM_LEN(y) > 10000) { rb_thread_blocking_region(bigdivrem1, &bds, rb_big_stop, &bds.stop); } else { bigdivrem1(&bds); } if (divp) { /* move quotient down in z */ *divp = rb_big_clone(z); zds = BDIGITS(*divp); j = (nx==ny ? nx+2 : nx+1) - ny; for (i = 0;i < j;i++) zds[i] = zds[i+ny]; RBIGNUM_SET_LEN(*divp, i); } if (modp) { /* normalize remainder */ *modp = rb_big_clone(z); zds = BDIGITS(*modp); while (--ny && !zds[ny]); ++ny; if (dd) { t2 = 0; i = ny; while(i--) { t2 = (t2 | zds[i]) >> dd; q = zds[i]; zds[i] = BIGLO(t2); t2 = BIGUP(q); } } RBIGNUM_SET_LEN(*modp, ny); RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x)); } return z; } static void bigdivmod(VALUE x, VALUE y, VALUE *divp, VALUE *modp) { VALUE mod; bigdivrem(x, y, divp, &mod); if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y) && !BIGZEROP(mod)) { if (divp) *divp = bigadd(*divp, rb_int2big(1), 0); if (modp) *modp = bigadd(mod, y, 1); } else { if (divp) *divp = *divp; if (modp) *modp = mod; } } /* * call-seq: * big / other => Numeric * big.div(other) => Numeric * * Divides big by other, returning the result. */ VALUE rb_big_div(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return DOUBLE2NUM(rb_big2dbl(x) / RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '/'); } bigdivmod(x, y, &z, 0); return bignorm(z); } /* * call-seq: * big % other => Numeric * big.modulo(other) => Numeric * * Returns big modulo other. See Numeric.divmod for more * information. */ VALUE rb_big_modulo(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, '%'); } bigdivmod(x, y, 0, &z); return bignorm(z); } /* * call-seq: * big.remainder(numeric) => number * * Returns the remainder after dividing big by numeric. * * -1234567890987654321.remainder(13731) #=> -6966 * -1234567890987654321.remainder(13731.24) #=> -9906.22531493148 */ static VALUE rb_big_remainder(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, rb_intern("remainder")); } bigdivrem(x, y, 0, &z); return bignorm(z); } /* * call-seq: * big.divmod(numeric) => array * * See Numeric#divmod. * */ VALUE rb_big_divmod(VALUE x, VALUE y) { VALUE div, mod; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } bigdivmod(x, y, &div, &mod); return rb_assoc_new(bignorm(div), bignorm(mod)); } static int bdigbitsize(BDIGIT x) { int size = 1; int nb = BITSPERDIG / 2; BDIGIT bits = (~0 << nb); if (!x) return 0; while (x > 1) { if (x & bits) { size += nb; x >>= nb; } x &= ~bits; nb /= 2; bits >>= nb; } return size; } static VALUE big_lshift(VALUE, unsigned long); static VALUE big_rshift(VALUE, unsigned long); static VALUE big_shift(VALUE x, int n) { if (n < 0) return big_lshift(x, (unsigned int)-n); else if (n > 0) return big_rshift(x, (unsigned int)n); return x; } /* * call-seq: * big.quo(numeric) -> float * big.fdiv(numeric) -> float * * Returns the floating point result of dividing big by * numeric. * * -1234567890987654321.quo(13731) #=> -89910996357705.5 * -1234567890987654321.quo(13731.24) #=> -89909424858035.7 * */ static VALUE rb_big_quo(VALUE x, VALUE y) { double dx = big2dbl(x); double dy; if (isinf(dx)) { #define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG) VALUE z; int ex, ey; ex = (RBIGNUM_LEN(bigtrunc(x)) - 1) * BITSPERDIG; ex += bdigbitsize(BDIGITS(x)[RBIGNUM_LEN(x) - 1]); ex -= 2 * DBL_BIGDIG * BITSPERDIG; if (ex) x = big_shift(x, ex); switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); case T_BIGNUM: { ey = (RBIGNUM_LEN(bigtrunc(y)) - 1) * BITSPERDIG; ey += bdigbitsize(BDIGITS(y)[RBIGNUM_LEN(y) - 1]); ey -= DBL_BIGDIG * BITSPERDIG; if (ey) y = big_shift(y, ey); bignum: bigdivrem(x, y, &z, 0); return DOUBLE2NUM(ldexp(big2dbl(z), ex - ey)); } case T_FLOAT: y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &ey), DBL_MANT_DIG)); ey -= DBL_MANT_DIG; goto bignum; } } switch (TYPE(y)) { case T_FIXNUM: dy = (double)FIX2LONG(y); break; case T_BIGNUM: dy = rb_big2dbl(y); break; case T_FLOAT: dy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, rb_intern("quo")); } return DOUBLE2NUM(dx / dy); } static VALUE bigsqr(VALUE x) { long len = RBIGNUM_LEN(x), k = len / 2, i; VALUE a, b, a2, z; BDIGIT_DBL num; if (len < 4000 / BITSPERDIG) { return bigtrunc(rb_big_mul0(x, x)); } a = bignew(len - k, 1); MEMCPY(BDIGITS(a), BDIGITS(x) + k, BDIGIT, len - k); b = bignew(k, 1); MEMCPY(BDIGITS(b), BDIGITS(x), BDIGIT, k); a2 = bigtrunc(bigsqr(a)); z = bigsqr(b); rb_big_realloc(z, (len = 2 * k + RBIGNUM_LEN(a2)) + 1); while (RBIGNUM_LEN(z) < 2 * k) { BDIGITS(z)[RBIGNUM_LEN(z)] = 0; RBIGNUM_SET_LEN(z, RBIGNUM_LEN(z)+1); } MEMCPY(BDIGITS(z) + 2 * k, BDIGITS(a2), BDIGIT, RBIGNUM_LEN(a2)); RBIGNUM_SET_LEN(z, len); a2 = bigtrunc(rb_big_mul0(a, b)); len = RBIGNUM_LEN(a2); for (i = 0, num = 0; i < len; i++) { num += (BDIGIT_DBL)BDIGITS(z)[i + k] + ((BDIGIT_DBL)BDIGITS(a2)[i] << 1); BDIGITS(z)[i + k] = BIGLO(num); num = BIGDN(num); } if (num) { len = RBIGNUM_LEN(z); for (i += k; i < len && num; ++i) { num += (BDIGIT_DBL)BDIGITS(z)[i]; BDIGITS(z)[i] = BIGLO(num); num = BIGDN(num); } if (num) { BDIGITS(z)[RBIGNUM_LEN(z)] = BIGLO(num); RBIGNUM_SET_LEN(z, RBIGNUM_LEN(z)+1); } } return bigtrunc(z); } /* * call-seq: * big ** exponent #=> numeric * * Raises _big_ to the _exponent_ power (which may be an integer, float, * or anything that will coerce to a number). The result may be * a Fixnum, Bignum, or Float * * 123456789 ** 2 #=> 15241578750190521 * 123456789 ** 1.2 #=> 5126464716.09932 * 123456789 ** -2 #=> 6.5610001194102e-17 */ VALUE rb_big_pow(VALUE x, VALUE y) { double d; SIGNED_VALUE yy; if (y == INT2FIX(0)) return INT2FIX(1); switch (TYPE(y)) { case T_FLOAT: d = RFLOAT_VALUE(y); break; case T_BIGNUM: rb_warn("in a**b, b may be too big"); d = rb_big2dbl(y); break; case T_FIXNUM: yy = FIX2LONG(y); if (yy > 0) { VALUE z = 0; SIGNED_VALUE mask; const long BIGLEN_LIMIT = 1024*1024 / SIZEOF_BDIGITS; if ((RBIGNUM_LEN(x) > BIGLEN_LIMIT) || (RBIGNUM_LEN(x) > BIGLEN_LIMIT / yy)) { rb_warn("in a**b, b may be too big"); d = (double)yy; break; } for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) { if (z) z = bigtrunc(bigsqr(z)); if (yy & mask) { z = z ? bigtrunc(rb_big_mul0(z, x)) : x; } } return bignorm(z); } d = (double)yy; break; default: return rb_num_coerce_bin(x, y, rb_intern("**")); } return DOUBLE2NUM(pow(rb_big2dbl(x), d)); } /* * call-seq: * big & numeric => integer * * Performs bitwise +and+ between _big_ and _numeric_. */ VALUE rb_big_and(VALUE xx, VALUE yy) { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } z = bignew(l2, RBIGNUM_SIGN(x) || RBIGNUM_SIGN(y)); zds = BDIGITS(z); for (i=0; i integer * * Performs bitwise +or+ between _big_ and _numeric_. */ VALUE rb_big_or(VALUE xx, VALUE yy) { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } z = bignew(l2, RBIGNUM_SIGN(x) && RBIGNUM_SIGN(y)); zds = BDIGITS(z); for (i=0; i integer * * Performs bitwise +exclusive or+ between _big_ and _numeric_. */ VALUE rb_big_xor(VALUE xx, VALUE yy) { volatile VALUE x, y; VALUE z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = rb_to_int(yy); if (FIXNUM_P(y)) { y = rb_int2big(FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } RBIGNUM_SET_SIGN(x, RBIGNUM_SIGN(x)?1:0); RBIGNUM_SET_SIGN(y, RBIGNUM_SIGN(y)?1:0); z = bignew(l2, !(RBIGNUM_SIGN(x) ^ RBIGNUM_SIGN(y))); zds = BDIGITS(z); for (i=0; i SIZEOF_LONG / SIZEOF_BDIGITS) { return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(-1); } return Qnil; } /* * call-seq: * big << numeric => integer * * Shifts big left _numeric_ positions (right if _numeric_ is negative). */ VALUE rb_big_lshift(VALUE x, VALUE y) { long shift; int neg = 0; for (;;) { if (FIXNUM_P(y)) { shift = FIX2LONG(y); if (shift < 0) { neg = 1; shift = -shift; } break; } else if (TYPE(y) == T_BIGNUM) { if (!RBIGNUM_SIGN(y)) { VALUE t = check_shiftdown(y, x); if (!NIL_P(t)) return t; neg = 1; } shift = big2ulong(y, "long", Qtrue); break; } y = rb_to_int(y); } if (neg) return big_rshift(x, shift); return big_lshift(x, shift); } static VALUE big_lshift(VALUE x, unsigned long shift) { BDIGIT *xds, *zds; long s1 = shift/BITSPERDIG; int s2 = shift%BITSPERDIG; VALUE z; BDIGIT_DBL num = 0; long len, i; len = RBIGNUM_LEN(x); z = bignew(len+s1+1, RBIGNUM_SIGN(x)); zds = BDIGITS(z); for (i=0; i> numeric => integer * * Shifts big right _numeric_ positions (left if _numeric_ is negative). */ VALUE rb_big_rshift(VALUE x, VALUE y) { long shift; int neg = 0; for (;;) { if (FIXNUM_P(y)) { shift = FIX2LONG(y); if (shift < 0) { neg = 1; shift = -shift; } break; } else if (TYPE(y) == T_BIGNUM) { if (RBIGNUM_SIGN(y)) { VALUE t = check_shiftdown(y, x); if (!NIL_P(t)) return t; } else { neg = 1; } shift = big2ulong(y, "long", Qtrue); break; } y = rb_to_int(y); } if (neg) return big_lshift(x, shift); return big_rshift(x, shift); } static VALUE big_rshift(VALUE x, unsigned long shift) { BDIGIT *xds, *zds; long s1 = shift/BITSPERDIG; int s2 = shift%BITSPERDIG; VALUE z; BDIGIT_DBL num = 0; long i, j; volatile VALUE save_x; if (s1 > RBIGNUM_LEN(x)) { if (RBIGNUM_SIGN(x)) return INT2FIX(0); else return INT2FIX(-1); } if (!RBIGNUM_SIGN(x)) { save_x = x = rb_big_clone(x); get2comp(x); } xds = BDIGITS(x); i = RBIGNUM_LEN(x); j = i - s1; if (j == 0) { if (RBIGNUM_SIGN(x)) return INT2FIX(0); else return INT2FIX(-1); } z = bignew(j, RBIGNUM_SIGN(x)); if (!RBIGNUM_SIGN(x)) { num = ((BDIGIT_DBL)~0) << BITSPERDIG; } zds = BDIGITS(z); while (i--, j--) { num = (num | xds[i]) >> s2; zds[j] = BIGLO(num); num = BIGUP(xds[i]); } if (!RBIGNUM_SIGN(x)) { get2comp(z); } return bignorm(z); } /* * call-seq: * big[n] -> 0, 1 * * Bit Reference---Returns the nth bit in the (assumed) binary * representation of big, where big[0] is the least * significant bit. * * a = 9**15 * 50.downto(0) do |n| * print a[n] * end * * produces: * * 000101110110100000111000011110010100111100010111001 * */ static VALUE rb_big_aref(VALUE x, VALUE y) { BDIGIT *xds; BDIGIT_DBL num; VALUE shift; long i, s1, s2; if (TYPE(y) == T_BIGNUM) { if (!RBIGNUM_SIGN(y)) return INT2FIX(0); if (RBIGNUM_LEN(bigtrunc(y)) > DIGSPERLONG) { out_of_range: return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1); } shift = big2ulong(y, "long", Qfalse); } else { i = NUM2LONG(y); if (i < 0) return INT2FIX(0); shift = (VALUE)i; } s1 = shift/BITSPERDIG; s2 = shift%BITSPERDIG; if (s1 >= RBIGNUM_LEN(x)) goto out_of_range; if (!RBIGNUM_SIGN(x)) { xds = BDIGITS(x); i = 0; num = 1; while (num += ~xds[i], ++i <= s1) { num = BIGDN(num); } } else { num = BDIGITS(x)[s1]; } if (num & ((BDIGIT_DBL)1< fixnum * * Compute a hash based on the value of _big_. */ static VALUE rb_big_hash(VALUE x) { int hash; hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x); return INT2FIX(hash); } /* * MISSING: documentation */ static VALUE rb_big_coerce(VALUE x, VALUE y) { if (FIXNUM_P(y)) { return rb_assoc_new(rb_int2big(FIX2LONG(y)), x); } else if (TYPE(y) == T_BIGNUM) { return rb_assoc_new(y, x); } else { rb_raise(rb_eTypeError, "can't coerce %s to Bignum", rb_obj_classname(y)); } /* not reached */ return Qnil; } /* * call-seq: * big.abs -> aBignum * * Returns the absolute value of big. * * -1234567890987654321.abs #=> 1234567890987654321 */ static VALUE rb_big_abs(VALUE x) { if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); RBIGNUM_SET_SIGN(x, 1); } return x; } /* * call-seq: * big.size -> integer * * Returns the number of bytes in the machine representation of * big. * * (256**10 - 1).size #=> 12 * (256**20 - 1).size #=> 20 * (256**40 - 1).size #=> 40 */ static VALUE rb_big_size(VALUE big) { return LONG2FIX(RBIGNUM_LEN(big)*SIZEOF_BDIGITS); } /* * call-seq: * big.odd? -> true or false * * Returns true if big is an odd number. */ static VALUE rb_big_odd_p(VALUE num) { if (BDIGITS(num)[0] & 1) { return Qtrue; } return Qfalse; } /* * call-seq: * big.even? -> true or false * * Returns true if big is an even number. */ static VALUE rb_big_even_p(VALUE num) { if (BDIGITS(num)[0] & 1) { return Qfalse; } return Qtrue; } /* * Bignum objects hold integers outside the range of * Fixnum. Bignum objects are created * automatically when integer calculations would otherwise overflow a * Fixnum. When a calculation involving * Bignum objects returns a result that will fit in a * Fixnum, the result is automatically converted. * * For the purposes of the bitwise operations and [], a * Bignum is treated as if it were an infinite-length * bitstring with 2's complement representation. * * While Fixnum values are immediate, Bignum * objects are not---assignment and parameter passing work with * references to objects, not the objects themselves. * */ void Init_Bignum(void) { rb_cBignum = rb_define_class("Bignum", rb_cInteger); rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1); rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1); rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0); rb_define_method(rb_cBignum, "+", rb_big_plus, 1); rb_define_method(rb_cBignum, "-", rb_big_minus, 1); rb_define_method(rb_cBignum, "*", rb_big_mul, 1); rb_define_method(rb_cBignum, "/", rb_big_div, 1); rb_define_method(rb_cBignum, "%", rb_big_modulo, 1); rb_define_method(rb_cBignum, "div", rb_big_div, 1); rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1); rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1); rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1); rb_define_method(rb_cBignum, "quo", rb_big_quo, 1); rb_define_method(rb_cBignum, "fdiv", rb_big_quo, 1); rb_define_method(rb_cBignum, "**", rb_big_pow, 1); rb_define_method(rb_cBignum, "&", rb_big_and, 1); rb_define_method(rb_cBignum, "|", rb_big_or, 1); rb_define_method(rb_cBignum, "^", rb_big_xor, 1); rb_define_method(rb_cBignum, "~", rb_big_neg, 0); rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1); rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1); rb_define_method(rb_cBignum, "[]", rb_big_aref, 1); rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1); rb_define_method(rb_cBignum, "==", rb_big_eq, 1); rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1); rb_define_method(rb_cBignum, "hash", rb_big_hash, 0); rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0); rb_define_method(rb_cBignum, "abs", rb_big_abs, 0); rb_define_method(rb_cBignum, "size", rb_big_size, 0); rb_define_method(rb_cBignum, "odd?", rb_big_odd_p, 0); rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0); }