require "benchmark/ips" require "json" require "oj" Oj.default_options = Oj.default_options.merge(mode: :compat) if ENV["ONLY"] RUN = ENV["ONLY"].split(/[,: ]/).map{|x| [x.to_sym, true] }.to_h RUN.default = false elsif ENV["EXCEPT"] RUN = ENV["EXCEPT"].split(/[,: ]/).map{|x| [x.to_sym, false] }.to_h RUN.default = true else RUN = Hash.new(true) end def implementations(ruby_obj) state = JSON::State.new(JSON.dump_default_options) { json_state: ["json (reuse)", proc { state.generate(ruby_obj) }], json: ["json", proc { JSON.dump(ruby_obj) }], oj: ["oj", proc { Oj.dump(ruby_obj) }], } end def benchmark_encoding(benchmark_name, ruby_obj, check_expected: true, except: []) json_output = JSON.dump(ruby_obj) puts "== Encoding #{benchmark_name} (#{json_output.bytesize} bytes)" impls = implementations(ruby_obj).select { |name| RUN[name] } except.each { |i| impls.delete(i) } Benchmark.ips do |x| expected = ::JSON.dump(ruby_obj) if check_expected impls.values.each do |name, block| begin result = block.call if check_expected && expected != result puts "#{name} does not match expected output. Skipping" puts "Expected:" + '-' * 40 puts expected puts "Actual:" + '-' * 40 puts result puts '-' * 40 next end rescue => error puts "#{name} unsupported (#{error})" next end x.report(name, &block) end x.compare!(order: :baseline) end puts end # On the first two micro benchmarks, the limitting factor is that we have to create a Generator::State object for every # call to `JSON.dump`, so we cause 2 allocations per call where alternatives only do one allocation. # The performance difference is mostly more time spent in GC because of this extra pressure. # If we re-use the same `JSON::State` instance, we're faster than Oj on the array benchmark, and much closer # on the Hash one. benchmark_encoding "small nested array", [[1,2,3,4,5]]*10 benchmark_encoding "small hash", { "username" => "jhawthorn", "id" => 123, "event" => "wrote json serializer" } # On these benchmarks we perform well. Either on par or very closely faster/slower benchmark_encoding "integers", (1_000_000..1_001_000).to_a, except: %i(json_state) benchmark_encoding "mixed utf8", ([("a" * 5000) + "€" + ("a" * 5000)] * 500), except: %i(json_state) benchmark_encoding "mostly utf8", ([("€" * 3333)] * 500), except: %i(json_state) benchmark_encoding "twitter.json", JSON.load_file("#{__dir__}/data/twitter.json"), except: %i(json_state) benchmark_encoding "citm_catalog.json", JSON.load_file("#{__dir__}/data/citm_catalog.json"), except: %i(json_state) # This benchmark spent the overwhelming majority of its time in `ruby_dtoa`. We rely on Ruby's implementation # which uses a relatively old version of dtoa.c from David M. Gay. # Oj in `compat` mode is ~10% slower than `json`, but in its default mode is noticeably faster here because # it limits the precision of floats, breaking roundtriping. That's not something we should emulate. # # Since a few years there are now much faster float to string implementations such as Ryu, Dragonbox, etc, # but all these are implemented in C++11 or newer, making it hard if not impossible to include them. # Short of a pure C99 implementation of these newer algorithms, there isn't much that can be done to match # Oj speed without losing precision. benchmark_encoding "canada.json", JSON.load_file("#{__dir__}/data/canada.json"), check_expected: false, except: %i(json_state) benchmark_encoding "many #to_json calls", [{object: Object.new, int: 12, float: 54.3, class: Float, time: Time.now, date: Date.today}] * 20, except: %i(json_state)