/********************************************************************** array.c - $Author$ created at: Fri Aug 6 09:46:12 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/util.h" #include "ruby/st.h" #include "ruby/encoding.h" #ifndef ARRAY_DEBUG # define NDEBUG #endif #include #define numberof(array) (int)(sizeof(array) / sizeof((array)[0])) VALUE rb_cArray; static ID id_cmp; #define ARY_DEFAULT_SIZE 16 #define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE)) void rb_mem_clear(register VALUE *mem, register long size) { while (size--) { *mem++ = Qnil; } } static inline void memfill(register VALUE *mem, register long size, register VALUE val) { while (size--) { *mem++ = val; } } # define ARY_SHARED_P(ary) \ (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ FL_TEST((ary),ELTS_SHARED)!=0) # define ARY_EMBED_P(ary) \ (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ FL_TEST((ary), RARRAY_EMBED_FLAG)!=0) #define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr) #define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len) #define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary) #define ARY_EMBED_LEN(a) \ (assert(ARY_EMBED_P(a)), \ (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \ (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT))) #define ARY_OWNS_HEAP_P(a) (!FL_TEST((a), ELTS_SHARED|RARRAY_EMBED_FLAG)) #define FL_SET_EMBED(a) do { \ assert(!ARY_SHARED_P(a)); \ assert(!OBJ_FROZEN(a)); \ FL_SET((a), RARRAY_EMBED_FLAG); \ } while (0) #define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK) #define FL_SET_SHARED(ary) do { \ assert(!ARY_EMBED_P(ary)); \ FL_SET((ary), ELTS_SHARED); \ } while (0) #define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED) #define ARY_SET_PTR(ary, p) do { \ assert(!ARY_EMBED_P(ary)); \ assert(!OBJ_FROZEN(ary)); \ RARRAY(ary)->as.heap.ptr = (p); \ } while (0) #define ARY_SET_EMBED_LEN(ary, n) do { \ long tmp_n = (n); \ assert(ARY_EMBED_P(ary)); \ assert(!OBJ_FROZEN(ary)); \ RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \ RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \ } while (0) #define ARY_SET_HEAP_LEN(ary, n) do { \ assert(!ARY_EMBED_P(ary)); \ RARRAY(ary)->as.heap.len = (n); \ } while (0) #define ARY_SET_LEN(ary, n) do { \ if (ARY_EMBED_P(ary)) { \ ARY_SET_EMBED_LEN((ary), (n)); \ } \ else { \ ARY_SET_HEAP_LEN((ary), (n)); \ } \ assert(RARRAY_LEN(ary) == (n)); \ } while (0) #define ARY_INCREASE_PTR(ary, n) do { \ assert(!ARY_EMBED_P(ary)); \ assert(!OBJ_FROZEN(ary)); \ RARRAY(ary)->as.heap.ptr += (n); \ } while (0) #define ARY_INCREASE_LEN(ary, n) do { \ assert(!OBJ_FROZEN(ary)); \ if (ARY_EMBED_P(ary)) { \ ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \ } \ else { \ RARRAY(ary)->as.heap.len += (n); \ } \ } while (0) #define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \ ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa) #define ARY_SET_CAPA(ary, n) do { \ assert(!ARY_EMBED_P(ary)); \ assert(!ARY_SHARED_P(ary)); \ assert(!OBJ_FROZEN(ary)); \ RARRAY(ary)->as.heap.aux.capa = (n); \ } while (0) #define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared) #define ARY_SET_SHARED(ary, value) do { \ assert(!ARY_EMBED_P(ary)); \ assert(ARY_SHARED_P(ary)); \ assert(ARY_SHARED_ROOT_P(value)); \ RARRAY(ary)->as.heap.aux.shared = (value); \ } while (0) #define RARRAY_SHARED_ROOT_FLAG FL_USER5 #define ARY_SHARED_ROOT_P(ary) (FL_TEST((ary), RARRAY_SHARED_ROOT_FLAG)) #define ARY_SHARED_NUM(ary) \ (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa) #define ARY_SET_SHARED_NUM(ary, value) do { \ assert(ARY_SHARED_ROOT_P(ary)); \ RARRAY(ary)->as.heap.aux.capa = (value); \ } while (0) #define FL_SET_SHARED_ROOT(ary) do { \ assert(!ARY_EMBED_P(ary)); \ FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \ } while (0) static void ary_resize_capa(VALUE ary, long capacity) { assert(RARRAY_LEN(ary) <= capacity); assert(!OBJ_FROZEN(ary)); assert(!ARY_SHARED_P(ary)); if (capacity > RARRAY_EMBED_LEN_MAX) { if (ARY_EMBED_P(ary)) { long len = ARY_EMBED_LEN(ary); VALUE *ptr = ALLOC_N(VALUE, (capacity)); MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len); FL_UNSET_EMBED(ary); ARY_SET_PTR(ary, ptr); ARY_SET_HEAP_LEN(ary, len); } else { REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, (capacity)); } ARY_SET_CAPA(ary, (capacity)); } else { if (!ARY_EMBED_P(ary)) { long len = RARRAY_LEN(ary); VALUE *ptr = RARRAY_PTR(ary); if (len > capacity) len = capacity; MEMCPY(RARRAY(ary)->as.ary, ptr, VALUE, len); FL_SET_EMBED(ary); ARY_SET_LEN(ary, len); xfree(ptr); } } } static void ary_double_capa(VALUE ary, long min) { long new_capa = ARY_CAPA(ary) / 2; if (new_capa < ARY_DEFAULT_SIZE) { new_capa = ARY_DEFAULT_SIZE; } if (new_capa >= ARY_MAX_SIZE - min) { new_capa = (ARY_MAX_SIZE - min) / 2; } new_capa += min; ary_resize_capa(ary, new_capa); } static void rb_ary_decrement_share(VALUE shared) { if (shared) { long num = ARY_SHARED_NUM(shared) - 1; if (num == 0) { rb_ary_free(shared); rb_gc_force_recycle(shared); } else if (num > 0) { ARY_SET_SHARED_NUM(shared, num); } } } static void rb_ary_unshare(VALUE ary) { VALUE shared = RARRAY(ary)->as.heap.aux.shared; rb_ary_decrement_share(shared); FL_UNSET_SHARED(ary); } static inline void rb_ary_unshare_safe(VALUE ary) { if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { rb_ary_unshare(ary); } } static VALUE rb_ary_increment_share(VALUE shared) { long num = ARY_SHARED_NUM(shared); if (num >= 0) { ARY_SET_SHARED_NUM(shared, num + 1); } return shared; } static void rb_ary_set_shared(VALUE ary, VALUE shared) { rb_ary_increment_share(shared); FL_SET_SHARED(ary); ARY_SET_SHARED(ary, shared); } static inline void rb_ary_modify_check(VALUE ary) { rb_check_frozen(ary); if (!OBJ_UNTRUSTED(ary) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify array"); } void rb_ary_modify(VALUE ary) { rb_ary_modify_check(ary); if (ARY_SHARED_P(ary)) { long len = RARRAY_LEN(ary); if (len <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr = ARY_HEAP_PTR(ary); VALUE shared = ARY_SHARED(ary); FL_UNSET_SHARED(ary); FL_SET_EMBED(ary); MEMCPY(ARY_EMBED_PTR(ary), ptr, VALUE, len); rb_ary_decrement_share(shared); ARY_SET_EMBED_LEN(ary, len); } else { VALUE *ptr = ALLOC_N(VALUE, len); MEMCPY(ptr, RARRAY_PTR(ary), VALUE, len); rb_ary_unshare(ary); ARY_SET_CAPA(ary, len); ARY_SET_PTR(ary, ptr); } } } VALUE rb_ary_freeze(VALUE ary) { return rb_obj_freeze(ary); } /* * call-seq: * ary.frozen? -> true or false * * Return true if this array is frozen (or temporarily frozen * while being sorted). */ static VALUE rb_ary_frozen_p(VALUE ary) { if (OBJ_FROZEN(ary)) return Qtrue; return Qfalse; } static VALUE ary_alloc(VALUE klass) { NEWOBJ(ary, struct RArray); OBJSETUP(ary, klass, T_ARRAY); FL_SET_EMBED((VALUE)ary); ARY_SET_EMBED_LEN((VALUE)ary, 0); return (VALUE)ary; } static VALUE ary_new(VALUE klass, long capa) { VALUE ary; if (capa < 0) { rb_raise(rb_eArgError, "negative array size (or size too big)"); } if (capa > ARY_MAX_SIZE) { rb_raise(rb_eArgError, "array size too big"); } ary = ary_alloc(klass); if (capa > RARRAY_EMBED_LEN_MAX) { FL_UNSET_EMBED(ary); ARY_SET_PTR(ary, ALLOC_N(VALUE, capa)); ARY_SET_CAPA(ary, capa); ARY_SET_HEAP_LEN(ary, 0); } return ary; } VALUE rb_ary_new2(long capa) { return ary_new(rb_cArray, capa); } VALUE rb_ary_new(void) { return rb_ary_new2(RARRAY_EMBED_LEN_MAX); } #include VALUE rb_ary_new3(long n, ...) { va_list ar; VALUE ary; long i; ary = rb_ary_new2(n); va_start(ar, n); for (i=0; i 0 && elts) { MEMCPY(RARRAY_PTR(ary), elts, VALUE, n); ARY_SET_LEN(ary, n); } return ary; } VALUE rb_ary_tmp_new(long capa) { return ary_new(0, capa); } void rb_ary_free(VALUE ary) { if (ARY_OWNS_HEAP_P(ary)) { xfree(ARY_HEAP_PTR(ary)); } } RUBY_FUNC_EXPORTED size_t rb_ary_memsize(VALUE ary) { if (ARY_OWNS_HEAP_P(ary)) { return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE); } else { return 0; } } static inline void ary_discard(VALUE ary) { rb_ary_free(ary); RBASIC(ary)->flags |= RARRAY_EMBED_FLAG; RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; } static VALUE ary_make_shared(VALUE ary) { assert(!ARY_EMBED_P(ary)); if (ARY_SHARED_P(ary)) { return ARY_SHARED(ary); } else if (ARY_SHARED_ROOT_P(ary)) { return ary; } else if (OBJ_FROZEN(ary)) { ary_resize_capa(ary, ARY_HEAP_LEN(ary)); FL_SET_SHARED_ROOT(ary); ARY_SET_SHARED_NUM(ary, 1); return ary; } else { NEWOBJ(shared, struct RArray); OBJSETUP(shared, 0, T_ARRAY); FL_UNSET_EMBED(shared); ARY_SET_LEN((VALUE)shared, RARRAY_LEN(ary)); ARY_SET_PTR((VALUE)shared, RARRAY_PTR(ary)); FL_SET_SHARED_ROOT(shared); ARY_SET_SHARED_NUM((VALUE)shared, 1); FL_SET_SHARED(ary); ARY_SET_SHARED(ary, (VALUE)shared); OBJ_FREEZE(shared); return (VALUE)shared; } } static VALUE ary_make_substitution(VALUE ary) { if (RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX) { VALUE subst = rb_ary_new2(RARRAY_LEN(ary)); MEMCPY(ARY_EMBED_PTR(subst), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary)); ARY_SET_EMBED_LEN(subst, RARRAY_LEN(ary)); return subst; } else { return rb_ary_increment_share(ary_make_shared(ary)); } } VALUE rb_assoc_new(VALUE car, VALUE cdr) { return rb_ary_new3(2, car, cdr); } static VALUE to_ary(VALUE ary) { return rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); } VALUE rb_check_array_type(VALUE ary) { return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary"); } /* * call-seq: * Array.try_convert(obj) -> array or nil * * Try to convert obj into an array, using +to_ary+ method. * Returns converted array or +nil+ if obj cannot be converted * for any reason. This method can be used to check if an argument is an * array. * * Array.try_convert([1]) #=> [1] * Array.try_convert("1") #=> nil * * if tmp = Array.try_convert(arg) * # the argument is an array * elsif tmp = String.try_convert(arg) * # the argument is a string * end * */ static VALUE rb_ary_s_try_convert(VALUE dummy, VALUE ary) { return rb_check_array_type(ary); } /* * call-seq: * Array.new(size=0, obj=nil) * Array.new(array) * Array.new(size) {|index| block } * * Returns a new array. In the first form, the new array is * empty. In the second it is created with _size_ copies of _obj_ * (that is, _size_ references to the same * _obj_). The third form creates a copy of the array * passed as a parameter (the array is generated by calling * to_ary on the parameter). In the last form, an array * of the given size is created. Each element in this array is * calculated by passing the element's index to the given block and * storing the return value. * * Array.new * Array.new(2) * Array.new(5, "A") * * # only one copy of the object is created * a = Array.new(2, Hash.new) * a[0]['cat'] = 'feline' * a * a[1]['cat'] = 'Felix' * a * * # here multiple copies are created * a = Array.new(2) { Hash.new } * a[0]['cat'] = 'feline' * a * * squares = Array.new(5) {|i| i*i} * squares * * copy = Array.new(squares) */ static VALUE rb_ary_initialize(int argc, VALUE *argv, VALUE ary) { long len; VALUE size, val; rb_ary_modify(ary); if (argc == 0) { if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) { xfree(RARRAY_PTR(ary)); } rb_ary_unshare_safe(ary); FL_SET_EMBED(ary); ARY_SET_EMBED_LEN(ary, 0); if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } rb_scan_args(argc, argv, "02", &size, &val); if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > ARY_MAX_SIZE) { rb_raise(rb_eArgError, "array size too big"); } rb_ary_modify(ary); ary_resize_capa(ary, len); if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; i 0 && argv) { MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_SET_LEN(ary, argc); } return ary; } void rb_ary_store(VALUE ary, long idx, VALUE val) { if (idx < 0) { idx += RARRAY_LEN(ary); if (idx < 0) { rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", idx - RARRAY_LEN(ary), -RARRAY_LEN(ary)); } } else if (idx >= ARY_MAX_SIZE) { rb_raise(rb_eIndexError, "index %ld too big", idx); } rb_ary_modify(ary); if (idx >= ARY_CAPA(ary)) { ary_double_capa(ary, idx); } if (idx > RARRAY_LEN(ary)) { rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), idx-RARRAY_LEN(ary) + 1); } if (idx >= RARRAY_LEN(ary)) { ARY_SET_LEN(ary, idx + 1); } RARRAY_PTR(ary)[idx] = val; } static VALUE ary_make_partial(VALUE ary, VALUE klass, long offset, long len) { assert(offset >= 0); assert(len >= 0); assert(offset+len <= RARRAY_LEN(ary)); if (len <= RARRAY_EMBED_LEN_MAX) { VALUE result = ary_alloc(klass); MEMCPY(ARY_EMBED_PTR(result), RARRAY_PTR(ary) + offset, VALUE, len); ARY_SET_EMBED_LEN(result, len); return result; } else { VALUE shared, result = ary_alloc(klass); FL_UNSET_EMBED(result); shared = ary_make_shared(ary); ARY_SET_PTR(result, RARRAY_PTR(ary)); ARY_SET_LEN(result, RARRAY_LEN(ary)); rb_ary_set_shared(result, shared); ARY_INCREASE_PTR(result, offset); ARY_SET_LEN(result, len); return result; } } static VALUE ary_make_shared_copy(VALUE ary) { return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary)); } enum ary_take_pos_flags { ARY_TAKE_FIRST = 0, ARY_TAKE_LAST = 1 }; static VALUE ary_take_first_or_last(int argc, VALUE *argv, VALUE ary, enum ary_take_pos_flags last) { VALUE nv; long n; long offset = 0; rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n > RARRAY_LEN(ary)) { n = RARRAY_LEN(ary); } else if (n < 0) { rb_raise(rb_eArgError, "negative array size"); } if (last) { offset = RARRAY_LEN(ary) - n; } return ary_make_partial(ary, rb_cArray, offset, n); } static VALUE rb_ary_push_1(VALUE ary, VALUE item); /* * call-seq: * ary << obj -> ary * * Append---Pushes the given object on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * [ 1, 2 ] << "c" << "d" << [ 3, 4 ] * #=> [ 1, 2, "c", "d", [ 3, 4 ] ] * */ VALUE rb_ary_push(VALUE ary, VALUE item) { rb_ary_modify(ary); return rb_ary_push_1(ary, item); } static VALUE rb_ary_push_1(VALUE ary, VALUE item) { long idx = RARRAY_LEN(ary); if (idx >= ARY_CAPA(ary)) { ary_double_capa(ary, idx); } RARRAY_PTR(ary)[idx] = item; ARY_SET_LEN(ary, idx + 1); return ary; } /* * call-seq: * ary.push(obj, ... ) -> ary * * Append---Pushes the given object(s) on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * a = [ "a", "b", "c" ] * a.push("d", "e", "f") * #=> ["a", "b", "c", "d", "e", "f"] */ static VALUE rb_ary_push_m(int argc, VALUE *argv, VALUE ary) { rb_ary_modify(ary); while (argc--) { rb_ary_push_1(ary, *argv++); } return ary; } VALUE rb_ary_pop(VALUE ary) { long n; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) == 0) return Qnil; if (ARY_OWNS_HEAP_P(ary) && RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) && ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { ary_resize_capa(ary, RARRAY_LEN(ary) * 2); } n = RARRAY_LEN(ary)-1; ARY_SET_LEN(ary, n); return RARRAY_PTR(ary)[n]; } /* * call-seq: * ary.pop -> obj or nil * ary.pop(n) -> new_ary * * Removes the last element from +self+ and returns it, or * nil if the array is empty. * * If a number _n_ is given, returns an array of the last n elements * (or less) just like array.slice!(-n, n) does. * * a = [ "a", "b", "c", "d" ] * a.pop #=> "d" * a.pop(2) #=> ["b", "c"] * a #=> ["a"] */ static VALUE rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) { VALUE result; if (argc == 0) { return rb_ary_pop(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); ARY_INCREASE_LEN(ary, -RARRAY_LEN(result)); return result; } VALUE rb_ary_shift(VALUE ary) { VALUE top; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) == 0) return Qnil; top = RARRAY_PTR(ary)[0]; if (!ARY_SHARED_P(ary)) { if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1); ARY_INCREASE_LEN(ary, -1); return top; } assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */ RARRAY_PTR(ary)[0] = Qnil; ary_make_shared(ary); } else if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) { RARRAY_PTR(ary)[0] = Qnil; } ARY_INCREASE_PTR(ary, 1); /* shift ptr */ ARY_INCREASE_LEN(ary, -1); return top; } /* * call-seq: * ary.shift -> obj or nil * ary.shift(n) -> new_ary * * Returns the first element of +self+ and removes it (shifting all * other elements down by one). Returns nil if the array * is empty. * * If a number _n_ is given, returns an array of the first n elements * (or less) just like array.slice!(0, n) does. * * args = [ "-m", "-q", "filename" ] * args.shift #=> "-m" * args #=> ["-q", "filename"] * * args = [ "-m", "-q", "filename" ] * args.shift(2) #=> ["-m", "-q"] * args #=> ["filename"] */ static VALUE rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) { VALUE result; long n; if (argc == 0) { return rb_ary_shift(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); n = RARRAY_LEN(result); if (ARY_SHARED_P(ary)) { if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) { rb_mem_clear(RARRAY_PTR(ary), n); } ARY_INCREASE_PTR(ary, n); } else { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n); } ARY_INCREASE_LEN(ary, -n); return result; } /* * call-seq: * ary.unshift(obj, ...) -> ary * * Prepends objects to the front of +self+, * moving other elements upwards. * * a = [ "b", "c", "d" ] * a.unshift("a") #=> ["a", "b", "c", "d"] * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"] */ static VALUE rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) { long len; rb_ary_modify(ary); if (argc == 0) return ary; if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) { ary_double_capa(ary, len + argc); } /* sliding items */ MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len); MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_INCREASE_LEN(ary, argc); return ary; } VALUE rb_ary_unshift(VALUE ary, VALUE item) { return rb_ary_unshift_m(1,&item,ary); } /* faster version - use this if you don't need to treat negative offset */ static inline VALUE rb_ary_elt(VALUE ary, long offset) { if (RARRAY_LEN(ary) == 0) return Qnil; if (offset < 0 || RARRAY_LEN(ary) <= offset) { return Qnil; } return RARRAY_PTR(ary)[offset]; } VALUE rb_ary_entry(VALUE ary, long offset) { if (offset < 0) { offset += RARRAY_LEN(ary); } return rb_ary_elt(ary, offset); } VALUE rb_ary_subseq(VALUE ary, long beg, long len) { VALUE klass; if (beg > RARRAY_LEN(ary)) return Qnil; if (beg < 0 || len < 0) return Qnil; if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) { len = RARRAY_LEN(ary) - beg; } klass = rb_obj_class(ary); if (len == 0) return ary_new(klass, 0); return ary_make_partial(ary, klass, beg, len); } /* * call-seq: * ary[index] -> obj or nil * ary[start, length] -> new_ary or nil * ary[range] -> new_ary or nil * ary.slice(index) -> obj or nil * ary.slice(start, length) -> new_ary or nil * ary.slice(range) -> new_ary or nil * * Element Reference---Returns the element at _index_, * or returns a subarray starting at _start_ and * continuing for _length_ elements, or returns a subarray * specified by _range_. * Negative indices count backward from the end of the * array (-1 is the last element). Returns +nil+ if the index * (or starting index) are out of range. * * a = [ "a", "b", "c", "d", "e" ] * a[2] + a[0] + a[1] #=> "cab" * a[6] #=> nil * a[1, 2] #=> [ "b", "c" ] * a[1..3] #=> [ "b", "c", "d" ] * a[4..7] #=> [ "e" ] * a[6..10] #=> nil * a[-3, 3] #=> [ "c", "d", "e" ] * # special cases * a[5] #=> nil * a[5, 1] #=> [] * a[5..10] #=> [] * */ VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); } /* * call-seq: * ary.at(index) -> obj or nil * * Returns the element at _index_. A * negative index counts from the end of +self+. Returns +nil+ * if the index is out of range. See also Array#[]. * * a = [ "a", "b", "c", "d", "e" ] * a.at(0) #=> "a" * a.at(-1) #=> "e" */ static VALUE rb_ary_at(VALUE ary, VALUE pos) { return rb_ary_entry(ary, NUM2LONG(pos)); } /* * call-seq: * ary.first -> obj or nil * ary.first(n) -> new_ary * * Returns the first element, or the first +n+ elements, of the array. * If the array is empty, the first form returns nil, and the * second form returns an empty array. * * a = [ "q", "r", "s", "t" ] * a.first #=> "q" * a.first(2) #=> ["q", "r"] */ static VALUE rb_ary_first(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[0]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); } } /* * call-seq: * ary.last -> obj or nil * ary.last(n) -> new_ary * * Returns the last element(s) of +self+. If the array is empty, * the first form returns nil. * * a = [ "w", "x", "y", "z" ] * a.last #=> "z" * a.last(2) #=> ["y", "z"] */ VALUE rb_ary_last(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); } } /* * call-seq: * ary.fetch(index) -> obj * ary.fetch(index, default ) -> obj * ary.fetch(index) {|index| block } -> obj * * Tries to return the element at position index. If the index * lies outside the array, the first form throws an * IndexError exception, the second form returns * default, and the third form returns the value of invoking * the block, passing in the index. Negative values of index * count from the end of the array. * * a = [ 11, 22, 33, 44 ] * a.fetch(1) #=> 22 * a.fetch(-1) #=> 44 * a.fetch(4, 'cat') #=> "cat" * a.fetch(4) { |i| i*i } #=> 16 */ static VALUE rb_ary_fetch(int argc, VALUE *argv, VALUE ary) { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY_LEN(ary); } if (idx < 0 || RARRAY_LEN(ary) <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld", idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary)); } return ifnone; } return RARRAY_PTR(ary)[idx]; } /* * call-seq: * ary.index(obj) -> int or nil * ary.index {|item| block} -> int or nil * ary.index -> an_enumerator * * Returns the index of the first object in +self+ such that the object is * == to obj. If a block is given instead of an * argument, returns index of first object for which block is true. * Returns nil if no match is found. * See also Array#rindex. * * If neither block nor argument is given, an enumerator is returned instead. * * a = [ "a", "b", "c" ] * a.index("b") #=> 1 * a.index("z") #=> nil * a.index{|x|x=="b"} #=> 1 * * This is an alias of #find_index. */ static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i int or nil * ary.rindex {|item| block} -> int or nil * ary.rindex -> an_enumerator * * Returns the index of the last object in +self+ * == to obj. If a block is given instead of an * argument, returns index of first object for which block is * true, starting from the last object. * Returns nil if no match is found. * See also Array#index. * * If neither block nor argument is given, an enumerator is returned instead. * * a = [ "a", "b", "b", "b", "c" ] * a.rindex("b") #=> 3 * a.rindex("z") #=> nil * a.rindex{|x|x=="b"} #=> 3 */ static VALUE rb_ary_rindex(int argc, VALUE *argv, VALUE ary) { VALUE val; long i = RARRAY_LEN(ary); if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); while (i--) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); while (i--) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; } VALUE rb_ary_to_ary(VALUE obj) { VALUE tmp = rb_check_array_type(obj); if (!NIL_P(tmp)) return tmp; return rb_ary_new3(1, obj); } static void rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl) { long rlen; if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len); if (beg < 0) { beg += RARRAY_LEN(ary); if (beg < 0) { rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", beg - RARRAY_LEN(ary), -RARRAY_LEN(ary)); } } if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) { len = RARRAY_LEN(ary) - beg; } if (rpl == Qundef) { rlen = 0; } else { rpl = rb_ary_to_ary(rpl); rlen = RARRAY_LEN(rpl); } rb_ary_modify(ary); if (beg >= RARRAY_LEN(ary)) { if (beg > ARY_MAX_SIZE - rlen) { rb_raise(rb_eIndexError, "index %ld too big", beg); } len = beg + rlen; if (len >= ARY_CAPA(ary)) { ary_double_capa(ary, len); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary)); if (rlen > 0) { MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen); } ARY_SET_LEN(ary, len); } else { long alen; alen = RARRAY_LEN(ary) + rlen - len; if (alen >= ARY_CAPA(ary)) { ary_double_capa(ary, alen); } if (len != rlen) { MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len, VALUE, RARRAY_LEN(ary) - (beg + len)); ARY_SET_LEN(ary, alen); } if (rlen > 0) { MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen); } } } /*! * expands or shrinks \a ary to \a len elements. * expanded region will be filled with Qnil. * \param ary an array * \param len new size * \return \a ary * \post the size of \a ary is \a len. */ VALUE rb_ary_resize(VALUE ary, long len) { long olen; rb_ary_modify(ary); olen = RARRAY_LEN(ary); if (len == olen) return ary; if (len > ARY_MAX_SIZE) { rb_raise(rb_eIndexError, "index %ld too big", len); } if (len > olen) { if (len >= ARY_CAPA(ary)) { ary_double_capa(ary, len); } rb_mem_clear(RARRAY_PTR(ary) + olen, len - olen); ARY_SET_LEN(ary, len); } else if (ARY_EMBED_P(ary)) { ARY_SET_EMBED_LEN(ary, len); } else if (len <= RARRAY_EMBED_LEN_MAX) { VALUE tmp[RARRAY_EMBED_LEN_MAX]; MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len); ary_discard(ary); MEMCPY(ARY_EMBED_PTR(ary), tmp, VALUE, len); ARY_SET_EMBED_LEN(ary, len); } else { if (olen > len + ARY_DEFAULT_SIZE) { REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, len); ARY_SET_CAPA(ary, len); } ARY_SET_HEAP_LEN(ary, len); } return ary; } /* * call-seq: * ary[index] = obj -> obj * ary[start, length] = obj or other_ary or nil -> obj or other_ary or nil * ary[range] = obj or other_ary or nil -> obj or other_ary or nil * * Element Assignment---Sets the element at _index_, * or replaces a subarray starting at _start_ and * continuing for _length_ elements, or replaces a subarray * specified by _range_. If indices are greater than * the current capacity of the array, the array grows * automatically. A negative indices will count backward * from the end of the array. Inserts elements if _length_ is * zero. An +IndexError+ is raised if a negative index points * past the beginning of the array. See also * Array#push, and Array#unshift. * * a = Array.new * a[4] = "4"; #=> [nil, nil, nil, nil, "4"] * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] * a[0, 2] = "?" #=> ["?", 2, nil, "4"] * a[0..2] = "A" #=> ["A", "4"] * a[-1] = "Z" #=> ["A", "Z"] * a[1..-1] = nil #=> ["A", nil] * a[1..-1] = [] #=> ["A"] */ static VALUE rb_ary_aset(int argc, VALUE *argv, VALUE ary) { long offset, beg, len; if (argc == 3) { rb_ary_modify_check(ary); beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); rb_ary_splice(ary, beg, len, argv[2]); return argv[2]; } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc); } rb_ary_modify_check(ary); if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; } /* * call-seq: * ary.insert(index, obj...) -> ary * * Inserts the given values before the element with the given index * (which may be negative). * * a = %w{ a b c d } * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"] */ static VALUE rb_ary_insert(int argc, VALUE *argv, VALUE ary) { long pos; if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (at least 1)"); } rb_ary_modify_check(ary); if (argc == 1) return ary; pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY_LEN(ary); } if (pos < 0) { pos++; } rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; } /* * call-seq: * ary.each {|item| block } -> ary * ary.each -> an_enumerator * * Calls block once for each element in +self+, passing that * element as a parameter. * * If no block is given, an enumerator is returned instead. * * a = [ "a", "b", "c" ] * a.each {|x| print x, " -- " } * * produces: * * a -- b -- c -- */ VALUE rb_ary_each(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i ary * ary.each_index -> an_enumerator * * Same as Array#each, but passes the index of the element * instead of the element itself. * * If no block is given, an enumerator is returned instead. * * * a = [ "a", "b", "c" ] * a.each_index {|x| print x, " -- " } * * produces: * * 0 -- 1 -- 2 -- */ static VALUE rb_ary_each_index(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i ary * ary.reverse_each -> an_enumerator * * Same as Array#each, but traverses +self+ in reverse * order. * * a = [ "a", "b", "c" ] * a.reverse_each {|x| print x, " " } * * produces: * * c b a */ static VALUE rb_ary_reverse_each(VALUE ary) { long len; RETURN_ENUMERATOR(ary, 0, 0); len = RARRAY_LEN(ary); while (len--) { rb_yield(RARRAY_PTR(ary)[len]); if (RARRAY_LEN(ary) < len) { len = RARRAY_LEN(ary); } } return ary; } /* * call-seq: * ary.length -> int * * Returns the number of elements in +self+. May be zero. * * [ 1, 2, 3, 4, 5 ].length #=> 5 */ static VALUE rb_ary_length(VALUE ary) { long len = RARRAY_LEN(ary); return LONG2NUM(len); } /* * call-seq: * ary.empty? -> true or false * * Returns true if +self+ contains no elements. * * [].empty? #=> true */ static VALUE rb_ary_empty_p(VALUE ary) { if (RARRAY_LEN(ary) == 0) return Qtrue; return Qfalse; } VALUE rb_ary_dup(VALUE ary) { VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary)); ARY_SET_LEN(dup, RARRAY_LEN(ary)); return dup; } VALUE rb_ary_resurrect(VALUE ary) { return rb_ary_new4(RARRAY_LEN(ary), RARRAY_PTR(ary)); } extern VALUE rb_output_fs; static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first); static VALUE recursive_join(VALUE obj, VALUE argp, int recur) { VALUE *arg = (VALUE *)argp; VALUE ary = arg[0]; VALUE sep = arg[1]; VALUE result = arg[2]; int *first = (int *)arg[3]; if (recur) { rb_raise(rb_eArgError, "recursive array join"); } else { ary_join_1(obj, ary, sep, 0, result, first); } return Qnil; } static void ary_join_0(VALUE ary, VALUE sep, long max, VALUE result) { long i; VALUE val; if (max > 0) rb_enc_copy(result, RARRAY_PTR(ary)[0]); for (i=0; i 0 && !NIL_P(sep)) rb_str_buf_append(result, sep); rb_str_buf_append(result, val); if (OBJ_TAINTED(val)) OBJ_TAINT(result); if (OBJ_UNTRUSTED(val)) OBJ_TAINT(result); } } static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first) { VALUE val, tmp; for (; i 0 && !NIL_P(sep)) rb_str_buf_append(result, sep); val = RARRAY_PTR(ary)[i]; switch (TYPE(val)) { case T_STRING: str_join: rb_str_buf_append(result, val); break; case T_ARRAY: obj = val; ary_join: if (val == ary) { rb_raise(rb_eArgError, "recursive array join"); } else { VALUE args[4]; args[0] = val; args[1] = sep; args[2] = result; args[3] = (VALUE)first; rb_exec_recursive(recursive_join, obj, (VALUE)args); } break; default: tmp = rb_check_string_type(val); if (!NIL_P(tmp)) { val = tmp; goto str_join; } tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary"); if (!NIL_P(tmp)) { obj = val; val = tmp; goto ary_join; } val = rb_obj_as_string(val); if (*first) { rb_enc_copy(result, val); *first = FALSE; } goto str_join; } } } VALUE rb_ary_join(VALUE ary, VALUE sep) { long len = 1, i; int taint = FALSE; int untrust = FALSE; VALUE val, tmp, result; if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0); if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = TRUE; if (OBJ_UNTRUSTED(ary) || OBJ_UNTRUSTED(sep)) untrust = TRUE; if (!NIL_P(sep)) { StringValue(sep); len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1); } for (i=0; i str * * Returns a string created by converting each element of the array to * a string, separated by sep. * * [ "a", "b", "c" ].join #=> "abc" * [ "a", "b", "c" ].join("-") #=> "a-b-c" */ static VALUE rb_ary_join_m(int argc, VALUE *argv, VALUE ary) { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); } static VALUE inspect_ary(VALUE ary, VALUE dummy, int recur) { int tainted = OBJ_TAINTED(ary); int untrust = OBJ_UNTRUSTED(ary); long i; VALUE s, str; if (recur) return rb_usascii_str_new_cstr("[...]"); str = rb_str_buf_new2("["); for (i=0; i 0) rb_str_buf_cat2(str, ", "); else rb_enc_copy(str, s); rb_str_buf_append(str, s); } rb_str_buf_cat2(str, "]"); if (tainted) OBJ_TAINT(str); if (untrust) OBJ_UNTRUST(str); return str; } /* * call-seq: * ary.to_s -> string * ary.inspect -> string * * Creates a string representation of +self+. */ static VALUE rb_ary_inspect(VALUE ary) { if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]"); return rb_exec_recursive(inspect_ary, ary, 0); } VALUE rb_ary_to_s(VALUE ary) { return rb_ary_inspect(ary); } /* * call-seq: * ary.to_a -> ary * * Returns +self+. If called on a subclass of Array, converts * the receiver to an Array object. */ static VALUE rb_ary_to_a(VALUE ary) { if (rb_obj_class(ary) != rb_cArray) { VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); rb_ary_replace(dup, ary); return dup; } return ary; } /* * call-seq: * ary.to_ary -> ary * * Returns +self+. */ static VALUE rb_ary_to_ary_m(VALUE ary) { return ary; } static void ary_reverse(p1, p2) VALUE *p1, *p2; { while (p1 < p2) { VALUE tmp = *p1; *p1++ = *p2; *p2-- = tmp; } } VALUE rb_ary_reverse(VALUE ary) { VALUE *p1, *p2; rb_ary_modify(ary); if (RARRAY_LEN(ary) > 1) { p1 = RARRAY_PTR(ary); p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */ ary_reverse(p1, p2); } return ary; } /* * call-seq: * ary.reverse! -> ary * * Reverses +self+ in place. * * a = [ "a", "b", "c" ] * a.reverse! #=> ["c", "b", "a"] * a #=> ["c", "b", "a"] */ static VALUE rb_ary_reverse_bang(VALUE ary) { return rb_ary_reverse(ary); } /* * call-seq: * ary.reverse -> new_ary * * Returns a new array containing +self+'s elements in reverse order. * * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"] * [ 1 ].reverse #=> [1] */ static VALUE rb_ary_reverse_m(VALUE ary) { long len = RARRAY_LEN(ary); VALUE dup = rb_ary_new2(len); if (len > 0) { VALUE *p1 = RARRAY_PTR(ary); VALUE *p2 = RARRAY_PTR(dup) + len - 1; do *p2-- = *p1++; while (--len > 0); } ARY_SET_LEN(dup, RARRAY_LEN(ary)); return dup; } static inline long rotate_count(long cnt, long len) { return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len); } VALUE rb_ary_rotate(VALUE ary, long cnt) { rb_ary_modify(ary); if (cnt != 0) { VALUE *ptr = RARRAY_PTR(ary); long len = RARRAY_LEN(ary); if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) { --len; if (cnt < len) ary_reverse(ptr + cnt, ptr + len); if (--cnt > 0) ary_reverse(ptr, ptr + cnt); if (len > 0) ary_reverse(ptr, ptr + len); return ary; } } return Qnil; } /* * call-seq: * ary.rotate!(cnt=1) -> ary * * Rotates +self+ in place so that the element at +cnt+ comes first, * and returns +self+. If +cnt+ is negative then it rotates in * the opposite direction. * * a = [ "a", "b", "c", "d" ] * a.rotate! #=> ["b", "c", "d", "a"] * a #=> ["b", "c", "d", "a"] * a.rotate!(2) #=> ["d", "a", "b", "c"] * a.rotate!(-3) #=> ["a", "b", "c", "d"] */ static VALUE rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary) { long n = 1; switch (argc) { case 1: n = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } rb_ary_rotate(ary, n); return ary; } /* * call-seq: * ary.rotate(cnt=1) -> new_ary * * Returns new array by rotating +self+ so that the element at * +cnt+ in +self+ is the first element of the new array. If +cnt+ * is negative then it rotates in the opposite direction. * * a = [ "a", "b", "c", "d" ] * a.rotate #=> ["b", "c", "d", "a"] * a #=> ["a", "b", "c", "d"] * a.rotate(2) #=> ["c", "d", "a", "b"] * a.rotate(-3) #=> ["b", "c", "d", "a"] */ static VALUE rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary) { VALUE rotated, *ptr, *ptr2; long len, cnt = 1; switch (argc) { case 1: cnt = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } len = RARRAY_LEN(ary); rotated = rb_ary_new2(len); if (len > 0) { cnt = rotate_count(cnt, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(rotated); len -= cnt; MEMCPY(ptr2, ptr + cnt, VALUE, len); MEMCPY(ptr2 + len, ptr, VALUE, cnt); } ARY_SET_LEN(rotated, RARRAY_LEN(ary)); return rotated; } struct ary_sort_data { VALUE ary; int opt_methods; int opt_inited; }; enum { sort_opt_Fixnum, sort_opt_String, sort_optimizable_count }; #define STRING_P(s) (TYPE(s) == T_STRING && CLASS_OF(s) == rb_cString) #define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type)) #define SORT_OPTIMIZABLE(data, type) \ (((data)->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \ ((data)->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \ (((data)->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \ rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \ ((data)->opt_methods |= SORT_OPTIMIZABLE_BIT(type)))) static VALUE sort_reentered(VALUE ary) { if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort reentered"); } return Qnil; } static int sort_1(const void *ap, const void *bp, void *dummy) { struct ary_sort_data *data = dummy; VALUE retval = sort_reentered(data->ary); VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; int n; retval = rb_yield_values(2, a, b); n = rb_cmpint(retval, a, b); sort_reentered(data->ary); return n; } static int sort_2(const void *ap, const void *bp, void *dummy) { struct ary_sort_data *data = dummy; VALUE retval = sort_reentered(data->ary); VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; int n; if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) { if ((long)a > (long)b) return 1; if ((long)a < (long)b) return -1; return 0; } if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) { return rb_str_cmp(a, b); } retval = rb_funcall(a, id_cmp, 1, b); n = rb_cmpint(retval, a, b); sort_reentered(data->ary); return n; } /* * call-seq: * ary.sort! -> ary * ary.sort! {| a,b | block } -> ary * * Sorts +self+. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort_bang(VALUE ary) { rb_ary_modify(ary); assert(!ARY_SHARED_P(ary)); if (RARRAY_LEN(ary) > 1) { VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */ struct ary_sort_data data; RBASIC(tmp)->klass = 0; data.ary = tmp; data.opt_methods = 0; data.opt_inited = 0; ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE), rb_block_given_p()?sort_1:sort_2, &data); if (ARY_EMBED_P(tmp)) { assert(ARY_EMBED_P(tmp)); if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } FL_SET_EMBED(ary); MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp)); ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp)); } else { assert(!ARY_EMBED_P(tmp)); if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) { assert(!ARY_EMBED_P(ary)); FL_UNSET_SHARED(ary); ARY_SET_CAPA(ary, ARY_CAPA(tmp)); } else { assert(!ARY_SHARED_P(tmp)); if (ARY_EMBED_P(ary)) { FL_UNSET_EMBED(ary); } else if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } else { xfree(ARY_HEAP_PTR(ary)); } ARY_SET_PTR(ary, RARRAY_PTR(tmp)); ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp)); ARY_SET_CAPA(ary, ARY_CAPA(tmp)); } /* tmp was lost ownership for the ptr */ FL_UNSET(tmp, FL_FREEZE); FL_SET_EMBED(tmp); ARY_SET_EMBED_LEN(tmp, 0); FL_SET(tmp, FL_FREEZE); } /* tmp will be GC'ed. */ RBASIC(tmp)->klass = rb_cArray; } return ary; } /* * call-seq: * ary.sort -> new_ary * ary.sort {| a,b | block } -> new_ary * * Returns a new array created by sorting +self+. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; } static VALUE sort_by_i(VALUE i) { return rb_yield(i); } /* * call-seq: * ary.sort_by! {| obj | block } -> ary * ary.sort_by! -> an_enumerator * * Sorts +self+ in place using a set of keys generated by mapping the * values in +self+ through the given block. * * If no block is given, an enumerator is returned instead. * */ static VALUE rb_ary_sort_by_bang(VALUE ary) { VALUE sorted; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0); rb_ary_replace(ary, sorted); return ary; } /* * call-seq: * ary.collect {|item| block } -> new_ary * ary.map {|item| block } -> new_ary * ary.collect -> an_enumerator * ary.map -> an_enumerator * * Invokes block once for each element of +self+. Creates a * new array containing the values returned by the block. * See also Enumerable#collect. * * If no block is given, an enumerator is returned instead. * * a = [ "a", "b", "c", "d" ] * a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] * a #=> ["a", "b", "c", "d"] */ static VALUE rb_ary_collect(VALUE ary) { long i; VALUE collect; RETURN_ENUMERATOR(ary, 0, 0); collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; } /* * call-seq: * ary.collect! {|item| block } -> ary * ary.map! {|item| block } -> ary * ary.collect -> an_enumerator * ary.map -> an_enumerator * * Invokes the block once for each element of +self+, replacing the * element with the value returned by _block_. * See also Enumerable#collect. * * If no block is given, an enumerator is returned instead. * * a = [ "a", "b", "c", "d" ] * a.collect! {|x| x + "!" } * a #=> [ "a!", "b!", "c!", "d!" ] */ static VALUE rb_ary_collect_bang(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i])); } return ary; } VALUE rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long)) { VALUE result = rb_ary_new2(argc); long beg, len, i, j; for (i=0; i new_ary * * Returns an array containing the elements in * +self+ corresponding to the given selector(s). The selectors * may be either integer indices or ranges. * See also Array#select. * * a = %w{ a b c d e f } * a.values_at(1, 3, 5) * a.values_at(1, 3, 5, 7) * a.values_at(-1, -3, -5, -7) * a.values_at(1..3, 2...5) */ static VALUE rb_ary_values_at(int argc, VALUE *argv, VALUE ary) { return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry); } /* * call-seq: * ary.select {|item| block } -> new_ary * ary.select -> an_enumerator * * Invokes the block passing in successive elements from +self+, * returning an array containing those elements for which the block * returns a true value (equivalent to Enumerable#select). * * If no block is given, an enumerator is returned instead. * * a = %w{ a b c d e f } * a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"] */ static VALUE rb_ary_select(VALUE ary) { VALUE result; long i; RETURN_ENUMERATOR(ary, 0, 0); result = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; } /* * call-seq: * ary.select! {|item| block } -> new_ary or nil * ary.select! -> an_enumerator * * Invokes the block passing in successive elements from * +self+, deleting elements for which the block returns a * false value. It returns +self+ if changes were made, * otherwise it returns nil. * See also Array#keep_if * * If no block is given, an enumerator is returned instead. * */ static VALUE rb_ary_select_bang(VALUE ary) { long i1, i2; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE v = RARRAY_PTR(ary)[i1]; if (!RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY_LEN(ary) == i2) return Qnil; if (i2 < RARRAY_LEN(ary)) ARY_SET_LEN(ary, i2); return ary; } /* * call-seq: * ary.keep_if {|item| block } -> ary * ary.keep_if -> an_enumerator * * Deletes every element of +self+ for which block evaluates * to false. * See also Array#select! * * If no block is given, an enumerator is returned instead. * * a = %w{ a b c d e f } * a.keep_if {|v| v =~ /[aeiou]/} #=> ["a", "e"] */ static VALUE rb_ary_keep_if(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); rb_ary_select_bang(ary); return ary; } /* * call-seq: * ary.delete(obj) -> obj or nil * ary.delete(obj) { block } -> obj or nil * * Deletes items from +self+ that are equal to obj. * If any items are found, returns obj. If * the item is not found, returns nil. If the optional * code block is given, returns the result of block if the item * is not found. (To remove nil elements and * get an informative return value, use #compact!) * * a = [ "a", "b", "b", "b", "c" ] * a.delete("b") #=> "b" * a #=> ["a", "c"] * a.delete("z") #=> nil * a.delete("z") { "not found" } #=> "not found" */ VALUE rb_ary_delete(VALUE ary, VALUE item) { VALUE v = item; long i1, i2; for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE e = RARRAY_PTR(ary)[i1]; if (rb_equal(e, item)) { v = e; continue; } if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY_LEN(ary) == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } rb_ary_modify(ary); if (RARRAY_LEN(ary) > i2) { ARY_SET_LEN(ary, i2); if (i2 * 2 < ARY_CAPA(ary) && ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { ary_resize_capa(ary, i2*2); } } return v; } VALUE rb_ary_delete_at(VALUE ary, long pos) { long len = RARRAY_LEN(ary); VALUE del; if (pos >= len) return Qnil; if (pos < 0) { pos += len; if (pos < 0) return Qnil; } rb_ary_modify(ary); del = RARRAY_PTR(ary)[pos]; MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE, RARRAY_LEN(ary)-pos-1); ARY_INCREASE_LEN(ary, -1); return del; } /* * call-seq: * ary.delete_at(index) -> obj or nil * * Deletes the element at the specified index, returning that element, * or nil if the index is out of range. See also * Array#slice!. * * a = %w( ant bat cat dog ) * a.delete_at(2) #=> "cat" * a #=> ["ant", "bat", "dog"] * a.delete_at(99) #=> nil */ static VALUE rb_ary_delete_at_m(VALUE ary, VALUE pos) { return rb_ary_delete_at(ary, NUM2LONG(pos)); } /* * call-seq: * ary.slice!(index) -> obj or nil * ary.slice!(start, length) -> new_ary or nil * ary.slice!(range) -> new_ary or nil * * Deletes the element(s) given by an index (optionally with a length) * or by a range. Returns the deleted object (or objects), or * nil if the index is out of range. * * a = [ "a", "b", "c" ] * a.slice!(1) #=> "b" * a #=> ["a", "c"] * a.slice!(-1) #=> "c" * a #=> ["a"] * a.slice!(100) #=> nil * a #=> ["a"] */ static VALUE rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) { VALUE arg1, arg2; long pos, len, orig_len; rb_ary_modify_check(ary); if (argc == 2) { pos = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); delete_pos_len: if (len < 0) return Qnil; orig_len = RARRAY_LEN(ary); if (pos < 0) { pos += orig_len; if (pos < 0) return Qnil; } else if (orig_len < pos) return Qnil; if (orig_len < pos + len) { len = orig_len - pos; } if (len == 0) return rb_ary_new2(0); arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos); RBASIC(arg2)->klass = rb_obj_class(ary); rb_ary_splice(ary, pos, len, Qundef); return arg2; } if (argc != 1) { /* error report */ rb_scan_args(argc, argv, "11", NULL, NULL); } arg1 = argv[0]; if (!FIXNUM_P(arg1)) { switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) { case Qtrue: /* valid range */ goto delete_pos_len; case Qnil: /* invalid range */ return Qnil; default: /* not a range */ break; } } return rb_ary_delete_at(ary, NUM2LONG(arg1)); } /* * call-seq: * ary.reject! {|item| block } -> ary or nil * ary.reject! -> an_enumerator * * Equivalent to Array#delete_if, deleting elements from * +self+ for which the block evaluates to true, but returns * nil if no changes were made. * See also Enumerable#reject and Array#delete_if. * * If no block is given, an enumerator is returned instead. * */ static VALUE rb_ary_reject_bang(VALUE ary) { long i1, i2; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE v = RARRAY_PTR(ary)[i1]; if (RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY_LEN(ary) == i2) return Qnil; if (i2 < RARRAY_LEN(ary)) ARY_SET_LEN(ary, i2); return ary; } /* * call-seq: * ary.reject {|item| block } -> new_ary * ary.reject -> an_enumerator * * Returns a new array containing the items in +self+ * for which the block is not true. * See also Array#delete_if * * If no block is given, an enumerator is returned instead. * */ static VALUE rb_ary_reject(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ary = rb_ary_dup(ary); rb_ary_reject_bang(ary); return ary; } /* * call-seq: * ary.delete_if {|item| block } -> ary * ary.delete_if -> an_enumerator * * Deletes every element of +self+ for which block evaluates * to true. * See also Array#reject! * * If no block is given, an enumerator is returned instead. * * a = [ "a", "b", "c" ] * a.delete_if {|x| x >= "b" } #=> ["a"] */ static VALUE rb_ary_delete_if(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); rb_ary_reject_bang(ary); return ary; } static VALUE take_i(VALUE val, VALUE *args, int argc, VALUE *argv) { if (args[1]-- == 0) rb_iter_break(); if (argc > 1) val = rb_ary_new4(argc, argv); rb_ary_push(args[0], val); return Qnil; } static VALUE take_items(VALUE obj, long n) { VALUE result = rb_check_array_type(obj); VALUE args[2]; if (!NIL_P(result)) return rb_ary_subseq(result, 0, n); result = rb_ary_new2(n); args[0] = result; args[1] = (VALUE)n; rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args); return result; } /* * call-seq: * ary.zip(arg, ...) -> new_ary * ary.zip(arg, ...) {| arr | block } -> nil * * Converts any arguments to arrays, then merges elements of * +self+ with corresponding elements from each argument. This * generates a sequence of self.size n-element * arrays, where n is one more that the count of arguments. If * the size of any argument is less than enumObj.size, * nil values are supplied. If a block is given, it is * invoked for each output array, otherwise an array of arrays is * returned. * * a = [ 4, 5, 6 ] * b = [ 7, 8, 9 ] * [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] * [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]] * a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]] */ static VALUE rb_ary_zip(int argc, VALUE *argv, VALUE ary) { int i, j; long len; VALUE result = Qnil; len = RARRAY_LEN(ary); for (i=0; i new_ary * * Assumes that +self+ is an array of arrays and transposes the * rows and columns. * * a = [[1,2], [3,4], [5,6]] * a.transpose #=> [[1, 3, 5], [2, 4, 6]] */ static VALUE rb_ary_transpose(VALUE ary) { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY_LEN(ary); if (alen == 0) return rb_ary_dup(ary); for (i=0; i ary * * Replaces the contents of +self+ with the contents of * other_ary, truncating or expanding if necessary. * * a = [ "a", "b", "c", "d", "e" ] * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] * a #=> ["x", "y", "z"] */ VALUE rb_ary_replace(VALUE copy, VALUE orig) { rb_ary_modify_check(copy); orig = to_ary(orig); if (copy == orig) return copy; if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr; VALUE shared = 0; if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else if (ARY_SHARED_P(copy)) { shared = ARY_SHARED(copy); FL_UNSET_SHARED(copy); } FL_SET_EMBED(copy); ptr = RARRAY_PTR(orig); MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig)); if (shared) { rb_ary_decrement_share(shared); } ARY_SET_LEN(copy, RARRAY_LEN(orig)); } else { VALUE shared = ary_make_shared(orig); if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else { rb_ary_unshare_safe(copy); } FL_UNSET_EMBED(copy); ARY_SET_PTR(copy, RARRAY_PTR(orig)); ARY_SET_LEN(copy, RARRAY_LEN(orig)); rb_ary_set_shared(copy, shared); } return copy; } /* * call-seq: * ary.clear -> ary * * Removes all elements from +self+. * * a = [ "a", "b", "c", "d", "e" ] * a.clear #=> [ ] */ VALUE rb_ary_clear(VALUE ary) { rb_ary_modify_check(ary); ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary)) { if (!ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } } else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2); } return ary; } /* * call-seq: * ary.fill(obj) -> ary * ary.fill(obj, start [, length]) -> ary * ary.fill(obj, range ) -> ary * ary.fill {|index| block } -> ary * ary.fill(start [, length] ) {|index| block } -> ary * ary.fill(range) {|index| block } -> ary * * The first three forms set the selected elements of +self+ (which * may be the entire array) to obj. A start of * nil is equivalent to zero. A length of * nil is equivalent to self.length. The last three * forms fill the array with the value of the block. The block is * passed the absolute index of each element to be filled. * Negative values of start count from the end of the array. * * a = [ "a", "b", "c", "d" ] * a.fill("x") #=> ["x", "x", "x", "x"] * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] * a.fill("y", 0..1) #=> ["y", "y", "z", "z"] * a.fill {|i| i*i} #=> [0, 1, 4, 9] * a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27] */ static VALUE rb_ary_fill(int argc, VALUE *argv, VALUE ary) { VALUE item, arg1, arg2; long beg = 0, end = 0, len = 0; VALUE *p, *pend; int block_p = FALSE; if (rb_block_given_p()) { block_p = TRUE; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY_LEN(ary); break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY_LEN(ary) + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); if (len < 0) { return ary; } if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { rb_raise(rb_eArgError, "argument too big"); } end = beg + len; if (RARRAY_LEN(ary) < end) { if (end >= ARY_CAPA(ary)) { ary_resize_capa(ary, end); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary)); ARY_SET_LEN(ary, end); } if (block_p) { VALUE v; long i; for (i=beg; i=RARRAY_LEN(ary)) break; RARRAY_PTR(ary)[i] = v; } } else { p = RARRAY_PTR(ary) + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; } /* * call-seq: * ary + other_ary -> new_ary * * Concatenation---Returns a new array built by concatenating the * two arrays together to produce a third array. * * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ] */ VALUE rb_ary_plus(VALUE x, VALUE y) { VALUE z; long len; y = to_ary(y); len = RARRAY_LEN(x) + RARRAY_LEN(y); z = rb_ary_new2(len); MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x)); MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y)); ARY_SET_LEN(z, len); return z; } /* * call-seq: * ary.concat(other_ary) -> ary * * Appends the elements of other_ary to +self+. * * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ] */ VALUE rb_ary_concat(VALUE x, VALUE y) { rb_ary_modify_check(x); y = to_ary(y); if (RARRAY_LEN(y) > 0) { rb_ary_splice(x, RARRAY_LEN(x), 0, y); } return x; } /* * call-seq: * ary * int -> new_ary * ary * str -> new_string * * Repetition---With a String argument, equivalent to * self.join(str). Otherwise, returns a new array * built by concatenating the _int_ copies of +self+. * * * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] * [ 1, 2, 3 ] * "," #=> "1,2,3" * */ static VALUE rb_ary_times(VALUE ary, VALUE times) { VALUE ary2, tmp, *ptr, *ptr2; long t, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) { ary2 = ary_new(rb_obj_class(ary), 0); goto out; } if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY_LEN(ary); ary2 = ary_new(rb_obj_class(ary), len); ARY_SET_LEN(ary2, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(ary2); t = RARRAY_LEN(ary); if (0 < t) { MEMCPY(ptr2, ptr, VALUE, t); while (t <= len/2) { MEMCPY(ptr2+t, ptr2, VALUE, t); t *= 2; } if (t < len) { MEMCPY(ptr2+t, ptr2, VALUE, len-t); } } out: OBJ_INFECT(ary2, ary); return ary2; } /* * call-seq: * ary.assoc(obj) -> new_ary or nil * * Searches through an array whose elements are also arrays * comparing _obj_ with the first element of each contained array * using obj.==. * Returns the first contained array that matches (that * is, the first associated array), * or +nil+ if no match is found. * See also Array#rassoc. * * s1 = [ "colors", "red", "blue", "green" ] * s2 = [ "letters", "a", "b", "c" ] * s3 = "foo" * a = [ s1, s2, s3 ] * a.assoc("letters") #=> [ "letters", "a", "b", "c" ] * a.assoc("foo") #=> nil */ VALUE rb_ary_assoc(VALUE ary, VALUE key) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = rb_check_array_type(RARRAY_PTR(ary)[i]); if (!NIL_P(v) && RARRAY_LEN(v) > 0 && rb_equal(RARRAY_PTR(v)[0], key)) return v; } return Qnil; } /* * call-seq: * ary.rassoc(obj) -> new_ary or nil * * Searches through the array whose elements are also arrays. Compares * _obj_ with the second element of each contained array using * ==. Returns the first contained array that matches. See * also Array#assoc. * * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_ary_rassoc(VALUE ary, VALUE value) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = RARRAY_PTR(ary)[i]; if (TYPE(v) == T_ARRAY && RARRAY_LEN(v) > 1 && rb_equal(RARRAY_PTR(v)[1], value)) return v; } return Qnil; } static VALUE recursive_equal(VALUE ary1, VALUE ary2, int recur) { long i; if (recur) return Qtrue; /* Subtle! */ for (i=0; i bool * * Equality---Two arrays are equal if they contain the same number * of elements and if each element is equal to (according to * Object.==) the corresponding element in the other array. * * [ "a", "c" ] == [ "a", "c", 7 ] #=> false * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false * */ static VALUE rb_ary_equal(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2); } static VALUE recursive_eql(VALUE ary1, VALUE ary2, int recur) { long i; if (recur) return Qtrue; /* Subtle! */ for (i=0; i true or false * * Returns true if +self+ and _other_ are the same object, * or are both arrays with the same content. */ static VALUE rb_ary_eql(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) return Qfalse; if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2); } static VALUE recursive_hash(VALUE ary, VALUE dummy, int recur) { long i; st_index_t h; VALUE n; h = rb_hash_start(RARRAY_LEN(ary)); if (recur) { h = rb_hash_uint(h, NUM2LONG(rb_hash(rb_cArray))); } else { for (i=0; i fixnum * * Compute a hash-code for this array. Two arrays with the same content * will have the same hash code (and will compare using eql?). */ static VALUE rb_ary_hash(VALUE ary) { return rb_exec_recursive_outer(recursive_hash, ary, 0); } /* * call-seq: * ary.include?(obj) -> true or false * * Returns true if the given object is present in * +self+ (that is, if any object == anObject), * false otherwise. * * a = [ "a", "b", "c" ] * a.include?("b") #=> true * a.include?("z") #=> false */ VALUE rb_ary_includes(VALUE ary, VALUE item) { long i; for (i=0; i RARRAY_LEN(ary2)) { len = RARRAY_LEN(ary2); } for (i=0; i other_ary -> -1, 0, +1 or nil * * Comparison---Returns an integer (-1, 0, * or +1) if this array is less than, equal to, or greater than * other_ary. Each object in each array is compared * (using <=>). If any value isn't * equal, then that inequality is the return value. If all the * values found are equal, then the return is based on a * comparison of the array lengths. Thus, two arrays are * ``equal'' according to Array#<=> if and only if they have * the same length and the value of each element is equal to the * value of the corresponding element in the other array. * * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1 * */ VALUE rb_ary_cmp(VALUE ary1, VALUE ary2) { long len; VALUE v; ary2 = rb_check_array_type(ary2); if (NIL_P(ary2)) return Qnil; if (ary1 == ary2) return INT2FIX(0); v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2); if (v != Qundef) return v; len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2); if (len == 0) return INT2FIX(0); if (len > 0) return INT2FIX(1); return INT2FIX(-1); } static VALUE ary_add_hash(VALUE hash, VALUE ary) { long i; for (i=0; iklass = 0; return hash; } static VALUE ary_make_hash(VALUE ary) { VALUE hash = ary_tmp_hash_new(); return ary_add_hash(hash, ary); } static VALUE ary_add_hash_by(VALUE hash, VALUE ary) { long i; for (i = 0; i < RARRAY_LEN(ary); ++i) { VALUE v = rb_ary_elt(ary, i), k = rb_yield(v); if (rb_hash_lookup2(hash, k, Qundef) == Qundef) { rb_hash_aset(hash, k, v); } } return hash; } static VALUE ary_make_hash_by(VALUE ary) { VALUE hash = ary_tmp_hash_new(); return ary_add_hash_by(hash, ary); } static inline void ary_recycle_hash(VALUE hash) { if (RHASH(hash)->ntbl) { st_table *tbl = RHASH(hash)->ntbl; RHASH(hash)->ntbl = 0; st_free_table(tbl); } } /* * call-seq: * ary - other_ary -> new_ary * * Array Difference---Returns a new array that is a copy of * the original array, removing any items that also appear in * other_ary. (If you need set-like behavior, see the * library class Set.) * * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ] */ static VALUE rb_ary_diff(VALUE ary1, VALUE ary2) { VALUE ary3; volatile VALUE hash; long i; hash = ary_make_hash(to_ary(ary2)); ary3 = rb_ary_new(); for (i=0; i new_ary * * Set Intersection---Returns a new array * containing elements common to the two arrays, with no duplicates. * * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ] */ static VALUE rb_ary_and(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ? RARRAY_LEN(ary1) : RARRAY_LEN(ary2)); hash = ary_make_hash(ary2); if (RHASH_EMPTY_P(hash)) return ary3; for (i=0; i new_ary * * Set Union---Returns a new array by joining this array with * other_ary, removing duplicates. * * [ "a", "b", "c" ] | [ "c", "d", "a" ] * #=> [ "a", "b", "c", "d" ] */ static VALUE rb_ary_or(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2)); hash = ary_add_hash(ary_make_hash(ary1), ary2); for (i=0; i ary or nil * * Removes duplicate elements from +self+. * Returns nil if no changes are made (that is, no * duplicates are found). * * a = [ "a", "a", "b", "b", "c" ] * a.uniq! #=> ["a", "b", "c"] * b = [ "a", "b", "c" ] * b.uniq! #=> nil * c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ] * c.uniq! {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ] */ static VALUE rb_ary_uniq_bang(VALUE ary) { VALUE hash, v; long i, j; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) <= 1) return Qnil; if (rb_block_given_p()) { hash = ary_make_hash_by(ary); if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) { return Qnil; } ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } ary_resize_capa(ary, i); st_foreach(RHASH_TBL(hash), push_value, ary); } else { hash = ary_make_hash(ary); if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) { return Qnil; } for (i=j=0; i new_ary * * Returns a new array by removing duplicate values in +self+. * * a = [ "a", "a", "b", "b", "c" ] * a.uniq #=> ["a", "b", "c"] * c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ] * c.uniq {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ] */ static VALUE rb_ary_uniq(VALUE ary) { VALUE hash, uniq, v; long i; if (RARRAY_LEN(ary) <= 1) return rb_ary_dup(ary); if (rb_block_given_p()) { hash = ary_make_hash_by(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); st_foreach(RHASH_TBL(hash), push_value, uniq); } else { hash = ary_make_hash(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); for (i=0; i ary or nil * * Removes +nil+ elements from the array. * Returns +nil+ if no changes were made, otherwise returns * ary. * * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] * [ "a", "b", "c" ].compact! #=> nil */ static VALUE rb_ary_compact_bang(VALUE ary) { VALUE *p, *t, *end; long n; rb_ary_modify(ary); p = t = RARRAY_PTR(ary); end = p + RARRAY_LEN(ary); while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } n = p - RARRAY_PTR(ary); if (RARRAY_LEN(ary) == n) { return Qnil; } ARY_SET_LEN(ary, n); if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, n * 2); } return ary; } /* * call-seq: * ary.compact -> new_ary * * Returns a copy of +self+ with all +nil+ elements removed. * * [ "a", nil, "b", nil, "c", nil ].compact * #=> [ "a", "b", "c" ] */ static VALUE rb_ary_compact(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; } /* * call-seq: * ary.count -> int * ary.count(obj) -> int * ary.count { |item| block } -> int * * Returns the number of elements. If an argument is given, counts * the number of elements which equals to obj. If a block is * given, counts the number of elements yielding a true value. * * ary = [1, 2, 4, 2] * ary.count #=> 4 * ary.count(2) #=> 2 * ary.count{|x|x%2==0} #=> 3 * */ static VALUE rb_ary_count(int argc, VALUE *argv, VALUE ary) { long n = 0; if (argc == 0) { VALUE *p, *pend; if (!rb_block_given_p()) return LONG2NUM(RARRAY_LEN(ary)); for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) { if (RTEST(rb_yield(*p))) n++; } } else { VALUE obj, *p, *pend; rb_scan_args(argc, argv, "1", &obj); if (rb_block_given_p()) { rb_warn("given block not used"); } for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) { if (rb_equal(*p, obj)) n++; } } return LONG2NUM(n); } static VALUE flatten(VALUE ary, int level, int *modified) { long i = 0; VALUE stack, result, tmp, elt; st_table *memo; st_data_t id; stack = ary_new(0, ARY_DEFAULT_SIZE); result = ary_new(0, RARRAY_LEN(ary)); memo = st_init_numtable(); st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue); *modified = 0; while (1) { while (i < RARRAY_LEN(ary)) { elt = RARRAY_PTR(ary)[i++]; tmp = rb_check_array_type(elt); if (RBASIC(result)->klass) { rb_raise(rb_eRuntimeError, "flatten reentered"); } if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) { rb_ary_push(result, elt); } else { *modified = 1; id = (st_data_t)tmp; if (st_lookup(memo, id, 0)) { st_free_table(memo); rb_raise(rb_eArgError, "tried to flatten recursive array"); } st_insert(memo, id, (st_data_t)Qtrue); rb_ary_push(stack, ary); rb_ary_push(stack, LONG2NUM(i)); ary = tmp; i = 0; } } if (RARRAY_LEN(stack) == 0) { break; } id = (st_data_t)ary; st_delete(memo, &id, 0); tmp = rb_ary_pop(stack); i = NUM2LONG(tmp); ary = rb_ary_pop(stack); } st_free_table(memo); RBASIC(result)->klass = rb_class_of(ary); return result; } /* * call-seq: * ary.flatten! -> ary or nil * ary.flatten!(level) -> array or nil * * Flattens +self+ in place. * Returns nil if no modifications were made (i.e., * ary contains no subarrays.) If the optional level * argument determines the level of recursion to flatten. * * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten! #=> [1, 2, 3, 4, 5] * a.flatten! #=> nil * a #=> [1, 2, 3, 4, 5] * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten!(1) #=> [1, 2, 3, [4, 5]] */ static VALUE rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); rb_ary_modify_check(ary); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return Qnil; result = flatten(ary, level, &mod); if (mod == 0) { ary_discard(result); return Qnil; } if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result); rb_ary_replace(ary, result); if (mod) ARY_SET_EMBED_LEN(result, 0); return ary; } /* * call-seq: * ary.flatten -> new_ary * ary.flatten(level) -> new_ary * * Returns a new array that is a one-dimensional flattening of this * array (recursively). That is, for every element that is an array, * extract its elements into the new array. If the optional * level argument determines the level of recursion to flatten. * * s = [ 1, 2, 3 ] #=> [1, 2, 3] * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten(1) #=> [1, 2, 3, [4, 5]] */ static VALUE rb_ary_flatten(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return ary_make_shared_copy(ary); result = flatten(ary, level, &mod); OBJ_INFECT(result, ary); return result; } #define OPTHASH_GIVEN_P(opts) \ (argc > 0 && !NIL_P((opts) = rb_check_hash_type(argv[argc-1])) && (--argc, 1)) static VALUE sym_random; #define RAND_UPTO(max) (long)(rb_random_real(randgen)*(max)) /* * call-seq: * ary.shuffle! -> ary * ary.shuffle!(random: rng) -> ary * * Shuffles elements in +self+ in place. * If +rng+ is given, it will be used as the random number generator. */ static VALUE rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary) { VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom; long i, snap_len; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } if (argc > 0) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc); } rb_ary_modify(ary); i = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); snap_len = i; snap_ptr = ptr; while (i) { long j = RAND_UPTO(i); VALUE tmp; if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) { rb_raise(rb_eRuntimeError, "modified during shuffle"); } tmp = ptr[--i]; ptr[i] = ptr[j]; ptr[j] = tmp; } return ary; } /* * call-seq: * ary.shuffle -> new_ary * ary.shuffle(random: rng) -> new_ary * * Returns a new array with elements of this array shuffled. * * a = [ 1, 2, 3 ] #=> [1, 2, 3] * a.shuffle #=> [2, 3, 1] * * If +rng+ is given, it will be used as the random number generator. * * a.shuffle(random: Random.new(1)) #=> [1, 3, 2] */ static VALUE rb_ary_shuffle(int argc, VALUE *argv, VALUE ary) { ary = rb_ary_dup(ary); rb_ary_shuffle_bang(argc, argv, ary); return ary; } /* * call-seq: * ary.sample -> obj * ary.sample(random: rng) -> obj * ary.sample(n) -> new_ary * ary.sample(n, random: rng) -> new_ary * * Choose a random element or +n+ random elements from the array. The elements * are chosen by using random and unique indices into the array in order to * ensure that an element doesn't repeat itself unless the array already * contained duplicate elements. If the array is empty the first form returns * nil and the second form returns an empty array. * * If +rng+ is given, it will be used as the random number generator. */ static VALUE rb_ary_sample(int argc, VALUE *argv, VALUE ary) { VALUE nv, result, *ptr; VALUE opts, randgen = rb_cRandom; long n, len, i, j, k, idx[10]; double rnds[numberof(idx)]; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } ptr = RARRAY_PTR(ary); len = RARRAY_LEN(ary); if (argc == 0) { if (len == 0) return Qnil; if (len == 1) { i = 0; } else { double x = rb_random_real(randgen); if ((len = RARRAY_LEN(ary)) == 0) return Qnil; i = (long)(x * len); } return RARRAY_PTR(ary)[i]; } rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n < 0) rb_raise(rb_eArgError, "negative sample number"); if (n > len) n = len; if (n <= numberof(idx)) { for (i = 0; i < n; ++i) { rnds[i] = rb_random_real(randgen); } } len = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); if (n > len) n = len; switch (n) { case 0: return rb_ary_new2(0); case 1: i = (long)(rnds[0] * len); return rb_ary_new4(1, &ptr[i]); case 2: i = (long)(rnds[0] * len); j = (long)(rnds[1] * (len-1)); if (j >= i) j++; return rb_ary_new3(2, ptr[i], ptr[j]); case 3: i = (long)(rnds[0] * len); j = (long)(rnds[1] * (len-1)); k = (long)(rnds[2] * (len-2)); { long l = j, g = i; if (j >= i) l = i, g = ++j; if (k >= l && (++k >= g)) ++k; } return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]); } if (n <= numberof(idx)) { VALUE *ptr_result; long sorted[numberof(idx)]; sorted[0] = idx[0] = (long)(rnds[0] * len); for (i=1; iklass = 0; ptr_result = RARRAY_PTR(result); RB_GC_GUARD(ary); for (i=0; iklass = rb_cArray; } ARY_SET_LEN(result, n); return result; } /* * call-seq: * ary.cycle(n=nil) {|obj| block } -> nil * ary.cycle(n=nil) -> an_enumerator * * Calls block for each element repeatedly _n_ times or * forever if none or +nil+ is given. If a non-positive number is * given or the array is empty, does nothing. Returns +nil+ if the * loop has finished without getting interrupted. * * If no block is given, an enumerator is returned instead. * * * a = ["a", "b", "c"] * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever. * a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c. * */ static VALUE rb_ary_cycle(int argc, VALUE *argv, VALUE ary) { long n, i; VALUE nv = Qnil; rb_scan_args(argc, argv, "01", &nv); RETURN_ENUMERATOR(ary, argc, argv); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) { for (i=0; iklass = rb_cString) #define tmpary(n) rb_ary_tmp_new(n) #define tmpary_discard(a) (ary_discard(a), RBASIC(a)->klass = rb_cArray) /* * Recursively compute permutations of r elements of the set [0..n-1]. * When we have a complete permutation of array indexes, copy the values * at those indexes into a new array and yield that array. * * n: the size of the set * r: the number of elements in each permutation * p: the array (of size r) that we're filling in * index: what index we're filling in now * used: an array of booleans: whether a given index is already used * values: the Ruby array that holds the actual values to permute */ static void permute0(long n, long r, long *p, long index, char *used, VALUE values) { long i,j; for (i = 0; i < n; i++) { if (used[i] == 0) { p[index] = i; if (index < r-1) { /* if not done yet */ used[i] = 1; /* mark index used */ permute0(n, r, p, index+1, /* recurse */ used, values); used[i] = 0; /* index unused */ } else { /* We have a complete permutation of array indexes */ /* Build a ruby array of the corresponding values */ /* And yield it to the associated block */ VALUE result = rb_ary_new2(r); VALUE *result_array = RARRAY_PTR(result); const VALUE *values_array = RARRAY_PTR(values); for (j = 0; j < r; j++) result_array[j] = values_array[p[j]]; ARY_SET_LEN(result, r); rb_yield(result); if (RBASIC(values)->klass) { rb_raise(rb_eRuntimeError, "permute reentered"); } } } } } /* * call-seq: * ary.permutation { |p| block } -> ary * ary.permutation -> an_enumerator * ary.permutation(n) { |p| block } -> ary * ary.permutation(n) -> an_enumerator * * When invoked with a block, yield all permutations of length n * of the elements of ary, then return the array itself. * If n is not specified, yield all permutations of all elements. * The implementation makes no guarantees about the order in which * the permutations are yielded. * * If no block is given, an enumerator is returned instead. * * Examples: * * a = [1, 2, 3] * a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] * a.permutation(1).to_a #=> [[1],[2],[3]] * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] * a.permutation(0).to_a #=> [[]] # one permutation of length 0 * a.permutation(4).to_a #=> [] # no permutations of length 4 */ static VALUE rb_ary_permutation(int argc, VALUE *argv, VALUE ary) { VALUE num; long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */ rb_scan_args(argc, argv, "01", &num); r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */ if (r < 0 || n < r) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(n,sizeof(long)); long *p = (long*)RSTRING_PTR(t0); volatile VALUE t1 = tmpbuf(n,sizeof(char)); char *used = (char*)RSTRING_PTR(t1); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; MEMZERO(used, char, n); /* initialize array */ permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */ tmpbuf_discard(t0); tmpbuf_discard(t1); RBASIC(ary0)->klass = rb_cArray; } return ary; } /* * call-seq: * ary.combination(n) { |c| block } -> ary * ary.combination(n) -> an_enumerator * * When invoked with a block, yields all combinations of length n * of elements from ary and then returns ary itself. * The implementation makes no guarantees about the order in which * the combinations are yielded. * * If no block is given, an enumerator is returned instead. * * Examples: * * a = [1, 2, 3, 4] * a.combination(1).to_a #=> [[1],[2],[3],[4]] * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] * a.combination(4).to_a #=> [[1,2,3,4]] * a.combination(0).to_a #=> [[]] # one combination of length 0 * a.combination(5).to_a #=> [] # no combinations of length 5 * */ static VALUE rb_ary_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); RETURN_ENUMERATOR(ary, 1, &num); len = RARRAY_LEN(ary); if (n < 0 || len < n) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { volatile VALUE t0 = tmpbuf(n+1, sizeof(long)); long *stack = (long*)RSTRING_PTR(t0); volatile VALUE cc = tmpary(n); VALUE *chosen = RARRAY_PTR(cc); long lev = 0; MEMZERO(stack, long, n); stack[0] = -1; for (;;) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]]; for (lev++; lev < n; lev++) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1]; } rb_yield(rb_ary_new4(n, chosen)); if (RBASIC(t0)->klass) { rb_raise(rb_eRuntimeError, "combination reentered"); } do { if (lev == 0) goto done; stack[lev--]++; } while (stack[lev+1]+n == len+lev+1); } done: tmpbuf_discard(t0); tmpary_discard(cc); } return ary; } /* * Recursively compute repeated permutations of r elements of the set * [0..n-1]. * When we have a complete repeated permutation of array indexes, copy the * values at those indexes into a new array and yield that array. * * n: the size of the set * r: the number of elements in each permutation * p: the array (of size r) that we're filling in * index: what index we're filling in now * values: the Ruby array that holds the actual values to permute */ static void rpermute0(long n, long r, long *p, long index, VALUE values) { long i, j; for (i = 0; i < n; i++) { p[index] = i; if (index < r-1) { /* if not done yet */ rpermute0(n, r, p, index+1, values); /* recurse */ } else { /* We have a complete permutation of array indexes */ /* Build a ruby array of the corresponding values */ /* And yield it to the associated block */ VALUE result = rb_ary_new2(r); VALUE *result_array = RARRAY_PTR(result); const VALUE *values_array = RARRAY_PTR(values); for (j = 0; j < r; j++) result_array[j] = values_array[p[j]]; ARY_SET_LEN(result, r); rb_yield(result); if (RBASIC(values)->klass) { rb_raise(rb_eRuntimeError, "repeated permute reentered"); } } } } /* * call-seq: * ary.repeated_permutation(n) { |p| block } -> ary * ary.repeated_permutation(n) -> an_enumerator * * When invoked with a block, yield all repeated permutations of length * n of the elements of ary, then return the array itself. * The implementation makes no guarantees about the order in which * the repeated permutations are yielded. * * If no block is given, an enumerator is returned instead. * * Examples: * * a = [1, 2] * a.repeated_permutation(1).to_a #=> [[1], [2]] * a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]] * a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2], * # [2,1,1],[2,1,2],[2,2,1],[2,2,2]] * a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0 */ static VALUE rb_ary_repeated_permutation(VALUE ary, VALUE num) { long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */ r = NUM2LONG(num); /* Permutation size from argument */ if (r < 0) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(r, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; } static void rcombinate0(long n, long r, long *p, long index, long rest, VALUE values) { long j; if (rest > 0) { for (; index < n; ++index) { p[r-rest] = index; rcombinate0(n, r, p, index, rest-1, values); } } else { VALUE result = rb_ary_new2(r); VALUE *result_array = RARRAY_PTR(result); const VALUE *values_array = RARRAY_PTR(values); for (j = 0; j < r; ++j) result_array[j] = values_array[p[j]]; ARY_SET_LEN(result, r); rb_yield(result); if (RBASIC(values)->klass) { rb_raise(rb_eRuntimeError, "repeated combination reentered"); } } } /* * call-seq: * ary.repeated_combination(n) { |c| block } -> ary * ary.repeated_combination(n) -> an_enumerator * * When invoked with a block, yields all repeated combinations of * length n of elements from ary and then returns * ary itself. * The implementation makes no guarantees about the order in which * the repeated combinations are yielded. * * If no block is given, an enumerator is returned instead. * * Examples: * * a = [1, 2, 3] * a.repeated_combination(1).to_a #=> [[1], [2], [3]] * a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]] * a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3], * # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]] * a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3], * # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3], * # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]] * a.repeated_combination(0).to_a #=> [[]] # one combination of length 0 * */ static VALUE rb_ary_repeated_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); /* Combination size from argument */ RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */ len = RARRAY_LEN(ary); if (n < 0) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else if (len == 0) { /* yield nothing */ } else { volatile VALUE t0 = tmpbuf(n, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; } /* * call-seq: * ary.product(other_ary, ...) -> new_ary * ary.product(other_ary, ...) { |p| block } -> ary * * Returns an array of all combinations of elements from all arrays, * The length of the returned array is the product of the length * of +self+ and the argument arrays. * If given a block, product will yield all combinations * and return +self+ instead. * * * [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] * [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]] * [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6], * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] * [1,2].product() #=> [[1],[2]] * [1,2].product([]) #=> [] */ static VALUE rb_ary_product(int argc, VALUE *argv, VALUE ary) { int n = argc+1; /* How many arrays we're operating on */ volatile VALUE t0 = tmpary(n); volatile VALUE t1 = tmpbuf(n, sizeof(int)); VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */ VALUE result = Qnil; /* The array we'll be returning, when no block given */ long i,j; long resultlen = 1; RBASIC(t0)->klass = 0; RBASIC(t1)->klass = 0; /* initialize the arrays of arrays */ ARY_SET_LEN(t0, n); arrays[0] = ary; for (i = 1; i < n; i++) arrays[i] = Qnil; for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]); /* initialize the counters for the arrays */ for (i = 0; i < n; i++) counters[i] = 0; /* Otherwise, allocate and fill in an array of results */ if (rb_block_given_p()) { /* Make defensive copies of arrays; exit if any is empty */ for (i = 0; i < n; i++) { if (RARRAY_LEN(arrays[i]) == 0) goto done; arrays[i] = ary_make_shared_copy(arrays[i]); } } else { /* Compute the length of the result array; return [] if any is empty */ for (i = 0; i < n; i++) { long k = RARRAY_LEN(arrays[i]), l = resultlen; if (k == 0) { result = rb_ary_new2(0); goto done; } resultlen *= k; if (resultlen < k || resultlen < l || resultlen / k != l) { rb_raise(rb_eRangeError, "too big to product"); } } result = rb_ary_new2(resultlen); } for (;;) { int m; /* fill in one subarray */ VALUE subarray = rb_ary_new2(n); for (j = 0; j < n; j++) { rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); } /* put it on the result array */ if(NIL_P(result)) { FL_SET(t0, FL_USER5); rb_yield(subarray); if (! FL_TEST(t0, FL_USER5)) { rb_raise(rb_eRuntimeError, "product reentered"); } else { FL_UNSET(t0, FL_USER5); } } else { rb_ary_push(result, subarray); } /* * Increment the last counter. If it overflows, reset to 0 * and increment the one before it. */ m = n-1; counters[m]++; while (counters[m] == RARRAY_LEN(arrays[m])) { counters[m] = 0; /* If the first counter overflows, we are done */ if (--m < 0) goto done; counters[m]++; } } done: tmpary_discard(t0); tmpbuf_discard(t1); return NIL_P(result) ? ary : result; } /* * call-seq: * ary.take(n) -> new_ary * * Returns first n elements from ary. * * a = [1, 2, 3, 4, 5, 0] * a.take(3) #=> [1, 2, 3] * */ static VALUE rb_ary_take(VALUE obj, VALUE n) { long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } return rb_ary_subseq(obj, 0, len); } /* * call-seq: * ary.take_while {|arr| block } -> new_ary * ary.take_while -> an_enumerator * * Passes elements to the block until the block returns +nil+ or +false+, * then stops iterating and returns an array of all prior elements. * * If no block is given, an enumerator is returned instead. * * a = [1, 2, 3, 4, 5, 0] * a.take_while {|i| i < 3 } #=> [1, 2] * */ static VALUE rb_ary_take_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_take(ary, LONG2FIX(i)); } /* * call-seq: * ary.drop(n) -> new_ary * * Drops first n elements from ary, and returns rest elements * in an array. * * a = [1, 2, 3, 4, 5, 0] * a.drop(3) #=> [4, 5, 0] * */ static VALUE rb_ary_drop(VALUE ary, VALUE n) { VALUE result; long pos = NUM2LONG(n); if (pos < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary)); if (result == Qnil) result = rb_ary_new(); return result; } /* * call-seq: * ary.drop_while {|arr| block } -> new_ary * ary.drop_while -> an_enumerator * * Drops elements up to, but not including, the first element for * which the block returns +nil+ or +false+ and returns an array * containing the remaining elements. * * If no block is given, an enumerator is returned instead. * * a = [1, 2, 3, 4, 5, 0] * a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0] * */ static VALUE rb_ary_drop_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_drop(ary, LONG2FIX(i)); } /* Arrays are ordered, integer-indexed collections of any object. * Array indexing starts at 0, as in C or Java. A negative index is * assumed to be relative to the end of the array---that is, an index of -1 * indicates the last element of the array, -2 is the next to last * element in the array, and so on. */ void Init_Array(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_cArray = rb_define_class("Array", rb_cObject); rb_include_module(rb_cArray, rb_mEnumerable); rb_define_alloc_func(rb_cArray, ary_alloc); rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1); rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1); rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1); rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1); rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0); rb_define_alias(rb_cArray, "to_s", "inspect"); rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0); rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0); rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0); rb_define_method(rb_cArray, "==", rb_ary_equal, 1); rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1); rb_define_method(rb_cArray, "hash", rb_ary_hash, 0); rb_define_method(rb_cArray, "[]", rb_ary_aref, -1); rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1); rb_define_method(rb_cArray, "at", rb_ary_at, 1); rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1); rb_define_method(rb_cArray, "first", rb_ary_first, -1); rb_define_method(rb_cArray, "last", rb_ary_last, -1); rb_define_method(rb_cArray, "concat", rb_ary_concat, 1); rb_define_method(rb_cArray, "<<", rb_ary_push, 1); rb_define_method(rb_cArray, "push", rb_ary_push_m, -1); rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1); rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1); rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1); rb_define_method(rb_cArray, "insert", rb_ary_insert, -1); rb_define_method(rb_cArray, "each", rb_ary_each, 0); rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0); rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0); rb_define_method(rb_cArray, "length", rb_ary_length, 0); rb_define_alias(rb_cArray, "size", "length"); rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0); rb_define_method(rb_cArray, "find_index", rb_ary_index, -1); rb_define_method(rb_cArray, "index", rb_ary_index, -1); rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1); rb_define_method(rb_cArray, "join", rb_ary_join_m, -1); rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0); rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0); rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1); rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1); rb_define_method(rb_cArray, "sort", rb_ary_sort, 0); rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0); rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0); rb_define_method(rb_cArray, "collect", rb_ary_collect, 0); rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "map", rb_ary_collect, 0); rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "select", rb_ary_select, 0); rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0); rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0); rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1); rb_define_method(rb_cArray, "delete", rb_ary_delete, 1); rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1); rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0); rb_define_method(rb_cArray, "reject", rb_ary_reject, 0); rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0); rb_define_method(rb_cArray, "zip", rb_ary_zip, -1); rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0); rb_define_method(rb_cArray, "replace", rb_ary_replace, 1); rb_define_method(rb_cArray, "clear", rb_ary_clear, 0); rb_define_method(rb_cArray, "fill", rb_ary_fill, -1); rb_define_method(rb_cArray, "include?", rb_ary_includes, 1); rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1); rb_define_method(rb_cArray, "slice", rb_ary_aref, -1); rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1); rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1); rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1); rb_define_method(rb_cArray, "+", rb_ary_plus, 1); rb_define_method(rb_cArray, "*", rb_ary_times, 1); rb_define_method(rb_cArray, "-", rb_ary_diff, 1); rb_define_method(rb_cArray, "&", rb_ary_and, 1); rb_define_method(rb_cArray, "|", rb_ary_or, 1); rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0); rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0); rb_define_method(rb_cArray, "compact", rb_ary_compact, 0); rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0); rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1); rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1); rb_define_method(rb_cArray, "count", rb_ary_count, -1); rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, -1); rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, -1); rb_define_method(rb_cArray, "sample", rb_ary_sample, -1); rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1); rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1); rb_define_method(rb_cArray, "combination", rb_ary_combination, 1); rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1); rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1); rb_define_method(rb_cArray, "product", rb_ary_product, -1); rb_define_method(rb_cArray, "take", rb_ary_take, 1); rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0); rb_define_method(rb_cArray, "drop", rb_ary_drop, 1); rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0); id_cmp = rb_intern("<=>"); sym_random = ID2SYM(rb_intern("random")); }